JPH09292344A - Rice-particle-quality discriminating apparatus - Google Patents

Rice-particle-quality discriminating apparatus

Info

Publication number
JPH09292344A
JPH09292344A JP13066696A JP13066696A JPH09292344A JP H09292344 A JPH09292344 A JP H09292344A JP 13066696 A JP13066696 A JP 13066696A JP 13066696 A JP13066696 A JP 13066696A JP H09292344 A JPH09292344 A JP H09292344A
Authority
JP
Japan
Prior art keywords
light
rice
grain
sample
wavelength component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13066696A
Other languages
Japanese (ja)
Other versions
JP3642106B2 (en
Inventor
Satoru Satake
覺 佐竹
Manabu Ikeda
学 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Satake Engineering Co Ltd
Original Assignee
Satake Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Satake Engineering Co Ltd filed Critical Satake Engineering Co Ltd
Priority to JP13066696A priority Critical patent/JP3642106B2/en
Publication of JPH09292344A publication Critical patent/JPH09292344A/en
Application granted granted Critical
Publication of JP3642106B2 publication Critical patent/JP3642106B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
    • G01N2021/391Intracavity sample

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the rice-particle-quality discriminating apparatus, wherein the constitution of an optical light-receiving means is simplified, the manufacturing cost becomes inexpensive and the fluctuation of the input voltage into an operating circuit is less. SOLUTION: In a rice-particle-quality discriminating apparatus 1, the following parts are provided. A light source 7 projects light ray from the slant upper side to a sample grain particle moved from a sample picking hole 5. A dichroic mirror 8 classifies the amount of the vertical reflected light from the sample grain particle into the long-wavelength component and the short-wavelength component. Two photodetector 9 and 10 receive the amounts of lights having the respective classified wavelengths. A transmitted-light photodetector 11 receives the amount of the vertical transmitted light from the sample grain. The light ray is applied on one grain particle from the light source 7, from the slant upper side. A cracked-rice detecting photodetector 12, which receives the amount of the slant transmitted light from the sample grain particle, is provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、玄米や白米の品質を判
別する米粒品位判別装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rice grain quality determination device for determining the quality of brown rice or white rice.

【0002】[0002]

【従来の技術】従来、米粒の品質を判別する装置とし
て、例えば、特公平3ー60382号公報、特開昭64
ー28543号公報に開示されたものが知られている。
これらの公報に開示された発明は、外周縁に複数個の試
料採取孔を設けた円盤を傾斜回転させ、試料玄米の各玄
米一粒毎に光を照射し、拡散透過光量および拡散反射光
量と拡散反射光中任意の二波長の光量と前記各玄米一粒
毎の二位置の透過光量とをそれぞれ検知し、前記各玄米
一粒毎の品質を分類すべく前記各光量の比を判定処理す
るものである。そして、前記各光量を検出してその比を
演算し判定処理することにより、玄米の品質をより精細
に分類し、しかも粒形による分類の判定精度への影響を
排除できるものである。
2. Description of the Related Art Conventionally, as a device for discriminating the quality of rice grains, for example, Japanese Examined Patent Publication No. 3-60382 and Japanese Patent Laid-Open No. 64-643 have been disclosed.
The one disclosed in Japanese Patent No. 28543 is known.
The inventions disclosed in these publications are tilted rotation of a disk provided with a plurality of sampling holes in the outer peripheral edge, irradiating light to each brown rice grain of the sample brown rice, and diffuse transmission light amount and diffuse reflection light amount and The amount of light of any two wavelengths in diffuse reflection light and the amount of transmitted light at two positions for each grain of each brown rice are detected, and the ratio of each amount of light is determined to classify the quality of each grain of brown rice. It is a thing. Then, by detecting the respective light quantities, calculating the ratio thereof, and performing the judgment processing, the quality of the brown rice can be classified more finely, and the influence of the grain shape on the judgment accuracy of the classification can be eliminated.

【0003】[0003]

【発明が解決しようとする課題】上記従来の米粒品位判
別装置は、玄米の品質をより精細に分類し、粒形による
分類の判定精度への影響を排除するため、拡散透過光量
と、拡散反射光量と、該拡散反射光量中の任意の二波長
の光量と、各玄米一粒毎の二位置の透過光量とをそれぞ
れ受光するために光学的受光手段として合計6種類の受
光素子を設ける必要があった。これにより、光学的受光
手段は構成が複雑となり、製造コスト高となる欠点があ
った。また、受光素子が多数設けられているため判定制
御部への入力電圧の変動が大きく、米粒の測定精度にば
らつきが生じる恐れがあった。
The above-mentioned conventional rice grain quality discriminating apparatus classifies the quality of brown rice more finely and eliminates the influence of the grain shape on the judgment accuracy of the classification. It is necessary to provide a total of 6 types of light receiving elements as optical light receiving means for receiving the light amount, the light amount of any two wavelengths in the diffuse reflected light amount, and the transmitted light amount at two positions for each grain of brown rice. there were. As a result, the structure of the optical light receiving means becomes complicated, and the manufacturing cost is increased. Further, since a large number of light receiving elements are provided, the fluctuation of the input voltage to the determination control unit is large, which may cause variations in the accuracy of measuring rice grains.

【0004】本発明は、上記問題点にかんがみ、光学的
受光手段の構成を簡略化して製造コストを安価にすると
ともに、判定制御部への入力電圧の変動が少ない米粒品
位判別装置を提供することを技術的課題とする。
In view of the above problems, the present invention provides a rice grain quality discriminating apparatus which simplifies the construction of the optical light receiving means to reduce the manufacturing cost and has little fluctuation of the input voltage to the discrimination control section. Is a technical issue.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
本発明は、外周縁の円周方向に等間隔に複数の試料採取
孔を有する回転円板と、前記試料採取孔により移送され
る試料米粒の各一粒毎に光線を照射する光源と、該光源
により照射して得られた前記試料米粒の透過反射光量を
検出する検知部と、該検知部から入力された検出信号を
所定値と比較して前記試料米粒の品質ランクを決定する
判定制御部とを備えた米粒品位判別装置であって、前記
検知部は、前記試料採取孔により移送される一粒の試料
米粒に対し前記光源から誘導された光線を傾斜上方二箇
所から照射する第一照射部と、前記試料米粒からの垂直
反射光量を長波長成分(R)と短波長成分(G)とにそ
れぞれ区分するダイクロイックミラーと、区分されたそ
れぞれの波長の光量を受光する二つの受光素子と、前記
試料米粒からの垂直透過光量(T)を受光する透過光受
光素子とを設けるとともに、前記光源からの光線を前記
試料米粒に対し傾斜上方から照射する第二照射部と、該
第二照射部により照射して得られた前記試料穀粒からの
斜方透過光量を受光する胴割れ検出用受光素子とを設け
る、という技術的手段を講じた。
In order to solve the above-mentioned problems, the present invention provides a rotating disk having a plurality of sampling holes at equal intervals in the circumferential direction of the outer peripheral edge, and a sample transferred by the sampling holes. A light source that irradiates a light beam for each rice grain, a detection unit that detects the amount of transmitted / reflected light of the sample rice grains obtained by irradiation with the light source, and a detection signal input from the detection unit as a predetermined value. A rice grain quality determination device comprising a determination control unit that determines the quality rank of the sample rice grains in comparison, wherein the detection unit is a unit for transferring one grain of the sample rice grains from the light source from the light source. A first irradiator that irradiates the guided light rays from two points above the slope, and a dichroic mirror that divides the amount of light vertically reflected from the sample rice grain into a long-wavelength component (R) and a short-wavelength component (G), respectively. Light of each wavelength And a transmitted light receiving element for receiving the vertically transmitted light amount (T) from the sample rice grain, and irradiating the light beam from the light source to the sample rice grain from above the tilt. A technical means has been provided in which an irradiating section and a light receiving element for detecting a body crack that receives the obliquely transmitted light amount from the sample grain obtained by irradiating with the second irradiating section are provided.

【0006】また、前記判定制御部は、前記垂直透過光
量(T)と、前記長波長成分(R)及び短波長成分
(G)の和による拡散反射光とから透過・反射比{(R
+G)/T}を演算するとともに、前記長波長成分と短
波長成分との分光比(R/G)を演算し、更に、前記垂
直透過光量(T)と長波長成分(R)及び短波長成分
(G)からこれら三要素の総和分の総積{(R×G×
T)/(R+G+T)}を演算して、前記試料米粒の品
質ランクを決定する判定データとするとよい。
Further, the determination control section determines the transmission / reflection ratio {(R) from the vertical transmission light amount (T) and the diffuse reflection light obtained by the sum of the long wavelength component (R) and the short wavelength component (G).
+ G) / T} and the spectral ratio (R / G) between the long-wavelength component and the short-wavelength component, and further, the vertical transmitted light amount (T) and the long-wavelength component (R) and the short-wavelength. Total product of the sum of these three elements from the component (G) {(R × G ×
T) / (R + G + T)} may be calculated as the determination data for determining the quality rank of the sample rice grain.

【0007】そして、前記判定データと予め定めた判定
アルゴリズムによって品質ランクを決定するものであっ
て、前記判定アルゴリズムは、前記分光比(R/G)の
値A,Bをしきい値として青死米,青未熟の混入する第
一領域と、白死米,乳白粒,整粒の混入する第二領域
と、被害粒,着色粒の混入する第三領域とに区分し、前
記透過・反射比{(R+G)/T}の値C,D,Eをし
きい値として前記第一領域の青死米と青未熟及び前記第
二領域の白死米と乳白粒と整粒とをそれぞれ区分し、更
に、前記総和分の総積{(R×G×T)/(R+G+
T)}の値Fをしきい値として前記第三領域の被害粒と
着色粒とを区分するとよい。
Then, the quality rank is determined by the judgment data and a predetermined judgment algorithm, and the judgment algorithm uses the spectral ratio (R / G) values A and B as threshold values for blue-dead effect. The transmission / reflection ratio is divided into a first region in which rice and green immature are mixed, a second region in which dead white rice, milky grains, and sized grains are mixed, and a third region in which damaged grains and colored grains are mixed. Using the values C, D, and E of {(R + G) / T} as threshold values, blue dead rice and blue immature rice in the first region and white dead rice, milky white grains, and sized rice in the second region are classified, respectively. , And the total product of the total sum {(R × G × T) / (R + G +
It is advisable to classify the damaged particles and the colored particles in the third region with the value F of T)} as a threshold value.

【0008】更に、前記胴割れ検出用受光素子に胴割れ
波形検出装置を接続して、前記試料米粒に照射した光強
度分布の谷部を検出する電気信号HMと、前記光強度分
布の高い山を検出する電気信号H1と、前記光強度分布
の低い山を検出する電気信号H2とを前記判定制御部に
入力するとともに、該判定制御部は、前記谷部の電気信
号HMにより胴割れ粒と整粒とを判別し、前記山部の電
気信号H1及びH2により胴割れ粒と乳白粒とを判別す
るとよい。
[0008] Further, by connecting a body detecting waveform detecting device to the body detecting element for detecting body cracking, an electric signal HM for detecting a valley portion of the light intensity distribution irradiated on the sample rice grains, and a mountain having a high light intensity distribution. And an electric signal H2 for detecting a mountain having a low light intensity distribution are input to the determination control unit, and the determination control unit determines that a barrel crack is generated by the electrical signal HM of the valley portion. It is advisable to discriminate between sized particles, and discriminate between body-splitting grains and opalescent grains based on the electric signals H1 and H2 of the mountain portion.

【0009】[0009]

【作用及び効果】前記検出部は、長波長成分用の受光素
子と、短波長成分用の受光素子と、透過光受光素子と、
胴割れ検出用受光素子との合計4つの受光素子により構
成されているので、光学的受光手段の構成を簡略化して
製造コストを安価にするとともに、判定制御部への入力
電圧の変動が少ない米粒品位判別装置を提供することを
可能にした。
[Operation and effect] The detection section includes a light receiving element for a long wavelength component, a light receiving element for a short wavelength component, a transmitted light receiving element,
Since it is composed of a total of four light-receiving elements including the light-receiving element for detecting the crack in the body, the rice grain that simplifies the structure of the optical light-receiving means to reduce the manufacturing cost and has little fluctuation in the input voltage to the determination control unit. It has become possible to provide a quality determination device.

【0010】また、前記判定制御部は、透過・反射比
{(R+G)/T}と、分光比(R/G)とにより青死
米,青未熟,白死米,乳白粒,整粒をそれぞれ区別し、
(R),(G),(T)の3要素の総和分の総積{(R
×G×T)/(R+G+T)}により被害粒と着色粒と
を区別するので、従来、判別が困難であった茶色系の被
害粒と黒色系の着色粒との判別が容易になった。
The determination control unit determines the dead blue rice, unripe green, dead white rice, milky white grains, and sized particles based on the transmission / reflection ratio {(R + G) / T} and the spectral ratio (R / G). Distinguish each one,
Total product of the sum of the three elements of (R), (G), and (T) {(R
Since the damaged grain and the colored grain are distinguished by (× G × T) / (R + G + T)}, the brown-colored damaged grain and the black-colored grain which have been difficult to distinguish in the past can be easily distinguished.

【0011】更に、前記胴割れ検出用受光素子に胴割れ
波形検出装置を接続し、試料穀粒に照射した光強度分布
の谷部を検出する電気信号HMと、前記光強度分布の高
い山を検出する電気信号H1と、前記光強度分布の低い
山を検出する電気信号H2とを前記判定制御部に入力し
て胴割れ粒の判別が行われるので、整粒と胴割れ粒との
判別だけでなく、電気信号H1とH2とにより整粒に混
じった乳白粒・部分着色粒と胴割れ粒との判別も可能と
なった。
Further, a body crack detecting waveform detecting device is connected to the light receiving element for body crack detection, and an electric signal HM for detecting a valley portion of the light intensity distribution irradiated on the sample grain and a peak having a high light intensity distribution are detected. Since the electric signal H1 to be detected and the electric signal H2 to detect the peak of the low light intensity distribution are input to the judgment control unit to judge the cleft cracks, only the judgment between the sized particles and the cleft cracks is performed. Instead, it becomes possible to distinguish between milky white particles / partially colored particles and barrel cracked particles mixed in the sizing by the electric signals H1 and H2.

【0012】[0012]

【実施例】本発明の実施例を図面を参照しながら説明す
る。図1は本発明の全体の構成を示す概略図、図2は本
発明の検出部の側面図、図3は本発明の検出部と判定制
御部の回路を示すブロック図、図4及び図5は光学的検
出部の拡大図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram showing the overall configuration of the present invention, FIG. 2 is a side view of the detection unit of the present invention, FIG. 3 is a block diagram showing the circuits of the detection unit and the determination control unit of the present invention, FIGS. FIG. 4 is an enlarged view of an optical detection unit.

【0013】図1において、符号1は米粒品位判別装
置、符号2は回転円板、符号3は光学的検出部である。
回転円板2の周縁には、回転円板2の回転軸4を中心と
する円周上に多数の試料採取孔5を設ける。そして、こ
れら試料採取孔5に米粒が一粒ずつ収容され、試料採取
孔5の下側には米粒が落下しないようにガラス板等の透
明部材31が設けられる。回転円板2は、前記回転軸4
に軸着したモータ6によって回転駆動される。
In FIG. 1, reference numeral 1 is a rice grain quality discriminating device, reference numeral 2 is a rotating disk, and reference numeral 3 is an optical detecting section.
A large number of sampling holes 5 are provided on the circumference of the rotary disc 2 around the rotary shaft 4 of the rotary disc 2. Then, rice grains are housed in the sampling holes 5 one by one, and a transparent member 31 such as a glass plate is provided below the sampling holes 5 so that the rice grains do not drop. The rotating disc 2 is the rotating shaft 4
It is rotationally driven by the motor 6 mounted on the shaft.

【0014】光学的検出部3は、前記回転円板2の上下
面を挟み込むように設けられ、透過光量と反射光量中の
長波長成分及び短波長成分とにより主に米粒の色彩を検
知する第1ヘッド3aと、透過光量により主に米粒の胴
割れを検出する第2ヘッド3bとから構成される。
The optical detecting section 3 is provided so as to sandwich the upper and lower surfaces of the rotating disk 2 and mainly detects the color of rice grains based on the long-wavelength component and the short-wavelength component in the transmitted light quantity and the reflected light quantity. It is composed of one head 3a and a second head 3b which mainly detects cracks in the rice grain based on the amount of transmitted light.

【0015】前記第1ヘッド3aは、試料採取孔5によ
り移送される一粒の米粒に対し上方から傾斜して光を照
射する光源7と、米粒からの垂直反射光量を長波長成分
と短波長成分とに区分するダイクロイックミラー8と、
長波長成分の光量を検知する赤色光受光素子9と、短波
長成分の光量を検知する緑色光受光素子10と、米粒か
らの垂直透過光量を受光する透過光受光素子11とが設
けられる。前記光源7は、例えば、ハロゲンランプ等を
使用し、光ファイバー13A,13Bを介して試料採取
孔5の上方に設けた光照射部14A,14Bへ導くとよ
い。該光照射部14A,14Bは、米粒の長さ方向の前
後を挟むように逆八の字状に設けられ(図4参照)、前
記透明部材31に埋め込まれた黒色スリット32に焦点
が合わされる。符号15は集光筒であり、前記ダイクロ
イックミラー8に接続してある。ダイクロイックミラー
8は集光した光を長波長成分と短波長成分とに二分割す
るのであるが、該ダイクロイックミラー8と前記赤色光
受光素子9との間には、赤色光を通過させる例えば60
0〜700nmのバンドパスフィルター16を設け、ダ
イクロイックミラー8と前記緑色光受光素子10との間
には、緑色光を通過させる例えば500〜600nmの
バンドパスフィルター17を設けている。
The first head 3a includes a light source 7 for irradiating a grain of rice transferred from the sample collecting hole 5 with light from above, and a vertical reflection light amount from the grain of rice having a long wavelength component and a short wavelength component. A dichroic mirror 8 that is divided into components and
A red light receiving element 9 for detecting the light amount of the long wavelength component, a green light receiving element 10 for detecting the light amount of the short wavelength component, and a transmitted light receiving element 11 for receiving the vertically transmitted light amount from the rice grain are provided. The light source 7 may be, for example, a halogen lamp or the like, and may be guided to the light irradiation units 14A and 14B provided above the sample collection hole 5 via the optical fibers 13A and 13B. The light irradiators 14A and 14B are provided in an inverted eight shape so as to sandwich the front and rear in the length direction of the rice grain (see FIG. 4), and the black slit 32 embedded in the transparent member 31 is focused. . Reference numeral 15 is a condenser tube, which is connected to the dichroic mirror 8. The dichroic mirror 8 divides the condensed light into a long wavelength component and a short wavelength component. The red light is passed between the dichroic mirror 8 and the red light receiving element 9, for example, 60.
A bandpass filter 16 of 0 to 700 nm is provided, and a bandpass filter 17 of, for example, 500 to 600 nm that passes green light is provided between the dichroic mirror 8 and the green light receiving element 10.

【0016】また、前記第2ヘッド3bには、前記光源
7により一粒の米粒に対し傾斜上方から光線を照射する
光照射部14Cを設けるとともに、回転円板2の下方に
米粒からの斜方透過光量を受光する単一の胴割れ検出用
受光素子12を設ける(図5参照)。第2ヘッド3bの
光源は、前記光源7の光を利用すればよく、光ファイバ
ー13Cを介して光照射部14Cへと導く。光照射部1
4Cは、前記回転円板2に対して傾斜して(例えば50
度)黒色スリット33に焦点が合うように設けられ、米
粒に斜方光線を照射することが可能である。
Further, the second head 3b is provided with a light irradiating section 14C for irradiating a ray of light from the light source 7 to one grain of rice from above, and below the rotary disc 2 from the rice grain. A single cylinder crack detecting light receiving element 12 that receives the amount of transmitted light is provided (see FIG. 5). The light source of the second head 3b may use the light of the light source 7, and guides it to the light irradiation unit 14C via the optical fiber 13C. Light irradiation unit 1
4C is inclined with respect to the rotating disc 2 (for example, 50
It is provided so that the black slit 33 is in focus, and it is possible to irradiate the rice grain with an oblique ray.

【0017】次に、回転円板2を回転させて米粒が所定
の測定位置に来たことを検知するタイミング検出は、図
3に示すように回転円板2とは別体に前記試料採取孔5
に対応したタイミング孔18を持つタイミング板19が
設けられ、これを位置検出センサー20,20で検出す
ることにより行われる。
Next, as shown in FIG. 3, the timing detection for detecting that the rice grain has reached a predetermined measurement position by rotating the rotary disc 2 is carried out separately from the rotary disc 2 as shown in FIG. 5
A timing plate 19 having a timing hole 18 corresponding to is provided, and this is performed by detecting this with the position detection sensors 20 and 20.

【0018】次に、図3により前記赤色光受光素子9、
緑色光受光素子10、透過光受光素子11、胴割れ検出
用受光素子12及び位置検出センサー20,20の各検
出信号の入力回路について説明する。前記赤色光受光素
子9、緑色光受光素子10、透過光受光素子11及び胴
割れ検出用受光素子12は、受光されるそれぞれの光量
を電気信号に変換して出力し、前記4つの受光素子のう
ち受光素子9,10,11は増幅器21,22,23に
それぞれ接続する一方、胴割れ検出用受光素子12は、
胴割れ波形検出装置24に接続する。該胴割れ波形検出
装置24の出力信号は3分割され、この3つの出力信号
と受光素子12の一方の出力信号とを増幅器25,2
6,27にそれぞれ入力してアンド回路を形成する。そ
して、増幅器21,22,23,25,26,27から
の出力信号はA/Dコンバータ28に入力する。入力し
た信号は、A/Dコンバータ28によりA/D変換さ
れ、判定制御部となるCPU29に入力するとともに、
タイミング孔18を検出する位置検出センサー20,2
0もCPU29に入力する。
Next, referring to FIG. 3, the red light receiving element 9,
An input circuit of each detection signal of the green light receiving element 10, the transmitted light receiving element 11, the body crack detecting light receiving element 12, and the position detection sensors 20 and 20 will be described. The red-light receiving element 9, the green-light receiving element 10, the transmitted-light receiving element 11 and the body-breaking detection light-receiving element 12 convert the respective amounts of light received into electrical signals and output the electrical signals. Among them, the light receiving elements 9, 10, 11 are connected to the amplifiers 21, 22, 23, respectively, while the light receiving element 12 for detecting the body cracking is
It is connected to the crack detection waveform detecting device 24. The output signal of the body cracking waveform detection device 24 is divided into three, and these three output signals and one output signal of the light receiving element 12 are amplified by the amplifiers 25 and 2.
6 and 27 are respectively input to form an AND circuit. The output signals from the amplifiers 21, 22, 23, 25, 26 and 27 are input to the A / D converter 28. The input signal is A / D converted by the A / D converter 28 and input to the CPU 29 which serves as a determination control unit.
Position detection sensors 20, 2 for detecting the timing hole 18
0 is also input to the CPU 29.

【0019】更に、判定制御部となるCPU29には、
整粒と不良粒とを6種類に選別する選別装置30を接続
する。該選別装置30はコンプレッサー(図示せず)か
ら送られる圧搾空気により前記CPU29の光学的判別
結果に従って異なる方向へ吹き飛ばし選別する構成とな
っている。
Further, the CPU 29, which serves as a judgment control unit,
A sorting device 30 for sorting the sized particles and the defective particles into six types is connected. The sorting device 30 is configured to blow and sort in different directions by compressed air sent from a compressor (not shown) according to the optical discrimination result of the CPU 29.

【0020】次に、上記構成における作用について説明
する。回転円板2の試料採取孔5に乗せられた米粒が光
照射部14A,14Bへ到達すると、米粒長さ方向に対
して傾斜した上方から光が照射される。米粒の表面及び
米粒内部で拡散反射された光は、集光筒15からダイク
ロイックミラー8に入射され、長波長成分と短波長成分
とに二分割される。そして、長波長成分は赤色光受光素
子9に受光され、短波長成分は緑色光受光素子10に受
光される。一方、米粒内部を拡散透過された光は、透過
光受光素子11に受光される。各受光素子9、10、1
1のそれぞれの光量は電気信号に変換され、増幅器2
1,22,23及びA/Dコンバータ28を経てCPU
29に入力される。
Next, the operation of the above configuration will be described. When the rice grains placed on the sample collection hole 5 of the rotating disk 2 reach the light irradiation parts 14A and 14B, light is emitted from the upper side inclined with respect to the rice grain length direction. The light diffusely reflected on the surface of the rice grain and inside the rice grain is incident on the dichroic mirror 8 from the condenser cylinder 15 and is divided into a long wavelength component and a short wavelength component. The long wavelength component is received by the red light receiving element 9, and the short wavelength component is received by the green light receiving element 10. On the other hand, the light diffused and transmitted inside the rice grain is received by the transmitted light receiving element 11. Each light receiving element 9, 10, 1
Each light quantity of 1 is converted into an electric signal, and the amplifier 2
CPU via 1, 22, 23 and A / D converter 28
29.

【0021】CPU29内は、A/Dコンバータ28か
ら入力する前記各光量の電気信号をRAM(図示せず)
に記憶し、この信号から各光量の比を演算し、品質ラン
クを判定するための判定データとする。すなわち、RA
M内に記憶した透過光量(T)と、長波長成分(R)と
短波長成分(G)との和による拡散反射光とから透過・
反射比{(R+G)/T}を演算するとともに、長波長
成分(R)と短波長成分(G)とから分光比(R/G)
を演算し、判定データとしてRAMに記憶する。また、
前記CPU29は、長波長成分(R)と短波長成分
(G)と透過光量(T)とから総和と総積とを算出し、
総和分の総積{(R×G×T)/(R+G+T)}を演
算し、判定データとしてRAMに記憶する。この総和分
の総積は(R),(G),(T)の3要素の光量成分の
バラツキの度合いを数値化するために求めたものであ
る。これを、表1により詳細に説明する。
The CPU 29 has a RAM (not shown) for storing the electric signals of the respective light amounts input from the A / D converter 28.
The data is stored in the memory, the ratio of the respective light quantities is calculated from this signal, and used as the judgment data for judging the quality rank. That is, RA
Transmitted from the amount of transmitted light (T) stored in M and the diffuse reflected light due to the sum of the long wavelength component (R) and the short wavelength component (G).
The reflection ratio {(R + G) / T} is calculated, and the spectral ratio (R / G) is calculated from the long wavelength component (R) and the short wavelength component (G).
Is stored in the RAM as the determination data. Also,
The CPU 29 calculates the total sum and the total product from the long wavelength component (R), the short wavelength component (G), and the transmitted light amount (T),
The total product {(R × G × T) / (R + G + T)} of the total sum is calculated and stored in the RAM as determination data. The total product of this total is obtained in order to quantify the degree of variation in the light amount components of the three elements (R), (G), and (T). This will be described in detail with reference to Table 1.

【0022】[0022]

【表1】 表1は、直方体の体積を算出する際の各長さの組み合わ
せを示したものである。例えば、直方体の体積を考える
と、体積が64になる組み合わせは5パターンになるこ
とが分かる。しかし、このように体積が同じ64になる
ものであっても、それぞれの長さには違いが生じ、表1
の例で示すとパターン1が成分の総和(長さ+幅+高
さ)が12となり、いちばん成分のばらつきの少ないこ
とになる。この原理を(R),(G),(T)に応用し
て総和分の総積{(R×G×T)/(R+G+T)}を
演算したものである。
[Table 1] Table 1 shows combinations of lengths when calculating the volume of the rectangular parallelepiped. For example, considering the volume of a rectangular parallelepiped, it can be seen that there are 5 patterns in which the volume becomes 64. However, even if the volumes are the same 64 as described above, there is a difference in each length, and Table 1
In the above example, the sum of the components (length + width + height) of pattern 1 is 12, which means that the variation of the components is the smallest. This principle is applied to (R), (G), and (T) to calculate the total product {(R × G × T) / (R + G + T)} of the total sum.

【0023】前記胴割れ検出用受光素子12も前記同様
に光量を電気信号に変換する。そして、該胴割れ検出用
受光素子12に胴割れ粒が検出されると、一旦くぼみ状
に低下してから再び上昇する部分をもつ電気信号の波形
が検出される。このとき、胴割れ波形検出装置24は、
胴割れ波形の谷を検出する電気信号HMと、胴割れ波形
の低い山を検出する電気信号H1と、胴割れ波形の高い
山を検出する電気信号H2との3つの電気信号を出力す
る(図8参照)。そして、この電気信号HM,H1,H
2は、増幅器25,26,27及びA/Dコンバータ2
8を経てCPU29に入力される。CPU29内では、
前記電気信号HM,H1,H2をRAMに記憶するとと
もに、所定のしきい値と比較して胴割れの判別を行う。
The light receiving element 12 for detecting the body crack also converts the light amount into an electric signal in the same manner as described above. When the body-breaking detection light-receiving element 12 detects body-breaking particles, a waveform of an electric signal having a portion that once drops in a hollow shape and then rises again is detected. At this time, the body cracking waveform detection device 24
Three electric signals are output: an electric signal HM for detecting a trough of the body cracking waveform, an electric signal H1 for detecting a crest of the body breaking waveform, and an electric signal H2 for detecting a crest of a body breaking waveform (Fig. 8). Then, the electric signals HM, H1, H
2 is an amplifier 25, 26, 27 and an A / D converter 2
It is input to the CPU 29 via 8. In the CPU 29,
The electric signals HM, H1, and H2 are stored in the RAM, and compared with a predetermined threshold value to determine a crack in the cylinder.

【0024】次に、米粒の品質ランクの判定について説
明する。米粒の品質ランク、特に、着色の判定には、透
過・反射比{(R+G)/T}と、分光比(R/G)
と、総和分の総積{(R×G×T)/(R+G+T)}
との3つの判定データを使い、胴割れの判定には、電気
信号HM,H1,H2の3つの判定データを使う。
Next, the determination of the quality rank of rice grains will be described. The quality rank of rice grains, in particular, for the judgment of coloring, transmission / reflection ratio {(R + G) / T} and spectral ratio (R / G)
And the total product of the summation {(R × G × T) / (R + G + T)}
And three judgment data of electric signals HM, H1, and H2 are used for judgment of a body crack.

【0025】図6及び図7を参照して玄米の測定につい
て説明すると、図6のステップ101及びステップ10
2では分光比(R/G)により判別を行う。この分光比
は130以下では緑系の度合いがより強く、130〜1
70では白系の度合いがより強く、また、170以上で
は赤系(茶系)の度合いがより強く映るという特徴があ
り、ステップ101ではしきい値を130として緑系と
その他の色系に区別できるようにし、ステップ102で
はしきい値を170として白系と着色系とに区別できる
ようにした。これを図7の判定グラフにより説明する
と、グラフの横軸には、分光比(R/G)をとり、しき
い値130,170により青死米,青未熟の混入する第
一領域と、白死米,乳白粒,整粒の混入する第二領域
と、被害粒,着色粒の混入する第三領域とに区分する。
The measurement of brown rice will be described with reference to FIGS. 6 and 7. Steps 101 and 10 in FIG.
In 2, the determination is made by the spectral ratio (R / G). If the spectral ratio is 130 or less, the degree of greenish color is stronger, and 130 to 1
There is a characteristic that the degree of white is stronger at 70, and the degree of red (brown) is stronger at 170 or more. In step 101, the threshold is set to 130 to distinguish between green and other color systems. In this way, in step 102, the threshold value is set to 170 so that the white type and the colored type can be distinguished. This will be described with reference to the determination graph of FIG. 7. The abscissa of the graph is the spectral ratio (R / G), and the threshold values 130 and 170 cause the blue dead rice, the first region where blue immature is mixed, and the white region. It is divided into a second area in which dead rice, milky white particles and sized particles are mixed, and a third area in which damaged particles and colored particles are mixed.

【0026】図6のステップ103、104及び105
では透過・反射比{(R+G)/T}により判別を行
う。この透過・反射比は数値が大きくなるほど透過しに
くい特徴があり、これを図7の判定グラフにより説明す
る。グラフの縦軸には、透過・反射比{(R+G)/
T}をとり、しきい値230により第一領域の青死米と
青未熟米とを区別し、しきい値460と220により第
二領域の白死米と乳白粒と整粒とを区別する。
Steps 103, 104 and 105 of FIG.
Then, the discrimination is performed based on the transmission / reflection ratio {(R + G) / T}. This transmission / reflection ratio has a characteristic that it is difficult to transmit as the numerical value increases, which will be described with reference to the determination graph of FIG. 7. The vertical axis of the graph shows the transmission / reflection ratio {(R + G) /
T}, and the threshold value 230 distinguishes between blue dead rice and green immature rice in the first region, and the threshold values 460 and 220 distinguish between white dead rice, milky white grains and sized rice in the second region. .

【0027】次に、図6のステップ106においては、
前記分光比及び透過・反射比では分類不可能であった茶
色系の被害粒と、該被害粒より光の透過が悪い黒色系の
着色粒とを判別する。これを図7の判定グラフにより説
明すると、(R),(G),(T)から算出した総和分
の総積{(R×G×T)/(R+G+T)}の値がしき
い値90より大きいか否かで判別し、第三領域の被害粒
と着色粒とを区別する。
Next, in step 106 of FIG. 6,
The brown-colored damaged particles, which cannot be classified by the spectral ratio and the transmission / reflection ratio, and the black-colored colored particles, which have poorer light transmission than the damaged particles, are discriminated. This will be described with reference to the determination graph of FIG. 7. The total product {(R × G × T) / (R + G + T)} calculated from (R), (G), and (T) is equal to the threshold value 90. It is determined by whether or not it is larger than that, and the damaged grain and the colored grain in the third area are distinguished.

【0028】更に、図6のステップ107においては、
前記ステップ105で整粒と判断された米粒の胴割れの
判定を行う。該胴割れの判定には、電気信号HM,H
1,HH2の3つの判定データを使う。つまり、前記C
PU29は図8の胴割れ波形における谷HMにより所定
のしきい値以下であれば、整粒と胴割れ粒とを、又は、
整粒と乳白粒・部分着色粒とを判別する。図8(a)に
示す胴割れ波形は、一旦くぼみ状に低下してから再び上
昇する部分を持っているが、この波形は整粒に混入した
乳白粒・部分着色粒と類似することがある(図8(b)
参照)。この乳白粒・部分着色粒と胴割れ粒とを判別す
るため、更に、前記CPU29は、電気信号H1と電気
信号H2との和による胴割レベルと、電気信号H1と電
気信号H2とを比較した胴割指数を演算する。そして、
この胴割レベル及び胴割指数が所定のしきい値に到達す
るか否かにより乳白粒・部分着色粒と胴割れ粒とを判別
することもある。
Further, in step 107 of FIG.
The cracking of the rice grain, which has been determined to be sized in step 105, is determined. Electrical signals HM, H
Three judgment data of 1 and HH2 are used. That is, the C
If the PU 29 has a value smaller than or equal to a predetermined threshold value by the valley HM in the barrel cracking waveform of FIG.
Distinguish between sized particles and opalescent particles / partially colored particles. The crumbling waveform shown in FIG. 8 (a) has a portion that once drops in a hollow shape and then rises again, but this waveform may be similar to milky white particles / partially colored particles mixed in sizing. (Fig. 8 (b)
reference). In order to discriminate between the opalescent grains / partially colored grains and the cracked grains, the CPU 29 further compares the barrel split level based on the sum of the electrical signals H1 and H2 with the electrical signals H1 and H2. Calculate the body split index. And
Depending on whether or not the body splitting level and the body splitting index reach a predetermined threshold value, the opalescent grains / partially colored grains and the barrel split grains may be discriminated.

【0029】次に、図9及び図10を参照して白米の測
定について説明すると、白米の測定では分光比(R/
G)及び透過・反射比{(R+G)/T}の2つの判定
データを用いるとよい。ステップ110では分光比(R
/G)が150以上で、かつ、透過・反射比{(R+
G)/T}が180以下であれば粉状質粒と判断し、そ
れ以外であればステップ111に至る。ステップ111
では分光比(R/G)が130以上であれば着色粒と判
断し、それ以外であればステップ112に至る。ステッ
プ112では分光比(R/G)が80以上であれば被害
粒と判断し、それ以外であればステップ113に至る。
ステップ113では透過・反射比{(R+G)/T}が
80以上であれば整粒と判断し、80以下であれば砕粒
と判断する。
Next, the measurement of white rice will be described with reference to FIGS. 9 and 10. In the measurement of white rice, the spectral ratio (R /
G) and transmission / reflection ratio {(R + G) / T}. In step 110, the spectral ratio (R
/ G) is 150 or more, and the transmission / reflection ratio {(R +
If G) / T} is 180 or less, it is determined to be a powdery grain, and otherwise, the process proceeds to step 111. Step 111
Then, if the spectral ratio (R / G) is 130 or more, it is determined that the particles are colored particles, and if not, the process proceeds to step 112. In step 112, if the spectral ratio (R / G) is 80 or more, it is determined that the particles are damaged particles, and if not, the process proceeds to step 113.
In step 113, if the transmission / reflection ratio {(R + G) / T} is 80 or more, it is determined that the particles are sized, and if the ratio is 80 or less, it is determined that the particles are crushed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の全体の構成を示す概略図である。FIG. 1 is a schematic diagram showing the overall configuration of the present invention.

【図2】本発明の検出部の側面図である。FIG. 2 is a side view of the detection unit of the present invention.

【図3】本発明の検出部と判定制御部の回路を示すブロ
ック図であ
FIG. 3 is a block diagram showing circuits of a detection unit and a determination control unit according to the present invention.

【図4】光学的検出部の第1ヘッドを示す拡大図であ
る。
FIG. 4 is an enlarged view showing a first head of the optical detection unit.

【図5】光学的検出部の第2ヘッドを示す拡大図であ
る。
FIG. 5 is an enlarged view showing a second head of the optical detector.

【図6】玄米を測定する際のフローチャートである。FIG. 6 is a flowchart for measuring brown rice.

【図7】玄米を測定する際の各光量比の分布の関係を示
す図である。
FIG. 7 is a diagram showing a relationship of distribution of light amount ratios when measuring brown rice.

【図8】胴割れ粒、乳白・部分着色粒及び整粒の検出波
形を示す図である。
FIG. 8 is a diagram showing detection waveforms for a body cracking grain, a milky white / partially colored grain, and a sized grain.

【図9】白米を測定する際のフローチャートである。FIG. 9 is a flowchart for measuring white rice.

【図10】白米を測定する際の各光量比の分布の関係を
示す図である。
FIG. 10 is a diagram showing the relationship of distribution of light intensity ratios when measuring white rice.

【符号の説明】[Explanation of symbols]

1 米粒品位判別装置 2 回転円板 3 光学的検出部 4 回転軸 5 試料採取孔 6 モータ 7 光源 8 ダイクロイックミラー 9 赤色光受光素子 10 緑色光受光素子 11 透過光受光素子 12 胴割れ検出用受光素子 13 光ファイバー 14 光照射部 15 集光筒 16 バンドパスフィルター 17 バンドパスフィルター 18 タイミング孔 19 タイミング板 20 位置検出センサー 21 増幅器 22 増幅器 23 増幅器 24 胴割れ波形検出装置 25 増幅器 26 増幅器 27 増幅器 28 A/Dコンバータ 29 CPU 30 選別装置 31 透明部材 32 黒色スリット 33 黒色スリット 1 rice grain quality discriminating device 2 rotating disc 3 optical detecting unit 4 rotating shaft 5 sampling hole 6 motor 7 light source 8 dichroic mirror 9 red light receiving element 10 green light receiving element 11 transmitted light receiving element 12 light receiving element for detecting cracks in the body 13 Optical Fiber 14 Light Irradiation Section 15 Condenser Tube 16 Bandpass Filter 17 Bandpass Filter 18 Timing Hole 19 Timing Plate 20 Position Detection Sensor 21 Amplifier 22 Amplifier 23 Amplifier 24 Trunk Break Waveform Detector 25 Amplifier 26 Amplifier 27 Amplifier 28 A / D Converter 29 CPU 30 Sorting device 31 Transparent member 32 Black slit 33 Black slit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 外周縁の円周方向に等間隔に複数の試料
採取孔を有する回転円板と、前記試料採取孔により移送
される試料米粒の各一粒毎に光線を照射する光源と、該
光源により照射して得られた前記試料米粒の透過反射光
量を検出する検知部と、該検知部から入力された検出信
号を所定値と比較して前記試料米粒の品質ランクを決定
する判定制御部とを備えた米粒品位判別装置であって、
前記検知部は、前記試料採取孔により移送される一粒の
試料米粒に対し前記光源から誘導された光線を傾斜上方
二箇所から照射する第一照射部と、前記試料米粒からの
垂直反射光量を長波長成分(R)と短波長成分(G)と
にそれぞれ区分するダイクロイックミラーと、区分され
たそれぞれの波長の光量を受光する二つの受光素子と、
前記試料米粒からの垂直透過光量(T)を受光する透過
光受光素子とを設けるとともに、前記光源からの光線を
前記試料米粒に対し傾斜上方から照射する第二照射部
と、該第二照射部により照射して得られた前記試料穀粒
からの斜方透過光量を受光する胴割れ検出用受光素子と
を設けたことを特徴とする米粒品位判別装置。
1. A rotating disk having a plurality of sampling holes at equal intervals in the circumferential direction of the outer peripheral edge, and a light source for irradiating a light beam to each of the rice grains of the sample transported by the sampling hole, A detection unit that detects the amount of transmitted / reflected light of the sample rice grains obtained by irradiation with the light source, and a determination control that determines the quality rank of the sample rice grains by comparing a detection signal input from the detection unit with a predetermined value. A rice grain quality discriminating device having a section,
The detection unit, the first irradiation unit for irradiating a light beam guided from the light source from two upper slopes to one sample rice grain transferred by the sampling hole, and the vertical reflection light amount from the sample rice grain. A dichroic mirror that divides into a long-wavelength component (R) and a short-wavelength component (G), and two light-receiving elements that receive light amounts of the respective divided wavelengths,
A second light irradiator for irradiating a light beam from the light source from above the tilt and a second light irradiator, which is provided with a transmitted light light receiving element for receiving the vertically transmitted light amount (T) from the sample rice corn. And a light receiving element for detecting a barrel crack that receives the amount of obliquely transmitted light from the sample grain obtained by irradiating the sample grain.
【請求項2】 前記判定制御部は、前記垂直透過光量
(T)と、前記長波長成分(R)及び短波長成分(G)
の和による拡散反射光とから透過・反射比{(R+G)
/T}を演算するとともに、前記長波長成分と短波長成
分との分光比(R/G)を演算し、更に、前記垂直透過
光量(T)と長波長成分(R)及び短波長成分(G)か
らこれら三要素の総和分の総積{(R×G×T)/(R
+G+T)}を演算して、前記試料米粒の品質ランクを
決定する判定データとする請求項1記載の米粒品位判別
装置。
2. The determination control unit, the vertical transmission light amount (T), the long wavelength component (R) and the short wavelength component (G)
Transmission / reflection ratio from the diffuse reflection light by the sum of {(R + G)
/ T} and the spectral ratio (R / G) between the long-wavelength component and the short-wavelength component, and further, the vertically transmitted light amount (T), the long-wavelength component (R) and the short-wavelength component ( The total product {(R × G × T) / (R
+ G + T)} is calculated and used as the determination data for determining the quality rank of the sample rice grain.
【請求項3】 前記判定データと予め定めた判定アルゴ
リズムによって品質ランクを決定するものであって、前
記判定アルゴリズムは、前記分光比(R/G)の値A,
Bをしきい値として青死米,青未熟の混入する第一領域
と、白死米,乳白粒,整粒の混入する第二領域と、被害
粒,着色粒の混入する第三領域とに区分し、前記透過・
反射比{(R+G)/T}の値C,D,Eをしきい値と
して前記第一領域の青死米と青未熟及び前記第二領域の
白死米と乳白粒と整粒とをそれぞれ区分し、更に、前記
総和分の総積{(R×G×T)/(R+G+T)}の値
Fをしきい値として前記第三領域の被害粒と着色粒とを
区分してなる請求項2記載の米粒品位判別装置。
3. A quality rank is determined by the determination data and a predetermined determination algorithm, wherein the determination algorithm is a value A of the spectral ratio (R / G),
With B as a threshold value, there are a first region in which blue dead rice and green immature are mixed, a second region in which white dead rice, milky white grains and sized grains are mixed, and a third region in which damaged grains and colored grains are mixed. It is divided into the above
Using the values C, D and E of the reflection ratio {(R + G) / T} as threshold values, the blue dead rice and blue immature in the first region and the white dead rice, milky white grains and sized grains in the second region are respectively A method in which the damaged particles and the colored particles in the third region are classified by using the value F of the total product {(R × G × T) / (R + G + T)} of the total sum as a threshold value. The rice grain quality determination device described in 2.
【請求項4】 前記胴割れ検出用受光素子に胴割れ波形
検出装置を接続して、前記試料米粒に照射した光強度分
布の谷部を検出する電気信号HMと、前記光強度分布の
高い山を検出する電気信号H1と、前記光強度分布の低
い山を検出する電気信号H2とを前記判定制御部に入力
するとともに、該判定制御部は、前記谷部の電気信号H
Mにより胴割れ粒と整粒とを判別し、前記山部の電気信
号H1及びH2により胴割れ粒と乳白粒とを判別してな
る請求項1,2又は3記載の米粒品位判別装置。
4. An electric signal HM for detecting a trough portion of a light intensity distribution irradiated to the sample rice grain by connecting a body detection waveform detecting device to the light receiving element for detecting a body crack, and a mountain having a high light intensity distribution. And an electric signal H2 for detecting a mountain with a low light intensity distribution are input to the determination control unit, and the determination control unit receives the electric signal H for the valley portion.
4. The rice grain quality determination device according to claim 1, wherein the cracked grain and the sized grain are discriminated by M, and the cracked grain and the opalescent grain are discriminated by the electric signals H1 and H2 of the mountain portion.
JP13066696A 1996-04-25 1996-04-25 Rice grain quality discrimination device Expired - Fee Related JP3642106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13066696A JP3642106B2 (en) 1996-04-25 1996-04-25 Rice grain quality discrimination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13066696A JP3642106B2 (en) 1996-04-25 1996-04-25 Rice grain quality discrimination device

Publications (2)

Publication Number Publication Date
JPH09292344A true JPH09292344A (en) 1997-11-11
JP3642106B2 JP3642106B2 (en) 2005-04-27

Family

ID=15039715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13066696A Expired - Fee Related JP3642106B2 (en) 1996-04-25 1996-04-25 Rice grain quality discrimination device

Country Status (1)

Country Link
JP (1) JP3642106B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000180369A (en) * 1998-10-09 2000-06-30 Satake Eng Co Ltd Method and apparatus for measurement of appearance quality of grain
EP1046902A2 (en) * 1999-04-22 2000-10-25 Satake Corporation Apparatus and method for evaluating quality of granular objects
JP2002139443A (en) * 2000-10-31 2002-05-17 Kett Electric Laboratory Quality discrimination apparatus for grain, etc.
WO2002040967A1 (en) * 2000-11-17 2002-05-23 Foss Tecator Ab A method and device for recording images of grains from cereals to detect cracking
WO2002040968A1 (en) * 2000-11-17 2002-05-23 Foss Tecator Ab Device and method for optical measurement of small particles such as grains from cereals and like crops
JP2002202265A (en) * 2000-12-28 2002-07-19 Satake Corp Rice grain quality level discrimination device
WO2003016884A1 (en) * 2001-08-17 2003-02-27 Foss Analytical Ab Device and method for irradiation of small particles for analysis of the quality of the particles
WO2003058215A1 (en) * 2002-01-09 2003-07-17 Versuchs- Und Lehranstalt Für Brauerei In Berlin Single grain analyser and method for analysing single grains
DE10332800B3 (en) * 2003-07-18 2005-05-04 Bruins, Hans Joachim Method for spectroscopic measurement on particle samples and measuring device for carrying out the method
WO2006065206A1 (en) * 2004-12-13 2006-06-22 Foss Analytical Ab Sample carrier
JP2021062315A (en) * 2019-10-10 2021-04-22 株式会社サタケ Grain inspection device and culture management system using the device
CN117139173A (en) * 2023-09-08 2023-12-01 山东省烟台市农业科学研究院(山东省农业科学院烟台市分院) Wheat seed sorting equipment and sorting method thereof
CN117139173B (en) * 2023-09-08 2024-04-30 山东省烟台市农业科学研究院(山东省农业科学院烟台市分院) Wheat seed sorting equipment and sorting method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2021212087B2 (en) 2020-08-31 2023-06-29 Ricegrowers Limited Apparatus and System for Assessing Paddy Rice Grains

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000180369A (en) * 1998-10-09 2000-06-30 Satake Eng Co Ltd Method and apparatus for measurement of appearance quality of grain
EP1046902A2 (en) * 1999-04-22 2000-10-25 Satake Corporation Apparatus and method for evaluating quality of granular objects
KR20000077034A (en) * 1999-04-22 2000-12-26 사따께 사또루 Apparatus and method for evaluating quality of granular object
EP1046902A3 (en) * 1999-04-22 2001-04-25 Satake Corporation Apparatus and method for evaluating quality of granular objects
CN1296701C (en) * 1999-04-22 2007-01-24 株式会社佐竹 Equipment and method for evaluating quality of granular substance
JP2002139443A (en) * 2000-10-31 2002-05-17 Kett Electric Laboratory Quality discrimination apparatus for grain, etc.
US6888954B2 (en) 2000-11-17 2005-05-03 Foss Analytical Ab Device and method for recording images
US6556295B2 (en) 2000-11-17 2003-04-29 Foss Tecator Ab Device and method for optical measurement
WO2002040968A1 (en) * 2000-11-17 2002-05-23 Foss Tecator Ab Device and method for optical measurement of small particles such as grains from cereals and like crops
AU2002215281B2 (en) * 2000-11-17 2004-10-14 Foss Analytical Ab Device and method for optical measurement of small particles such as grains from cereals and like crops
WO2002040967A1 (en) * 2000-11-17 2002-05-23 Foss Tecator Ab A method and device for recording images of grains from cereals to detect cracking
KR100775178B1 (en) * 2000-11-17 2007-11-12 포스 아날리티칼 아베 Device and method for optical measurement of small particles such as grains from cereals and like crops
JP2002202265A (en) * 2000-12-28 2002-07-19 Satake Corp Rice grain quality level discrimination device
WO2003016884A1 (en) * 2001-08-17 2003-02-27 Foss Analytical Ab Device and method for irradiation of small particles for analysis of the quality of the particles
US6906796B2 (en) 2001-08-17 2005-06-14 Foss Analytical Ab Device and method for irradiation
AU2002320000B2 (en) * 2001-08-17 2007-03-29 Foss Analytical Ab Device and method for irradiation of small particles for analysis of the quality of the particles
WO2003058215A1 (en) * 2002-01-09 2003-07-17 Versuchs- Und Lehranstalt Für Brauerei In Berlin Single grain analyser and method for analysing single grains
DE10332800B3 (en) * 2003-07-18 2005-05-04 Bruins, Hans Joachim Method for spectroscopic measurement on particle samples and measuring device for carrying out the method
WO2006065206A1 (en) * 2004-12-13 2006-06-22 Foss Analytical Ab Sample carrier
JP2021062315A (en) * 2019-10-10 2021-04-22 株式会社サタケ Grain inspection device and culture management system using the device
CN117139173A (en) * 2023-09-08 2023-12-01 山东省烟台市农业科学研究院(山东省农业科学院烟台市分院) Wheat seed sorting equipment and sorting method thereof
CN117139173B (en) * 2023-09-08 2024-04-30 山东省烟台市农业科学研究院(山东省农业科学院烟台市分院) Wheat seed sorting equipment and sorting method thereof

Also Published As

Publication number Publication date
JP3642106B2 (en) 2005-04-27

Similar Documents

Publication Publication Date Title
US4650326A (en) Apparatus for inspecting bottles
JP4846100B2 (en) Wafer defect classification
JP3657991B2 (en) Method and apparatus for detecting surface features of translucent objects
US4376583A (en) Surface inspection scanning system
US5077477A (en) Method and apparatus for detecting pits in fruit
JPH09292344A (en) Rice-particle-quality discriminating apparatus
JP2002519694A (en) Pixel-based method and apparatus for detecting defects on patterned wafers
WO1993007468A1 (en) Scattered/transmitted light information system
JPS6333652A (en) Method and device for detecting and measuring flaw of surface of article
CN101832941A (en) Fruit quality evaluation device based on multispectral image
CN1295698A (en) Methods and apparatus for monitoring articles
CN107860761B (en) Raman spectrum detection equipment and sample safety detection method for Raman spectrum detection
JPS6058813B2 (en) How to detect defects in rice grains
JPH09509477A (en) Fruit and vegetable inspection and / or grading apparatus, method and use thereof
JP2000180369A (en) Method and apparatus for measurement of appearance quality of grain
US5190163A (en) Sorting apparatus utilizing transmitted light
JP5298684B2 (en) Foreign object detection device and detection method
KR100808338B1 (en) A method and device for recording images of grains from cereals to detect cracking
US6335501B1 (en) Optical paper sorter
US4685808A (en) Method of discriminating colors of an object
JP3506312B2 (en) Grain color sorting method and apparatus
JPH0634974B2 (en) Sorting device using transmitted light
JPH09281043A (en) Sorter using two-color frequency optical detector
US4591723A (en) Optical egg inspecting apparatus
US20010043327A1 (en) Spectral identification system

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040830

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20040914

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041012

A131 Notification of reasons for refusal

Effective date: 20041111

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050105

A61 First payment of annual fees (during grant procedure)

Effective date: 20050118

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20090204

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20100204

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20100204

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees