JPS6028604A - Manufacture of light transmitting material - Google Patents

Manufacture of light transmitting material

Info

Publication number
JPS6028604A
JPS6028604A JP58135905A JP13590583A JPS6028604A JP S6028604 A JPS6028604 A JP S6028604A JP 58135905 A JP58135905 A JP 58135905A JP 13590583 A JP13590583 A JP 13590583A JP S6028604 A JPS6028604 A JP S6028604A
Authority
JP
Japan
Prior art keywords
melt
cesium bromide
crystal
seed crystal
transmitting material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58135905A
Other languages
Japanese (ja)
Inventor
Mitsuo Kasori
加曽利 光男
Hironori Maki
牧 博憲
Takeshi Takano
高野 武止
Yoshihiro Akasaka
芳浩 赤坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58135905A priority Critical patent/JPS6028604A/en
Publication of JPS6028604A publication Critical patent/JPS6028604A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/102Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type for infrared and ultraviolet radiation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/12Halides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/62Whiskers or needles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To easily and effectively eliminate residual OH groups by providing a step of heating crystals composed of alkali halide in an atm. contg. H2. CONSTITUTION:A single crystal of cesium bromide of 2mm. in diameter and 10mm. in length by cutting it in the direction of 100 and it is used as a seed crystal. An electric furnace is controlled in atm. by allowing a mixture of 0.5 liter/min H2 and 1 liter/min N2 to flow and unreacted H2 in the exhaust gas to react with the air in the presence of platinum asbestos. Cesium bromide placed in the furnace begins to melt, and temp. is kept 50 deg.C higher than the temp. at that time for 1hr to eliminate bubbles in the melt. The seed crystal is gradually lowered to bring it into contact with the surface of the melt and to melt a part of the end, and it is gradually pulled up while it is being rotated in 2rpm. The single crytal of cesium bromide thus obtained is not opacified by production of the hydroxide, small in light loss throughout all the spectra, and desirable for optical parts.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は光透過材料の製造方法I:関し、更C二詳しく
はアルカリハライド結晶中の残留OH基をイ氏減できる
製造方法である0 し発明の技術的背景とその問題点] アルカリノ・ライドは透明な波長領域が広く、最近では
赤外域の透明性の応用9例えばCO2レーザー光の光伝
送材料としてなど注目されてl/)る。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for producing a light-transmitting material. Technical background of the invention and its problems] Alkalinolide is transparent in a wide wavelength range, and has recently attracted attention for its transparency in the infrared region9, for example, as a light transmission material for CO2 laser light.

光透過材料としてアルカリノ・ライドを考える時、各使
用波長での光損失を極力少なくする必要カニある0 光tμ失は原料自体そして製造環境から混入する吸収又
は散乱因子があり、又、結晶の不完全性によってもひき
おこされる。各損失要因は例えば帯精製、蒸留法又は結
晶成長方法の最適化などにより除去する必要がある。
When considering alkalinolide as a light transmitting material, it is necessary to minimize the optical loss at each wavelength used.The optical tμ loss is due to absorption or scattering factors introduced from the raw material itself and the manufacturing environment, and also due to crystal defects. It is also caused by completeness. Each loss factor must be eliminated, for example, by strip purification, distillation, or optimization of the crystal growth method.

一方、直接的g二は光損失をひきおこさないが、二次的
C二損失を高める要因として残留OH基の存在がある。
On the other hand, although direct g2 does not cause optical loss, the presence of residual OH groups is a factor that increases secondary C2 loss.

アルカリハライド中の残留水分は加水分解反応■:より
該アルカリの水酸化物の生成、又、溶融用るつは材に石
英ガラスを使用した時るつほと融液との反応性を高める
などの悪影響をおよほす。
Residual water in the alkali halide undergoes a hydrolysis reaction.■: Produces hydroxide of the alkali, and increases reactivity between the melt and the melt when quartz glass is used as the material for the melt. have an adverse effect on

水酸化物の生成は結晶を不透明化し、光透過材料として
全く意味をなさないものとなり、るつほとの反応はるつ
ば自体そしてるつぼ材の不純物の混入を招く。
The formation of hydroxide makes the crystal opaque, making it completely meaningless as a light-transmitting material, and the reaction with the crucible results in contamination of the crucible itself and the crucible material with impurities.

