JP2000180419A - Ultrasonic flaw detecting method by sh-waves and sh- wave skew angle probe - Google Patents

Ultrasonic flaw detecting method by sh-waves and sh- wave skew angle probe

Info

Publication number
JP2000180419A
JP2000180419A JP10357331A JP35733198A JP2000180419A JP 2000180419 A JP2000180419 A JP 2000180419A JP 10357331 A JP10357331 A JP 10357331A JP 35733198 A JP35733198 A JP 35733198A JP 2000180419 A JP2000180419 A JP 2000180419A
Authority
JP
Japan
Prior art keywords
wave
polymer film
wedge
probe
flaw detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10357331A
Other languages
Japanese (ja)
Inventor
Koji Yamada
浩司 山田
Toshiaki Fujita
利明 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Japan Techno Mate Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Japan Techno Mate Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd, Japan Techno Mate Corp filed Critical NKK Corp
Priority to JP10357331A priority Critical patent/JP2000180419A/en
Publication of JP2000180419A publication Critical patent/JP2000180419A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a flaw detecting method dispensing with a highly viscous contact medium in ultrasonic flaw detection by an SH wave probe and eliminating the necessity for pressing the probe to an object to be inspected by predetermined pressing force. SOLUTION: In a method and probe for performing ultrasonic flaw detection by bringing an SH wave skew angle probe 1 into contact with the surface of an object 5 to be inspected through a contact medium 3, a polymeric film 2 having predetermined acoustic impedance and predetermined thickness is formed on the flaw detecting surface of a skew angle forming wedge and SH waves are sent to the object 5 to be inspected by the propagation path of the wedge, the polymeric film 2, the contact medium 3 and the object 5 to be inspected and the SH waves reflected from the object 5 to be inspected are detected by the propagation path in the direction reverse to that of the above mentioned propagation path.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被検体表面に接触
媒質を介してSH波斜角探触子を接して超音波探傷を行
う方法及びこの方法を適用したSH波斜角探触子に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for performing an ultrasonic flaw detection by bringing an SH wave oblique probe into contact with the surface of a subject via a couplant and an SH wave oblique probe to which this method is applied. Things.

【0002】[0002]

【従来の技術】横波のうちで、入射する境界面と粒子速
度の向きが平行であるものをSH波(SはShear Waveで
横波、HはHorizontalで水平の意)という。このSH波
を用いると、どんな入射角でも、反射によるモード変換
が起きないので、反射は通常の鏡面反射と同じになり、
処理が容易であるので、従来から超音波探傷に用いられ
てきた。
2. Description of the Related Art Among transverse waves, those in which the direction of the particle velocity is parallel to the incident boundary surface are referred to as SH waves (S is a shear wave in a shear wave, H is a horizontal wave in a horizontal sense). When this SH wave is used, mode conversion by reflection does not occur at any incident angle, so that reflection is the same as ordinary specular reflection,
Because of its easy processing, it has been conventionally used for ultrasonic flaw detection.

【0003】図3は従来のSH波探触子を用いた超音波
探傷法の説明図であり、図の1aは従来のSH波探触
子、3aは従来のSH波用の高粘性の接触媒質、4はケ
ーブル、5は被検体である。従来のSH波探触子による
探傷では、探傷箇所毎に、SH波用の高粘性接触媒質3
aを被検体5とSH波探触子1aの探傷面との間に設け
て、被検体5に対してSH波探触子1aを一定の押圧力
(例えば20kg程度の力)で、一定時間(例えば10分
程度)押し付ける必要があった。これはこの押し付けた
状態でSH波の送受波を行うためである。また従来のS
H波の接触媒質3aの粘度は、例えば1400パスカル
・秒(Pa・sec )程度で、高粘度のため取扱いが容易
でなかった。
FIG. 3 is an explanatory view of an ultrasonic flaw detection method using a conventional SH wave probe. FIG. 1A is a conventional SH wave probe, and 3a is a conventional high viscosity contact for SH wave. The medium 4 is a cable, and 5 is a subject. In the conventional flaw detection using the SH wave probe, a high-viscosity couplant 3 for SH wave is used for each flaw detection location.
a is provided between the subject 5 and the flaw detection surface of the SH wave probe 1a, and the SH wave probe 1a is pressed against the subject 5 with a constant pressing force (for example, a force of about 20 kg) for a certain period of time. (For example, about 10 minutes). This is for transmitting and receiving SH waves in this pressed state. The conventional S
The viscosity of the H-wave couplant 3a was, for example, about 1400 Pascal · sec (Pa · sec), and handling was not easy due to high viscosity.

