JPS6028604A - Manufacture of light transmitting material - Google Patents
Manufacture of light transmitting materialInfo
- Publication number
- JPS6028604A JPS6028604A JP58135905A JP13590583A JPS6028604A JP S6028604 A JPS6028604 A JP S6028604A JP 58135905 A JP58135905 A JP 58135905A JP 13590583 A JP13590583 A JP 13590583A JP S6028604 A JPS6028604 A JP S6028604A
- Authority
- JP
- Japan
- Prior art keywords
- melt
- cesium bromide
- crystal
- seed crystal
- transmitting material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 10
- 239000000463 material Substances 0.000 title claims description 14
- 239000013078 crystal Substances 0.000 claims abstract description 23
- 238000010438 heat treatment Methods 0.000 claims abstract description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 10
- 239000000155 melt Substances 0.000 abstract description 9
- 125000002887 hydroxy group Chemical group [H]O* 0.000 abstract description 8
- 239000003513 alkali Substances 0.000 abstract description 7
- LYQFWZFBNBDLEO-UHFFFAOYSA-M caesium bromide Chemical compound [Br-].[Cs+] LYQFWZFBNBDLEO-UHFFFAOYSA-M 0.000 abstract description 7
- 230000003287 optical effect Effects 0.000 abstract description 7
- 150000004820 halides Chemical class 0.000 abstract description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 abstract description 5
- 238000005520 cutting process Methods 0.000 abstract description 2
- 239000000203 mixture Substances 0.000 abstract description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 abstract description 2
- 238000001228 spectrum Methods 0.000 abstract description 2
- 239000007789 gas Substances 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- XQPRBTXUXXVTKB-UHFFFAOYSA-M caesium iodide Chemical compound [I-].[Cs+] XQPRBTXUXXVTKB-UHFFFAOYSA-M 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 239000012433 hydrogen halide Substances 0.000 description 2
- 229910000039 hydrogen halide Inorganic materials 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 241000951471 Citrus junos Species 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000002109 crystal growth method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/102—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type for infrared and ultraviolet radiation
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/12—Halides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/60—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
- C30B29/62—Whiskers or needles
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の技術分野]
本発明は光透過材料の製造方法I:関し、更C二詳しく
はアルカリハライド結晶中の残留OH基をイ氏減できる
製造方法である0
し発明の技術的背景とその問題点]
アルカリノ・ライドは透明な波長領域が広く、最近では
赤外域の透明性の応用9例えばCO2レーザー光の光伝
送材料としてなど注目されてl/)る。[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for producing a light-transmitting material. Technical background of the invention and its problems] Alkalinolide is transparent in a wide wavelength range, and has recently attracted attention for its transparency in the infrared region9, for example, as a light transmission material for CO2 laser light.
光透過材料としてアルカリノ・ライドを考える時、各使
用波長での光損失を極力少なくする必要カニある0
光tμ失は原料自体そして製造環境から混入する吸収又
は散乱因子があり、又、結晶の不完全性によってもひき
おこされる。各損失要因は例えば帯精製、蒸留法又は結
晶成長方法の最適化などにより除去する必要がある。When considering alkalinolide as a light transmitting material, it is necessary to minimize the optical loss at each wavelength used.The optical tμ loss is due to absorption or scattering factors introduced from the raw material itself and the manufacturing environment, and also due to crystal defects. It is also caused by completeness. Each loss factor must be eliminated, for example, by strip purification, distillation, or optimization of the crystal growth method.
一方、直接的g二は光損失をひきおこさないが、二次的
C二損失を高める要因として残留OH基の存在がある。On the other hand, although direct g2 does not cause optical loss, the presence of residual OH groups is a factor that increases secondary C2 loss.
アルカリハライド中の残留水分は加水分解反応■:より
該アルカリの水酸化物の生成、又、溶融用るつは材に石
英ガラスを使用した時るつほと融液との反応性を高める
などの悪影響をおよほす。Residual water in the alkali halide undergoes a hydrolysis reaction.■: Produces hydroxide of the alkali, and increases reactivity between the melt and the melt when quartz glass is used as the material for the melt. have an adverse effect on
水酸化物の生成は結晶を不透明化し、光透過材料として
全く意味をなさないものとなり、るつほとの反応はるつ
ば自体そしてるつぼ材の不純物の混入を招く。The formation of hydroxide makes the crystal opaque, making it completely meaningless as a light-transmitting material, and the reaction with the crucible results in contamination of the crucible itself and the crucible material with impurities.
