JPS6350340A - Production of base material for functional quartz optical fiber - Google Patents

Production of base material for functional quartz optical fiber

Info

Publication number
JPS6350340A
JPS6350340A JP19279686A JP19279686A JPS6350340A JP S6350340 A JPS6350340 A JP S6350340A JP 19279686 A JP19279686 A JP 19279686A JP 19279686 A JP19279686 A JP 19279686A JP S6350340 A JPS6350340 A JP S6350340A
Authority
JP
Japan
Prior art keywords
base material
optical fiber
trace component
porous body
functional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19279686A
Other languages
Japanese (ja)
Other versions
JPH07112932B2 (en
Inventor
Makoto Shimizu
誠 清水
Fumiaki Hanawa
文明 塙
Hiroyuki Suda
裕之 須田
Masaharu Horiguchi
堀口 正治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP61192796A priority Critical patent/JPH07112932B2/en
Publication of JPS6350340A publication Critical patent/JPS6350340A/en
Publication of JPH07112932B2 publication Critical patent/JPH07112932B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/40Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To prevent the dissipation of a trace component and to easily obtain a base material for a functional optical fiber contg. the trace component in a high concn. by preliminarily forming a porous body by a VAD method and subjecting the same to a dehydration treatment, heat treatment, etc., then adding the high melting point trace component thereto. CONSTITUTION:The porous glass body is produced by the VAD method and is subjected to the dehydration treatment preferably at <=1,400 deg.C in an inert gaseous atmosphere contg. a gas for dehydration (e.g.; gaseous chlorine). After said body is subjected to the heat treatment preferably at <=1,400 deg.C in the inert gaseous atmosphere, the porous body is vitrified to transparent glass in the inert gaseous atmosphere contg. the high boiling point trace component (e.g.; NdCl3), by which the trace component is added to the porous body and the objective base material for the functional quartz optical fiber is obtd. The base material for the functional quartz optical fiber having high performance is thereby easily produced and since the porous body is produced by the VAD method, the large-sized base material is easily produced.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は機能性石英光ファイバ母材の製造方法、さらに
詳細には、光ファイバ形レーザ、光アイソレータになど
に使用でき、かつ不要の不純物の混入の少ない高性能の
機能性石英光ファイバ母材を製造する方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for manufacturing a functional quartz optical fiber base material, and more particularly, to a method for manufacturing a functional quartz optical fiber base material, which can be used for optical fiber lasers, optical isolators, etc., and which is free from unnecessary impurities. The present invention relates to a method for producing a high-performance functional quartz optical fiber base material with little contamination.

〔発明の技術的背景〕[Technical background of the invention]

従来、希土類元素および一部の遷移金属元素(Crなど
)を含み、Fe、Cuなとの不純物、OH基などの混入
が石英光ファイバと同程度の極めて低い機能性石英ガラ
スを製造する方法としては、MCVD法による方法(R
ef、S、B、Pool et al、 Electo
r。
Conventionally, this method has been used to manufacture highly functional quartz glass that contains rare earth elements and some transition metal elements (such as Cr), and has very low levels of impurities such as Fe and Cu, and OH groups, which are on the same level as quartz optical fibers. is the MCVD method (R
ef, S, B, Pool et al, Electo
r.

n Lett、νol 21 pp737〜(1985
) 、M、WATANABEet al、 pH〜、1
00C−ECOCprce、 (1985) )および
PCVD法による方法(11,NAMIKAWA、 J
JAP、 Vo123、ppL409 (1984) 
)などが知られている。
n Lett, νol 21 pp737~ (1985
), M, WATANABE et al, pH ~, 1
00C-ECOCprce, (1985)) and the PCVD method (11, NAMIKAWA, J
JAP, Vo123, ppL409 (1984)
) etc. are known.

たとえばMCVD法は、第1図に示すように、中空の石
英管1に隣接して副チャンバ4を備えており、主バーナ
6を往復させながら、原料のSiC1m 、02 、G
eCl4などの原料を前記石英管1の一方の開放端より
導入し、ガラス薄膜を石英管1の内面に熱酸化反応によ
り堆積させて、合成りう・ノド層2を形成する。このの
ち、副バーナ5を作動させ微量成分原料(たとえばNd
C1+ 、ErCl3など)門を気化させて、堆積する
ガラス薄膜に取り込ませ、?Il量成分成分原料−む合
成コア屓3を堆積させることにより、光ファイバ母材を
製造している。
For example, in the MCVD method, as shown in FIG.
A raw material such as eCl4 is introduced from one open end of the quartz tube 1, and a glass thin film is deposited on the inner surface of the quartz tube 1 by a thermal oxidation reaction to form a synthetic layer 2. After that, the auxiliary burner 5 is operated to
C1+, ErCl3, etc.) are vaporized and incorporated into the deposited glass thin film. An optical fiber preform is manufactured by depositing a synthetic core layer 3 containing Il component raw material.

