JPH025694B2 - - Google Patents

Info

Publication number
JPH025694B2
JPH025694B2 JP7160184A JP7160184A JPH025694B2 JP H025694 B2 JPH025694 B2 JP H025694B2 JP 7160184 A JP7160184 A JP 7160184A JP 7160184 A JP7160184 A JP 7160184A JP H025694 B2 JPH025694 B2 JP H025694B2
Authority
JP
Japan
Prior art keywords
burner
oxygen gas
tube
synthetic quartz
outer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7160184A
Other languages
Japanese (ja)
Other versions
JPS60215515A (en
Inventor
Masahiro Ikeda
Kenichi Hiroshima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP7160184A priority Critical patent/JPS60215515A/en
Publication of JPS60215515A publication Critical patent/JPS60215515A/en
Publication of JPH025694B2 publication Critical patent/JPH025694B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1415Reactant delivery systems
    • C03B19/1423Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/06Concentric circular ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/08Recessed or protruding ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/12Nozzle or orifice plates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/14Tapered or flared nozzles or ports angled to central burner axis
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • C03B2207/22Inert gas details
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/36Fuel or oxidant details, e.g. flow rate, flow rate ratio, fuel additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Silicon Compounds (AREA)

Description

【発明の詳細な説明】 技術分野 本発明は半導体用マスク基盤や光学用レンズな
どの原材料となる合成石英素塊の製造法及びその
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a method and apparatus for producing a synthetic quartz block, which is a raw material for semiconductor mask substrates, optical lenses, and the like.

従来技術とその欠点 従来の合成石英の製造法としては、四塩化ケイ
素のような揮発性ケイ素ハロゲン物を、酸水素炎
中で気相加水分解し、生成した二酸化ケイ素微粒
子を燃焼熱によつて1800℃以上に加熱された石英
ガラス又は合成石英ガラスの回転する標的基盤上
に吹きつけ、熔融成長させることによつて製造す
る方法が最も一般的である。
Prior Art and Its Disadvantages The conventional method for producing synthetic quartz involves gas phase hydrolysis of volatile silicon halogens such as silicon tetrachloride in an oxyhydrogen flame, and the resulting silicon dioxide fine particles exposed to heat of combustion. The most common manufacturing method is to spray the glass onto a rotating target substrate of quartz glass or synthetic quartz glass heated to 1800° C. or higher and to cause the glass to melt and grow.

上記方法によれば、原料の四塩化ケイ素を精溜
によつて遷移金属の含有量を減少させることがで
き、またバーナに合成石英を用いることによつ
て、不純物の混入をなくすことができるようにな
り、従来の天然水晶を原料にした場合に比べて製
品の純度が飛躍的に向上し、残溜気泡の少ない高
純度の合成石英素塊の製造が可能となつた。しか
しながら、この合成石英素塊を光学的用途に用い
る場合に、残溜する微量の気泡によつて欠陥散乱
が発生し、光の透過率が低下する原因となつてい
る。
According to the above method, the content of transition metals can be reduced by rectifying the raw material silicon tetrachloride, and by using synthetic quartz for the burner, it is possible to eliminate the contamination of impurities. This dramatically improves the purity of the product compared to when conventional natural quartz is used as a raw material, making it possible to manufacture high-purity synthetic quartz blocks with fewer residual air bubbles. However, when this synthetic quartz block is used for optical purposes, a small amount of remaining air bubbles causes defect scattering, which causes a decrease in light transmittance.

第1図は上記方法を実施するための装置全体の
概略図、第2図a,bおよび第3図a,bはそれ
ぞれ従来のバーナを示す概略図である。
FIG. 1 is a schematic diagram of the entire apparatus for carrying out the above method, and FIGS. 2a, b and 3 a, b are schematic diagrams showing a conventional burner, respectively.