従来、 OH基含有量の少ない結晶を作る5二は、出発
原料を乾燥する、乾燥雰囲気中で溶融し育成するなどの
対策が講じられているが、自づから限界があり実用的な
光透材料として要求されている光損失のφさいアルカリ
ハライド結晶を安定5二製造できないのが実状である。Conventionally, measures have been taken to produce crystals with a low OH group content52, such as drying the starting materials or melting and growing them in a dry atmosphere; The reality is that it is not possible to stably produce alkali halide crystals with a small optical loss of φ, which is required as a material.
又、ハロゲンガスあるいはハロゲン化水素ガス雰囲気中
での溶融がOH基除去C−有効であることが知られてい
るが、これらのガスは極めて毒性が強く、又腐食性を示
すため浦融炉やるつば、加熱用ヒーターの材質が著るし
く制約されるなどの問題があった。Furthermore, it is known that melting in a halogen gas or hydrogen halide gas atmosphere is effective in removing OH groups, but these gases are highly toxic and corrosive, so they cannot be used in a Ura melting furnace. There were problems such as severe restrictions on the materials for the brim and heating heater.
[発明の目的]
本発明は前述したアルカリハライドから成る光透過材料
の残留OH基を簡便に、かつ効果的に二除去することの
できる製造方法を目的とするものである0
[発明の概要]
本発明はアルカリハライドから成る光透過材料の製造工
程C二おいてその製造途中C二水素ガスを含む雰囲気中
で加熱する工程を経ることを特徴とするものである。[Object of the Invention] The object of the present invention is to provide a manufacturing method that can easily and effectively remove residual OH groups from a light-transmitting material made of the alkali halide described above.0 [Summary of the Invention] The present invention is characterized in that in the manufacturing process C2 of a light transmitting material made of an alkali halide, the material is heated in an atmosphere containing C2 hydrogen gas during the manufacturing process.
すなわち、雰囲気中5ユ水素ガスを含むことでアルカリ
ハライドの加水分解l二よる水酸化物の生成を抑制し、
又、残留OH基と水素ガスとの直接反応により水蒸気と
することで除去を行なうものである。That is, by including hydrogen gas in the atmosphere, the production of hydroxide due to hydrolysis of alkali halide is suppressed,
In addition, the residual OH groups are removed by direct reaction with hydrogen gas to generate water vapor.
従来の残留OH基除去の方法が濃度差を利用する物理的
方法であるのC二対し、本発明では上記の如くC二化学
反応によりOH基を除去するものである。While the conventional method for removing residual OH groups is a physical method utilizing a concentration difference, the present invention removes OH groups by a C2 chemical reaction as described above.
しかも、その方法は単C二水素ガスを含む雰囲気中で加
熱するだけであり、毒性そして腐食性の強いハロゲン又
はハロゲン化水素ガスを使用することのない極めて簡便
な方法である。Moreover, this method is an extremely simple method that only requires heating in an atmosphere containing mono-C dihydrogen gas, and does not use highly toxic and corrosive halogen or hydrogen halide gas.
水素ガスを含む雰囲気中で加熱する工程を、該光透化材
料を製造する全工程のどこに入れても、本発明の効果は
表われるものであるが、該結晶の焼結が行らない範囲で
可能な限り高温で加熱すること、又、結晶を溶融し、育
成する工程に利用することが効果的である。The effects of the present invention can be obtained no matter where the step of heating in an atmosphere containing hydrogen gas is included in the entire process of manufacturing the light-transmitting material, but the effect of the present invention can be obtained within the range where the crystals are not sintered. It is effective to heat the crystal at the highest possible temperature, and to use it in the process of melting and growing crystals.
