JP2000180369A - Method and apparatus for measurement of appearance quality of grain - Google Patents

Method and apparatus for measurement of appearance quality of grain

Info

Publication number
JP2000180369A
JP2000180369A JP11200673A JP20067399A JP2000180369A JP 2000180369 A JP2000180369 A JP 2000180369A JP 11200673 A JP11200673 A JP 11200673A JP 20067399 A JP20067399 A JP 20067399A JP 2000180369 A JP2000180369 A JP 2000180369A
Authority
JP
Japan
Prior art keywords
grain
information
light
plane
quality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11200673A
Other languages
Japanese (ja)
Other versions
JP2000180369A5 (en
Inventor
Satoru Satake
覺 佐竹
Koji Mitoma
康治 三苫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Satake Engineering Co Ltd
Original Assignee
Satake Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Satake Engineering Co Ltd filed Critical Satake Engineering Co Ltd
Priority to JP11200673A priority Critical patent/JP2000180369A/en
Publication of JP2000180369A publication Critical patent/JP2000180369A/en
Publication of JP2000180369A5 publication Critical patent/JP2000180369A5/ja
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a method and an apparatus in which the appearance quality of a grain can be measured precisely without relying on the man power of an operator or his experience, by a method wherein, in addition to a process to acquire information on a plane, a process to acquire information on a side face is provided, and the measuring element of the thickness of the grain is added. SOLUTION: The grain-appearance quality measuring apparatus 1 which evaluates a grain such as a grain or rice or the like is provided with a light receiving sensor 11 and a light receiving sensor 12 such as CCD's or the like which are installed, e.g. at a disk 4 used to transfer the grain while being turned and which are arranged on the upper side and the side face while an observer's view point recessed part as one recessed part used to arrange the grain is used as an observer's view point. Then, light from a light source 13 is first irradiated, transmitted light is received by the light receiving sensor 11. Then, light from a light source 14a and light from a light source 14b are changed over, and reflected light is received by the light receiving sensors 11, 12. Obtained pixel information on a plane and that on a side face are processed by an image processing part 18. On the basis of the transmitted light and the reflected light of the plane, information on the width and that on the length of grain, information on the value of a quantity of transmitted light and information on the color on the surface of the grain are obtained. On the basis of the reflected light of the side face, information on the thickness of the grain is obtained. On the basis of these pieces of information, the appearance quality and the shape quality of the grain are discriminated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】穀粒の品位を測定するにあた
り、穀粒の外形色彩や単純な形状だけでなく、穀粒の形
状に極めて近似した寸法や面積及び体積等の形状情報を
加えて、穀粒の内外に亘る情報から総合的に穀粒の品位
と形質が判別できる穀粒の品位測定方法とその装置に関
する。
BACKGROUND OF THE INVENTION In measuring the quality of a grain, not only the outer color and simple shape of the grain but also shape information such as dimensions, area, and volume that are very similar to the shape of the grain are added. The present invention relates to a method and apparatus for measuring the quality of a grain, which can comprehensively determine the quality and characteristics of the grain from information on the inside and outside of the grain.

【0002】[0002]

【従来の技術】従来の穀粒品位判別方法及び装置は、穀
粒から得られる透過光と反射光とにより穀粒の品位だけ
を判別していた。つまり、例えば米粒の品位判別におい
ては、米粒から得られる反射光と透過光だけで、整粒未
熟、死米、着色米、胴割れ米等の判別が行われ、麦粒に
おいては、麦粒から得られる反射光だけで、整粒、未熟
粒、カビ粒、異物等の判別が行われていた。
2. Description of the Related Art Conventional grain quality discriminating methods and apparatuses have discriminated only grain quality based on transmitted light and reflected light obtained from a grain. That is, for example, in the determination of the quality of rice grains, judging of immature sized, dead rice, colored rice, cracked rice, etc. is performed only by reflected light and transmitted light obtained from the rice grains. The sizing, immature grains, mold grains, foreign matter, and the like were discriminated only by the obtained reflected light.

【0003】穀粒の形状を判別の要素として採用したも
のが特表平8−501386号及び特表平10−500
770号である。この技術は、穀粒平面からの反射光を
デジタルイメ−ジで受光して、穀粒の大きさや形状ある
いは体積を決定し、更にデジタルイメ−ジ画素をRGB
表示として従来の色情報を得て、これら穀粒の大きさや
形状あるいは体積と色情報とにより、細かい穀粒の判別
を可能にした自動的評価方法及び装置である。
[0003] Japanese Unexamined Patent Publication No. Hei 8-501386 and Japanese Unexamined Patent Publication No. Hei 10-500 employ a method in which the shape of a grain is adopted as a discriminating element.
No. 770. This technology receives the reflected light from the grain plane with a digital image, determines the size, shape, or volume of the grain, and further converts the digital image pixels into RGB.
This is an automatic evaluation method and apparatus that obtains conventional color information as a display and enables fine grain discrimination based on the size, shape or volume of these grains and color information.

【0004】[0004]

【発明が解決しようとする課題】従来の画素情報による
穀粒の平面から得られる情報は、正確には穀粒の平面形
状であり平面から見た穀粒の面積のみである。この求め
られる穀粒の面積の情報は、あくまで面積であり、これ
をもって穀粒の体積に換算することは極めて無理なこと
であり、まして穀粒の正確な厚みを求めることはできな
い。また、これまで穀粒の品位を判別する上でその厚み
を判別の要素に加えることは成されておらず、それは従
来の穀粒品位判別においては平面からの面情報だけで判
別は十分と考えられてきたからである。
The information obtained from the plane of the kernel based on the conventional pixel information is exactly the plane shape of the kernel and only the area of the kernel as viewed from the plane. The information on the area of the grain thus obtained is merely an area, and it is extremely impossible to convert it into the volume of the grain with this information, and it is not possible to determine the exact thickness of the grain. Until now, the thickness of a grain has not been added to the discrimination factor in discriminating the grade of a grain, which is considered to be sufficient in conventional grain grade discrimination using only surface information from a flat surface. Because it has been

【0005】しかし穀粒の平面形状はその穀粒の厚みと
関連しているとは限らず、特に平面形状や色彩が同一で
あっても厚みが異なることもあり、この場合厚みの大小
によって他の区分となるよう判別されなければならない
ものが、同一の区分に判別されることがあった。このこ
とは単なる厚みではなく体積で比較したり集計する場合
にも支障が生じることもあった。
However, the planar shape of a grain is not always related to the thickness of the grain. In particular, even if the planar shape and color are the same, the thickness may be different. There is a case where an object must be determined so as to be classified into the same classification. This sometimes hindered the comparison and tabulation when comparing not only the thickness but also the volume.

【0006】以上のことは、穀粒を目視検査する検査員
の経験に頼って判別されてきた形質という項目に関わっ
ており、これまで検査員による検査だけで判別されてき
たものである。しかし検査員の経験だけに依存した判別
は、判別の境にあるものの区分が検査員により微妙に異
なってくるものであり、個人差や地域差が微妙に穀粒の
品位判別に影響し、このあたりに経験に頼る判別の限界
が見えてくるものである。しかも、この項目はこれまで
の検査機器では測定できないものとされているだけでな
く、今のところこの形質を機械的に判別できる方法や装
置は見あたらない。
[0006] The above relates to the item of traits that have been determined based on the experience of the inspector who visually inspects the grain, and has been determined only by inspection by the inspector so far. However, discrimination relying solely on the experience of the inspector is such that the classification of what is at the boundary of the distinction is slightly different depending on the inspector, and individual differences and regional differences slightly affect the grain quality judgment. The limits of discrimination depending on experience can be seen around. In addition, this item is not considered to be measurable with conventional testing equipment, and at present, there is no method or apparatus that can mechanically determine this trait.

【0007】以上のことから、検査員の経験に基づいて
実施されてきた穀粒の形質による判別を機械的に可能に
し、これまでの品位判別の精度を向上させることのでき
る品位測定方法とその装置の提供を技術的課題とするも
のである。
[0007] From the above, a quality measurement method and a quality measurement method capable of mechanically enabling the discrimination based on the characteristics of the grain, which has been performed based on the experience of the inspector, and improving the accuracy of the conventional discrimination of the quality. It is an object of the present invention to provide a device.