このような方法においては、従来の光ファイバ母材の製
造方法をほとんど利用できるために、低011基濃度、
不純物濃度のガラス母材を容易に作製できるという利点
があるが、一方大形のガラス母材やロッド形状の母材(
母材周囲に純石英ガラス層を含まない)を得ることば困
難であるという欠点があった。
In such a method, most of the conventional manufacturing methods for optical fiber preforms can be used, so low 011 group concentration,
It has the advantage that glass base materials with impurity concentrations can be easily produced, but on the other hand, large glass base materials or rod-shaped base materials (
The drawback is that it is difficult to obtain a pure silica glass layer (not containing a pure silica glass layer around the base material).

一方、第2図に示すPCVD法によれば、温度調節器に
よって所定温度に保持されたサチュレータ7内の5iC
I4(ガラス原料)をArガスをキャリアとして微量成
分原料保持管19に導き、加熱炉8によって気化された
微量成分原料ボート12内の微量原料(たとえばNdC
13)とともに、ノズル9より反応室に導入する。前記
原料ガスは、プラズマ用ガス導入口11、プラズマ先生
用RFコイル17によって発生したプラズマ炎10によ
って酸化反応を生じ、石英製ロッド13上にNd添加の
石英14を合成するものである。残余の原料ガスは熱交
喚器18をへて排気管15より排気される。
On the other hand, according to the PCVD method shown in FIG.
I4 (glass raw material) is guided to the trace component raw material holding tube 19 using Ar gas as a carrier, and the trace raw material (for example, NdC) in the trace component raw material boat 12 vaporized by the heating furnace 8 is
13) into the reaction chamber through the nozzle 9. The raw material gas causes an oxidation reaction by the plasma flame 10 generated by the plasma gas inlet 11 and the plasma teacher RF coil 17, and synthesizes Nd-added quartz 14 on the quartz rod 13. The remaining source gas passes through the heat exchanger 18 and is exhausted from the exhaust pipe 15.

このような方法においては、プラズマ炎10の温度(数
千度〜数万度といわれている)が極度に高いため、合成
した酸化物ガラスの昇華などを避は母材を堆積させるた
めに、プラズマ炎10とターゲットとの位置関係を精密
に制御する必要がある。
In such a method, since the temperature of the plasma flame 10 (said to be several thousand degrees to tens of thousands of degrees) is extremely high, sublimation of the synthesized oxide glass is avoided in order to deposit the base material. It is necessary to precisely control the positional relationship between the plasma flame 10 and the target.

また、プラズマ炎を安定化するためにプラズマトーチ内
での原料、作動ガスの流れを安定化させる必要があると
いう欠点があった。
Another drawback is that it is necessary to stabilize the flow of raw materials and working gas within the plasma torch in order to stabilize the plasma flame.

一方、光ファイバの代表的な製造方法の一つであるVA
D法における母材の合成を考えてみる。
On the other hand, VA, which is one of the typical manufacturing methods for optical fibers,
Let us consider the synthesis of the base material in method D.

VAD法は気相状態の5iCI 4を酸水素火炎中に供
給し、火炎内で生成したガス微粒子を回転している種棒
の端面に堆積させ、種棒の軸方向に多孔質ガラス体を成
長させ、得られた多孔質母材を、脱水剤を含む不活性雰
囲気下で透明ガラス下させることにより光ファイバ用母
材を作製する方法である。
In the VAD method, 5iCI4 in a gas phase is supplied into an oxyhydrogen flame, and gas particles generated in the flame are deposited on the end face of a rotating seed rod, thereby growing a porous glass body in the axial direction of the seed rod. In this method, an optical fiber preform is produced by placing the obtained porous preform under transparent glass in an inert atmosphere containing a dehydrating agent.

このVAD法を使用して希土類元素または一部遷移元素
を含む母材を合成する場合、使用する希土類塩化物また
は遷移金泥塩化物材料の融点が高いため充分な芸気圧を
えるためには、1000℃以上の高温に原料を保持する
必要がある(たとえ:flmlIIt(gの飽和蒸気圧
を与えるNdCl3の温度は1048℃)。この結果、
VAD法による母材合成では、配管全てを1000℃程
度に保温する必要を生し、実際上母材の合成は困難であ
った。
When synthesizing a base material containing rare earth elements or some transition elements using this VAD method, the melting point of the rare earth chloride or transition gold mud chloride material used is high, so in order to obtain a sufficient artistic pressure, it is necessary to It is necessary to maintain the raw material at a high temperature above °C (for example: flmlIIt (the temperature of NdCl3 that gives a saturated vapor pressure of g is 1048 °C). As a result,
When synthesizing the base material using the VAD method, it is necessary to keep all the piping at a temperature of about 1000° C., making it difficult to synthesize the base material in practice.