【0004】[0004]

【発明が解決しようとする課題】従来のSH波探触子に
よる超音波探傷では、高粘性の接触媒質を要するため、
取扱いが困難である。また探傷箇所毎に、被検体に対し
てSH波探触子を所定の押圧力で10分程度押し付けて
いる必要があるため、作業効率が悪い、走査による連続
検査ができない等の問題点があった。
In the conventional ultrasonic flaw detection using the SH wave probe, a highly viscous couplant is required.
Difficult to handle. In addition, since it is necessary to press the SH wave probe against the subject with a predetermined pressing force for about 10 minutes for each flaw detection location, there are problems such as poor work efficiency and the inability to perform continuous inspection by scanning. Was.

【0005】[0005]

【課題を解決するための手段】本発明の請求項1に係る
SH波による超音波探傷方法は、被検体表面に接触媒質
を介してSH波斜角探触子を接して超音波探傷を行う方
法において、斜角形成用くさびの探傷面に所定の音響イ
ンピーダンスで且つ所定の厚さの高分子膜を生成し、前
記くさび、高分子膜、接触媒質及び被検体の伝播路によ
りSH波を被検体に送波し、前記被検体から反射された
SH波を前記伝播路と逆方向の伝播路により受波するも
のである。
According to a first aspect of the present invention, there is provided an ultrasonic flaw detection method using an SH wave, wherein an SH wave oblique probe is brought into contact with a surface of a subject via a couplant to perform ultrasonic flaw detection. In the method, a polymer film having a predetermined acoustic impedance and a predetermined thickness is formed on a flaw detection surface of a wedge for forming a bevel, and SH waves are applied by a propagation path of the wedge, the polymer film, the couplant and the specimen. The SH wave is transmitted to the sample, and the SH wave reflected from the subject is received by the propagation path in the direction opposite to the propagation path.

【0006】本発明の請求項2に係るSH波による超音
波探傷方法は、前記請求項1に係るSH波による超音波
探傷方法において、前記斜角形成用のくさびの探傷面に
生成される高分子膜の音響インピーダンスは、前記くさ
びの音響インピーダンスと接触媒質の音響インピーダン
スとの間の値となるようにし、また前記高分子膜の厚さ
は、前記SH波の波長とほぼ所定の整数比となるように
したものである。
According to a second aspect of the present invention, there is provided an ultrasonic flaw detection method using an SH wave according to the first aspect of the present invention, wherein the wedge for forming the oblique angle is formed on a flaw detection surface. The acoustic impedance of the molecular film is set to a value between the acoustic impedance of the wedge and the acoustic impedance of the couplant, and the thickness of the polymer film is substantially equal to the wavelength of the SH wave and a predetermined integer ratio. It is to become.

【0007】本発明の請求項3に係るSH波斜角探触子
は、被検体表面に接触媒質を介して接触させて超音波探
傷を行うSH波斜角探触子において、斜角形成用くさび
の探傷面に所定の音響インピーダンスで且つ所定の厚さ
に生成された高分子膜を設けたものである。
An SH-wave oblique probe according to a third aspect of the present invention is a SH-wave oblique probe that performs ultrasonic flaw detection by bringing the surface of a test object into contact with the surface of a subject through a couplant. A polymer film having a predetermined acoustic impedance and a predetermined thickness is provided on a flaw detection surface of a wedge.

【0008】本発明の請求項4に係るSH波斜角探触子
は、前記請求項3に係るSH波斜角探触子において、前
記斜角形成用のくさびの探傷面に生成される高分子膜の
音響インピーダンスは、前記くさびの音響インピーダン
スと接触媒質の音響インピーダンスとの間の値となるよ
うにし、また前記高分子膜の厚さは、前記SH波の波長
とほぼ所定の整数比となるようにしたものである。
The SH wave oblique probe according to a fourth aspect of the present invention is the SH wave oblique probe according to the third aspect, wherein the height of the wedge for forming the oblique angle is formed on the flaw detection surface. The acoustic impedance of the molecular film is set to a value between the acoustic impedance of the wedge and the acoustic impedance of the couplant, and the thickness of the polymer film is substantially equal to the wavelength of the SH wave and a predetermined integer ratio. It is to become.

【0009】本発明の請求項5に係るSH波斜角探触子
は、被検体表面に接触媒質を介して走査させて超音波探
傷を行うSH波斜角探触子において、振動子及び斜角形
成用くさびが固定位置となるように一体に取り付けられ
たローラ軸と、前記ローラ軸を中心軸とした円筒状の所
定の音響インピーダンスで且つ所定の厚さに生成された
高分子膜で、この円筒状の高分子膜の内周は前記斜角形
成用くさびの探傷面と接触媒質を介して接し、その外周
は前記被検体表面と接触媒質を介して接して回転可能な
機構に装着された前記高分子膜とを備えたものである。
An SH wave oblique probe according to a fifth aspect of the present invention is a SH wave oblique probe for performing ultrasonic flaw detection by scanning a surface of a subject through a couplant, and a vibrator and an oblique angle probe. A roller shaft integrally attached so that the horn forming wedge is at a fixed position, and a cylindrical polymer film having a predetermined acoustic impedance and a predetermined thickness with the roller shaft as a central axis, The inner periphery of this cylindrical polymer film is in contact with the flaw detection surface of the bevel forming wedge via a couplant, and the outer periphery is mounted on a rotatable mechanism in contact with the subject surface via the couplant. And the above-mentioned polymer film.