【0008】[0008]

【課題を解決するための手段】本発明によると、移送さ
れる穀粒に光を照射して、穀粒の平面から複数画素によ
る反射光と透過光とを含む平面情報を取得する工程と、
穀粒の側面から複数画素による反射光を含む側面情報を
取得する工程と、平面情報のうち反射光から穀粒の色彩
情報を得る工程と、平面情報のうち透過光から穀粒の長
さと幅の情報と透過光量値を得る工程と、側面情報のう
ち反射光から穀粒の厚みの情報を得る工程と、前記各情
報から穀粒の品位と形質を判別する工程とを備える穀粒
品位測定方法によって前記課題を解決する。つまり、こ
れまでの穀粒の平面から得た平面情報に加え、穀粒の側
面から得た側面情報を得ることにより、品位判別に有用
な新たな情報が加わる。つまり、平面情報の色情報と平
面形状の情報及び側面情報の形状情報の中から、求める
品位に応じてその組み合わせが選択できるようになっ
た。厚みは側面情報から得られるものであり、これまで
の平面情報と同じ実測値といってよい。つまり、実測値
といってよい平面情報の平面形状から得られる平面の
X、Y寸法と、側面情報から得られる側面のZ寸法とか
ら演算により得られる体積は、従来のX、Y寸法だけか
ら予測して求めていた体積と比較して、その数値の信頼
性は極めて高いものとなっている。ここで求められる体
積とこの体積を求めるためのX、Y、Z寸法はこれまで
装置として提供されていなかった形質の判別に有効であ
る。
According to the present invention, a step of irradiating a transferred grain with light to obtain plane information including reflected light and transmitted light by a plurality of pixels from the plane of the grain,
A step of obtaining side information including light reflected by a plurality of pixels from the side of the grain; a step of obtaining color information of the grain from reflected light in the plane information; and a length and width of the grain from transmitted light in the plane information Grain quality measurement comprising: a step of obtaining information and a transmitted light amount value; a step of obtaining grain thickness information from reflected light in the side information; and a step of discriminating a grain quality and a trait from each of the information. The problem is solved by a method. That is, by obtaining the side information obtained from the side surface of the grain in addition to the plane information obtained from the plane of the kernel, new information useful for the quality determination is added. That is, a combination of the color information of the plane information, the information of the plane shape, and the shape information of the side information can be selected according to the desired quality. The thickness is obtained from the side surface information, and may be the same measured value as the plane information so far. In other words, the volume obtained by the calculation from the X and Y dimensions of the plane obtained from the plane shape of the plane information, which may be referred to as the actually measured value, and the Z dimension of the side surface obtained from the side information, is obtained only from the conventional X and Y dimensions. The reliability of the numerical value is extremely high as compared with the volume that was predicted and obtained. The volume obtained here and the X, Y, and Z dimensions for obtaining this volume are effective in discriminating a trait that has not been provided as a device so far.

【0009】穀粒の品位を判別する工程は、穀粒の長さ
と幅及び厚みと、これら各寸法から得られる穀粒の面積
あるいは体積と、色彩情報の緑色光量および白色光量
と、透過光量値と、の組み合わせから穀粒の品位を判別
する穀粒品位測定方法としてある。つまり、品位を判別
するための情報は、反射光情報と透過光情報とを含む平
面情報と各寸法、厚み、面積、体積から任意の組み合わ
せで選択すればよい。例えば、米粒の未熟や死米は平面
情報と寸法、面積、体積からより正確な判別が可能とな
る。
The step of judging the quality of the grain includes the length, width, and thickness of the grain, the area or volume of the grain obtained from each of these dimensions, the amount of green light and white light in color information, and the amount of transmitted light. And a grain quality measuring method for determining the grain quality from the combination of That is, the information for determining the quality may be selected in any combination from the plane information including the reflected light information and the transmitted light information and the respective dimensions, thickness, area, and volume. For example, immature or dead rice grains can be more accurately determined from plane information and dimensions, area, and volume.

【0010】穀粒の形質を判別する工程は、穀粒の長さ
と幅及び厚みと、これら各寸法から得られる穀粒の体積
と、色彩情報の穀粒全体の色彩と、透過光量値を複数し
きい値で区分した光量別の占有率と、の組み合わせから
穀粒の形質を判別する穀粒品位測定方法としてある。つ
まり、形質を判別するための情報は、反射光情報と透過
光情報とを含む平面情報と各寸法、厚み、面積、体積か
ら任意の組み合わせで選択すればよい。特に粒ぞろいや
粒径の判別には、整粒と判断された米粒の寸法、面積、
体積が利用される。
The step of discriminating the trait of the grain includes the length, width, and thickness of the grain, the volume of the grain obtained from each of these dimensions, the color of the entire grain in the color information, and the transmitted light amount value. This is a grain quality measuring method for determining the character of the grain based on a combination of the occupancy by light amount classified by the threshold value. That is, the information for discriminating the trait may be selected in any combination from the plane information including the reflected light information and the transmitted light information and the respective dimensions, thickness, area, and volume. In particular, to determine the uniformity and particle size, the size, area,
Volume is used.

【0011】反射光情報は穀粒の色情報を含み、単なる
光の濃淡だけでなく色情報を取得することにより、例え
ば米粒で未熟に区分されるものは青未熟と白粉状に区分
でき、同じく死米に区分されるものは青死米と白死米と
に区分できる。しかも前述のように平面情報だけでなく
側面情報を得ることにより米粒の平面寸法と厚み寸法と
を取得して、確実な死米や未熟の判別が可能となる。更
に、透過光情報は穀粒の内部情報を含むので、形質の項
目である心白・腹白に判別されるものは、平面情報の透
過光情報と側面情報の寸法、面積、体積の取得によって
確実な判別が可能となる。
The reflected light information contains the color information of the grain, and by acquiring not only the light and shade of light but also the color information, for example, rice grains that are immature can be classified into blue immature and white powdery, Similarly, rice that is classified as dead rice can be classified into blue dead rice and white dead rice. In addition, by obtaining not only the plane information but also the side information as described above, the plane size and the thickness dimension of the rice grain are obtained, and it is possible to reliably determine dead rice or immature rice. Furthermore, since the transmitted light information includes the internal information of the kernel, the items that are determined to be white and white, which are items of the trait, are obtained by acquiring the dimensions, area, and volume of the transmitted light information of the plane information and the side information. Reliable discrimination becomes possible.

【0012】以上のような判別の後、判別した品位に従
って穀粒を選別する工程を備えるので、穀粒品位判別の
結果をもって穀粒の区分けを行い判別の結果を目視で確
認できて結果の保存が可能となる。
After the above-described discrimination, a step of selecting grains according to the discriminated quality is provided. Therefore, the results of the discrimination of the grain quality are used to sort the grains, and the discrimination results can be visually checked and the results can be stored. Becomes possible.

【0013】なお、前述する中で品位と形質という用語
を使い分けているが、従来の品位判別装置で測定可能で
あった項目を品位とし、本願により新たに測定可能とな
ったものに形質が含まれる。詳説すれば、形質は原料穀
粒から整粒と整粒に近いものだけを選りだし、これを検
査官が目視によって行ってきた判別項目であり、これま
では形質を測定できる装置はなかった。更に本願は、従
来の判別装置の判別情報に厚みの情報を加えたので、こ
れまで行われてきた品位の測定がより正確に測定可能と
なったものである。
Although the terms “quality” and “character” are used separately in the above description, items that can be measured by the conventional quality discriminating apparatus are defined as “quality”. It is. More specifically, the traits are selected only from the raw material grains, and those that are close to the sized ones. This is a discrimination item that has been visually inspected by the inspector, and there has been no apparatus that can measure the traits so far. Further, in the present application, since the thickness information is added to the discrimination information of the conventional discriminating apparatus, the quality measurement performed so far can be measured more accurately.

【0014】[0014]

【発明の実施の形態】本発明に好適な穀粒品位測定装置
の実施例を図1と図2により説明する。図1に穀粒品位
測定装置1の側断面図を示し、図2に穀粒品位測定装置
1の円盤4の平面図を示す。円盤4は、円周に穀粒を配
列可能な凹部2を配し回転軸3を中心に矢印Q方向に回
転可能にして穀粒を移送する。該円盤4はこれより直径
の大きい透明板5に載置してあり、前記回転軸3は駆動
モ−タ6(減速モ−タ)によって回転駆動される。円盤
4と透明板5は傾斜して駆動モ−タ6と共に基台7に固
定してある。傾斜した円盤4の傾斜上部には検出部8を
配置し、傾斜下部には供給部9を配置してある。なお透
明板5の傾斜下方から回転方向にかけた周囲には衝立R
を設けてあり穀粒の貯留を可能にした貯留部Sが形成し
てある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a grain quality measuring apparatus suitable for the present invention will be described with reference to FIGS. FIG. 1 shows a side sectional view of the grain quality measuring device 1, and FIG. 2 shows a plan view of the disk 4 of the grain quality measuring device 1. The disc 4 is provided with a concave portion 2 in which grains can be arranged around the circumference, and is rotatable in the direction of arrow Q about the rotating shaft 3 to transfer the grains. The disk 4 is mounted on a transparent plate 5 having a larger diameter, and the rotating shaft 3 is rotationally driven by a driving motor 6 (deceleration motor). The disk 4 and the transparent plate 5 are fixed to the base 7 together with the drive motor 6 while being inclined. A detecting unit 8 is arranged at an upper part of the inclined disk 4, and a supply unit 9 is arranged at a lower part of the inclined disk 4. In addition, a partition R is provided around the transparent plate 5 in the rotation direction from below the inclination.
Is provided, and a storage section S that allows storage of grains is formed.