この点を解決する方法として、VAD法で多孔質母材を
合成しまたのち、透明ガラス化処理時に電気炉内で希土
類塩化物原料雰囲気で処理することにより気相拡散によ
り添加する方法が知られている(特願昭54−0835
05号)。しかしながら、この発明にいおては、拡散処
理後、脱水処理を行うために、−度添加された希土類元
素が再び塩化物として揮散するため、高濃度添加が困難
であるという欠点がある。
As a method to solve this problem, a method is known in which a porous base material is synthesized using the VAD method, and then added by vapor phase diffusion by processing in an electric furnace in an atmosphere of rare earth chloride raw materials during transparent vitrification treatment. (Patent application 1983-0835)
No. 05). However, in this invention, since the dehydration treatment is performed after the diffusion treatment, the added rare earth element volatilizes again as chloride, so there is a drawback that it is difficult to add it at a high concentration.

〔発明の概要〕[Summary of the invention]

本発明は上述の点に鑑みなされたものであり、VAD法
による高融点微量成分(たとえば希土類元素または一部
の遷移金属)元素添加の欠点を解決し、さらに従来のM
CVD、PCVD法では合成が不可能であった大形母材
の製造を可能にする機能性石英光ファイバ母材の製造方
法を提供することを目的とする。
The present invention has been made in view of the above points, and solves the drawbacks of adding high melting point trace components (such as rare earth elements or some transition metals) by the VAD method, and furthermore
It is an object of the present invention to provide a method for manufacturing a functional quartz optical fiber preform that enables the production of large-sized preforms that cannot be synthesized by CVD or PCVD methods.

したがって、本発明による機能性石英光ファイバ母材の
製造方法は、VAD法で製造した多孔質体を熱処理し、
微量成分原料を添加する光ファイバ用母材の’W造方法
において、前記多孔質体を脱水用ガスを含んだ不活性ガ
ス雰囲気下で処理し、次いで、不活性ガス雰囲気下で熱
処理し、最後に微量成分原料を含んだ不活性ガス雰囲気
下で透明ガラス化することを特徴とするものである。
Therefore, the method for manufacturing a functional quartz optical fiber preform according to the present invention heat-treats a porous body manufactured by the VAD method,
In the 'W manufacturing method of optical fiber base material in which trace component raw materials are added, the porous body is treated in an inert gas atmosphere containing a dehydrating gas, then heat treated in an inert gas atmosphere, and finally It is characterized by transparent vitrification in an inert gas atmosphere containing trace component raw materials.

本発明による機能性石英光ファイバ母材の製造方法によ
れば、あらかじめ多孔質体をVAD法により形成してお
き、この多孔質体を脱水処理したのちに、微量成分原料
を添加するために、前記微量成分原料が揮散することが
な(なり、このため高濃度の微量成分を添加した母材が
製造できるという利点がある。また、VAD法で多孔質
体を製造するために、母材を大形化できるという利点も
ヰじる。
According to the method for manufacturing a functional quartz optical fiber preform according to the present invention, a porous body is formed in advance by the VAD method, and after this porous body is dehydrated, trace component raw materials are added. The trace component raw material does not volatilize (this has the advantage that a base material to which a high concentration of trace components is added can be produced. Also, in order to produce a porous body by the VAD method, the base material is not volatilized). It also has the advantage of being able to be made larger.

C発明の詳細な説明〕 本発明による機能性石英光ファイバ母材の製造方法によ
れば、まずVAD法により多孔質ガラス体を製造する。
C Detailed Description of the Invention] According to the method for manufacturing a functional quartz optical fiber preform according to the present invention, first, a porous glass body is manufactured by the VAD method.

この多孔質ガラス体は、本発明において基本的に限定さ
れるものではなく、VAD法によって製造された石英光
ファイバ母材用の多孔質ガラス体であればいかなるもの
でもよい。
This porous glass body is not fundamentally limited in the present invention, and any porous glass body for a quartz optical fiber base material produced by the VAD method may be used.

この多孔質ガラス体を脱水用ガスを含む不活性ガス雰囲
気中で処理を行い、次いで不活性ガラス雰囲気中で熱処
理を行う。
This porous glass body is treated in an inert gas atmosphere containing a dehydrating gas, and then heat treated in an inert glass atmosphere.

従来においては、多孔質体の舎成−微量成分原料の添加
−(酸化)−説水一ガラス化という工程によって微量成
分原料の添加が行われていた。
Conventionally, the addition of trace component raw materials has been carried out through the following steps: formation of a porous body, addition of trace component raw materials, (oxidation), water introduction, and vitrification.