従来、 OH基含有量の少ない結晶を作る5二は、出発
原料を乾燥する、乾燥雰囲気中で溶融し育成するなどの
対策が講じられているが、自づから限界があり実用的な
光透材料として要求されている光損失のφさいアルカリ
ハライド結晶を安定5二製造できないのが実状である。
Conventionally, measures have been taken to produce crystals with a low OH group content52, such as drying the starting materials or melting and growing them in a dry atmosphere; The reality is that it is not possible to stably produce alkali halide crystals with a small optical loss of φ, which is required as a material.

又、ハロゲンガスあるいはハロゲン化水素ガス雰囲気中
での溶融がOH基除去C−有効であることが知られてい
るが、これらのガスは極めて毒性が強く、又腐食性を示
すため浦融炉やるつば、加熱用ヒーターの材質が著るし
く制約されるなどの問題があった。
Furthermore, it is known that melting in a halogen gas or hydrogen halide gas atmosphere is effective in removing OH groups, but these gases are highly toxic and corrosive, so they cannot be used in a Ura melting furnace. There were problems such as severe restrictions on the materials for the brim and heating heater.

[発明の目的] 本発明は前述したアルカリハライドから成る光透過材料
の残留OH基を簡便に、かつ効果的に二除去することの
できる製造方法を目的とするものである0 [発明の概要] 本発明はアルカリハライドから成る光透過材料の製造工
程C二おいてその製造途中C二水素ガスを含む雰囲気中
で加熱する工程を経ることを特徴とするものである。
[Object of the Invention] The object of the present invention is to provide a manufacturing method that can easily and effectively remove residual OH groups from a light-transmitting material made of the alkali halide described above.0 [Summary of the Invention] The present invention is characterized in that in the manufacturing process C2 of a light transmitting material made of an alkali halide, the material is heated in an atmosphere containing C2 hydrogen gas during the manufacturing process.

すなわち、雰囲気中5ユ水素ガスを含むことでアルカリ
ハライドの加水分解l二よる水酸化物の生成を抑制し、
又、残留OH基と水素ガスとの直接反応により水蒸気と
することで除去を行なうものである。
That is, by including hydrogen gas in the atmosphere, the production of hydroxide due to hydrolysis of alkali halide is suppressed,
In addition, the residual OH groups are removed by direct reaction with hydrogen gas to generate water vapor.

従来の残留OH基除去の方法が濃度差を利用する物理的
方法であるのC二対し、本発明では上記の如くC二化学
反応によりOH基を除去するものである。
While the conventional method for removing residual OH groups is a physical method utilizing a concentration difference, the present invention removes OH groups by a C2 chemical reaction as described above.

しかも、その方法は単C二水素ガスを含む雰囲気中で加
熱するだけであり、毒性そして腐食性の強いハロゲン又
はハロゲン化水素ガスを使用することのない極めて簡便
な方法である。
Moreover, this method is an extremely simple method that only requires heating in an atmosphere containing mono-C dihydrogen gas, and does not use highly toxic and corrosive halogen or hydrogen halide gas.

水素ガスを含む雰囲気中で加熱する工程を、該光透化材
料を製造する全工程のどこに入れても、本発明の効果は
表われるものであるが、該結晶の焼結が行らない範囲で
可能な限り高温で加熱すること、又、結晶を溶融し、育
成する工程に利用することが効果的である。
The effects of the present invention can be obtained no matter where the step of heating in an atmosphere containing hydrogen gas is included in the entire process of manufacturing the light-transmitting material, but the effect of the present invention can be obtained within the range where the crystals are not sintered. It is effective to heat the crystal at the highest possible temperature, and to use it in the process of melting and growing crystals.

又、水素ガス以外の雰囲気ガス成分は、水素と反応しな
いガスならばさしつかえないが、例えば窒素、アルゴン
、ヘリウムなどの不活性ガスが望ましい。
Further, atmospheric gas components other than hydrogen gas may be any gases that do not react with hydrogen, but are preferably inert gases such as nitrogen, argon, and helium.