又、水素ガス以外の雰囲気ガス成分は、水素と反応しな
いガスならばさしつかえないが、例えば窒素、アルゴン
、ヘリウムなどの不活性ガスが望ましい。Further, atmospheric gas components other than hydrogen gas may be any gases that do not react with hydrogen, but are preferably inert gases such as nitrogen, argon, and helium.
以下実施例により本発明の詳細な説明する。The present invention will be explained in detail below with reference to Examples.
(実施例−1)
臭化セシウム単結晶を結晶方位が(ioo)であるよう
i二切り出し直径2 m 、長さ1謂の形状5ニして種
子結晶とした。(Example 1) A cesium bromide single crystal was cut into a seed crystal having a diameter of 2 m and a length of 5 cm so that the crystal orientation was (ioo).
同じく臭化セシウム粉末1001を石英るつほに入れ、
これをタングステンヒーターを用いた電気炉中央tニセ
ットし加熱し溶解した。Similarly, put cesium bromide powder 1001 into a quartz rutsuho,
This was placed in the center of an electric furnace using a tungsten heater, and heated and melted.
この時、電気炉内は雰囲気制御し、水素ガス0.5t1
分、窒素ガス117分を混合して流し、排ガス中の未反
応水素は白金アスベストで空気と反応させて処理した。At this time, the atmosphere inside the electric furnace is controlled and hydrogen gas is 0.5t1.
117 minutes of nitrogen gas was mixed and flowed, and unreacted hydrogen in the exhaust gas was treated by reacting platinum asbestos with air.
臭化セシウムが溶ルイを始めた温度から更5二50℃上
り、1時間保持して、融液中の気泡を抜き去った。The temperature was further increased to 5250°C from the temperature at which cesium bromide began to dissolve, and the temperature was maintained for 1 hour to remove air bubbles from the melt.
次に種子を下げていき融液表面と接触させ、種子の先端
の一部を融かした後、種子を2rpmで回転させながら
徐々C−引き上けた。Next, the seeds were lowered and brought into contact with the melt surface to melt a portion of the tips of the seeds, and then the seeds were gradually pulled up while rotating at 2 rpm.
この時、柚子は水冷パイプの下端1ニネジ止めで取り付
けてる名。At this time, Yuzu is attached to the bottom end of the water cooling pipe with one screw.
このようにして得られた臭化セシウム単結晶は水酸化物
の生成C′−よる不透明化もなく、光損失もスペクトル
全般にわたって少なく光学用部品とじてlブ
望ましいものであった。The cesium bromide single crystal thus obtained did not become opaque due to the formation of hydroxide C'-, and its optical loss was small over the entire spectrum, making it desirable as an optical component.
(実施例−2)
沃化セシウム単結晶を結晶方位が(ioo)であるよう
に切り出し直径1關、長さ1備の形状にして種子結晶を
得た。(Example 2) A seed crystal was obtained by cutting a cesium iodide single crystal so that the crystal orientation was (ioo) and shaping it into a shape with a diameter of 1 inch and a length of 1 inch.
沃化セシウムは粉末2Orを底に毛細管を連結した石英
るつほに入れこれをタングステンヒーターを用いた単結
晶ファイバ引き下は炉1−セットした。The cesium iodide powder was placed in a quartz furnace connected to a capillary tube at the bottom, and a single crystal fiber was pulled down using a tungsten heater, which was set in the furnace 1-.
この時の炉内ガス雰囲気は水go、tz/分、ヘリウム
0.3t/分を混合したものであり、排ガス中の未反応
水素は実施例−1と同様に処理した。The gas atmosphere in the furnace at this time was a mixture of water go, tz/min, and helium 0.3 t/min, and unreacted hydrogen in the exhaust gas was treated in the same manner as in Example-1.
加熱され溶解した沃化セシウムは毛細管により流量調整
され約10−7分の速度で毛細管端部のオリアイス部か
ら流出流下する。The heated and melted cesium iodide flows down through the oriice portion at the end of the capillary at a rate of about 10-7 minutes with the flow rate adjusted by the capillary.