本発明においては、多孔質体の合成−説水一熱処理−・
微量成分原料の添加、ガラス化という工程で行うため、
微量成分原料の揮散を生こ′7ることはなくなる。
In the present invention, synthesis of a porous body--water treatment, heat treatment--
Because it is done through the process of adding trace ingredient raw materials and vitrification,
There is no need to worry about volatilization of trace component raw materials.

すなわちNd2O3の添加を例にとって説明すると、初
めNdCIa  <気体)で多孔質体中に拡散した後、
酸化により多孔質体内に添加されたNd2O3はつぎの
脱水処理工程において、脱水剤として一般的に使用して
いるC1gと反応し、−度形成されたNd2O3がKM
してし2まう。これは、下記の反応式で示される。
That is, to explain the addition of Nd2O3 as an example, after first diffusing NdCIa<gas) into the porous body,
In the next dehydration process, the Nd2O3 added into the porous body through oxidation reacts with C1g, which is commonly used as a dehydrating agent, and the Nd2O3 formed becomes KM.
Shishishi 2 mau. This is shown by the reaction formula below.

Nd2O3(s)→−3C1g(g) 2 NNdC13()  +3 /202(g )この
結果、高濃度に希土類を添加することは不可能になり、
このことは本発明者らの実験によりも確認できた。
Nd2O3 (s) → -3C1g (g) 2 NNdC13 () +3 /202 (g) As a result, it becomes impossible to add rare earths at high concentrations,
This was also confirmed through experiments conducted by the present inventors.

一方、本発明に方法によれば、脱水処理は希土類元素の
添加に先立って行われるため、上記反応による希土類元
素の11敗という問題は生じないのである。
On the other hand, according to the method of the present invention, the dehydration treatment is performed prior to the addition of the rare earth element, so the problem of the loss of the rare earth element due to the above reaction does not occur.

この脱水処理は、従来のこの種の技術において使用され
ている脱水方法を有効に使用できる。たとえば、脱水剤
、たとえばハロゲン含有ガスを含む雰囲気において加熱
して行うことができる。
This dehydration treatment can effectively use dehydration methods used in conventional techniques of this type. For example, it can be carried out by heating in an atmosphere containing a dehydrating agent, such as a halogen-containing gas.

この脱水処理およびそれに続く不活性ガス雰囲気中の熱
処理の温度は、好ましくは1400°C以下であるのが
よい。1400℃を超えて脱水および熱処理を施すと6
、下記の実施例4より明らかなように多孔質体の嵩密度
が微量成分原料の拡散添加に不適当なまでい高くなって
しまい、微量成分原料が添加できなくなる膚を生じるか
らである。
The temperature of this dehydration treatment and subsequent heat treatment in an inert gas atmosphere is preferably 1400°C or less. 6 when dehydrated and heat treated at temperatures exceeding 1400°C.
This is because, as is clear from Example 4 below, the bulk density of the porous body becomes unsuitably high for the diffusion addition of trace component raw materials, resulting in a structure in which trace component raw materials cannot be added.

この脱水処理に次いで本発明においては不活性ガス雰囲
気中で熱処理を行う。
Following this dehydration treatment, heat treatment is performed in an inert gas atmosphere in the present invention.

この熱処理工程は、前記脱水剤を不活性ガスによって置
換し、透明ガラス化工程における脱水剤分圧を制御する
ために行われる。したがって、この熱処理における時間
を変化させることにより、微量成分の添加量を調整する
ことができる。すなわち、脱水剤(たとえば塩素)の分
圧が大きいと、揮散しやすくなり、添加量は小さくなり
、脱水剤の分圧が小さいと、添加量が多くなる(実施例
2参照)からである。
This heat treatment step is performed to replace the dehydrating agent with an inert gas and to control the partial pressure of the dehydrating agent in the transparent vitrification step. Therefore, by changing the time during this heat treatment, the amount of the trace component added can be adjusted. That is, if the partial pressure of the dehydrating agent (for example, chlorine) is high, it will easily volatilize and the amount added will be small, and if the partial pressure of the dehydrating agent is low, the amount added will be large (see Example 2).

このように脱水処理および熱処理を施した多孔質体に微
量成分原料を含む不活性ガス雰囲気中に晒すことによっ
て、前記多孔質体に微量成分を添加する。
The trace components are added to the porous body which has been subjected to the dehydration treatment and heat treatment in this manner by exposing the porous body to an inert gas atmosphere containing the trace component raw material.

微量成分原料としては、Nds Ers Yb、Ice
などの希土類元素、Crなどの一部の遷移元素の化合物
(たとえば塩化物などのハロゲン化物)などであること
ができる。
As trace component raw materials, Nds Ers Yb, Ice
and compounds of some transition elements such as Cr (for example, halides such as chlorides).