以下実施例により本発明の詳細な説明する。The present invention will be explained in detail below with reference to Examples.

(実施例−1) 臭化セシウム単結晶を結晶方位が(ioo)であるよう
i二切り出し直径2 m 、長さ1謂の形状5ニして種
子結晶とした。
(Example 1) A cesium bromide single crystal was cut into a seed crystal having a diameter of 2 m and a length of 5 cm so that the crystal orientation was (ioo).

同じく臭化セシウム粉末1001を石英るつほに入れ、
これをタングステンヒーターを用いた電気炉中央tニセ
ットし加熱し溶解した。
Similarly, put cesium bromide powder 1001 into a quartz rutsuho,
This was placed in the center of an electric furnace using a tungsten heater, and heated and melted.

この時、電気炉内は雰囲気制御し、水素ガス0.5t1
分、窒素ガス117分を混合して流し、排ガス中の未反
応水素は白金アスベストで空気と反応させて処理した。
At this time, the atmosphere inside the electric furnace is controlled and hydrogen gas is 0.5t1.
117 minutes of nitrogen gas was mixed and flowed, and unreacted hydrogen in the exhaust gas was treated by reacting platinum asbestos with air.

臭化セシウムが溶ルイを始めた温度から更5二50℃上
り、1時間保持して、融液中の気泡を抜き去った。
The temperature was further increased to 5250°C from the temperature at which cesium bromide began to dissolve, and the temperature was maintained for 1 hour to remove air bubbles from the melt.

次に種子を下げていき融液表面と接触させ、種子の先端
の一部を融かした後、種子を2rpmで回転させながら
徐々C−引き上けた。
Next, the seeds were lowered and brought into contact with the melt surface to melt a portion of the tips of the seeds, and then the seeds were gradually pulled up while rotating at 2 rpm.

この時、柚子は水冷パイプの下端1ニネジ止めで取り付
けてる名。
At this time, Yuzu is attached to the bottom end of the water cooling pipe with one screw.

このようにして得られた臭化セシウム単結晶は水酸化物
の生成C′−よる不透明化もなく、光損失もスペクトル
全般にわたって少なく光学用部品とじてlブ 望ましいものであった。
The cesium bromide single crystal thus obtained did not become opaque due to the formation of hydroxide C'-, and its optical loss was small over the entire spectrum, making it desirable as an optical component.

(実施例−2) 沃化セシウム単結晶を結晶方位が(ioo)であるよう
に切り出し直径1關、長さ1備の形状にして種子結晶を
得た。
(Example 2) A seed crystal was obtained by cutting a cesium iodide single crystal so that the crystal orientation was (ioo) and shaping it into a shape with a diameter of 1 inch and a length of 1 inch.

沃化セシウムは粉末2Orを底に毛細管を連結した石英
るつほに入れこれをタングステンヒーターを用いた単結
晶ファイバ引き下は炉1−セットした。
The cesium iodide powder was placed in a quartz furnace connected to a capillary tube at the bottom, and a single crystal fiber was pulled down using a tungsten heater, which was set in the furnace 1-.

この時の炉内ガス雰囲気は水go、tz/分、ヘリウム
0.3t/分を混合したものであり、排ガス中の未反応
水素は実施例−1と同様に処理した。
The gas atmosphere in the furnace at this time was a mixture of water go, tz/min, and helium 0.3 t/min, and unreacted hydrogen in the exhaust gas was treated in the same manner as in Example-1.

加熱され溶解した沃化セシウムは毛細管により流量調整
され約10−7分の速度で毛細管端部のオリアイス部か
ら流出流下する。
The heated and melted cesium iodide flows down through the oriice portion at the end of the capillary at a rate of about 10-7 minutes with the flow rate adjusted by the capillary.