この融液を前記の種子結晶で下方向から受け、適尚な温
度勾配の中で5罪/分の速度で引き下げた〇融液はオリ
スイスの下端から1〜2Mの距離の位置で固化しファイ
バー化する。This melt was received from below by the seed crystal and pulled down at a rate of 5 min/min in an appropriate temperature gradient. The melt solidified at a distance of 1 to 2 M from the bottom of the Oriswiss and became a fiber. become
この時、種子結晶は直径1関で長さ255Iの石英ガラ
ス棒の一端に熱融着して取り何け、他端はボールネジg
二連結したチャックにかませ、ボールネジの回転により
石英ガラス棒を引き下げた。At this time, the seed crystal was heat-sealed to one end of a quartz glass rod with a diameter of 1 mm and a length of 255 mm, and the other end was attached to a ball screw.
The quartz glass rod was placed in two connected chucks and pulled down by the rotation of the ball screw.
Claims (1)
気中で加熱する結晶育成工程を含むことを特dlとする
光透過材料の製造方法A method for producing a light-transmitting material, which includes a crystal growth step of heating a crystal made of alkalinolide in an atmosphere containing hydrogen gas 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58135905A JPS6028604A (en) | 1983-07-27 | 1983-07-27 | Manufacture of light transmitting material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58135905A JPS6028604A (en) | 1983-07-27 | 1983-07-27 | Manufacture of light transmitting material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6028604A true JPS6028604A (en) | 1985-02-13 |
Family
ID=15162564
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58135905A Pending JPS6028604A (en) | 1983-07-27 | 1983-07-27 | Manufacture of light transmitting material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6028604A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0432817U (en) * | 1990-07-12 | 1992-03-17 | ||
CN1060542C (en) * | 1996-06-14 | 2001-01-10 | 中国科学院上海硅酸盐研究所 | Growth technology of thallium doped cesium iodide crystal by antivacuum fall |
CN115595663A (en) * | 2022-12-01 | 2023-01-13 | 浙江大学杭州国际科创中心(Cn) | Treatment method of silicon carbide seed crystal and growth method of silicon carbide crystal |
-
1983
- 1983-07-27 JP JP58135905A patent/JPS6028604A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0432817U (en) * | 1990-07-12 | 1992-03-17 | ||
CN1060542C (en) * | 1996-06-14 | 2001-01-10 | 中国科学院上海硅酸盐研究所 | Growth technology of thallium doped cesium iodide crystal by antivacuum fall |
CN115595663A (en) * | 2022-12-01 | 2023-01-13 | 浙江大学杭州国际科创中心(Cn) | Treatment method of silicon carbide seed crystal and growth method of silicon carbide crystal |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH04195101A (en) | Ultraviolet ray transmitting optical glass and molded article thereof | |
JPS5688836A (en) | Preparation of glass stock for optical fiber | |
US4911896A (en) | Fused quartz member for use in semiconductor manufacture | |
JPS6028604A (en) | Manufacture of light transmitting material | |
JPS616144A (en) | Sintering method of parent glass material for optical fiber | |
JP2001240497A (en) | Method and equipment for manufacturing single crystal fluoride | |
JPS63201025A (en) | Production of high-purity transparent glass | |
GB2145742A (en) | Method of manufacturing a reaction vessel for crystal growth purposes | |
JPH03109223A (en) | Quartz glass and production thereof | |
JP2722573B2 (en) | Manufacturing method of high purity quartz glass | |
JPH05254882A (en) | Opaque quartz glass | |
JPS6143290B2 (en) | ||
JPS60221332A (en) | Manufacture of optical fiber base material | |
JP3114936B2 (en) | High heat resistant synthetic quartz glass | |
JPH025694B2 (en) | ||
JPS60239339A (en) | Preparation of parent material for optical fiber | |
JPS60251147A (en) | Process and device for preparing halide glass | |
JPS6054937A (en) | Manufacture of preform rod | |
JPS5855341A (en) | Manufacture of optical fiber | |
JPH01115897A (en) | Production of magnesium fluoride single crystal | |
JPH0769661A (en) | Production of opaque quartz glass | |
JPS62241837A (en) | Production of quartz glass | |
JPS62260728A (en) | Production of glass preform for optical transmission | |
JPS62143834A (en) | Production of preform for optical fiber | |
JPS5899131A (en) | Production of optical glass material |