【0015】検出部8は、円盤4の傾斜上部にあたる1
つの視点凹部10を視点として、円盤4に対する凹部2
の垂直線上の上側に配置した平面受光手段としての受光
センサ−11、好ましくはCCDセンサ−と、視点凹部
10の側面を視点とした側面受光手段としての受光セン
サ−12、好ましくはCCDセンサ−と、視点凹部10
を透明板5の下部から光を照射する照射手段として光源
13と、視点凹部10にその上部から光を照射する照射
手段として光源14a,14bとを備えている。更に光
源14と受光センサ−11との間には、受光センサ−1
1が光源14の光を直接受光しないよう、受光センサ−
11と視点凹部10とをつなぐ視線用スリットを開設し
た遮蔽板15aと、視点凹部10の側面視点と受光セン
サー12との間には、受光センサー11が光源14の光
を直接受光しないよう、受光センサー11と視点凹部1
0とをつなぐ視線用スリットを開設した遮蔽板15bを
備えている。
The detecting unit 8 is provided at the upper part of the
The concave portion 2 with respect to the disk 4 with the two viewpoint concave portions 10 as viewpoints.
A light-receiving sensor 11 as a plane light-receiving means, preferably a CCD sensor, and a light-receiving sensor 12 as a side light-receiving means as viewed from the side surface of the viewpoint recess 10, preferably a CCD sensor disposed above the vertical line. , Viewpoint recess 10
The light source 13 is provided as an irradiating unit for irradiating light from below the transparent plate 5, and the light sources 14 a and 14 b are provided as irradiating units for irradiating the viewpoint concave portion 10 with light from above. Further, a light receiving sensor-1 is provided between the light source 14 and the light receiving sensor-11.
A light receiving sensor is provided so that the light receiving device 1 does not directly receive the light from the light source 14.
A shielding plate 15a having a line-of-sight slit connecting the lens 11 and the viewpoint recess 10 and a light receiving sensor 12 are provided between the side viewpoint of the viewpoint recess 10 and the light receiving sensor 12 so that the light receiving sensor 11 does not directly receive the light of the light source 14. Sensor 11 and recess 1
A shielding plate 15b having a line-of-sight slit that connects to the line 0 is provided.

【0016】以上の各部は次の制御部16によって制御
される。つまり、装置全体を制御するCPUを含む演算
制御部17を備え、該演算制御部17には信号処理手段
として画像処理部18と品位・形質を判別する基準を含
む必要な情報を記憶した記憶部19及び外部機器との信
号入出力部20とが接続してある。更に前記画像処理部
18には前記光センサ−11,12とが接続され、信号
入出力部20にはキ−ボ−ド等の入力部21と表示部2
2及びメカ制御部23とが接続してある。また、メカ制
御部23には、駆動モ−タ6と光源13,14と供給部
9とを接続すると共に、品位・形質を測定した後、判別
に応じて穀粒を選別排除する選別部24が接続してあ
る。
The above components are controlled by the following control unit 16. That is, an arithmetic control unit 17 including a CPU for controlling the entire apparatus is provided. The arithmetic control unit 17 includes an image processing unit 18 as a signal processing unit and a storage unit that stores necessary information including criteria for determining quality and traits. 19 and a signal input / output unit 20 for connecting to an external device. The image processing unit 18 is connected to the optical sensors 11 and 12, and the signal input / output unit 20 is connected to an input unit 21 such as a keyboard and the display unit 2.
2 and the mechanical control unit 23 are connected. The mechanical control unit 23 is connected to the drive motor 6, the light sources 13, 14 and the supply unit 9 and, after measuring the quality and traits, sorts out the grains according to the discrimination. Is connected.

【0017】上記構成における装置1の測定動作を図3
により説明する。以下の測定動作は演算制御部17及び
メカ制御部23によって制御するものである。まず入力
部21から測定しようとする穀粒の品種と水分値とを入
力(3−1)した後スタ−ト指示すると、駆動モ−タ6
の回転(3−2)によって円盤4が回転を始める。更に
供給部9から貯留部Sへの穀粒の供給を開始(3−3)
すると、貯留部Sに投入された穀粒は回転する円盤4の
凹部2に捕獲され円盤4の回転とともに一粒ずつ傾斜し
た円盤4の傾斜上部に搬送される。傾斜上部では検出部
8によって穀粒の品位・形質に関する測定が行われる。
FIG. 3 shows the measuring operation of the apparatus 1 having the above configuration.
This will be described below. The following measurement operation is controlled by the arithmetic control unit 17 and the mechanical control unit 23. First, after inputting the kind and moisture value of the grain to be measured from the input unit 21 (3-1) and then giving a start instruction, the driving motor 6
Rotation (3-2) causes the disk 4 to start rotating. Further, supply of grains from the supply unit 9 to the storage unit S is started (3-3).
Then, the grains input into the storage section S are captured by the concave portions 2 of the rotating disk 4 and are conveyed to the inclined upper portion of the disk 4 which is inclined one by one with the rotation of the disk 4. In the upper part of the slope, the detection unit 8 measures the quality and character of the grain.

【0018】検出部8では、まず光源13だけによる光
の照射(3−4)と同時に受光センサ−11によって穀
粒からの透過光を受光(3−5)する。次に光源を光源
13から光源14a,14bに切り換えて光源14だけ
による光の照射(3−6)と同時に受光センサ−11に
よって穀粒からの反射光を受光(3−7)する。これに
よって穀粒の平面情報を得ることができる。またこの
間、受光センサ−12は穀粒の側面から穀粒の反射光を
受光(3−8)する。つまり穀粒の側面情報を得ること
ができる。連続して穀粒から情報を得るには、以上の
(3−4)から(3−8)を繰り返し実行する。終了す
ると光源消灯、供給部9の停止、駆動モータ6の停止
(3−9)と続いて停止する。ここでの情報は、図4の
平面情報の一例及び図5の側面情報の一例として示すよ
うに、穀粒1粒を複数の画素に分解して得るとよく、5
00ピクセル以上に分解した情報として得ることが好ま
しい。このためには受光センサ−は、エリアイメ−ジセ
ンサ−またはリニアイメ−ジセンサ−を使用すればよ
い。以上の動作を繰り返しながら一粒ごとの情報を得
る。
In the detecting unit 8, first, the light transmitted from the grain is received by the light receiving sensor 11 (3-5) at the same time as the irradiation of light only by the light source 13 (3-4). Next, the light source is switched from the light source 13 to the light sources 14a and 14b, and at the same time as the light irradiation by the light source 14 alone (3-6), the reflected light from the grain is received by the light receiving sensor 11 (3-7). As a result, plane information of the grain can be obtained. During this time, the light receiving sensor 12 receives the reflected light of the kernel from the side surface of the kernel (3-8). That is, it is possible to obtain the side information of the grain. In order to continuously obtain information from grains, the above (3-4) to (3-8) are repeatedly executed. Upon completion, the light source is turned off, the supply unit 9 is stopped, and the drive motor 6 is stopped (3-9). The information here may be obtained by decomposing one grain into a plurality of pixels, as shown as an example of plane information in FIG. 4 and an example of side information in FIG.
It is preferable to obtain it as information decomposed into 00 pixels or more. For this purpose, an area image sensor or a linear image sensor may be used as the light receiving sensor. The information for each grain is obtained by repeating the above operation.

【0019】このように1粒から得られる平面及び側面
の画素情報は、制御部16の画像処理部18で次のよう
に処理される。基本的に本発明では、図4の平面情報と
図5の側面情報とが得られ、平面情報は更に透過光の情
報と反射光の情報とを得ている。これら各情報のうち透
過情報からは、画像処理により穀粒の内部情報と穀粒表
面性状に伴う情報を得ることができる。反射情報からは
穀粒表面の色を含む性状に伴う情報を得ることができ
る。そして平面情報全体から、図4のX寸法とY寸法を
得る。更に側面情報からは図5に示すZ寸法を得ること
ができる。これらの情報を画像処理部18で品位測定に
利用できる情報へと処理して、次の演算制御部17で情
報を解析して判別する。
The plane and side pixel information obtained from one grain is processed by the image processing unit 18 of the control unit 16 as follows. Basically, in the present invention, the plane information of FIG. 4 and the side information of FIG. 5 are obtained, and the plane information further obtains information of transmitted light and information of reflected light. From the transmission information among these pieces of information, it is possible to obtain the internal information of the grain and the information associated with the grain surface properties by image processing. From the reflection information, it is possible to obtain information relating to properties including the color of the grain surface. Then, the X and Y dimensions of FIG. 4 are obtained from the entire plane information. Further, the Z dimension shown in FIG. 5 can be obtained from the side information. The information is processed into information that can be used for quality measurement by the image processing unit 18, and the information is analyzed and determined by the next arithmetic control unit 17.

【0020】具体的に画像処理部18では、センサー1
1,12から得られる画像信号、一般的にはRGB信号
をデジタル信号に変換する。これらの信号から、各画素
の輝度や色彩・色差の情報を得る。例えば輝度信号を所
定のしきい置で2値化処理すると穀粒の輪郭が判別でき
る。さらに穀粒の領域において複数のしきい値で区分す
ると光量ムラの度合いが算出できる。このように処理さ
れた値は、例えば複数のしきい値を3段階とすると、各
段階ごとに占有率が算出できる。算出した値から、例え
ば各段階ごとの占有率が3区分ごとに差が少なく、3区
分にわたってばらついていれば紛状質、占有率が通常の
透過光量と異なる一部の区分に固まっていれば心白とい
った判別となる。反射光量による色彩については、穀粒
全体に対する緑色部分の割合算出、穀粒全体に対する白
色部分の割合算出によって、青、白未熟や青、白死米と
いった判別あるいは、穀粒全体の色彩割合の算出によっ
て、基準の色彩割合との比較で穀粒の光沢が判別でき
る。なお、複数のしきい値を3段階としたが、これ以上
の区分を設けることで、より細かい分析が可能となるこ
とは言うまでもない。
Specifically, in the image processing section 18, the sensor 1
The image signals, generally RGB signals, obtained from 1, 12 are converted to digital signals. From these signals, information on the luminance, color, and color difference of each pixel is obtained. For example, when the luminance signal is binarized at a predetermined threshold, the contour of the grain can be determined. Further, when the area of the grain is divided by a plurality of threshold values, the degree of the light amount unevenness can be calculated. As for the values processed in this way, for example, when a plurality of threshold values are set to three levels, the occupancy can be calculated for each level. From the calculated values, for example, if the occupancy ratio of each stage is small for each of the three sections, and if the occupancy rate varies among the three sections, it may be in the form of a powdery substance, and if the occupancy rate is confined to some sections different from the normal transmitted light amount. It becomes a judgment such as heart white. For the color based on the amount of reflected light, calculation of the ratio of the green portion to the whole grain, calculation of the ratio of the white portion to the whole grain, and discrimination between blue, white immature, blue, and dead rice, or calculation of the color ratio of the whole grain Thus, the gloss of the grain can be determined by comparison with the reference color ratio. Although a plurality of threshold values are provided in three levels, it goes without saying that more detailed analysis is possible by providing more categories.

【0021】重ねて説明すると、得られた透過光量から
は、穀粒内部の状態に伴う光量ムラと表面性状に関係し
た光屈折等に伴う光量ムラを検出することができる。透
過光量を画素単位で取得するので平面における光量の違
いを割合として算出する。例えば米粒において、整粒の
透過光量は大きく全体的に均一な光量となるが、粉状質
あるいは心白があるものなどは透過光量が整粒より低く
なる。つまり、紛状質は全体的に光量が散乱してばらつ
いた複数階調の明暗のムラが検出され、心白は一部に透
過光量が低下する部分が検出され、明暗も一部の階調に
偏るといった特徴がある。
To explain again, from the obtained transmitted light quantity, it is possible to detect the light quantity unevenness due to the state inside the grain and the light quantity unevenness due to light refraction related to the surface properties. Since the transmitted light amount is obtained in pixel units, the difference in the light amount in the plane is calculated as a ratio. For example, in the case of rice grains, the transmitted light amount of the sizing is large and the light amount becomes uniform as a whole. In other words, in the powdery substance, unevenness of light and shade of multiple gradations where the amount of light is scattered and dispersed as a whole is detected, the part of the heart white where the amount of transmitted light is reduced is detected, and the part of the light and dark is also a part of the gradation. There is a feature that is biased toward.

【0022】図6において説明すると、透過光量の受光
データを所定のしきい値で区分して2値化処理(6−
1)することで、穀粒の輪郭を得ることができる。つま
り穀粒画素を特定(6−2)する。穀粒画素を特定する
と、図4のように穀粒長さのX寸法(6−3)と穀粒幅
のY寸法(6−4)が特定できる。最終的に穀粒面積を
演算(6−5)する。また各画素の光量から穀粒輪郭内
の透過光量を演算(6−6)する。しきい値を所定の3
段階に設けて、第1のしきい値の所定光量1以上の画素
を特定(6−7)する。また所定光量1より小さい第2
のしきい値の所定光量2未満の画素を特定(6−8)す
る。所定光量1以上の画素数を演算(6−9)し、所定
光量1未満と所定光量2以上の画素数を演算(6−1
0)する。所定光量2未満の画素数を演算(6−11)
する。以上の3段階ごとの画素数から穀粒全体に対する
3段階ごとの占有率を演算(6−12)する。
Referring to FIG. 6, the received light data of the transmitted light amount is divided by a predetermined threshold value and binarized.
By performing 1), the outline of the grain can be obtained. That is, the grain pixel is specified (6-2). When the kernel pixel is specified, the X dimension (6-3) of the kernel length and the Y dimension (6-4) of the kernel width can be specified as shown in FIG. Finally, the grain area is calculated (6-5). Further, the transmitted light amount in the grain outline is calculated from the light amount of each pixel (6-6). Set the threshold to 3
In step (6-7), pixels having a first threshold value and a predetermined light amount of 1 or more are specified. The second light amount smaller than the predetermined light amount 1
(6-8). The number of pixels with a predetermined light quantity of 1 or more is calculated (6-9), and the number of pixels with a predetermined light quantity of less than 1 and a light quantity of 2 or more is calculated (6-1).
0). Calculate the number of pixels less than the predetermined light amount of 2 (6-11)
I do. Based on the number of pixels for each of the three stages, the occupancy of each of the three stages with respect to the entire grain is calculated (6-12).

【0023】このように通常の穀粒の透過光量と異なる
光量の範囲も画素単位で把握できるから、その割合も算
出することができる。また透過光量において穀粒の長さ
方向の左右に明るさの違いがあるものについては米粒の
胴割れを判別するための情報とすることができる。特に
形質に関する透過光量の違いとしては、穀粒の皮部の厚
薄あるいは皺によって透過光量にムラが生じる。これは
穀粒の充実度の違いにより生じる透過光量の全量の違い
とムラである。更に前述した心白に関して生じる透過光
量の全量の違いとムラが挙げられる。前記3段階に求め
た占有率によって紛状質や心白を判別するには、例えば
明らかな紛状質から得られる透過光量の全量と占有率を
説明変数として、これを紛状質粒と判別するための検量
線や、明らかな心白から得られる透過光量の全量と占有
率を説明変数として、これを心白粒と判別するための検
量線を作成して記憶しておくとよい。このような検量線
は、他の光学情報による判別にも適用可能であることは
言うまでもない。
As described above, since the range of the amount of light different from the amount of transmitted light of the normal grain can be grasped for each pixel, the ratio can also be calculated. In addition, when there is a difference in brightness between the left and right in the length direction of the grain in the amount of transmitted light, the information can be used as information for determining a crack in a rice grain. In particular, the difference in the amount of transmitted light related to the trait is that the amount of transmitted light becomes uneven due to the thickness or thinness of the skin portion of the grain. This is due to the difference in the total amount of transmitted light and the unevenness caused by the difference in the degree of grain. Further, there are differences in the total amount of transmitted light and unevenness that occur with respect to the white heart described above. In order to discriminate a powdery substance or a heart white based on the occupation rate obtained in the above three stages, for example, using the total amount of transmitted light and the occupation rate obtained from an apparent powdery substance as an explanatory variable, this is discriminated as a powdery particle. It is preferable to create and store a calibration curve for discriminating this as a white heart grain, using the total amount and occupancy of the amount of transmitted light obtained from a clear white heart as an explanatory variable. Needless to say, such a calibration curve can be applied to determination based on other optical information.

【0024】また反射情報は、穀粒表面の色彩を含む性
状に応じた情報となり、従来と同様の色彩に関する情報
が中心となるが、特に形質に関して有効となるのは、形
状が整粒であっても本来の整粒の色彩との違いが判別で
きる。つまり、反射光の色彩と基準となる色彩との比較
によって穀粒の光沢の違いを判断する。図7において説
明すると、反射光量の受光データを所定のしきい値で区
分して2値化処理(7−1)することで、穀粒の輪郭を
得ることができる。つまり穀粒画素を特定(7−2)す
る。穀粒画素を特定すると、図4のように穀粒長さのX
寸法(7−3)と穀粒幅のY寸法(6−4)が特定でき
る。最終的に穀粒面積を演算(7−5)する。また各画
素の光量から穀粒輪郭内の反射光量を演算(7−6)す
る。RGB信号を利用して、画素単位のR/G/Bごと
の輝度を平均して全体のR/G/B信号ごとに平均値を
求め、求めた平均RGB信号によって穀粒全体の色彩と
輝度とを演算し、色彩に関して予め定めた色基準信号と
を比較して穀粒全体の色彩と輝度の差を演算(7−7)
する。さらに画素ごとのRGB信号から画素ごとの色彩
を特定して、その中から判別に必要な緑色信号の光量の
合計を演算(7−8)し、白色信号の光量の合計を演算
(7−9)する。
The reflection information is information corresponding to the properties including the color of the grain surface, and mainly the information on the color similar to the conventional one. However, the difference from the original sizing color can be determined. That is, the difference in the gloss of the grain is determined by comparing the color of the reflected light with the reference color. Referring to FIG. 7, the contour of the grain can be obtained by binarizing the received light data of the reflected light amount by a predetermined threshold value (7-1). That is, the grain pixel is specified (7-2). When the kernel pixel is specified, as shown in FIG.
The dimension (7-3) and the Y dimension (6-4) of the grain width can be specified. Finally, the grain area is calculated (7-5). The reflected light amount in the grain outline is calculated (7-6) from the light amount of each pixel. Using the RGB signals, the luminance of each R / G / B in pixel units is averaged to obtain an average value for each of the entire R / G / B signals, and the color and luminance of the entire grain are determined by the obtained average RGB signals. Is calculated, and the difference between the color and the brightness of the entire grain is calculated by comparing the color with a predetermined color reference signal (7-7).
I do. Further, the color of each pixel is specified from the RGB signal of each pixel, and the total amount of light of the green signal necessary for determination is calculated (7-8), and the total amount of light of the white signal is calculated (7-9). ).

【0025】また以上の透過情報と反射情報によって、
図4に示すように穀粒のX寸法、Y寸法が測定可能であ
り、これは従来の表面積に置き換えることができる。ま
た、X寸法とY寸法によっては砕粒が特定できる。透過
情報において、色彩の異なる部分と全体面積との比率が
演算できるため、着色の度合いが演算できて、サンプル
粒の細部に亘る情報を得ることができる。特定色の比
率、例えば緑色や白色といった特定透過光量部分の比率
を演算することによって死米や着色粒の判別に利用する
ことができる。
Further, according to the above transmission information and reflection information,
As shown in FIG. 4, the X and Y dimensions of the grain can be measured, which can be replaced with conventional surface area. Further, crushed granules can be specified depending on the X dimension and the Y dimension. In the transmission information, the ratio between the different color portion and the entire area can be calculated, so that the degree of coloring can be calculated, and information over the details of the sample grains can be obtained. By calculating the ratio of a specific color, for example, the ratio of a specific transmitted light amount portion such as green or white, it can be used for determining dead rice and colored grains.

【0026】本発明による側面情報では、図5に示すZ
寸法を得ることが大きな特徴である。側面情報は、いわ
ゆる穀粒の厚みの情報であり、前記のX寸法,Y寸法,
に加えZ寸法によって、整粒以外の未熟や死米、砕粒を
鮮明に見分けることができる。形質の項目においては、
粒ぞろいや粒径を数値的に比較することができるように
なった。また、X,Y,Z寸法を得ることで、より正確
に体積を求めることができるようになった。従来技術に
おける体積の求め方は、X寸法とY寸法による予測値で
あり当然厚みの情報は取り入れていない。特に検査官の
行う形質の検査のなかで粒ぞろいは重要な項目である
が、本発明ではX,Y,Z寸法がそろったことにより従
来に比較して正確に体積を求めることができるので、形
質の項目である充実度、粒ぞろい、粒径を、測定した寸
法、面積、体積で判別することができる。
In the aspect information according to the present invention, the Z shown in FIG.
A major feature is obtaining dimensions. The side information is so-called grain thickness information, and the X dimension, Y dimension,
In addition to the grain size, immature, dead rice, and crushed grains other than the sized grains can be clearly distinguished. In the trait section,
It is now possible to numerically compare the uniformity and particle size. Further, by obtaining the X, Y, and Z dimensions, the volume can be obtained more accurately. The method of obtaining the volume in the prior art is a predicted value based on the X dimension and the Y dimension, and naturally does not incorporate information on the thickness. In particular, uniformity is an important item in the inspection of traits performed by the inspector, but in the present invention, since the X, Y, and Z dimensions are uniform, the volume can be determined more accurately than in the past, so the traits Items, the degree of fulfillment, the uniformity of grains, and the particle size can be determined based on the measured dimensions, area, and volume.

【0027】図8において説明すると、反射光量の受光
データを所定のしきい値で区分して2値化処理(8−
1)することで、穀粒の輪郭を得ることができる。つま
り穀粒画素を特定(8−2)する。穀粒画素を特定する
と、図5のように穀粒長さのX寸法(8−3)と穀粒厚
みのZ寸法(8−4)が特定できる。最終的に穀粒面積
を演算(8−5)する。また各画素の光量から穀粒輪郭
内の反射光量を演算(8−6)する。つぎに平面情報の
反射光量と同様に、画素ごとのRGB信号から画素ごと
の色彩を特定して、その中から判別に必要な緑色信号の
光量の合計を演算(8−7)し、白色信号の光量の合計
を演算(8−8)する。
Referring to FIG. 8, the received light data of the reflected light amount is divided by a predetermined threshold value and binarized (8-
By performing 1), the outline of the grain can be obtained. That is, the grain pixel is specified (8-2). When the kernel pixel is specified, the X dimension (8-3) of the kernel length and the Z dimension (8-4) of the kernel thickness can be specified as shown in FIG. Finally, the grain area is calculated (8-5). The reflected light amount in the grain outline is calculated (8-6) from the light amount of each pixel. Next, similarly to the reflected light amount of the plane information, the color of each pixel is specified from the RGB signals of each pixel, and the total of the light amounts of the green signals necessary for the discrimination is calculated from the colors (8-7). Is calculated (8-8).

【0028】以上のように各情報を画像処理部8で処理
して得られた情報と記憶部19に記憶する表1に例示し
た判定表及び予め決定した基準とによって、演算制御部
17において品位及び形質を判別する。ここでは米粒を
例として図9により説明する。
Based on the information obtained by processing each piece of information in the image processing unit 8 as described above, the judgment table illustrated in Table 1 stored in the storage unit 19, and the predetermined criteria, the arithmetic control unit 17 performs quality control. And the trait. Here, an example of rice grains will be described with reference to FIG.

【表1】 つまり、品位判別において、X寸法が基準以下のものは
砕粒とし、X寸法が特定できないものは面積が基準以下
の穀粒を砕粒と判別する(9−1)。砕粒でない穀粒の
うち整粒は、基準以上の大きさ(X、Y、Z寸法や面積
あるいは体積)と透過光量が基準以上であることが条件
で判別できる(9−2)。整粒に判別されなかった米粒
の中から、死米は厚み(Z寸法)が未熟粒の基準より小
さくあるいは体積も未熟粒の基準より小さいことで判別
でき(9−3)、つまり整粒でもなく死米でもない穀粒
が未熟となる。更に青未熟は反射光の緑色の光量が多く
て透過光量が基準よりも低いもの(9−4)、白未熟は
反射光量が基準よりも高く、白色の光量が大きく透過光
量が基準より低いか低い部分があることで判別できる
(9−5)。続いて死米は、青死米が反射光の緑色の光
量が多く透過光量が基準より低いもの(9−6)、白死
米は反射光量が大きく白色の光量が大きく透過光量が一
番低いことで判別できる(9−7)。胴割れは、整粒に
おいて長さ方向の左右の明るさが異なるものを胴割れと
判定する。
[Table 1] That is, in the quality determination, if the X dimension is equal to or less than the reference, the grain is determined to be crushed. Among the non-crushed grains, the sized grains can be discriminated on condition that the size (X, Y, Z dimensions, area or volume) and the amount of transmitted light are above the reference (9-2). Among the rice grains that were not discriminated as sized, dead rice can be discriminated based on the fact that the thickness (Z dimension) is smaller than the standard for immature grains or the volume is smaller than the standard for immature grains (9-3). Grains that are neither dead nor dead become immature. In addition, the blue immature has a large amount of reflected green light and the transmitted light amount is lower than the reference (9-4), and the white immature has a reflected light amount higher than the reference, a white light amount is large and the transmitted light amount is lower than the reference. It can be determined from the presence of a low portion (9-5). Subsequently, the dead rice is the one in which blue dead rice has a large amount of reflected green light and the amount of transmitted light is lower than the standard (9-6). The white dead rice has large amount of reflected light, large amount of white light and the lowest amount of transmitted light. (9-7). A body crack is determined to be a body crack if the left and right brightness in the length direction are different in sizing.

【0029】次に品位において整粒と判断された米粒を
形質の判別対象とする。これを図10で説明する。ま
ず、整粒の寸法、面積、体積の少なくともいずれか1つ
により、好ましくは体積の値のバラツキから粒ぞろいを
判別する(10−1)。透過光量から得られる、粉状質
部分の面積と表面の皺(明るさムラ)の面積とを基準と
比較する、つまり前述した透過光量を3段階で区分し
て、各段階ごとに占有率を算出し、算出した値が、例え
ば占有率が複数区分にばらついているかによってことに
より充実度を判別する(10−2)。長さ(X寸法)、
幅(Y寸法)、厚み(Z寸法)によってその平均値から
粒径を求め(10−3)、反射光による穀粒の表面色と
基準とを比較した差から光沢を判別する(10−4)。
透過光量を3段階で区分して、各段階ごとに占有率を算
出し、算出した値が、つまり占有率が通常の透過光量と
異なる一部の区分に固まっているかによって心白と判別
する(10−5)。このように形質の判別を検査員によ
る目視検査に頼ることなく装置による検査へと変えるこ
とができるので判別は不変的であり、従来の品位測定と
同様に安定した形質測定が可能となる。
Next, rice grains determined to be sized in quality are set as trait discrimination targets. This will be described with reference to FIG. First, based on at least one of the size, area, and volume of the sized particles, it is preferable to determine the uniformity of the particles based on the variation in the volume value (10-1). The area of the powdery material portion and the area of wrinkles (brightness unevenness) on the surface obtained from the transmitted light amount are compared with a reference. That is, the above-mentioned transmitted light amount is divided into three stages, and the occupation ratio is determined for each stage. The degree of fulfillment is determined based on the calculated value, for example, depending on whether the occupation ratio varies in a plurality of sections (10-2). Length (X dimension),
The grain size is determined from the average value based on the width (Y dimension) and the thickness (Z dimension) (10-3), and the gloss is determined from the difference between the surface color of the kernel due to the reflected light and the reference (10-4). ).
The transmitted light amount is divided into three stages, the occupancy is calculated for each stage, and the calculated value, that is, whether or not the occupation ratio is grouped into a part different from the normal transmitted light amount, is determined as heart white ( 10-5). In this way, the trait determination can be changed to an inspection using a device without relying on a visual inspection by an inspector, so the determination is invariable, and a stable trait measurement can be performed similarly to the conventional quality measurement.

【0030】品位測定について麦の場合を以下に示す。
米粒と同様に平面情報と側面情報とを得ると、記憶部1
9に記憶する表2に例示した判定表及び予め決定した基
準とによって、演算制御部17において品位及び形質を
判別する。判別項目については主なものを示す。
The measurement of the quality of wheat is shown below.
When the plane information and the side information are obtained similarly to the rice grain, the storage unit 1
The quality and traits are determined in the arithmetic and control unit 17 based on the determination table exemplified in Table 2 stored in the storage unit 9 and a predetermined reference. The main determination items are shown.

【表2】 麦粒の場合の品位判別における整粒は、基準以上の大き
さがあり反射光の色が全体的に均一で透過光量が基準以
上であることを条件として判別する。ここでいう大きさ
はX,Y,Z寸法、面積、体積の個々の数値で比較判断
するとよく、ここで側面情報が大きなウエイトを占める
こととなる。被害粒(発芽粒、病害粒、くされ粒、たい
色粒、虫害粒、砕粒、熱損粒)は、整粒に判別されなか
った麦粒つまり基準未満の麦粒について、その反射光の
色情報と大きさから判別する。麦角粒も同じく、反射光
の色情報と大きさから判別できる。赤かび粒・黒かび粒
は、極端な色彩を有するので反射光の色情報から判別で
きる。異種穀粒(異物)は色と大きさが共に麦粒と異な
るので、大きさが極端に異なる麦粒において粒の色が異
なるものはここに判別される。硝子率は透過光量ムラと
その面積の大きさで判別することができる。
[Table 2] In the case of wheat grains, the sizing in the quality determination is performed on the condition that the size of the reflected light is larger than the reference, the color of the reflected light is entirely uniform, and the amount of transmitted light is higher than the reference. Here, the size may be compared and determined by individual numerical values of X, Y, Z dimensions, area, and volume, and the side information occupies a large weight here. Damaged grains (germinated grains, diseased grains, combed grains, colored grains, insect damage grains, crushed grains, heat-damaged grains) are the colors of reflected light for wheat grains that were not discriminated as sized, that is, wheat grains less than the standard. Judge from information and size. The ergot grains can also be determined from the color information and the size of the reflected light. Since red mold grains and black mold grains have extreme colors, they can be determined from the color information of the reflected light. Heterogeneous grains (foreign matter) are different from wheat grains in both color and size, and thus grains having extremely different sizes and different grain colors are determined here. The glass ratio can be determined from the transmitted light amount unevenness and the size of the area.

【0031】次に形質の判別について説明する。品位に
おいて整粒に判別された麦粒を形質の判別対象とする。
整粒の形質は粒の充実度に大きなウエイトが掛けられて
いるので、側面情報として取得した厚みの情報は大変有
益である。まず、整粒の寸法、面積、体積の少なくとも
いずれか1つにより、値のバラツキから粒ぞろいを測定
する。透過光量から得られる、硝子状質部分の面積と表
面の皺(明るさムラ)の面積とを基準と比較することに
より充実度を測定する。長さ(X寸法)、幅(Y寸
法)、厚み(Z寸法)の平均値から粒径を求め、反射光
の表面色と基準との比較から光沢を測定する。透過光量
のムラとそのムラの面積比から心白が測定できるもので
ある。このように麦粒においても形質の判別を検査員に
よる目視検査に頼ることなく装置による検査へと変える
ことができるので判別は不変的であり、従来の品位測定
と同様に安定した形質測定が可能となる。
Next, the determination of the trait will be described. Wheat grains determined to be sized in quality are targeted for trait determination.
Since the sizing trait has a large weight on the degree of grain size, the information on the thickness obtained as the side information is very useful. First, the uniformity of the granules is measured based on at least one of the size, area, and volume of the sized granules from the variation in the values. The degree of fulfillment is measured by comparing the area of the vitreous part and the area of wrinkles (brightness unevenness) on the surface obtained from the amount of transmitted light with a reference. The particle size is determined from the average value of the length (X dimension), width (Y dimension), and thickness (Z dimension), and the gloss is measured by comparing the surface color of the reflected light with a reference. The whiteness can be measured from the unevenness of the transmitted light amount and the area ratio of the unevenness. In this way, even in wheat grain, the trait discrimination can be changed to an inspection using a device without relying on visual inspection by an inspector, so the discrimination is invariable and stable trait measurement can be performed in the same way as conventional quality measurement Becomes

【0032】以上のように画像処理部18の画像処理と
演算制御部17の演算処理によって穀粒が測定され基準
に基づき判別されると、判別に基づいて選別部24が作
動する。選別部24には複数の選別ノズル25a〜25
dを備えており、各選別ノズルは品位項目に対応させ、
加えて形質項目に対応させるとよい。本実施例では4つ
の選別ノズルとしてあるが、必要な項目数に応じて適宜
数を設定すればよい。円盤4の回転により対象となる穀
粒が対応した選別ノズル25a位置に到達すると選別ノ
ズルaを作動させ噴射風で対象穀粒をはじき飛ばすので
ある。最後に、表示部22には以上の処理経過あるいは
処理結果、複数のデ−タの集計結果等を表示すればよ
い。
As described above, when the grains are measured by the image processing of the image processing section 18 and the arithmetic processing of the arithmetic control section 17 and are determined based on the standard, the sorting section 24 is operated based on the determination. The sorting unit 24 includes a plurality of sorting nozzles 25a to 25
d, each sorting nozzle corresponds to the quality item,
In addition, it is good to correspond to a trait item. In this embodiment, there are four sorting nozzles, but the number may be set appropriately according to the required number of items. When the target grain reaches the position of the corresponding sorting nozzle 25a due to the rotation of the disk 4, the sorting nozzle a is activated and the target grain is repelled by the jet wind. Finally, the display unit 22 may display the above-described processing progress or processing result, a totaling result of a plurality of data, and the like.

【0033】[0033]

【発明の効果】以上のように、これまでの品位測定装置
にない厚みの測定要素を加えることにより、測定による
判別がより正確に行われるだけでなく、これまで検査員
の目視による検査に委ねられていた形質の判別を機械的
に可能とすることができた。よって人手やその経験によ
らず測定精度の向上と品位形質の測定判別を不変の基準
のもとに可能とした測定方法とその装置が提供できた。
As described above, by adding a measuring element having a thickness which is not included in the conventional quality measuring apparatus, not only the discrimination by measurement can be performed more accurately, but also the inspection by the inspector can be performed. It was possible to mechanically determine the trait that had been performed. Therefore, a measuring method and a measuring apparatus capable of improving measurement accuracy and measuring and distinguishing quality traits based on an invariant criterion can be provided irrespective of manpower or experience.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による穀粒品位測定装置の側断面図であ
る。
FIG. 1 is a side sectional view of a grain quality measuring device according to the present invention.

【図2】図1の穀粒品位測定装置の円盤の平面図であ
る。
FIG. 2 is a plan view of a disk of the grain quality measuring device of FIG.

【図3】穀粒品位測定装置の作動フローチャートであ
る。
FIG. 3 is an operation flowchart of the grain quality measuring device.

【図4】穀粒品位測定装置による穀粒の平面情報であ
る。
FIG. 4 is plane information of a grain obtained by the grain quality measuring device.

【図5】穀粒品位測定装置による穀粒の側面情報であ
る。
FIG. 5 is side information of a grain obtained by the grain quality measuring device.

【図6】透過光の信号処理のフローチャートである。FIG. 6 is a flowchart of signal processing of transmitted light.

【図7】反射光の信号処理のフローチャートである。FIG. 7 is a flowchart of signal processing of reflected light.

【図8】側面の反射光の信号処理のフローチャートであ
る。
FIG. 8 is a flowchart of signal processing of reflected light from the side surface.

【図9】品位判別のフローチャートである。FIG. 9 is a flowchart of quality determination.

【図10】形質判別のフローチャートである。FIG. 10 is a flowchart of trait discrimination.

【符号の説明】[Explanation of symbols]

1 穀粒品位測定装置 2 凹部 3 回転軸 4 円盤 5 透明板 6 駆動モ−タ 7 基台 8 検出部 9 供給部9 10 視点凹部 11 受光センサ− 12 受光センサ− 13 光源 14 光源 15 遮蔽板 16 制御部 17 演算制御部 18 画像処理部 19 記憶部 20 信号入出力部 21 入力部 22 表示部 23 メカ制御部 24 選別部 25 選別ノズル DESCRIPTION OF SYMBOLS 1 Grain quality measuring device 2 Concave part 3 Rotation axis 4 Disk 5 Transparent plate 6 Drive motor 7 Base 8 Detecting part 9 Supply part 9 10 Perspective concave part 11 Light receiving sensor 12 Light receiving sensor 13 Light source 14 Light source 15 Light shielding plate 16 Control unit 17 Operation control unit 18 Image processing unit 19 Storage unit 20 Signal input / output unit 21 Input unit 22 Display unit 23 Mechanical control unit 24 Sorting unit 25 Sorting nozzle

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】移送される穀粒に光を照射して、 穀粒の平面から複数画素による反射光と透過光とを含む
平面情報を取得する工程と、 穀粒の側面から複数画素による反射光を含む側面情報を
取得する工程と、 平面情報のうち反射光から穀粒の色彩情報を得る工程
と、 平面情報のうち透過光から穀粒の長さと幅の情報と透過
光量値を得る工程と、 側面情報のうち反射光から穀粒の厚みの情報を得る工程
と、 前記各情報から穀粒の品位と形質を判別する工程とを備
えることを特徴とする穀粒品位測定方法。
1. A step of irradiating a grain to be transferred with light to obtain plane information including reflected light and transmitted light by a plurality of pixels from a plane of the grain, and reflection by a plurality of pixels from a side of the grain. A step of obtaining side information including light; a step of obtaining color information of the kernel from reflected light in the plane information; and a step of obtaining information on the length and width of the kernel and the transmitted light amount value from the transmitted light in the plane information And a step of obtaining information on the thickness of the grain from the reflected light in the side information; and a step of determining the grade and the trait of the grain from each piece of the information.
【請求項2】穀粒の品位を判別する工程は、穀粒の長さ
と幅及び厚みと、これら各寸法から得られる穀粒の面積
あるいは体積と、色彩情報の緑色光量および白色光量
と、透過光量値と、の組み合わせから穀粒の品位を判別
することを特徴とする請求項1記載の穀粒品位測定方
法。
2. The step of judging the quality of a grain includes the length, width and thickness of the grain, the area or volume of the grain obtained from each of these dimensions, the amount of green and white light in color information, The grain quality measuring method according to claim 1, wherein the grade of the grain is determined from a combination of the light quantity value and the light quantity value.
【請求項3】穀粒の形質を判別する工程は、穀粒の長さ
と幅及び厚みと、これら各寸法から得られる穀粒の体積
と、色彩情報の穀粒全体の色彩と、透過光量値を複数し
きい値で区分した光量別の占有率と、の組み合わせから
穀粒の形質を判別することを特徴とする請求項1記載の
穀粒品位測定方法。
3. The step of discriminating the trait of the grain includes the length, width and thickness of the grain, the volume of the grain obtained from each of these dimensions, the color of the entire grain of the color information, and the transmitted light amount value. 2. The grain quality measuring method according to claim 1, wherein the trait of the grain is determined from a combination of the occupancy by light amount classified by a plurality of threshold values.
【請求項4】判別した品位に従って穀粒を選別する工程
を備えることを特徴とする請求項1記載の穀粒品位測定
方法。
4. The method for measuring grain quality according to claim 1, further comprising the step of selecting grains according to the determined quality.
【請求項5】穀粒を移送する移送手段と、移送される穀
粒に光を照射する照射手段と、穀粒の反射光と透過光を
含む平面情報を取得する複数画素からなる平面受光手段
と、穀粒の側面情報を取得する複数画素からなる側面受
光手段と、前記各受光手段が接続され各受光手段で取得
した平面情報と側面情報の信号を処理する信号処理手段
と、該信号処理手段が接続され、該信号処理手段により
処理された穀粒の品位と形質に関係する情報と予め定め
た判別基準に基づいて穀粒の品位と形質を判別する演算
制御手段とを備えることを特徴とする穀粒品位測定装
置。
5. A transferring means for transferring a grain, an irradiating means for irradiating the transferred grain with light, and a plane light receiving means comprising a plurality of pixels for obtaining plane information including reflected light and transmitted light of the grain. A side light receiving unit composed of a plurality of pixels for obtaining side information of a grain; a signal processing unit connected to each of the light receiving units and processing signals of plane information and side information obtained by each light receiving unit; Means are connected, and arithmetic control means for discriminating the grade and trait of the grain based on information relating to the grade and trait of the grain processed by the signal processing means and a predetermined discrimination criterion is provided. Grain quality measuring device.
【請求項6】信号処理手段において、画像処理によって
平面情報と側面情報とから穀粒の平面寸法と側面寸法と
を算出して穀粒の厚みと面積及び体積とを得ることを特
徴とする請求項5記載の穀粒品位測定装置。
6. The signal processing means calculates the plane size and the side size of the grain from the plane information and the side information by image processing to obtain the thickness, area and volume of the grain. Item 6. The grain quality measuring device according to Item 5.
【請求項7】信号処理手段において、画像処理によって
平面情報の反射光から穀粒の全体の色情報と緑色情報及
び白色情報とを得ることを特徴とする請求項5記載の穀
粒品位測定装置。
7. The grain quality measuring apparatus according to claim 5, wherein the signal processing means obtains color information, green information and white information of the whole grain from the reflected light of the plane information by image processing. .
【請求項8】信号処理手段において、画像処理によって
平面情報の透過光量値と透過光を複数しきい値で区分し
た光量別の占有率を得ることを特徴とする請求項5記載
の穀粒品位測定装置。
8. The grain quality according to claim 5, wherein the signal processing means obtains the transmitted light amount value of the plane information and the occupancy for each light amount obtained by dividing the transmitted light by a plurality of threshold values by image processing. measuring device.
【請求項9】判別手段による品位に従って穀粒を選別す
る選別手段を演算制御手段に接続してなることを特徴と
する請求項5記載の穀粒品位測定装置。
9. The grain quality measuring device according to claim 5, wherein a sorting means for sorting the grains according to the grade by the discriminating means is connected to the arithmetic control means.
JP11200673A 1998-10-09 1999-07-14 Method and apparatus for measurement of appearance quality of grain Pending JP2000180369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11200673A JP2000180369A (en) 1998-10-09 1999-07-14 Method and apparatus for measurement of appearance quality of grain

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP28775498 1998-10-09
JP10-287754 1998-10-09
JP11200673A JP2000180369A (en) 1998-10-09 1999-07-14 Method and apparatus for measurement of appearance quality of grain

Publications (2)

Publication Number Publication Date
JP2000180369A true JP2000180369A (en) 2000-06-30
JP2000180369A5 JP2000180369A5 (en) 2005-11-24

Family

ID=26512339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11200673A Pending JP2000180369A (en) 1998-10-09 1999-07-14 Method and apparatus for measurement of appearance quality of grain

Country Status (1)

Country Link
JP (1) JP2000180369A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002139443A (en) * 2000-10-31 2002-05-17 Kett Electric Laboratory Quality discrimination apparatus for grain, etc.
JP2002202265A (en) * 2000-12-28 2002-07-19 Satake Corp Rice grain quality level discrimination device
JP2003028806A (en) * 2001-07-13 2003-01-29 Satake Corp Apparatus for discriminating quality of granular object
JP2005265519A (en) * 2004-03-17 2005-09-29 Satake Corp Cracked grain discrimination device
JP2006170750A (en) * 2004-12-15 2006-06-29 Anzai Sogo Kenkyusho:Kk Rice grain discrimination/inspection device
JP2009095758A (en) * 2007-10-17 2009-05-07 Satake Corp Sorting apparatus of shelled pistachio grain
JP2009150673A (en) * 2007-12-19 2009-07-09 Moriai Seiki Kk Method for measuring adhering substance and apparatus for measuring adhering substance
JP2009536315A (en) * 2006-03-02 2009-10-08 フォス アナリティカル アーベー Apparatus and method for optical measurement of granular materials such as cereals
KR100988926B1 (en) * 2008-04-24 2010-10-20 임용무 System and method for evaluating the grade of rice grains
WO2011125927A1 (en) 2010-04-01 2011-10-13 新日本製鐵株式会社 Particle measuring system and particle measuring method
JP2015007606A (en) * 2013-05-27 2015-01-15 株式会社ケット科学研究所 Application program and storage medium for allowing operation panel information terminal to function as rice particle visual inspection means, as well as rice particle discrimination system by combination of imaging means and operation panel information terminal, and application program and storage medium for rice particle discrimination system
JP2015212640A (en) * 2014-05-01 2015-11-26 株式会社ケット科学研究所 Imaging optical system, imaging apparatus using the imaging optical system, and grain discrimination system in combination of the imaging apparatus and operation panel type information terminal
JP2016161381A (en) * 2015-03-02 2016-09-05 有限会社シマテック Sorting device
KR20160119707A (en) * 2015-04-06 2016-10-14 가부시끼가이샤 사따께 Grain quality discriminating apparatus and method of receiving light from grain in the apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61107139A (en) * 1984-10-30 1986-05-26 Satake Eng Co Ltd Apparatus for measuring grade of grain of rice
JPH05332941A (en) * 1992-06-02 1993-12-17 Satake Eng Co Ltd Hulling yield measuing method and device
JPH06129990A (en) * 1992-10-21 1994-05-13 Satake Eng Co Ltd Method and instrument for measuring whiteness of sake-making rice
JPH06138042A (en) * 1992-10-23 1994-05-20 Atex Co Ltd Device for judging whole grain rate
JPH08501386A (en) * 1992-09-07 1996-02-13 アグロビジョン・エービー Method and apparatus for automatic evaluation of cereal grains and other granular products
JPH09292344A (en) * 1996-04-25 1997-11-11 Satake Eng Co Ltd Rice-particle-quality discriminating apparatus
JPH10500770A (en) * 1994-03-17 1998-01-20 アグロビジオン・エービー Automatic grain evaluation method and apparatus
JPH10197217A (en) * 1996-11-13 1998-07-31 Yamamoto Mfg Co Ltd Method and device for detecting thickness of unpolished rice

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61107139A (en) * 1984-10-30 1986-05-26 Satake Eng Co Ltd Apparatus for measuring grade of grain of rice
JPH05332941A (en) * 1992-06-02 1993-12-17 Satake Eng Co Ltd Hulling yield measuing method and device
JPH08501386A (en) * 1992-09-07 1996-02-13 アグロビジョン・エービー Method and apparatus for automatic evaluation of cereal grains and other granular products
JPH06129990A (en) * 1992-10-21 1994-05-13 Satake Eng Co Ltd Method and instrument for measuring whiteness of sake-making rice
JPH06138042A (en) * 1992-10-23 1994-05-20 Atex Co Ltd Device for judging whole grain rate
JPH10500770A (en) * 1994-03-17 1998-01-20 アグロビジオン・エービー Automatic grain evaluation method and apparatus
JPH09292344A (en) * 1996-04-25 1997-11-11 Satake Eng Co Ltd Rice-particle-quality discriminating apparatus
JPH10197217A (en) * 1996-11-13 1998-07-31 Yamamoto Mfg Co Ltd Method and device for detecting thickness of unpolished rice

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4605890B2 (en) * 2000-10-31 2011-01-05 株式会社ケット科学研究所 Grain quality discrimination device
JP2002139443A (en) * 2000-10-31 2002-05-17 Kett Electric Laboratory Quality discrimination apparatus for grain, etc.
JP2002202265A (en) * 2000-12-28 2002-07-19 Satake Corp Rice grain quality level discrimination device
JP2003028806A (en) * 2001-07-13 2003-01-29 Satake Corp Apparatus for discriminating quality of granular object
JP2005265519A (en) * 2004-03-17 2005-09-29 Satake Corp Cracked grain discrimination device
JP4697510B2 (en) * 2004-03-17 2011-06-08 株式会社サタケ Grain shell split discrimination device
JP2006170750A (en) * 2004-12-15 2006-06-29 Anzai Sogo Kenkyusho:Kk Rice grain discrimination/inspection device
JP2009536315A (en) * 2006-03-02 2009-10-08 フォス アナリティカル アーベー Apparatus and method for optical measurement of granular materials such as cereals
JP2009095758A (en) * 2007-10-17 2009-05-07 Satake Corp Sorting apparatus of shelled pistachio grain
JP2009150673A (en) * 2007-12-19 2009-07-09 Moriai Seiki Kk Method for measuring adhering substance and apparatus for measuring adhering substance
KR100988926B1 (en) * 2008-04-24 2010-10-20 임용무 System and method for evaluating the grade of rice grains
WO2011125927A1 (en) 2010-04-01 2011-10-13 新日本製鐵株式会社 Particle measuring system and particle measuring method
US9372072B2 (en) 2010-04-01 2016-06-21 Nippon Steel & Sumitomo Metal Corporation Particle measuring device and particle measuring method
JP2015007606A (en) * 2013-05-27 2015-01-15 株式会社ケット科学研究所 Application program and storage medium for allowing operation panel information terminal to function as rice particle visual inspection means, as well as rice particle discrimination system by combination of imaging means and operation panel information terminal, and application program and storage medium for rice particle discrimination system
JP2017072619A (en) * 2013-05-27 2017-04-13 株式会社ケット科学研究所 Operation panel type information terminal used for grain discrimination, grain discrimination system by combination of operation panel type information terminal used for grain discrimination and imaging apparatus, and application program and storage medium for grain discrimination system
JP2015212640A (en) * 2014-05-01 2015-11-26 株式会社ケット科学研究所 Imaging optical system, imaging apparatus using the imaging optical system, and grain discrimination system in combination of the imaging apparatus and operation panel type information terminal
JP2016161381A (en) * 2015-03-02 2016-09-05 有限会社シマテック Sorting device
KR20160119707A (en) * 2015-04-06 2016-10-14 가부시끼가이샤 사따께 Grain quality discriminating apparatus and method of receiving light from grain in the apparatus
JP2016197065A (en) * 2015-04-06 2016-11-24 株式会社サタケ Grain quality discrimination device, and receiving method of light from grain in device
TWI693394B (en) * 2015-04-06 2020-05-11 日商佐竹股份有限公司 Grain grading device and method of receiving light from grain in grain grading device
KR102492018B1 (en) 2015-04-06 2023-01-25 가부시끼가이샤 사따께 Grain quality discriminating apparatus and method of receiving light from grain in the apparatus

Similar Documents

Publication Publication Date Title
JP2000180369A (en) Method and apparatus for measurement of appearance quality of grain
Makky et al. Development of an automatic grading machine for oil palm fresh fruits bunches (FFBs) based on machine vision
CA2060845C (en) Method and device for separating pieces of wood
EP1830176A1 (en) Device and method for optical measurement of small particles such as grains from cereals and like crops
Gunasekaran et al. Evaluating quality factors of corn and soybeans using a computer vision system
AU2890800A (en) Apparatus and method for evaluating quality of granular object
JP5533245B2 (en) Method for calculating weight ratio by quality in grain appearance quality discrimination device
WO2007068056A1 (en) Stain assessment for cereal grains
JP2000180369A5 (en)
JP4590553B2 (en) Nondestructive judgment method for ginger damaged grains
US5973286A (en) Grain sorting method and a device thereof
EP1101099A1 (en) Fiber color grading system
US6888954B2 (en) Device and method for recording images
Wang et al. Determining wheat vitreousness using image processing and a neural network
JP2001041895A (en) Granular material quality level discriminator
JPH09292344A (en) Rice-particle-quality discriminating apparatus
JP6805506B2 (en) Granular appearance grade determination device
JP2002365222A (en) Rice grain quality-sorting apparatus
WO1998030886A1 (en) Apparatus and method for quantifying physical characteristics of granular products
WO2021149820A1 (en) Optical granular material discriminating device
CN105874318B (en) Method and device for measuring grain luster
JP2003251282A (en) System for measuring and deciding grade and class of strawberry
JPH10160676A (en) Rice grain inspection device
JP2021117091A (en) Optical granule discrimination device
JP3165933B2 (en) Rice grain quality judgment device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051006

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081031