【0010】本発明の請求項6に係るSH波斜角探触子
は、前記請求項5に係るSH波斜角探触子において、前
記回転可能な機構に装着された円筒状の高分子膜の音響
インピーダンスは、前記くさびの音響インピーダンス
と、前記被検体表面と高分子膜外周との間の接触媒質の
音響インピーダンスとの間の値となるようにし、また前
記高分子膜の厚さは、前記SH波の波長とほぼ所定の整
数比となるようにしたものである。
The SH wave oblique probe according to claim 6 of the present invention is the SH wave oblique probe according to claim 5, wherein the cylindrical polymer film is mounted on the rotatable mechanism. The acoustic impedance of the wedge is set to a value between the acoustic impedance of the wedge and the acoustic impedance of the couplant between the subject surface and the outer periphery of the polymer film, and the thickness of the polymer film is The wavelength ratio of the SH wave is set to be substantially a predetermined integer ratio.

【0011】[0011]

【発明の実施の形態】実施形態1 図1は本発明の実施形態1に係るSH波探触子の構成を
示す図である。図1のSH波探触子1は、図3の従来の
SH波探触子1aの探傷面に、例えばポリエチレン等の
高分子膜2を生成したものである。また図1の接触媒質
3は、従来のSH波用のように高粘度(1400Pa・
sec 程度)を必要とせず、例えばグリセリン水溶液等の
低粘性(粘度は100Pa・sec 程度)のものでよい。
Embodiment 1 FIG. 1 is a diagram showing a configuration of an SH wave probe according to Embodiment 1 of the present invention. The SH wave probe 1 shown in FIG. 1 is obtained by forming a polymer film 2 such as polyethylene on the flaw detection surface of the conventional SH wave probe 1a shown in FIG. The couplant 3 of FIG. 1 has a high viscosity (1400 Pa ·
For example, a low viscosity (viscosity of about 100 Pa · sec) such as an aqueous glycerin solution may be used.

【0012】次にSH波探触子1に高分子膜2を生成し
た理由について説明する。いま、鋼板にSH波を入射さ
せる場合、探触子のアクリル樹脂製くさびから接触媒
質、鋼板に到る各伝播路の音響インピーダンスの値は、
アクリル樹脂は3.2kg/m2s 程度、一般的な接触媒
質(例えばグリセリン水溶液)は2.4kg/m2s程度
であり、鋼板は45.3kg/m2s程度であり、互に音
響インピーダンスの異なる境界面では反射が生じるから
超音波の透過率は良くない。
Next, the reason why the polymer film 2 is formed on the SH wave probe 1 will be described. Now, when the SH wave is incident on the steel sheet, the acoustic impedance value of each propagation path from the acrylic resin wedge of the probe to the couplant and the steel sheet is as follows:
Acrylic resin is about 3.2 kg / m 2 s, general couplant (eg, glycerin aqueous solution) is about 2.4 kg / m 2 s, and steel sheet is about 45.3 kg / m 2 s, Since the reflection occurs at the boundary surfaces having different impedances, the transmittance of the ultrasonic wave is not good.

【0013】そこで図1のように、SH波探触子1の探
傷面に、音響インピーダンスがくさびの樹脂と一般的な
接触媒質との中間の値(例えば3.0kg/m2s 程度)
で、接触媒質との密着性に優れている高分子材を選定
し、所定の厚さd(例えばdは0.2〜0.8mm程度
で、この厚さdと、SH波の波長とがほぼ所定の整数比
となるよう)に皮膜を生成する。
Therefore, as shown in FIG. 1, the flaw detection surface of the SH wave probe 1 has an acoustic impedance intermediate between the wedge resin and a general couplant (for example, about 3.0 kg / m 2 s).
Then, a polymer material having excellent adhesion to the couplant is selected, and a predetermined thickness d (for example, d is about 0.2 to 0.8 mm, and this thickness d and the wavelength of the SH wave The film is formed so as to have a substantially predetermined integer ratio.