この?!it成分の添加工程において、上述の微量成分
原料の温度を調整することによって、微量成分の添加量
を調整できる(実施例1)。
this? ! In the step of adding the it component, the amount of the minor component added can be adjusted by adjusting the temperature of the aforementioned minor component raw material (Example 1).

実施例1 第3図は本発明の方法を実施するための装置の概略図で
ある。この図より明らかなように、この装置は、電気ヒ
ータ20および回転し、かつ上下動可能な種棒21を備
えた石英炉心管(但しガス導入口と排出口を有する)2
2を有した構成になっている。
Example 1 FIG. 3 is a schematic diagram of an apparatus for carrying out the method of the invention. As is clear from this figure, this device consists of a quartz furnace tube (but with a gas inlet and an outlet) 2 equipped with an electric heater 20 and a seed rod 21 that rotates and can move up and down.
It has a configuration with 2.

この石英炉心管22の前記種棒21には多孔質体23が
堆積されているとともに、前記炉心管22の底部にはN
dC] 3の入ったボート24が設置されている。
A porous material 23 is deposited on the seed rod 21 of this quartz furnace tube 22, and N2 is deposited on the bottom of the quartz furnace tube 22.
dC] A boat 24 containing 3 is installed.

また、第3図の右には前記石英炉心管22における温度
分布が示しである。
Moreover, the temperature distribution in the quartz furnace tube 22 is shown on the right side of FIG.

まず、VAD法により純石英多孔質母材を作製した。こ
の多孔質母材の作製条件は、5iC14(40℃、キャ
リア 計ガス100 cc)を酸水素バーナ(・11゜
2.91/分、026.Oj!/分)に供給し、成長速
度42mm/時間であった。
First, a pure quartz porous base material was produced by the VAD method. The conditions for producing this porous base material were as follows: 5iC14 (40°C, total carrier gas 100 cc) was supplied to an oxyhydrogen burner (・11°2.91/min, 026.0j!/min), and the growth rate was 42 mm/min. It was time.

この多孔質母材を石英炉心管22の電気炉均熱部に装着
した。NdCl3原料は石英炉心管底部に置かれた石英
ボート24中に入れられており、NdC13の温度はボ
ート24の上下方向の位置を変えることによって調整し
た。すなわち、第3画布に示した温度分布によれば、炉
心管22の底部部分には上下方向に温度が変化する部分
がある。したがって、この温度変化部分に対応して、前
記ボート24を上下すれば、NdCl3の温度を変化で
きるのである。
This porous base material was attached to the electric furnace soaking section of the quartz furnace tube 22. The NdCl3 raw material was placed in a quartz boat 24 placed at the bottom of the quartz furnace tube, and the temperature of the NdCl3 was adjusted by changing the vertical position of the boat 24. That is, according to the temperature distribution shown in the third canvas, there is a portion at the bottom of the furnace tube 22 where the temperature changes in the vertical direction. Therefore, the temperature of NdCl3 can be changed by moving the boat 24 up and down in response to this temperature change portion.

次ぎに、炉心管22中にHeガスを5A/分を流しつつ
、1000℃まで炉温を上昇させた。次ぎに、He(5
1/分) 、CI2  (70CC/分)の混合雰囲気
下で1000℃に保持し、1時間塩水したのち、さらに
1ie(5l/分)の雰囲気下で48時間保持した。
Next, while flowing He gas at 5 A/min into the furnace core tube 22, the furnace temperature was raised to 1000°C. Next, He(5
1/min) and CI2 (70 CC/min) at 1000°C, and after salting for 1 hour, it was further held for 48 hours under an atmosphere of 1ie (5 L/min).

最後に1le(57!/分)の雰囲気下で1500℃ま
で昇温した。昇温速度は、O〜1ooo℃までは500
℃/時間、1000〜b した。
Finally, the temperature was raised to 1500° C. in an atmosphere of 1 le (57!/min). The temperature increase rate is 500℃ from 0 to 1ooo℃.
°C/hour, 1000-b.

第4図にNdC13温度とNdの添加量の関係を示した
。この第4図より明らかなように、NdC1a温度を調
整することにより、一意的にNd3°イオンの添加濃度
を制御することができることが分かった。
FIG. 4 shows the relationship between the NdC13 temperature and the amount of Nd added. As is clear from FIG. 4, it was found that the added concentration of Nd3° ions could be uniquely controlled by adjusting the NdC1a temperature.

実施例2 実施例1と同じ装置を使用し、電気炉の温度を以下に示
すプログラムにより制御した。
Example 2 The same apparatus as in Example 1 was used, and the temperature of the electric furnace was controlled by the program shown below.