第1図では1はバーナ、2は炉蓋、3は炉体、
4は監視窓、5は排気口、6は炉架台、7は支持
棒、8は支持台、9は基盤、10は合成石英素
塊、11,13は酸素ガス、12は四塩化ケイ
素、14は水素ガスである。第2図及び第3図で
は15は外筒管、16は内管、17は外管、18
は酸素ガス供給管、19は水素ガスの通路であ
る。
In Figure 1, 1 is a burner, 2 is a furnace cover, 3 is a furnace body,
4 is a monitoring window, 5 is an exhaust port, 6 is a furnace frame, 7 is a support rod, 8 is a support stand, 9 is a base, 10 is a synthetic quartz block, 11 and 13 are oxygen gas, 12 is silicon tetrachloride, 14 is hydrogen gas. In Figures 2 and 3, 15 is an outer tube, 16 is an inner tube, 17 is an outer tube, and 18 is an outer tube.
1 is an oxygen gas supply pipe, and 19 is a hydrogen gas passage.

本発明の目的 本発明者らはこのような残溜気泡の低減化を目
的とし、研究を重ねた結果、残溜気泡発生の原因
が素塊の生成過程でバーナ外筒管内側に付着した
二酸化ケイ素の微粒が炉内圧、ガス圧の変動、装
置の震動等により析出成長中の素塊熔融面上に落
下し、熔融ガラス化しない内に素塊中に取り込ま
れ、時間の経過と共に微粒の集合体表面に吸着し
たガスが熱膨張するためであることを見出した。
そこで、気泡生成の原因の一つである二酸化ケイ
素の微粒を石英ガラス製バーナの最外壁に付着さ
せぬように、第4図が示すように、外筒管15の
外側にシール用外筒管20を配置したバーナを製
作した。このシール用外筒管20には清浄な空
気、酸素、アルゴンなど不燃性ガスを流し、その
内側に流れている水素ガスを周囲から包み、水素
ガスの自然拡散を防ぎつつ合成石英素塊を生成せ
しめたところ、二酸化ケイ素微粒の付着は絶無と
なり、残溜気泡の発生が激減することを確認し、
本発明に到達した。
Purpose of the present invention The present inventors aimed to reduce such residual air bubbles, and as a result of repeated research, they found that the cause of residual air bubbles was carbon dioxide that adhered to the inside of the burner outer cylinder tube during the production process of the raw agglomerate. Fine particles of silicon fall onto the molten surface of the precipitated and growing precipitate due to fluctuations in furnace pressure, gas pressure, vibrations of the equipment, etc., and are incorporated into the precipitate before it becomes vitrified, causing the fine particles to aggregate over time. It was discovered that this is due to thermal expansion of gas adsorbed on the body surface.
Therefore, in order to prevent fine particles of silicon dioxide, which is one of the causes of bubble generation, from adhering to the outermost wall of the quartz glass burner, a sealing outer tube is installed on the outside of the outer tube 15, as shown in FIG. A burner with 20 units was manufactured. A nonflammable gas such as clean air, oxygen, or argon is passed through this outer sealing tube 20, and the hydrogen gas flowing inside is wrapped around it to form a synthetic quartz block while preventing the natural diffusion of hydrogen gas. As a result, we confirmed that the adhesion of silicon dioxide fine particles was completely eliminated and the generation of residual air bubbles was drastically reduced.
We have arrived at the present invention.