この融液を前記の種子結晶で下方向から受け、適尚な温
度勾配の中で5罪/分の速度で引き下げた〇融液はオリ
スイスの下端から1〜2Mの距離の位置で固化しファイ
バー化する。
This melt was received from below by the seed crystal and pulled down at a rate of 5 min/min in an appropriate temperature gradient. The melt solidified at a distance of 1 to 2 M from the bottom of the Oriswiss and became a fiber. become

この時、種子結晶は直径1関で長さ255Iの石英ガラ
ス棒の一端に熱融着して取り何け、他端はボールネジg
二連結したチャックにかませ、ボールネジの回転により
石英ガラス棒を引き下げた。
At this time, the seed crystal was heat-sealed to one end of a quartz glass rod with a diameter of 1 mm and a length of 255 mm, and the other end was attached to a ball screw.
The quartz glass rod was placed in two connected chucks and pulled down by the rotation of the ball screw.

Claims (1)

【特許請求の範囲】[Claims] アルカリノ・ライドから成る結晶を水素ガ2を含む雰囲
気中で加熱する結晶育成工程を含むことを特dlとする
光透過材料の製造方法
A method for producing a light-transmitting material, which includes a crystal growth step of heating a crystal made of alkalinolide in an atmosphere containing hydrogen gas 2.
JP58135905A 1983-07-27 1983-07-27 Manufacture of light transmitting material Pending JPS6028604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58135905A JPS6028604A (en) 1983-07-27 1983-07-27 Manufacture of light transmitting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58135905A JPS6028604A (en) 1983-07-27 1983-07-27 Manufacture of light transmitting material

Publications (1)

Publication Number Publication Date
JPS6028604A true JPS6028604A (en) 1985-02-13

Family

ID=15162564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58135905A Pending JPS6028604A (en) 1983-07-27 1983-07-27 Manufacture of light transmitting material

Country Status (1)

Country Link
JP (1) JPS6028604A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0432817U (en) * 1990-07-12 1992-03-17
CN1060542C (en) * 1996-06-14 2001-01-10 中国科学院上海硅酸盐研究所 Growth technology of thallium doped cesium iodide crystal by antivacuum fall
CN115595663A (en) * 2022-12-01 2023-01-13 浙江大学杭州国际科创中心(Cn) Treatment method of silicon carbide seed crystal and growth method of silicon carbide crystal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0432817U (en) * 1990-07-12 1992-03-17
CN1060542C (en) * 1996-06-14 2001-01-10 中国科学院上海硅酸盐研究所 Growth technology of thallium doped cesium iodide crystal by antivacuum fall
CN115595663A (en) * 2022-12-01 2023-01-13 浙江大学杭州国际科创中心(Cn) Treatment method of silicon carbide seed crystal and growth method of silicon carbide crystal

Similar Documents

Publication Publication Date Title
JPH04195101A (en) Ultraviolet ray transmitting optical glass and molded article thereof
JPS5688836A (en) Preparation of glass stock for optical fiber
US4911896A (en) Fused quartz member for use in semiconductor manufacture
JPS6028604A (en) Manufacture of light transmitting material
JPS616144A (en) Sintering method of parent glass material for optical fiber
JP2001240497A (en) Method and equipment for manufacturing single crystal fluoride
JPS63201025A (en) Production of high-purity transparent glass
GB2145742A (en) Method of manufacturing a reaction vessel for crystal growth purposes
JPH03109223A (en) Quartz glass and production thereof
JP2722573B2 (en) Manufacturing method of high purity quartz glass
JPH05254882A (en) Opaque quartz glass
JPS6143290B2 (en)
JPS60221332A (en) Manufacture of optical fiber base material
JP3114936B2 (en) High heat resistant synthetic quartz glass
JPH025694B2 (en)
JPS60239339A (en) Preparation of parent material for optical fiber
JPS60251147A (en) Process and device for preparing halide glass
JPS6054937A (en) Manufacture of preform rod
JPS5855341A (en) Manufacture of optical fiber
JPH01115897A (en) Production of magnesium fluoride single crystal
JPH0769661A (en) Production of opaque quartz glass
JPS62241837A (en) Production of quartz glass
JPS62260728A (en) Production of glass preform for optical transmission
JPS62143834A (en) Production of preform for optical fiber
JPS5899131A (en) Production of optical glass material