第1表 なお、NdC1:+原料の温度は、1400℃で一定と
した。第5図に熱処理時間とNd添加量の関係を示す。
Table 1 Note that the temperature of the NdC1:+ raw material was kept constant at 1400°C. FIG. 5 shows the relationship between the heat treatment time and the amount of Nd added.

この第5図より明らかなように、C12税水処理後、H
e雰囲気下に1000℃で保持する時間を調整すること
によりガラス化後のNd”イオン添加濃度が変化できる
ことがわかった。一方、本発明における残留叶基濃度は
50ppb程度であった。
As is clear from Fig. 5, after C12 tax water treatment, H
It was found that the concentration of Nd'' ions added after vitrification could be changed by adjusting the time for holding the glass at 1000° C. in an atmosphere of e.g.

実施例3 まず、VAD法により外径20mmφ、長さ30cmの
純石英多孔質母材を合成した。次ぎに、実施例2に示す
ような方法により2時間保持して、Nd添加ガラス化処
理を行った。ガラス化後の母材は10mmφ、長さ17
cm、 Nd”イオン添加濃度的100 ppmであっ
た。この母材に外付は法によりクラッドとなるべき多孔
質層(純石英)を形成したのち、電気炉中、lle、 
SFe混合雰囲気下でF添加透明ガラス化を行った。コ
ア、クラッド間の比屈折率差は0゜3%であった。次ぎ
に、黒鉛抵抗炉を用いて、カットオフ波長が0.85μ
mになるように線引きを行った。
Example 3 First, a pure quartz porous base material having an outer diameter of 20 mmφ and a length of 30 cm was synthesized by the VAD method. Next, Nd addition vitrification treatment was performed by holding for 2 hours using the method shown in Example 2. The base material after vitrification has a diameter of 10 mm and a length of 17
cm, the concentration of Nd" ions added was 100 ppm. After forming a porous layer (pure quartz) to serve as an external cladding on this base material by a method, it was heated in an electric furnace.
F-added transparent vitrification was performed in an SFe mixed atmosphere. The relative refractive index difference between the core and cladding was 0.3%. Next, using a graphite resistance furnace, a cutoff wavelength of 0.85 μ
A line was drawn so that it became m.

作製した光ファイバの損失波長特性を第6図に示す。1
μmより短波長においては、1000dB/Kmの損失
となっているが、1.0〜1.3μmでは、4dB/K
m程度と充分な低損失化が図られており、本発明による
方法により、高品質のNd添加母材が製造できることが
わかった。
FIG. 6 shows the loss wavelength characteristics of the produced optical fiber. 1
At wavelengths shorter than μm, the loss is 1000 dB/Km, but at 1.0 to 1.3 μm, the loss is 4 dB/Km.
It was found that a sufficiently low loss of about m was achieved, and that a high quality Nd-added base material could be manufactured by the method according to the present invention.

実施例4 実施例1と同一条件で作製した多孔質母材を使用し、同
一の電気炉を用いて脱水、Nd添加、透明ガラス化処理
をおこなった。ただし、脱水処理として以下の方法を用
いた。
Example 4 A porous base material produced under the same conditions as in Example 1 was used, and dehydration, Nd addition, and transparent vitrification treatment were performed using the same electric furnace. However, the following method was used for dehydration treatment.

まず、多孔質母材を電気炉均熱部に位置させ、0〜14
00′CまでHe(5I!/分) 、C1g  (70
cc/分)混合雰囲気下で脱水処理を行った。なお昇温
条件は、0〜1000℃では500℃/時間、1000
〜1400°Cでは200°C/時間とした。
First, the porous base material is placed in the electric furnace soaking section, and
He (5I!/min) up to 00'C, C1g (70
cc/min) dehydration treatment was performed under a mixed atmosphere. The temperature increasing conditions are 500°C/hour for 0 to 1000°C, 1000°C
~1400°C, the rate was 200°C/hour.

次ぎに1400℃でl1e(5j2/分)雰囲気下で4
8時間保持したのち、NdCl3と1ie(5β・分)
混合雰囲気下で1500℃まで200℃/時間の昇温速
度で熱処理をおこなった。なお、NdCl3の温度は1
400℃とした。
Next, at 1400℃ under l1e (5j2/min) atmosphere,
After holding for 8 hours, NdCl3 and 1ie (5β・min)
Heat treatment was performed in a mixed atmosphere at a heating rate of 200°C/hour up to 1500°C. Note that the temperature of NdCl3 is 1
The temperature was 400°C.