本発明の構成 すなわち、本発明の製造法によれば、揮発性ケ
イ素化合物と酸素ガスならびに酸素ガスと水素ガ
スをバーナより吹き出させ、酸水素炎中で二酸化
ケイ素微粒子を生成させ、該二酸化ケイ素微粒子
を回転する標的基盤上に吹付け、熔融成長させる
ことよりなる合成石英素塊の製造法において、バ
ーナ中心部では揮発性ケイ素化合物と酸素ガスと
を二重管状に供給するとともにその周りでは該中
心部に対し、それぞれ対称位置で管状に酸素ガス
を供給し、かつ該酸素ガス流間の隙間に水素ガス
を供給し、さらに最外側ではイナート・シーリン
グガスを二重管状に供給するバーナを使用するこ
とを特徴とする合成石英素塊の製造法、が得ら
れ、また、本発明の装置によれば、揮発性ケイ素
化合物と酸素ガスならびに酸素ガスと水素ガスを
吹き出すバーナと生成した二酸化ケイ素微粒子を
受け、合成石英素塊とする回転標的基盤とよりな
る合成石英素塊の製造装置において、バーナ中心
部に二重管構造状に配置された揮発性ケイ素化合
物を供給する内管及び酸素ガスを供給する外管と
該外管を囲んで設けられた外筒管と該外管と該外
筒管間の空間に該バーナ中心部に対し対称位置に
配設された複数の酸素ガス供給管と該酸素ガス供
給管間の空隙を流路とする水素ガス供給手段と該
外筒管の外側に設けられ、該外筒管との間にイナ
ート・シーリングガスを流すシール用外筒管とか
らなるバーナを装備したことを特徴とする合成石
英素塊の製造装置、が得られる。
Structure of the present invention That is, according to the production method of the present invention, a volatile silicon compound and oxygen gas as well as oxygen gas and hydrogen gas are blown out from a burner to generate silicon dioxide fine particles in an oxyhydrogen flame. In this method, a volatile silicon compound and oxygen gas are supplied in a double tube form at the center of the burner, and around the center of the burner, a volatile silicon compound and oxygen gas are supplied in a double tube shape. A burner is used that supplies oxygen gas in a tubular manner at symmetrical positions to the two parts, supplies hydrogen gas to the gap between the oxygen gas flows, and further supplies inert sealing gas in a double tubular shape at the outermost side. According to the apparatus of the present invention, a volatile silicon compound and oxygen gas as well as a burner for blowing out oxygen gas and hydrogen gas and the produced silicon dioxide fine particles In an apparatus for producing synthetic quartz blocks, which consists of a rotating target base that is made into a synthetic quartz block, an inner tube for supplying a volatile silicon compound and an oxygen gas are arranged in the center of the burner in a double-tube structure. an outer tube surrounding the outer tube; a plurality of oxygen gas supply tubes disposed in a space between the outer tube and the outer tube at symmetrical positions with respect to the center of the burner; A burner comprising a hydrogen gas supply means having a gap between oxygen gas supply pipes as a flow path, and a sealing outer pipe provided on the outside of the outer pipe and allowing inert sealing gas to flow between the outer pipe and the outer pipe. There is obtained an apparatus for producing a synthetic quartz block, which is characterized in that it is equipped with the following.

本発明のバーナの1例として、第4図には中心
管の周囲に反応ガス供給管(酸素ガス供給管)を
2重の同心円上に配置した例を示したが、該反応
ガス供給管の位置や数には制限はなく、外筒管1
5がシール用外筒管20で二重管構造となつてい
ることが肝要である。また、該反応ガス供給管は
第4図及び第5図に示したごとく、各管平行でも
よく、また傾斜してもよい。
As an example of the burner of the present invention, FIG. 4 shows an example in which reactive gas supply pipes (oxygen gas supply pipes) are arranged in double concentric circles around a central pipe. There are no restrictions on the position or number, and the outer tube 1
It is important that 5 is the outer cylindrical tube 20 for sealing, and that it has a double tube structure. Further, the reaction gas supply pipes may be parallel to each other as shown in FIGS. 4 and 5, or may be inclined.

反応ガス供給管の材質は各種耐熱セラミツクが
使用できるが、合成石英が不純物混入の恐れがな
く、かつ長時間にわたる使用により、先端部が損
傷したとき、先端部を切断加工して再使用するこ
ともできるので好適である。
Various heat-resistant ceramics can be used as the material for the reaction gas supply pipe, but synthetic quartz is free from the risk of contamination with impurities, and if the tip becomes damaged due to long-term use, the tip can be cut and reused. It is suitable because it can also be used.