【0014】一例として、高分子材をポリエチレンとす
ると、SH波の高分子膜2での伝播速度vは530m/
sec 程度である。いまSH波の周波数fとして5MHz
を使用するとすると、波長λ=v/fに上記数値を代入
すると、波長は約0.1mmとなる。従っていま、高分子
膜2の膜厚dを0.2mm、0.3mm、…0.8mmとする
と、膜厚dは波長λの2倍、3倍、…8倍(整数倍)と
なる。そして、この高分子膜2の膜厚dをSH波の波長
λの整数倍にしておくと、高分子膜2内をSH波が透過
する際の入射点の位相と出射点の位相は同位相となり、
SH波の透過効率が向上する。その結果、超音波の送受
信における信号透過率(受信感度)が良くなる。
As an example, if the polymer material is polyethylene, the propagation speed v of the SH wave in the polymer film 2 is 530 m / m
sec. Now, the frequency f of the SH wave is 5 MHz.
If the above value is substituted for the wavelength λ = v / f, the wavelength is about 0.1 mm. Therefore, if the thickness d of the polymer film 2 is 0.2 mm, 0.3 mm,... 0.8 mm, the thickness d becomes twice, three times,. When the thickness d of the polymer film 2 is set to an integral multiple of the wavelength λ of the SH wave, the phase of the incident point and the phase of the emission point when the SH wave passes through the polymer film 2 are the same. Becomes
The transmission efficiency of the SH wave is improved. As a result, the signal transmittance (reception sensitivity) in transmission and reception of ultrasonic waves is improved.

【0015】上記のようにSH波探触子の探傷面に高分
子膜2を設けると、各伝播路の音響インピーダンスの値
は、くさび樹脂の3.2 kg/m2s、高分子膜の3.0
kg/m2s、接触媒質の2.4kg/m2sと段階的に変化
することになり、異なる伝播路間の境界面における反射
信号は減少し、信号透過率が向上する。さらに超音波の
送受信による往復透過率は、片道の透過率の2乗となる
から、片道の透過率が少し改善されるだけでも、往復透
過率は大幅に向上する。またポリエチレン等の高分子膜
の表面の滑らかさが探触子の滑りを良くするため、走査
性が良くなる。この良い走査性を用いて、実施形態2の
ローラ型SH波探触子を構成することができる。
When the polymer film 2 is provided on the flaw detection surface of the SH wave probe as described above, the acoustic impedance value of each propagation path is 3.2 kg / m 2 s of the wedge resin, 3.0
kg / m 2 s, and 2.4 kg / m 2 s of the couplant, the reflection signal at the interface between the different propagation paths is reduced, and the signal transmittance is improved. Further, since the reciprocal transmittance due to the transmission and reception of the ultrasonic wave is the square of the one-way transmittance, even if the one-way transmittance is slightly improved, the reciprocal transmittance is greatly improved. In addition, the smoothness of the surface of the polymer film such as polyethylene improves the slip of the probe, so that the scanning property is improved. The roller type SH wave probe of the second embodiment can be configured using this good scanning property.

【0016】実施形態2 図2は本発明の実施形態2に係るローラ型SH波探触子
の構成を示す図であり、図の2は高分子膜、3は接触媒
質、5は被検体、6はくさび、7は振動子、8はローラ
軸、9はベアリング、10は円板またはリブである。ま
た図2の(a)は円板(またはリブ)を含むローラ軸の
中心線を通る縦断面図であり、(b)は前記ローラ軸の
中心線と直角方向の断面図である。
Embodiment 2 FIG. 2 is a view showing a configuration of a roller type SH wave probe according to Embodiment 2 of the present invention, wherein 2 is a polymer film, 3 is a couplant, 5 is an object, 6 is a wedge, 7 is a vibrator, 8 is a roller shaft, 9 is a bearing, and 10 is a disk or a rib. 2A is a longitudinal sectional view passing through a center line of a roller shaft including a disk (or a rib), and FIG. 2B is a sectional view in a direction perpendicular to the center line of the roller shaft.

【0017】図2において、くさび6と振動子7は固定
位置となるようにローラ軸8に一体に取り付けられる。
高分子膜2は、ローラ軸8を中心軸とした円筒状の所定
の音響インピーダンスで且つ所定の厚さに生成されたも
ので、この円筒状の高分子膜2の内周は前記斜角形成用
くさび6の探傷面と接触媒質3を介して接し、その外周
は被検体5の表面と接触媒質3を介して接して回転可能
な機構(図2の(a)では、ローラ軸8の左右に取り付
けられた1対のベアリング9とこれらのベアリング9の
回転部に取り付けられた1対の円板またはリブ10によ
り、ローラ軸8は回転させなくとも、円筒状の高分子膜
2は回転可能となる機構を示している)に装着されてい
る。
In FIG. 2, the wedge 6 and the vibrator 7 are integrally attached to a roller shaft 8 so as to be at a fixed position.
The polymer film 2 is formed with a predetermined acoustic impedance and a predetermined thickness in a cylindrical shape with the roller shaft 8 as a central axis, and the inner periphery of the cylindrical polymer film 2 is formed with the oblique angle. A mechanism that is in contact with the flaw detection surface of the wedge 6 via the couplant 3 and whose outer periphery is in contact with the surface of the subject 5 via the couplant 3 (in FIG. 2A, a rotatable mechanism) The cylindrical polymer film 2 can be rotated without rotating the roller shaft 8 by a pair of bearings 9 attached to the shaft and a pair of disks or ribs 10 attached to the rotating parts of these bearings 9. Is shown).