処理後のNd添加量を化学分析により定量分析した結果
、Ndは検出限界(1ppm以下)であることが判明し
た。このことは1400℃を超えて脱水および熱処理を
施すと母材の嵩密度がNdの拡散添加に不適当な値まで
高くなってしまうことを示している。
As a result of quantitative chemical analysis of the amount of Nd added after treatment, it was found that Nd was at the detection limit (1 ppm or less). This shows that if dehydration and heat treatment are performed at a temperature exceeding 1400°C, the bulk density of the base material increases to a value that is inappropriate for the diffusion addition of Nd.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明による機能性石英光ファイ
バ母材の製造方法によれば、従来のVAD法における多
孔質母材合成、多孔質母材の脱水工程と機能性を付与す
るドーパント材料の添加を分離することにより、高融点
を有する材料(希土類元素および遷移金属)を容易に添
加できるという利点がある。さらに、多孔質母材を使用
するために脱水が充分に行えるという利点もある。
As explained above, according to the method for manufacturing a functional quartz optical fiber preform according to the present invention, the process of synthesizing a porous preform in the conventional VAD method, dehydrating the porous preform, and adding a dopant material that imparts functionality. By separating the additions, there is an advantage that materials with high melting points (rare earth elements and transition metals) can be easily added. Furthermore, since a porous base material is used, there is also the advantage that sufficient dehydration can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はMCVAD法による従来の母材合成装置の主要
部を示す概略図、第2図はPCVAD法による従来の母
材合成装置の概略図、第3図は本発明の方法を実施する
ための装置の一例の概略図、第4図は実施例1で製造し
た母材のNdンイオン添加濃度とNdCl3原料温度依
存性を示す図、第5図は実施例2でのNd”イオン添加
濃度と処理時間との関係を示す図、第6図は実施例3に
おける光ファイバの損失波長特性を示す図である。 1・・・サポート石英間、2 ・・・合成りラッド屓、
3 ・・・合成コア層、4 ・・・微量成分原料チャン
ノへ5 ・・・副バーナ、6 ・・・主バーナ、7 ・
・・サヂュレータ、8 ・・・微量成分原料加熱炉、9
 ・・・原料吹出ノズル、10・・・プラズマ炎、11
・・・プラズマ用ガラス導入口、12・・・微量成分原
料ボート、13・・・石英製ロフド、14・・・合成石
英(微量成分添加)、15・・・排気管、16・・・温
度関節器、17・・・プラズマ発生用RFコイル、18
・・・熱交換器、19・・・微量成分原料保持管、21
・・・電気炉ヒータ、21・・・種棒、22・・・石英
炉心管、23・・・多孔質母材、24・・・NdC13
原料用ポート。 出願人代理人  雨 宮  正 季 第3図 沫唄ミ (pm) 第6図
Figure 1 is a schematic diagram showing the main parts of a conventional base material synthesis apparatus using the MCVAD method, Figure 2 is a schematic diagram of a conventional base material synthesis apparatus using the PCVAD method, and Figure 3 is a diagram for implementing the method of the present invention. Fig. 4 is a diagram showing the Nd ion addition concentration of the base material manufactured in Example 1 and the dependence on the temperature of the NdCl3 raw material, and Fig. 5 shows the Nd'' ion addition concentration and FIG. 6 is a diagram showing the relationship with processing time, and FIG. 6 is a diagram showing the loss wavelength characteristics of the optical fiber in Example 3. 1...Support quartz gap, 2...Synthetic rad bottom,
3...Synthetic core layer, 4...To trace component raw material channel 5...Sub-burner, 6...Main burner, 7.
...Sudulator, 8 ...Minor component raw material heating furnace, 9
... Raw material blowing nozzle, 10 ... Plasma flame, 11
...Glass inlet for plasma, 12...Minor component raw material boat, 13...Quartz loft, 14...Synthetic quartz (addition of trace components), 15...Exhaust pipe, 16...Temperature Articulator, 17... RF coil for plasma generation, 18
... Heat exchanger, 19 ... Trace component raw material holding tube, 21
... Electric furnace heater, 21 ... Seed rod, 22 ... Quartz furnace tube, 23 ... Porous base material, 24 ... NdC13
Raw material port. Applicant's agent Masaki Amemiya Figure 3 Uta-mi (pm) Figure 6

Claims (4)