反応管の各部に流すガスは、通常反応ガス供給
管から酸素ガスを供給し、その周囲から水素ガス
を供給して点火し、標的基盤9が所定温度に達す
ると、中心の反応ガス供給管を酸素ガスより四塩
化珪素、トリクロルシラン、モノシランなどの揮
発性ケイ素ハロゲン化合物、水素化物などの珪素
化合物に切り換え、酸水素炎で二酸化ケイ素を生
成させ、これを基盤9上に熔融堆積させて、合成
石英素塊を製造した。このとき、シール用外筒管
20に流すイナート・シーリングガスは清浄な空
気、窒素、酸素、ヘリウム、アルゴン、などが好
適で、水素を用いると、外筒管15への二酸化ケ
イ素微粒の付着は減少するものの、ある温度範囲
の水素の作用により、石英製外筒管15の先端部
の劣化が著しくなるため、バーナの寿命を短縮
し、好ましくない。本発明の方法によれば、水素
ガスはイナート・シーリングガス中に閉じ込めら
れて、すべて酸素ガスと反応してしまうものと推
定される。
The gases flowing to each part of the reaction tube are usually oxygen gas supplied from the reaction gas supply pipe, and hydrogen gas supplied from the surroundings to ignite.When the target substrate 9 reaches a predetermined temperature, the central reaction gas supply pipe is turned off. Switching from oxygen gas to volatile silicon halogen compounds such as silicon tetrachloride, trichlorosilane, and monosilane, and silicon compounds such as hydrides, silicon dioxide is generated in an oxyhydrogen flame, and this is melted and deposited on the substrate 9 to synthesize it. A quartz block was produced. At this time, clean air, nitrogen, oxygen, helium, argon, etc. are suitable as the inert sealing gas to be flowed into the outer sealing tube 20. If hydrogen is used, the adhesion of silicon dioxide fine particles to the outer tube 15 can be avoided. Although the temperature decreases, the deterioration of the tip of the quartz outer tube 15 becomes significant due to the action of hydrogen in a certain temperature range, which shortens the life of the burner, which is not preferable. According to the method of the present invention, it is assumed that hydrogen gas is trapped in the inert sealing gas and completely reacts with oxygen gas.

本発明は、以上のごとく、気泡を含まない合成
石英素塊の製造法及びその装置を提供するもの
で、その工業的価値はきわめて大きい。
As described above, the present invention provides a method and apparatus for producing a synthetic quartz block containing no air bubbles, and its industrial value is extremely large.

次に、本発明を実施例によつて具体的に説明す
るが、本発明はその要旨を越えない限り、以下の
実施例によつて制限をうけるものではない。
EXAMPLES Next, the present invention will be specifically explained using examples, but the present invention is not limited by the following examples unless the gist of the invention is exceeded.

実施例 第4図の透明石英製バーナ(シール用外筒管2
0の外径80mm)を用いて、合成石英ガラス素塊を
製造した。
Example: Transparent quartz burner shown in Figure 4 (sealing outer tube 2
A synthetic quartz glass ingot was manufactured using a quartz glass with an outer diameter of 80 mm.

反応ガス供給管16内に酸素ガス …0.7Nm3/Hr 反応ガス供給管17内に酸素ガス …0.3Nm3/Hr 反応ガス供給管18内に酸素ガス …2.5Nm3/Hr 反応ガス供給管18周囲の外筒管15(外径70
mm)内の水素ガス …14.0Nm3/Hr 外筒管(外径70mm)15とシール用外筒管(外径
80mm)20との間に酸素ガス …3.3Nm3/Hr 最初バーナに上記流量で酸水素炎を形成させ、
回転しつつある標的基盤が十分溶融温度に加熱さ
れた状態になつてから反応ガス供給管16に精溜
された四塩化ケイ素ガスを平均1700g/Hrで送
入、反応時間7時間で外径100mm、高さ110mmの弾
丸状の合成石英ガラス素塊3.150gが得られた。
Oxygen gas in the reaction gas supply pipe 16…0.7Nm 3 /Hr Oxygen gas in the reaction gas supply pipe 17…0.3Nm 3 /Hr Oxygen gas in the reaction gas supply pipe 18…2.5Nm 3 /Hr Reaction gas supply pipe 18 Surrounding outer tube 15 (outer diameter 70
mm)...14.0Nm 3 /Hr Outer tube (outer diameter 70 mm) 15 and sealing outer tube (outer diameter
80mm) 20 and oxygen gas...3.3Nm 3 /Hr First, form an oxyhydrogen flame in the burner at the above flow rate,
After the rotating target base is sufficiently heated to the melting temperature, purified silicon tetrachloride gas is fed into the reaction gas supply pipe 16 at an average rate of 1700 g/Hr, and the outer diameter is 100 mm in a reaction time of 7 hours. , 3.150 g of a bullet-shaped synthetic quartz glass ingot with a height of 110 mm was obtained.

比較例 第4図aの透明石英製バーナ(外筒管15の外
径70mm)を用いて、合成石英素塊を製造した。
Comparative Example A synthetic quartz block was produced using the transparent quartz burner shown in FIG. 4a (the outer diameter of the outer tube 15 was 70 mm).

反応ガス供給管16内に酸素ガス …0.7Nm3/Hr 反応ガス供給管17内に酸素ガス …0.3Nm3/Hr 反応ガス供給管18内に酸素ガス …3.5Nm3/Hr 上記反応ガス供給管18の周囲の外筒管15内の
水素ガス …15.0Nm3/Hr 最初バーナに上記流量で酸水素炎を形成させ、
回転する標的基盤が十分熔融温度に加熱された状
態になつてから、反応ガス供給管16に精溜され
た四塩化ケイ素ガスを平均1.100g/Hrで送入、
反応時間6時間で外径90mm、高さ120mmの弾丸状
の合成石英素塊1.510gが得られた。上記実施例
および比較例で得られた合成石英素塊について次
のごとく比較した。
Oxygen gas in the reaction gas supply pipe 16…0.7Nm 3 /Hr Oxygen gas in the reaction gas supply pipe 17…0.3Nm 3 /Hr Oxygen gas in the reaction gas supply pipe 18…3.5Nm 3 /Hr The above reaction gas supply pipe Hydrogen gas in the outer cylindrical pipe 15 around the 18...15.0Nm 3 /Hr Initially, an oxyhydrogen flame is formed in the burner at the above flow rate,
After the rotating target base is sufficiently heated to the melting temperature, rectified silicon tetrachloride gas is fed into the reaction gas supply pipe 16 at an average rate of 1.100 g/Hr.
After a reaction time of 6 hours, 1.510 g of a bullet-shaped synthetic quartz mass having an outer diameter of 90 mm and a height of 120 mm was obtained. The synthetic quartz blocks obtained in the above Examples and Comparative Examples were compared as follows.

まず気泡については、目視による検査では比較
例の試料には大小約10個ほどの気泡が認められ
た。一方、実施例の試料には気泡は認められず、
シール用外筒管の効果がはつきりと認められた。
First, regarding air bubbles, visual inspection revealed that about 10 air bubbles of various sizes were observed in the sample of the comparative example. On the other hand, no bubbles were observed in the sample of the example.
The effectiveness of the sealing outer tube was clearly recognized.

なお、歪脈埋について、三菱電気DS−601型ひ
ずみ検査器を用いて、実施例及び比較例の各試料
を検査したが、ともに何ら認められるものはなか
つた。
The samples of Examples and Comparative Examples were tested for strain embedding using a Mitsubishi Electric DS-601 type strain tester, but none were found.

以上述べた通り、シール用外筒管の使用によ
り、二酸化ケイ素微粉の外筒管への付着は全くな
くなり、その結果合成した石英素塊中に気泡が見
られることもなくなり、著しい歩留の向上を達成
することができた。
As mentioned above, by using the sealing outer tube, the adhesion of silicon dioxide fine powder to the outer tube is completely eliminated, and as a result, no air bubbles are seen in the synthesized quartz block, resulting in a remarkable improvement in yield. was able to achieve this.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一般的な合成石英素塊製造装置の概略
図、第2図aは従来のバーナの一例の横断面図、
同じくbはaのA−A断面図、第3図aは従来の
別のバーナの横断面図、同じくbはaのB−B断
面図、第4図aは本発明の一実施例のバーナの横
断面図、同じくbはaのC−C断面図、第5図a
は本発明の別の実施例のバーナの横断面図、同じ
くbはaのD−D断面図である。図において、 1……バーナ、2……炉蓋、3……炉体、4…
…監視窓、5……排気口、6……炉架台、7……
支持棒、8……支持台、9……標的基盤、10…
…合成石英素塊、11,13……酸素ガス供給
管、12……揮発性ケイ素化合物供給管、14…
…水素ガス供給管、15……外筒管、16……内
管(揮発性ケイ素化合物供給管)、17……外管
(酸素ガス供給管)、18……酸素ガス供給管、1
9……水素ガス通路、20……シール用外筒管、
21……イナート・シーリングガス。
Fig. 1 is a schematic diagram of a general synthetic quartz block production device, Fig. 2a is a cross-sectional view of an example of a conventional burner,
Similarly, b is a cross-sectional view taken along the line A-A in a, FIG. 3 a is a cross-sectional view of another conventional burner, similarly b is a cross-sectional view taken along B-B in a, and FIG. Similarly, b is a C-C cross-sectional view of a, Fig. 5 a
is a cross-sectional view of a burner according to another embodiment of the present invention, and b is a cross-sectional view taken along the line DD of a. In the figure, 1...burner, 2...furnace cover, 3...furnace body, 4...
...Monitoring window, 5...Exhaust port, 6...Furnace mount, 7...
Support rod, 8...Support stand, 9...Target base, 10...
...Synthetic quartz block, 11, 13...Oxygen gas supply pipe, 12...Volatile silicon compound supply pipe, 14...
... Hydrogen gas supply pipe, 15 ... Outer cylinder pipe, 16 ... Inner pipe (volatile silicon compound supply pipe), 17 ... Outer pipe (oxygen gas supply pipe), 18 ... Oxygen gas supply pipe, 1
9...Hydrogen gas passage, 20...Outer cylinder tube for sealing,
21...Inert sealing gas.

Claims (1)

【特許請求の範囲】 1 揮発性ケイ素化合物と酸素ガスならびに酸素
ガスと水素ガスをバーナより吹き出させ、酸水素
炎中で二酸化ケイ素微粒子を生成させ、該二酸化
ケイ素微粒子を回転する標的基盤上に吹付け、熔
融成長させることよりなる合成石英素塊の製造法
において、バーナ中心部では揮発性ケイ素化合物
と酸素ガスとを二重管状に供給するとともにその
周りでは該中心部に対し、それぞれ対称位置で管
状に酸素ガスを供給し、かつ該酸素ガス流間の隙
間に水素ガスを供給し、さらに最外側ではイナー
ト・シーリングガスを二重管状に供給するバーナ
を使用することを特徴とする合成石英素塊の製造
法。 2 揮発性ケイ素化合物と酸素ガスならびに酸素
ガスと水素ガスを吹き出すバーナと生成した二酸
化ケイ素微粒子を受け、合成石英素塊とする回転
標的基盤とよりなる合成石英素塊の製造装置にお
いて、バーナ中心部に二重管構造状に配置された
揮発性ケイ素化合物を供給する内管及び酸素ガス
を供給する外管と該外管を囲んで設けられた外筒
管と該外管と該外筒管間の空間に該バーナ中心部
に対し対称位置に配設された複数の酸素ガス供給
管と該酸素ガス供給管間の空隙を流路とする水素
ガス供給手段と該外筒管の外側に設けられ、該外
筒管との間にイナート・シーリングガスを流すシ
ール用外筒管とからなるバーナを装備したことを
特徴とする合成石英素塊の製造装置。
[Claims] 1 Volatile silicon compound and oxygen gas as well as oxygen gas and hydrogen gas are blown out from a burner to generate silicon dioxide fine particles in an oxyhydrogen flame, and the silicon dioxide fine particles are blown onto a rotating target base. In the manufacturing method of synthetic quartz blocks, which involves attaching and melting growth, volatile silicon compounds and oxygen gas are supplied in a double tube form at the center of the burner, and around the burner, volatile silicon compounds and oxygen gas are supplied at symmetrical positions with respect to the center. A synthetic quartz element characterized by using a burner that supplies oxygen gas in a tubular shape, hydrogen gas in the gap between the oxygen gas flows, and further supplies inert sealing gas in a double tubular shape at the outermost side. How to make lumps. 2 In an apparatus for producing synthetic quartz blocks, which consists of a burner that blows out volatile silicon compounds and oxygen gas, as well as oxygen gas and hydrogen gas, and a rotating target base that receives the generated silicon dioxide fine particles and turns them into synthetic quartz blocks, the central part of the burner an inner tube for supplying a volatile silicon compound arranged in a double tube structure, an outer tube for supplying oxygen gas, an outer tube provided surrounding the outer tube, and a space between the outer tube and the outer tube. a plurality of oxygen gas supply pipes arranged in a space symmetrically with respect to the center of the burner; a hydrogen gas supply means having a gap between the oxygen gas supply pipes as a flow path; and a hydrogen gas supply means provided outside the outer cylindrical pipe. An apparatus for producing a synthetic quartz block, characterized in that it is equipped with a burner comprising a sealing outer cylinder tube and a sealing outer cylinder tube through which an inert sealing gas flows between the burner and the outer cylinder tube.
JP7160184A 1984-04-10 1984-04-10 Preparation of synthetic quartz mass and device therefor Granted JPS60215515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7160184A JPS60215515A (en) 1984-04-10 1984-04-10 Preparation of synthetic quartz mass and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7160184A JPS60215515A (en) 1984-04-10 1984-04-10 Preparation of synthetic quartz mass and device therefor

Publications (2)

Publication Number Publication Date
JPS60215515A JPS60215515A (en) 1985-10-28
JPH025694B2 true JPH025694B2 (en) 1990-02-05

Family

ID=13465336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7160184A Granted JPS60215515A (en) 1984-04-10 1984-04-10 Preparation of synthetic quartz mass and device therefor

Country Status (1)

Country Link
JP (1) JPS60215515A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09175826A (en) * 1995-12-26 1997-07-08 Sumitomo Electric Ind Ltd Burner for synthesis of porous glass base material

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3169561B2 (en) * 1996-10-17 2001-05-28 信越化学工業株式会社 Method for producing glass particle deposit
JP5050969B2 (en) * 1998-08-24 2012-10-17 旭硝子株式会社 Synthetic quartz glass optical member and manufacturing method thereof
JP2002526363A (en) * 1998-09-22 2002-08-20 コーニング インコーポレイテッド Burner for producing boules of fused silica glass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09175826A (en) * 1995-12-26 1997-07-08 Sumitomo Electric Ind Ltd Burner for synthesis of porous glass base material

Also Published As

Publication number Publication date
JPS60215515A (en) 1985-10-28

Similar Documents

Publication Publication Date Title
JP4639274B2 (en) Method and apparatus for producing glass ingots from synthetic silica
CN112876044A (en) Chemical deposition method and device for high-purity low-hydroxyl high-uniformity quartz glass
JP2016530198A (en) Method for producing polycrystalline silicon
JP2004262690A (en) Method of manufacturing quartz glass crucible for pulling up silicon single crystal and quartz glass crucible manufactured by the same method
JPH025694B2 (en)
TWI417259B (en) Method of manufacturing vitreous silica crucible
JP2001240497A (en) Method and equipment for manufacturing single crystal fluoride
US6339940B1 (en) Synthetic quartz glass manufacturing process
JPH1111956A (en) Production of quartz glass crucible and device therefor
JPH01239082A (en) Production of quartz crucible
KR101231479B1 (en) Process and apparatus for producing porous quartz glass base
US2936216A (en) Method of making monocrystalline calcium titanate
JP3188517B2 (en) Manufacturing method of quartz glass
JPS6143290B2 (en)
JPH0427177B2 (en)
JP3295444B2 (en) Method for producing porous silica preform
CN112624579B (en) Preparation method and device for producing large-diameter transparent quartz lump by integrated method
JPS62162646A (en) Production of glass fine particle deposit
Torikai et al. Comparison of high-purity H2/O2 and LPG/O2 flame-fused silica glasses from sol-gel silica powder
JPH07172859A (en) Production of porous glass preform for optical fiber
JP4470581B2 (en) Quartz glass manufacturing furnace and method for manufacturing quartz glass
JP2003286033A (en) Method and apparatus for manufacturing glass particulate deposit
JPH05319849A (en) Production of silica porous preform
JPH02184530A (en) Production of synthetic quartz glass and apparatus therefor
JP2003040626A (en) Method for producing fine glass particle heap