【0018】この回転可能な機構を有するローラ型SH
波探触子を被検体5上に走査させる際に、高分子膜2
は、その外周が被検体5の表面と接触媒質3を介し接触
しながら回転するが、くさび6、振動子7及びローラ軸
8は回転しないような機構になっている。このため、く
さび6の探傷面は、図2の(b)に示すように断面は円
弧で、この円弧の半径は高分子膜2の内側半径よりわず
かに小さくしてある。そしてくさび6の探傷面と高分子
膜2の内周の間のわずかのギャップに接触媒質3を充填
しておく。また高分子膜2の外周と被検体5の間に接触
媒質を設けることは実施形態1の場合と同様である。こ
のような構成により、高分子膜2を回転させながらこの
ローラ型SH波探触子を被検体5上に走査させると、振
動子7からくさび6を介して一定の角度で被検体5に対
してSH波を送信し受信することができる。
Roller type SH having this rotatable mechanism
When scanning the wave probe over the subject 5, the polymer film 2
The wedge 6, the vibrator 7, and the roller shaft 8 do not rotate while the outer periphery of the wrist rotates while being in contact with the surface of the subject 5 via the couplant 3. Therefore, the flaw detection surface of the wedge 6 has a circular cross section as shown in FIG. 2B, and the radius of this circular arc is slightly smaller than the inner radius of the polymer film 2. Then, a slight gap between the flaw detection surface of the wedge 6 and the inner periphery of the polymer film 2 is filled with the couplant 3. The provision of a couplant between the outer periphery of the polymer film 2 and the subject 5 is the same as in the first embodiment. With such a configuration, when the roller type SH wave probe is scanned on the subject 5 while rotating the polymer film 2, the subject 5 is fixed at a fixed angle from the vibrator 7 via the wedge 6. To transmit and receive SH waves.

【0019】本実施形態2のローラ型探触子を被検体表
面に走査させて計測や探傷を行う作業を従来技術の場合
と比較すると、本実施形態2では、従来のように各計測
・探傷箇所毎に、探触子を被検体に押しつける必要がな
いので、計測や検査の作業効率が格段に向上する。また
実施形態1の探触子と実施形態2のローラ型探触子によ
る走査作業を比較しても、実施形態1の場合には、探傷
面に高分子膜の生成された探触子を被検体表面に摺動さ
せる必要があり、作業性の難易と、高分子膜と被検体と
の接触の安定性の点で、本実施形態2の方が優れてい
る。なお高分子膜の膜厚とSH波の波長とをほぼ所定の
整数比とすることにより、高分子膜内におけるSH波の
透過率が向上する効果は、実施形態1の場合と同様であ
る。
In comparison with the case of the prior art in which the roller type probe of the second embodiment scans the surface of the object to perform measurement and flaw detection, the second embodiment shows that the measurement and flaw detection are different from those of the prior art. Since there is no need to press the probe against the subject for each location, the work efficiency of measurement and inspection is significantly improved. Also, when comparing the scanning operation by the probe of the first embodiment and the scanning operation by the roller type probe of the second embodiment, in the case of the first embodiment, the probe having the polymer film formed on the flaw detection surface is covered. The second embodiment is superior in terms of workability and stability of contact between the polymer film and the subject because it is necessary to slide on the surface of the sample. The effect of improving the transmittance of the SH wave in the polymer film by setting the thickness of the polymer film and the wavelength of the SH wave to a substantially predetermined integer ratio is the same as that of the first embodiment.

【0020】[0020]

【発明の効果】以上のように本発明によれば、被検体表
面に接触媒質を介してSH波斜角探触子を接して超音波
探傷を行う方法及び装置において、斜角形成用くさびの
探傷面に所定の音響インピーダンスで且つ所定の厚さの
高分子膜を生成し、前記くさび、高分子膜、接触媒質及
び被検体の伝播路によりSH波を被検体に送波し、前記
被検体から反射されたSH波を前記伝播路と逆方向の伝
播路により受波するようにしたので、従来のように高粘
性の接触媒質を用い、探触子を所定の押圧力で所定時間
被検体表面に押し付ける必要が無くなり、計測や検査の
作業性が改善された。
As described above, according to the present invention, in a method and an apparatus for performing ultrasonic flaw detection by bringing an SH wave bevel probe into contact with a surface of a subject via a couplant, the wedge for forming a bevel is provided. A polymer film having a predetermined acoustic impedance and a predetermined thickness is formed on the flaw detection surface, and an SH wave is transmitted to the subject through the wedge, the polymer film, the couplant and the propagation path of the subject, and the The SH wave reflected from the probe is received by the propagation path in the direction opposite to the propagation path, so that a probe having a high viscosity couplant as in the prior art is used, and the probe is pressed at a predetermined pressure for a predetermined period of time. Eliminating the need to press against the surface has improved the workability of measurement and inspection.

【0021】また本発明によれば、前記SH波斜角探触
子における斜角形成用のくさびの探傷面に生成される高
分子膜の音響インピーダンスは、前記くさびの音響イン
ピーダンスと接触媒質の音響インピーダンスとの間の値
となるようにし、また前記高分子膜の厚さは、前記SH
波の波長とほぼ所定の整数比となるようにしたので、異
なる伝播路間の境界面における反射信号の減少と高分子
膜内における透過信号の増加とにより超音波の送受信に
おける信号透過率が向上した。
According to the present invention, the acoustic impedance of the polymer film formed on the flaw detection surface of the wedge for forming an oblique angle in the SH wave oblique probe is different from the acoustic impedance of the wedge and the acoustic impedance of the couplant. And a thickness between the polymer film and the SH.
Since the wavelength ratio of the wave is set to a substantially predetermined integer ratio, the signal transmittance in the transmission and reception of ultrasonic waves is improved by reducing the reflected signal at the interface between different propagation paths and increasing the transmitted signal in the polymer film. did.

【0022】また本発明によれば、被検体表面に接触媒
質を介して走査させて超音波探傷を行うSH波斜角探触
子において、振動子及び斜角形成用くさびが固定位置と
なるように一体に取り付けられたローラ軸と、前記ロー
ラ軸を中心軸とした円筒状の所定の音響インピーダンス
で且つ所定の厚さに生成された高分子膜で、この円筒状
の高分子膜の内周は前記斜角形成用くさびの探傷面と接
触媒質を介して接し、その外周は前記被検体表面と接触
媒質を介して接して回転可能な機構に装着された前記高
分子膜とを備えるようにしたので、前記斜角形成用くさ
びの探傷面に高分子膜の生成された探触子を被検体表面
に摺動させるよりも、高分子膜と被検体との接触が安定
化し且つ走査の作業性も大幅に向上した。
Further, according to the present invention, in the SH-wave oblique probe for performing ultrasonic flaw detection by scanning the surface of the object through the couplant, the vibrator and the oblique angle forming wedge are set at fixed positions. And a cylindrical polymer film having a predetermined acoustic impedance and a predetermined thickness centered on the roller shaft, the inner periphery of the cylindrical polymer film. Is in contact with the flaw detection surface of the bevel forming wedge via a couplant, and its outer periphery is provided with the polymer film mounted on a rotatable mechanism in contact with the subject surface via the couplant. Therefore, the contact between the polymer film and the subject is stabilized and the scanning operation is performed, as compared with the case where the probe having the polymer film formed on the flaw detection surface of the bevel forming wedge slides on the surface of the subject. The performance has also been greatly improved.

【0023】また本発明によれば、前記回転可能な機構
に装着された円筒状の高分子膜の音響インピーダンス
は、前記くさびの音響インピーダンスと、前記被検体表
面と高分子膜外周との間の接触媒質の音響インピーダン
スとの間の値となるようにし、また前記高分子膜の厚さ
は、前記SH波の波長とほぼ所定の整数比となるように
したので、超音波伝播路の各境界面における反射信号の
減少と高分子膜内における透過信号の増加とにより走査
時における超音波信号の透過率が向上した。
Further, according to the present invention, the acoustic impedance of the cylindrical polymer film mounted on the rotatable mechanism is the acoustic impedance between the wedge and the surface of the subject and the outer periphery of the polymer film. The thickness of the polymer film is set to be substantially a predetermined integer ratio with the wavelength of the SH wave, so that the thickness of the polymer film is set to a value between the acoustic impedance of the couplant and each boundary of the ultrasonic wave propagation path. The transmittance of the ultrasonic signal during scanning was improved due to the decrease in the reflection signal on the surface and the increase in the transmission signal in the polymer film.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態1に係るSH波探触子の構成
を示す図である。
FIG. 1 is a diagram showing a configuration of an SH wave probe according to Embodiment 1 of the present invention.

【図2】本発明の実施形態2に係るローラ型SH波探触
子の構成を示す図である。
FIG. 2 is a diagram illustrating a configuration of a roller type SH wave probe according to a second embodiment of the present invention.

【図3】従来のSH波探触子を用いた超音波探傷法の説
明図である。
FIG. 3 is an explanatory diagram of an ultrasonic flaw detection method using a conventional SH wave probe.

【符号の説明】[Explanation of symbols]

1,1a SH波探触子 2 高分子膜 3,3a 接触媒質 4 ケーブル 5 被検体 6 くさび 7 振動子 8 ローラ軸 9 ベアリング 10 円板またはリブ 1, 1a SH wave probe 2 polymer film 3, 3a couplant 4 cable 5 subject 6 wedge 7 vibrator 8 roller shaft 9 bearing 10 disk or rib

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤田 利明 三重県津市雲出伊倉津町字14割1187 株式 会社ジャパンテクノメイト内 Fターム(参考) 2G047 BB02 BC07 CB00 CB02 EA10 GB04 GB27 GB28 GE01 5D019 AA22 FF05 GG01  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Toshiaki Fujita 14% 1187, Ikutsucho, Kumoe, Tsu-shi, Mie Japan F-term in Japan Techno Mate Co., Ltd. 2G047 BB02 BC07 CB00 CB02 EA10 GB04 GB27 GB28 GE01 5D019 AA22 FF05 GG01

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 被検体表面に接触媒質を介してSH波斜
角探触子を接して超音波探傷を行う方法において、 斜角形成用くさびの探傷面に所定の音響インピーダンス
で且つ所定の厚さの高分子膜を生成し、前記くさび、高
分子膜、接触媒質及び被検体の伝播路によりSH波を被
検体に送波し、前記被検体から反射されたSH波を前記
伝播路と逆方向の伝播路により受波することを特徴とす
るSH波による超音波探傷方法。
1. A method for performing ultrasonic flaw detection by bringing an SH wave bevel probe into contact with a surface of a subject via a couplant, wherein the flaw detection surface of a wedge for forming a bevel has a predetermined acoustic impedance and a predetermined thickness. The SH wave is transmitted to the subject through the wedge, the polymer film, the couplant, and the propagation path of the subject, and the SH wave reflected from the subject is inverted from the propagation path. An ultrasonic flaw detection method using SH waves, wherein waves are received by a propagation path in a direction.
【請求項2】 前記斜角形成用のくさびの探傷面に生成
される高分子膜の音響インピーダンスは、前記くさびの
音響インピーダンスと接触媒質の音響インピーダンスと
の間の値となるようにし、また前記高分子膜の厚さは、
前記SH波の波長とほぼ所定の整数比となるようにした
ことを特徴とする請求項1記載の超音波探傷方法。
2. The acoustic impedance of a polymer film formed on a flaw detection surface of the wedge for forming an oblique angle is set to a value between the acoustic impedance of the wedge and the acoustic impedance of a couplant. The thickness of the polymer film is
2. The ultrasonic flaw detection method according to claim 1, wherein the wavelength of the SH wave is set to a substantially predetermined integer ratio.
【請求項3】 被検体表面に接触媒質を介して接触させ
て超音波探傷を行うSH波斜角探触子において、 斜角形成用くさびの探傷面に所定の音響インピーダンス
で且つ所定の厚さに生成された高分子膜を設けたことを
特徴とするSH波斜角探触子。
3. An SH-wave oblique probe for performing ultrasonic flaw detection by bringing it into contact with a surface of a test object via a couplant, wherein the flaw detection surface of a wedge for forming a bevel has a predetermined acoustic impedance and a predetermined thickness. An SH-wave oblique probe characterized by comprising a polymer film formed on the probe.
【請求項4】 前記斜角形成用のくさびの探傷面に生成
される高分子膜の音響インピーダンスは、前記くさびの
音響インピーダンスと接触媒質の音響インピーダンスと
の間の値となるようにし、また前記高分子膜の厚さは、
前記SH波の波長とほぼ所定の整数比となるようにした
ことを特徴とする請求項3記載のSH波斜角接触子。
4. The acoustic impedance of a polymer film formed on a flaw detection surface of the wedge for forming an oblique angle is set to a value between the acoustic impedance of the wedge and the acoustic impedance of a couplant. The thickness of the polymer film is
4. The SH-wave oblique contact according to claim 3, wherein the SH-wave has a substantially predetermined integer ratio with the wavelength of the SH-wave.
【請求項5】 被検体表面に接触媒質を介して走査させ
て超音波探傷を行うSH波斜角探触子において、 振動子及び斜角形成用くさびが固定位置となるように一
体に取り付けられたローラ軸と、 前記ローラ軸を中心軸とした円筒状の所定の音響インピ
ーダンスで且つ所定の厚さに生成された高分子膜で、こ
の円筒状の高分子膜の内周は前記斜角形成用くさびの探
傷面と接触媒質を介して接し、その外周は前記被検体表
面と接触媒質を介して接して回転可能な機構に装着され
た前記高分子膜とを備えたことを特徴とするSH波斜角
探触子。
5. An SH-wave oblique probe for performing ultrasonic flaw detection by scanning a surface of a subject through a couplant, wherein a transducer and a wedge for forming an oblique angle are integrally attached so as to be at fixed positions. A roller shaft, and a cylindrical polymer film having a predetermined acoustic impedance and a predetermined thickness with the roller shaft as a central axis, and the inner periphery of the cylindrical polymer film is formed at the oblique angle. SH, comprising: a flaw detection surface of a wedge, which is in contact with the surface of the test object via a couplant, and an outer periphery of which is provided with the polymer film mounted on a rotatable mechanism in contact with the surface of the test object via the couplant. Wave bevel probe.
【請求項6】 前記回転可能な機構に装着された円筒状
の高分子膜の音響インピーダンスは、前記くさびの音響
インピーダンスと、前記被検体表面と高分子膜外周との
間の接触媒質の音響インピーダンスとの間の値となるよ
うにし、また前記高分子膜の厚さは、前記SH波の波長
とほぼ所定の整数比となるようにしたことを特徴とする
請求項5記載のSH波斜角探触子。
6. The acoustic impedance of the cylindrical polymer film mounted on the rotatable mechanism is the acoustic impedance of the wedge and the acoustic impedance of the couplant between the surface of the subject and the outer periphery of the polymer film. 6. The SH wave oblique angle according to claim 5, wherein the polymer film has a thickness substantially equal to a predetermined integer ratio with the SH wave wavelength. Probe.
JP10357331A 1998-12-16 1998-12-16 Ultrasonic flaw detecting method by sh-waves and sh- wave skew angle probe Pending JP2000180419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10357331A JP2000180419A (en) 1998-12-16 1998-12-16 Ultrasonic flaw detecting method by sh-waves and sh- wave skew angle probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10357331A JP2000180419A (en) 1998-12-16 1998-12-16 Ultrasonic flaw detecting method by sh-waves and sh- wave skew angle probe

Publications (1)

Publication Number Publication Date
JP2000180419A true JP2000180419A (en) 2000-06-30

Family

ID=18453582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10357331A Pending JP2000180419A (en) 1998-12-16 1998-12-16 Ultrasonic flaw detecting method by sh-waves and sh- wave skew angle probe

Country Status (1)

Country Link
JP (1) JP2000180419A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003031964A1 (en) * 2001-10-02 2003-04-17 Idemitsu Kosan Co., Ltd. Transmission medium for ultrasonic diagnosis
KR101139592B1 (en) 2010-08-11 2012-04-27 한국수력원자력 주식회사 longitudinal wave transducer wedge to maintain couplant layer and longitudinal wave transducer using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003031964A1 (en) * 2001-10-02 2003-04-17 Idemitsu Kosan Co., Ltd. Transmission medium for ultrasonic diagnosis
CN100360930C (en) * 2001-10-02 2008-01-09 出光兴产株式会社 Transmission medium for ultrasonic diagnosis
KR100894933B1 (en) 2001-10-02 2009-04-27 이데미쓰 고산 가부시키가이샤 Transmission medium for ultrasonic diagnosis
KR101139592B1 (en) 2010-08-11 2012-04-27 한국수력원자력 주식회사 longitudinal wave transducer wedge to maintain couplant layer and longitudinal wave transducer using the same

Similar Documents

Publication Publication Date Title
JP3205936B2 (en) Inspection method and non-destructive inspection device
US4702112A (en) Ultrasonic phase reflectoscope
JP2000180419A (en) Ultrasonic flaw detecting method by sh-waves and sh- wave skew angle probe
JP4196643B2 (en) Method and apparatus for imaging internal defect by ultrasonic wave
JP2001208729A (en) Defect detector
US9658193B2 (en) Rolling phased array ultrasonic scanner
JP2016050811A (en) Ultrasonic flaw detector and ultrasonic flaw detection method based on tofd flaw detection technique
JPH05288723A (en) Pitch-catch type ultrasonic flaw examination
JP2966515B2 (en) Ultrasonic inspection method and ultrasonic inspection device
JPH01158348A (en) Ultrasonic flaw detection apparatus
Farlow et al. Advances in air coupled NDE for rapid scanning applications
KR100441757B1 (en) multi-scanning ultrasonic inspector for weld zone
JP3107951B2 (en) Tire type ultrasonic probe
JP2883051B2 (en) Ultrasonic critical angle flaw detector
KR200263215Y1 (en) multi-scanning ultrasonic inspector for weld zone
JPH07325070A (en) Ultrasonic method for measuring depth of defect
JP2001004602A (en) Ultrasonic flaw detecting method and apparatus
JPS61260159A (en) Tire type probe
JPH11352111A (en) Polarized wave flaw detection
JPH05126805A (en) Method and apparatus for measuring phase-speed curve
Upendran et al. Identification of guided Lamb wave modes in thin metal plates using water path corrected frequency–wavenumber [fk] analysis
JP3573967B2 (en) Plate wave ultrasonic inspection method
JPS6130762A (en) Ultrasonic flaw detection method and apparatus
Routh et al. Differential phase contrast acoustic microscopy
JPH10267903A (en) Ultrasonic probe