【特許請求の範囲】[Claims] (1)VAD法で製造した多孔質体を熱処理し、高融点
微量成分を添加する光ファイバ用母材の製造方法におい
て、前記多孔質体を脱水用ガスを含んだ不活性ガス雰囲
気下で処理し、次いで、不活性ガス雰囲気下で熱処理し
、最後に微量成分原料を含んだ不活性ガス雰囲気下で透
明ガラス化することを特徴とする機能性石英光ファイバ
母材の製造方法。
(1) In a method for producing an optical fiber base material in which a porous body produced by the VAD method is heat-treated and a trace component with a high melting point is added, the porous body is treated in an inert gas atmosphere containing a dehydrating gas. A method for producing a functional quartz optical fiber preform, which is then heat-treated in an inert gas atmosphere, and finally transformed into transparent vitrification in an inert gas atmosphere containing trace component raw materials.
(2)前記脱水処理および不活性ガス雰囲気下における
熱処理の温度は1400℃以下であることを特徴とする
特許請求の範囲第1項記載の機能性石英光ファイバ母材
の製造方法。
(2) The method for manufacturing a functional quartz optical fiber preform according to claim 1, wherein the temperature of the dehydration treatment and the heat treatment in an inert gas atmosphere is 1400° C. or lower.
(3)微量成分の添加濃度を制御するために、脱水処理
後の不活性ガス雰囲気下での熱処理時間を変えることを
特徴とする特許請求の範囲第1項または第2項記載の機
能性石英光ファイバ母材の製造方法。
(3) Functional quartz according to claim 1 or 2, characterized in that the heat treatment time in an inert gas atmosphere after dehydration treatment is changed in order to control the concentration of trace components added. A method for manufacturing an optical fiber base material.
(4)微量成分の添加濃度を制御するために、微量成分
原料を含む雰囲気下でガラス化処理をする工程において
、当該微量成分原料の温度を変化させることを特徴とす
る特許請求の範囲第1項から第3項のいずれかに記載の
機能性石英光ファイバ母材の製造方法。
(4) In order to control the added concentration of the trace component, the temperature of the trace component raw material is changed in the process of vitrification treatment in an atmosphere containing the trace component raw material. A method for producing a functional quartz optical fiber base material according to any one of Items 1 to 3.
JP61192796A 1986-08-20 1986-08-20 Method for producing functional quartz optical fiber base material Expired - Fee Related JPH07112932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61192796A JPH07112932B2 (en) 1986-08-20 1986-08-20 Method for producing functional quartz optical fiber base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61192796A JPH07112932B2 (en) 1986-08-20 1986-08-20 Method for producing functional quartz optical fiber base material

Publications (2)

Publication Number Publication Date
JPS6350340A true JPS6350340A (en) 1988-03-03
JPH07112932B2 JPH07112932B2 (en) 1995-12-06

Family

ID=16297132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61192796A Expired - Fee Related JPH07112932B2 (en) 1986-08-20 1986-08-20 Method for producing functional quartz optical fiber base material

Country Status (1)

Country Link
JP (1) JPH07112932B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02157132A (en) * 1988-12-09 1990-06-15 Tosoh Corp Production of high-purity quatrz glass
JPH02219552A (en) * 1989-02-21 1990-09-03 Kisaku Suzuki Production of baked rice food

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60231432A (en) * 1984-04-27 1985-11-18 Furukawa Electric Co Ltd:The Manufacture of quartz series optical fiber base material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60231432A (en) * 1984-04-27 1985-11-18 Furukawa Electric Co Ltd:The Manufacture of quartz series optical fiber base material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02157132A (en) * 1988-12-09 1990-06-15 Tosoh Corp Production of high-purity quatrz glass
JPH02219552A (en) * 1989-02-21 1990-09-03 Kisaku Suzuki Production of baked rice food

Also Published As

Publication number Publication date
JPH07112932B2 (en) 1995-12-06

Similar Documents

Publication Publication Date Title
US5306322A (en) Process for thermal treatment of glass fiber preform
TWI380957B (en) Fused silica having low oh, od levels and method of making
US6109065A (en) Method of making optical waveguide devices using perchloryl fluoride to make soot
US4203744A (en) Method of making nitrogen-doped graded index optical waveguides
JPS62501699A (en) Multi-component optical fiber and its manufacturing method
JPH029727A (en) Production of optical fiber preform
JP4181226B2 (en) Manufacturing method of high purity, high heat resistant quartz glass
JPS6136129A (en) Manufacture of glass preform for optical fiber
JPS6350340A (en) Production of base material for functional quartz optical fiber
JPH08183621A (en) Production of high-purity highly heat resistant silica glass
JPH03109223A (en) Quartz glass and production thereof
JPH0258217B2 (en)
KR100582800B1 (en) Fabrication method and apparatus of optical fiber preform and optical fiber containing few hydroxyl
JPS62246834A (en) Production of base material for optical fiber
JPH06263468A (en) Production of glass base material
JPH0526734B2 (en)
JPS6024057B2 (en) Glass body manufacturing method
JPH02217331A (en) Preparation of optical fiber
JPS6144725A (en) Method of treating quartz porous glass layer
JPS60239339A (en) Preparation of parent material for optical fiber
JPH05279050A (en) Production of rare earth element-doped quartz glass
JP2938604B2 (en) Method of manufacturing preform for single mode optical fiber
JPH0218333A (en) Heat treatment of porous base material
JPS63315531A (en) Production of optical fiber preform
JPS63291832A (en) Production of parent material for optical fiber and unit therefor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees