JP2021117091A - Optical granule discrimination device - Google Patents

Optical granule discrimination device Download PDF

Info

Publication number
JP2021117091A
JP2021117091A JP2020010380A JP2020010380A JP2021117091A JP 2021117091 A JP2021117091 A JP 2021117091A JP 2020010380 A JP2020010380 A JP 2020010380A JP 2020010380 A JP2020010380 A JP 2020010380A JP 2021117091 A JP2021117091 A JP 2021117091A
Authority
JP
Japan
Prior art keywords
infrared light
granules
defective
visible light
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020010380A
Other languages
Japanese (ja)
Other versions
JP7392495B2 (en
Inventor
任章 石津
Takaaki Ishizu
任章 石津
雅明 定丸
Masaaki SADAMARU
雅明 定丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Satake Engineering Co Ltd
Satake Corp
Original Assignee
Satake Engineering Co Ltd
Satake Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2020010380A priority Critical patent/JP7392495B2/en
Application filed by Satake Engineering Co Ltd, Satake Corp filed Critical Satake Engineering Co Ltd
Priority to BR112022014565A priority patent/BR112022014565A2/en
Priority to EP21744066.8A priority patent/EP4094851A4/en
Priority to PCT/JP2021/002322 priority patent/WO2021149820A1/en
Priority to US17/794,195 priority patent/US20230059349A1/en
Priority to CN202180010708.3A priority patent/CN115004016A/en
Priority to KR1020227027091A priority patent/KR20220125301A/en
Publication of JP2021117091A publication Critical patent/JP2021117091A/en
Application granted granted Critical
Publication of JP7392495B2 publication Critical patent/JP7392495B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide an optical granule discrimination device capable of accurately determining quality of granules even if good and defective granules are similar in color and shape.SOLUTION: An inspection unit for optically inspecting granules being conveyed by conveying means comprises a visible light source, near-infrared light source, visible light detection unit, and near-infrared light detection unit. A determination unit plots one wavelength components out of red (R), green (G), and blue (B) light detected by the visible light detection unit from a plurality of good samples and defective samples and a plurality of near-infrared components detected by the near-infrared detection unit to create a three-dimensional optical correlation diagram and set thresholds.SELECTED DRAWING: Figure 15

Description

本発明は、穀類、豆類、種子等の粒状物を、光学的検査に基づいて良品であるか不良品であるか判別する光学式粒状物判別装置に関する。 The present invention relates to an optical granularity discriminating device for discriminating whether a granular material such as cereals, beans, seeds, etc. is a good product or a defective product based on an optical inspection.

穀類等の粒状物は、籾殻、石等の異物や不良品と、玄米等の良品とを選別分離する必要がある。そこで、光学的検査によって粒状物の良・不良を判別し、不良品を排除する装置が種々提案されている。例えば、特許文献1には、移送手段によって移送される粒状物に光を照射し、粒状物を透過あるいは反射したR(赤),G(緑),B(青)の光の波長成分を三次元色空間上にプロットし、粒状物の三次元色分布から良品であるか不良品であるかを判別して、不良品のみを排除する光学式粒状物選別機が開示されている。 For grains such as cereals, it is necessary to sort and separate foreign substances such as rice husks and stones and defective products from non-defective products such as brown rice. Therefore, various devices have been proposed for discriminating between good and bad granules by optical inspection and eliminating defective products. For example, in Patent Document 1, the particles transferred by the transfer means are irradiated with light, and the wavelength components of R (red), G (green), and B (blue) light transmitted or reflected by the particles are ternary. An optical granular material sorter that plots on the original color space, determines whether the product is a good product or a defective product from the three-dimensional color distribution of the granular material, and eliminates only the defective product is disclosed.

特許第6037125号公報Japanese Patent No. 6037125

上記特許文献1に記載のような光学式粒状物選別機で、赤(R)、緑(G)、青(B)の3つの光の波長成分を用いて判別を行うと、良品と不良品の色や形状が類似している場合、例えば、黒豆の中に黒い石が混入していたり、黒ひまわりの種中に黒い菌糸体等の有害物質が混入している場合には、図16に示すように、良品の集合と不良品の集合が重なってしまい、良否を判別することができなかった。 When discrimination is performed using the three wavelength components of light of red (R), green (G), and blue (B) with an optical granular material sorter as described in Patent Document 1, a good product and a defective product are obtained. If the colors and shapes of the lights are similar, for example, black stones are mixed in the black beans, or harmful substances such as black mycelium are mixed in the seeds of black sunflowers, as shown in FIG. As shown, the set of good products and the set of defective products overlapped, and it was not possible to determine whether the product was good or bad.

そこで、本発明が解決しようとする課題は、粒状体の良品と不良品が類似した色、形状を有していても、高い精度で良否を判別することができる光学式粒状物判別装置を提供することにある。 Therefore, the problem to be solved by the present invention is to provide an optical granular material discriminating device capable of discriminating good or bad with high accuracy even if a good product and a defective product of the granular material have similar colors and shapes. To do.

本願請求項1に係る発明は、移送手段で移送される粒状物に光学的検査を行う検査部と、該検査部による光学的検査に基づいて前記粒状物が良品であるか不良品であるかを判別する判定部とを備えた光学式粒状物判別装置において、前記検査部は、前記粒状物に可視光を照射する可視光源と、前記粒状物に近赤外光を照射する近赤外光源と、前記粒状物を透過した可視光又は前記粒状物から反射した可視光を検出する可視光検出部と、前記粒状物を透過した近赤外光又は前記粒状物から反射した近赤外光を検出する近赤外光検出部と、を少なくとも有し、前記判定部は、複数の良品サンプル及び複数の不良品サンプルに対し、前記可視光検出部が検出した赤(R)、緑(G)、青(B)の光のうち、1つの波長成分と、前記近赤外光検出部が検出した複数の近赤外光成分を三次元空間にプロットして三次元光学相関図を作成し、閾値を設定することを特徴とする光学式粒状物判別装置である。 The invention according to claim 1 of the present application includes an inspection unit that optically inspects the granules transferred by the transfer means, and whether the granules are good or defective based on the optical inspection by the inspection unit. In an optical granular matter discriminating device provided with a determination unit for discriminating between, the inspection unit includes a visible light source that irradiates the granular material with visible light and a near-infrared light source that irradiates the granular material with near-infrared light. And the visible light detection unit that detects visible light transmitted through the granules or visible light reflected from the granules, and near-infrared light transmitted through the granules or near-infrared light reflected from the granules. It has at least a near-infrared light detection unit for detection, and the determination unit has red (R) and green (G) detected by the visible light detection unit for a plurality of non-defective sample and a plurality of defective samples. , One wavelength component of the blue (B) light and a plurality of near-infrared light components detected by the near-infrared light detection unit are plotted in a three-dimensional space to create a three-dimensional optical correlation diagram. It is an optical granular matter discriminating device characterized by setting a threshold value.

本願請求項2に係る発明は、前記判定部は、前記三次元光学相関図に、良品集合体と不良品集合体とを仕切るマハラノビス距離境界面及びユークリッド距離境界面を作成し、前記マハラノビス距離境界面とユークリッド距離境界面との交線に垂直な二次元平面を作成し、前記二次元平面上の不良品集合体に慣性等価楕円を当てはめて閉領域を作成するとともに、該閉領域内に閾値を設定する請求項1に記載の光学式粒状物判別装置である。 In the invention according to claim 2 of the present application, the determination unit creates a Mahalanobis distance boundary surface and an Euclidean distance boundary surface for partitioning a non-defective product aggregate and a defective product aggregate on the three-dimensional optical correlation diagram, and the Mahalanobis distance boundary surface. A two-dimensional plane perpendicular to the intersection of the surface and the Euclidean distance boundary surface is created, and an inertial equivalent ellipse is applied to the defective aggregate on the two-dimensional plane to create a closed region, and a threshold value is created in the closed region. The optical granular material discriminating device according to claim 1.

本願請求項3に係る発明は、前記判定部は、複数の良品サンプル及び複数の不良品サンプルに対し、前記可視光検出部が検出した赤(R)、緑(G)、青(B)の光のうち、1つの波長成分と、前記近赤外光検出部が検出した複数種の組合せによる2つの近赤外光成分を三次元空間にプロットして複数種の三次元光学相関図を作成する請求項1又は2に記載の光学式粒状物判別装置である。 In the invention according to claim 3 of the present application, the determination unit determines red (R), green (G), and blue (B) detected by the visible light detection unit with respect to a plurality of non-defective sample samples and a plurality of defective sample samples. Of the light, one wavelength component and two near-infrared light components obtained by combining a plurality of types detected by the near-infrared light detection unit are plotted in a three-dimensional space to create a plurality of types of three-dimensional optical correlation diagram. The optical granular material discriminating device according to claim 1 or 2.

本願請求項4に係る発明は、前記近赤外光検出部が検出した近赤外光成分は、前記可視光検出部が検出した前記粒状物の輪郭内の近赤外光成分である請求項1乃至3に記載の光学式粒状物判別装置である。 The invention according to claim 4 of the present application claims that the near-infrared light component detected by the near-infrared light detection unit is a near-infrared light component within the contour of the granular material detected by the visible light detection unit. The optical granular material discriminating device according to 1 to 3.

本願請求項5に係る発明は、前記判定部は、前記閉領域内に前記閾値を設定するに際し、前記慣性等価楕円の短軸に平行で長軸の両端点を通る2直線及び長軸に平行で短軸の両端点を通る2直線からなる外接矩形を作成し、前記良品集合体の重心と該外接矩形の長軸方向の両端点とを結ぶ2直線を作成する請求項1乃至4のいずれかに記載の光学式粒状物判別装置である。 In the invention according to claim 5, when the determination unit sets the threshold value in the closed region, it is parallel to the minor axis of the inertial equivalent ellipse and parallel to the two straight lines passing through both end points of the major axis and the major axis. Any of claims 1 to 4 for creating an extrinsic rectangle composed of two straight lines passing through both end points of the short axis and creating two straight lines connecting the center of gravity of the non-defective product aggregate and the end points of the extrinsic rectangle in the major axis direction. It is an optical granular matter discriminating apparatus described in the ellipse.

本願請求項6に係る発明は、前記判定部は、前記閉領域内に前記閾値を設定するに際し、第1の平面としてマハラノビス距離を最小とする前記マハラノビス距離境界面を利用し、第2の平面として良品集合体の重心と前記外接矩形の長軸方向の一端とを結ぶ平面を利用し、第3の平面として良品集合体の重心と前記外接矩形の長軸方向の他端とを結ぶ平面を利用し、第4の平面として前記外接矩形の一方側の長辺を利用し、第5の平面として前記外接矩形の他方側の長辺を利用し、第6の平面として良品集合体から遠い側の前記外接矩形の一方側短辺を利用する請求項1乃至5のいずれかに記載の光学式粒状物判別装置である。 In the invention according to claim 6, the determination unit uses the Maharanobis distance boundary surface that minimizes the Maharanobis distance as the first plane when setting the threshold value in the closed region, and uses the second plane. As a third plane, a plane connecting the center of gravity of the non-defective product assembly and one end of the circumscribing rectangle in the long axis direction is used, and as a third plane, a plane connecting the center of gravity of the non-defective product assembly and the other end of the circumscribing rectangle in the long axis direction is used. The long side of one side of the circumscribing rectangle is used as the fourth plane, the long side of the other side of the circumscribing rectangle is used as the fifth plane, and the side far from the good product aggregate is used as the sixth plane. The optical granular material discriminating device according to any one of claims 1 to 5, which utilizes one short side of the circumscribing rectangle.

本願請求項7に係る発明は、ディスプレイと、前記ディスプレイにおける表示内容に基づいて操作者による入力が可能な入力手段と、を備え、前記ディスプレイは、赤(R)、緑(G)、青(B)の光のうち、任意の1つの波長成分と、任意の2つの近赤外光成分とによる複数の前記三次元光学相関図を表示可能であり、前記入力手段は、操作者の操作に基づいて前記ディスプレイに表示される前記三次元光学相関図を選択可能である請求項1乃至6のいずれかに記載の光学式粒状物判別装置である。 The invention according to claim 7 of the present application includes a display and input means capable of input by an operator based on the display contents on the display, and the display includes red (R), green (G), and blue ( A plurality of the three-dimensional optical correlation diagrams of the arbitrary one wavelength component and any two near-infrared light components of the light of B) can be displayed, and the input means can be operated by the operator. The optical granular material discriminating device according to any one of claims 1 to 6, wherein the three-dimensional optical correlation diagram displayed on the display can be selected based on the above.

本願請求項8に係る発明は、前記検査部は、移送される前記粒状物の前側に位置する第1の検査部と、前記粒状物の後側に位置する第2の検査部と、を備え、前記第1の検査部及び前記第2の検査部は、それぞれ前記可視光検出部と前記近赤外光検出部とを備えている請求項1乃至7のいずれかに記載の光学式粒状物判別装置である。
前記検査部は、移送される前記粒状物の前側に位置する第1の検査部と、前記粒状物の後側に位置する第2の検査部と、を備え、前記第1の検査部及び前記第2の検査部は、それぞれ前記可視光検出部と前記近赤外光検出部とを備えている請求項1乃至7のいずれかに記載の光学式粒状物判別装置である。
In the invention according to claim 8, the inspection unit includes a first inspection unit located on the front side of the granular material to be transferred and a second inspection unit located on the rear side of the granular material. The optical granular material according to any one of claims 1 to 7, wherein the first inspection unit and the second inspection unit include the visible light detection unit and the near-infrared light detection unit, respectively. It is a discrimination device.
The inspection unit includes a first inspection unit located on the front side of the granular material to be transferred and a second inspection unit located on the rear side of the granular material, and includes the first inspection unit and the said inspection unit. The second inspection unit is the optical granular material discriminating device according to any one of claims 1 to 7, further comprising the visible light detection unit and the near-infrared light detection unit, respectively.

本願請求項9に係る発明は、移送手段で移送される前記粒状物は、種子又は穀粒である請求項1乃至8のいずれかに記載の光学式粒状物判別装置である。 The invention according to claim 9 of the present application is the optical granularity discriminating apparatus according to any one of claims 1 to 8, wherein the granular material transferred by the transfer means is a seed or a grain.

本願請求項10に係る発明は、移送手段で移送される粒状物に光学的検査を行う検査部と、該検査部による光学的検査に基づいて前記粒状物が良品であるか不良品であるかを判別する判定部とを備えた光学式粒状物判別装置において、前記検査部は、前記粒状物に可視光を照射する可視光源と、前記粒状物に近赤外光を照射する近赤外光源と、前記粒状物を透過した可視光又は前記粒状物から反射した可視光を検出する可視光検出部と、前記粒状物を透過した近赤外光又は前記粒状物から反射した近赤外光を検出する近赤外光検出部と、を少なくとも有し、前記判定部は、複数の良品サンプル及び複数の不良品サンプルに対し、前記可視光検出部が検出した赤(R)、緑(G)、青(B)の3つの波長成分及び前記近赤外光検出部が検出した複数の近赤外光成分をパラメータとして多変量解析し、前記多変量解析の結果に基づいて、前記可視光検出部が検出した波長成分と、前記近赤外光検出部が検出した近赤外光成分をプロットして三次元光学相関図を作成し、閾値を設定することを特徴とする光学式粒状物判別装置である。 The invention according to claim 10 of the present application includes an inspection unit that optically inspects the granules transferred by the transfer means, and whether the granules are good or defective based on the optical inspection by the inspection unit. In an optical granular matter discriminating device provided with a determination unit for discriminating between, the inspection unit includes a visible light source that irradiates the granular material with visible light and a near-infrared light source that irradiates the granular material with near-infrared light. And the visible light detection unit that detects visible light transmitted through the granules or visible light reflected from the granules, and near-infrared light transmitted through the granules or near-infrared light reflected from the granules. It has at least a near-infrared light detection unit for detection, and the determination unit has red (R) and green (G) detected by the visible light detection unit for a plurality of non-defective sample and a plurality of defective samples. , Blue (B) and a plurality of near-infrared light components detected by the near-infrared light detection unit are used as parameters for multivariate analysis, and based on the result of the multivariate analysis, the visible light detection is performed. Optical granularity discrimination characterized by plotting the wavelength component detected by the unit and the near-infrared light component detected by the near-infrared light detection unit to create a three-dimensional optical correlation diagram and setting a threshold value. It is a device.

請求項1、2に係る発明によれば、可視光検出部が検出した赤(R)、緑(G)、青(B)の光のうち、1つの波長成分と、近赤外光検出部が検出した複数の近赤外光成分とに基づいて、三次元光学相関図を作成し、不良品集合体に閉領域を作成して、該閉領域内に閾値を設定するように構成した。これにより、従来、可視光検出部が検出した赤(R)、緑(G)、青(B)3つの波長成分では判別することができなかった粒状物を、精度よく判別することが可能となった。 According to the inventions according to claims 1 and 2, one wavelength component of the red (R), green (G), and blue (B) lights detected by the visible light detection unit and the near-infrared light detection unit. Based on the plurality of near-infrared light components detected by, a three-dimensional optical correlation diagram was created, a closed region was created in the defective aggregate, and a threshold value was set in the closed region. This makes it possible to accurately discriminate granules that could not be discriminated by the three wavelength components of red (R), green (G), and blue (B) conventionally detected by the visible light detection unit. became.

請求項3に係る発明によれば、可視光検出部が検出した赤(R)、緑(G)、青(B)の光のうち、1つの波長成分と、近赤外光検出部が検出した異なる2つの近赤外光成分とに基づいて、複数種(例えば、G・850nmNIR・1550nmNIR、R・1200nmNIR・1550NIR、等々)の三次元光学相関図を作成する。これにより、複数の三次元光学相関図を相対比較することができ、粒状物の判別に最も適した可視光の波長成分を選択可能に構成することが可能となる。 According to the invention of claim 3, one wavelength component of the red (R), green (G), and blue (B) lights detected by the visible light detection unit and the near-infrared light detection unit detect it. Based on the two different near-infrared light components, a three-dimensional optical correlation diagram of a plurality of types (for example, G.850 nmNIR / 1550 nmNIR, R / 1200 nmNIR / 1550NIR, etc.) is created. As a result, a plurality of three-dimensional optical correlation diagrams can be compared relative to each other, and the wavelength component of visible light most suitable for discriminating granules can be selectively configured.

請求項4に係る発明によれば、判別対象である粒状物における近赤外光成分を精度よく検出するため、可視光検出部が検出した粒状物の輪郭に合わせて、当該粒状物の輪郭内の近赤外光成分を検出するようにしている。これにより、高精度に粒状物の良・不良の判別が可能となっている。 According to the invention of claim 4, in order to accurately detect the near-infrared light component in the granular material to be discriminated, the inside of the contour of the granular material is matched with the contour of the granular material detected by the visible light detection unit. I am trying to detect the near-infrared light component of. This makes it possible to discriminate between good and bad granules with high accuracy.

請求項5、6に係る発明によれば、前記閉領域内に閾値を設定するに際し、第1の平面としてマハラノビス距離を最小とする前記マハラノビス距離境界面を利用し、第2の平面として良品集合体の重心と前記外接矩形の長軸方向の一端とを結ぶ平面を利用し、第3の平面として良品集合体の重心と前記外接矩形の長軸方向の他端とを結ぶ平面を利用し、第4の平面として前記外接矩形の一方側の長辺を利用し、第5の平面として前記外接矩形の他方側の長辺を利用し、第6の平面として良品集合体から遠い側の前記外接矩形の一方側短辺を利用することによって、精度の高い良・不良の判別が可能となる。 According to the inventions according to claims 5 and 6, when setting a threshold value in the closed region, the Maharanobis distance boundary surface that minimizes the Maharanobis distance is used as the first plane, and a good product set is used as the second plane. A plane connecting the center of gravity of the body and one end of the circumscribing rectangle in the long axis direction is used, and a plane connecting the center of gravity of the non-defective assembly and the other end of the circumscribing rectangle in the long axis direction is used as the third plane. The long side of one side of the circumscribing rectangle is used as the fourth plane, the long side of the other side of the circumscribing rectangle is used as the fifth plane, and the extrinsic side far from the non-defective aggregate is used as the sixth plane. By using the short side on one side of the rectangle, it is possible to discriminate between good and bad with high accuracy.

請求項7に係る発明によれば、操作者の操作に基づいて、ディスプレイに表示される三次元光学相関図を選択して表示することが可能である。これにより、赤(R)、緑(G)、青(B)の光のうち、1つの波長成分を選択する際に、最も有意差(相関性が高い)のある波長成分を操作者が選択可能となり、精度の高い良・不良の判別が可能となる。 According to the invention of claim 7, it is possible to select and display the three-dimensional optical correlation diagram displayed on the display based on the operation of the operator. As a result, when selecting one wavelength component from the red (R), green (G), and blue (B) lights, the operator selects the wavelength component having the most significant difference (high correlation). This makes it possible to discriminate between good and bad with high accuracy.

請求項8に係る発明によれば、移送される粒状物の前後に第1の検査部と第2の検査部とを設け、それぞれ検査部で可視光画像及び近赤外光画像が得られるので、例えば、少なくとも一方の検査部で不良品の判定結果が出力された場合は、不良品として判別することが可能となり、良・不良の判別精度を向上させることができる。 According to the invention of claim 8, a first inspection unit and a second inspection unit are provided before and after the transferred granular material, and the inspection unit can obtain a visible light image and a near-infrared light image, respectively. For example, when the determination result of a defective product is output by at least one inspection unit, it can be determined as a defective product, and the accuracy of determining whether the product is good or defective can be improved.

請求項9に係る発明によれば、実施形態で示された黒ひまわりの種以外の他の種子や、米などの穀粒に対しても、高い精度で良・不良の判別が可能となる。 According to the invention of claim 9, it is possible to discriminate between good and bad seeds other than the black sunflower seeds shown in the embodiment and grains such as rice with high accuracy.

請求項10に係る発明によれば、複数の良品サンプル及び複数の不良品サンプルに対し、可視光検出部が検出した赤(R)、緑(G)、青(B)の3つの波長成分及び近赤外光検出部が検出した複数の近赤外光成分をパラメータとして多変量解析し、多変量解析の結果に基づいて、可視光検出部が検出した波長成分と、近赤外光検出部が検出した近赤外光成分をプロットして三次元光学相関図を作成し、閾値を設定している。これにより、可視光検出部が検出した赤(R)、緑(G)、青(B)の3つの波長成分と、例えば、850nm、1200nm、1550nm等々の近赤外光成分の相関性を導き出して、良品と不良品とを判別するための最適な三次元光学相関図を作成して閾値を設定することが可能となる。 According to the invention of claim 10, the three wavelength components of red (R), green (G), and blue (B) detected by the visible light detection unit with respect to the plurality of non-defective sample and the plurality of defective samples, and Multivariate analysis is performed using multiple near-infrared light components detected by the near-infrared light detector as parameters, and based on the results of the multivariate analysis, the wavelength components detected by the visible light detector and the near-infrared light detector The near-infrared light component detected by is plotted to create a three-dimensional optical correlation diagram, and the threshold value is set. As a result, the correlation between the three wavelength components of red (R), green (G), and blue (B) detected by the visible light detection unit and the near-infrared light components such as 850 nm, 1200 nm, and 1550 nm is derived. Therefore, it is possible to create an optimum three-dimensional optical correlation diagram for discriminating between a non-defective product and a defective product and set a threshold value.

本発明の第1の実施形態を示す光学式粒状物判別装置の模式断面図である。It is a schematic cross-sectional view of the optical granular matter discriminating apparatus which shows 1st Embodiment of this invention. 本発明の第1の実施形態に係る光学式粒状物判別装置の概略ブロック図である。It is a schematic block diagram of the optical granular matter discriminating apparatus which concerns on 1st Embodiment of this invention. 本発明の第1の実施形態に係る判定部の詳細ブロック図である。It is a detailed block diagram of the determination part which concerns on 1st Embodiment of this invention. 本発明の第1の実施形態に係る粒状物の良品サンプル及び不良品サンプルの画像が示されており、上から順に、CCDカメラ13a、13bにより撮像された可視光画像、第1波長NIRカメラ14−1a、14−1bにより撮像された近赤外光画像、CCDカメラ13a、13bによって得られた粒状物の輪郭に第1波長NIRカメラ14−1a、14−1bによる近赤外光画像を嵌め込んだ物体認識後の近赤外光画像、CCDカメラ13a、13bによって得られた粒状物の輪郭に第2波長NIRカメラ14−2a、14−2bによる近赤外光画像を嵌め込んだ物体認識後の近赤外光画像である。Images of good and defective samples of granular material according to the first embodiment of the present invention are shown, and in order from the top, visible light images captured by the CCD cameras 13a and 13b, and the first wavelength NIR camera 14 The near-infrared light images taken by -1a and 14-1b and the near-infrared light images taken by the first wavelength NIR cameras 14-1a and 14-1b are fitted to the contours of the granules obtained by the CCD cameras 13a and 13b. Object recognition in which the near-infrared light image after the embedded object recognition and the near-infrared light image by the second wavelength NIR cameras 14-2a and 14-2b are embedded in the contour of the granular material obtained by the CCD cameras 13a and 13b. It is a later near-infrared light image. 信号処理部の処理手順を示したフロー図である。It is a flow chart which showed the processing procedure of a signal processing part. 閾値の算出手順を示したフロー図である。It is a flow chart which showed the calculation procedure of the threshold value. 閾値算出に関わる計算式を示した図である。It is a figure which showed the calculation formula related to the threshold value calculation. 本発明の第1の実施形態に係る良品サンプル及び不良品サンプルの三次元空間上におけるG・第1波長NIR・第2波長NIR三次元光学相関図である。6 is a three-dimensional optical correlation diagram of G, a first wavelength NIR, and a second wavelength NIR in a three-dimensional space of a non-defective sample and a defective sample according to the first embodiment of the present invention. 本発明の第1の実施形態に係る良品サンプル及び不良品サンプルの最適二次元平面におけるG・第1波長NIR・第2波長NIR相関図である。It is a G / first wavelength NIR / second wavelength NIR correlation diagram in the optimum two-dimensional plane of a non-defective product sample and a defective product sample according to the first embodiment of the present invention. 最適二次元平面の不良品集合体に慣性等価楕円を当てはめたときの図である。It is a figure when an inertial equivalent ellipse is applied to the defective aggregate of the optimum two-dimensional plane. 慣性等価楕円に外接矩形を適用したときの図である。It is the figure when the circumscribed rectangle is applied to the inertial equivalent ellipse. 慣性等価楕円の外接矩形の長軸方向両端点と良品集合体の重心とを結ぶ2つの直線を作成するときの図である。It is a figure when two straight lines connecting the both end points in the long axis direction of the circumscribed rectangle of the inertial equivalent ellipse and the center of gravity of a good product aggregate are created. 慣性等価楕円を囲む閉領域を形成する際の6つの平面を作成するときの図である。It is a figure at the time of making six planes when forming a closed region surrounding an inertial equivalent ellipse. 二次元平面の作図上の例外を説明する図である。It is a figure explaining the exception in the drawing of a two-dimensional plane. 慣性等価楕円を囲む6つの平面で作成した閾値の算出と、最小(MIN)、中間(MID)及び最大(MAX)の3つの感度レベルとを対応させるときの図である。It is a figure when the calculation of the threshold value created by 6 planes surrounding an inertial equivalent ellipse is made to correspond with 3 sensitivity levels of minimum (MIN), intermediate (MID) and maximum (MAX). 従来の光学式粒状物選別機に係る三次元色分布データである。This is three-dimensional color distribution data related to a conventional optical granular material sorter. 他の実施形態における、判別対象粒状物の模式的な可視光画像及び近赤外光画像である。It is a typical visible light image and near infrared light image of the granular matter to be discriminated in another embodiment.

以下、本発明の実施形態を図面に基づいて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

〔第1の実施形態〕
本発明の第1の実施形態を図に基づいて説明する。なお、本実施形態における光学式粒状物判別装置1は、光学的検査に基づいて決定された閾値を基準として、判別対象となる粒状物の中から、良品である規格に適合した黒ひまわりの種と、黒ひまわりの種に混入した不良品(菌糸体等の有害物質、石、規格外品など)とを判別する装置である。
[First Embodiment]
The first embodiment of the present invention will be described with reference to the drawings. The optical granule discriminating device 1 in the present embodiment is a black sunflower seed that conforms to a standard that is a non-defective product from among the granules to be discriminated based on the threshold value determined based on the optical inspection. It is a device that discriminates between defective products (harmful substances such as mycelium, stones, non-standard products, etc.) mixed in black sunflower seeds.

図1には、光学式粒状物判別装置1の模式断面図が示されている。図示されるように、本実施形態の光学式粒状物判別装置1は、機体2内に、粒状物の移送手段である傾斜したシュート3と、粒状物を貯留する貯留タンク4と、貯留タンク4からシュート3の上端に粒状物を搬送する振動フィーダ5と、シュート3から落下する粒状物に光学的検査を行う検査部6と、検査部6の下方に設けられたエジェクタノズル7と、エジェクタノズル7の噴風を受けずに落下した良品を受ける良品回収部8と、エジェクタノズル7の噴風で吹き飛ばされた不良品を回収する不良品回収部9とがそれぞれ設置されて構成される。また、機体2の前面側には、各種メンテナンスを行うための開閉可能なドア10と、操作のためのタッチパネル(入力手段)及びモニタを兼ねるディスプレイ11とが少なくとも設置されている。 FIG. 1 shows a schematic cross-sectional view of the optical granular material discriminating device 1. As shown in the figure, the optical granular matter discriminating device 1 of the present embodiment has an inclined chute 3 which is a means for transferring granular matter, a storage tank 4 for storing granular matter, and a storage tank 4 in the machine body 2. A vibration feeder 5 that conveys particles to the upper end of the chute 3, an inspection unit 6 that optically inspects the particles that fall from the chute 3, an ejector nozzle 7 provided below the inspection unit 6, and an ejector nozzle. A non-defective product collection unit 8 that receives the non-defective product that has fallen without receiving the blown air of the ejector nozzle 7 and a defective product collecting unit 9 that collects the defective product that has been blown off by the blown air of the ejector nozzle 7 are installed and configured. Further, on the front side of the machine body 2, at least a door 10 that can be opened and closed for performing various maintenance and a display 11 that also serves as a touch panel (input means) and a monitor for operation are installed.

粒状物に光学的検査を行う検査部6は、粒状物の落下軌跡aを挟んで設置されたフロントボックス12a及びリヤボックス12bの内部に収容されている。フロントボックス12a内には、可視光検出部であるCCDカメラ13aと、近赤外光検出部である第1波長NIRカメラ14−1a及び第2波長NIRカメラ14−2aと、可視光源15aと、近赤外光源16aと、後述するCCDカメラ13bのバックグラウンド17aとが収容されている。また、リヤボックス12b内には、可視光検出部であるCCDカメラ13bと、近赤外光検出部である第1波長NIRカメラ14−1b及び第2波長NIRカメラ14−2bと、可視光源15bと、近赤外光源16bと、上記CCDカメラ13aのバックグラウンド17bとが収容されている。なお、本実施形態の第1波長NIRカメラ14−1a、14−1bは、850nmの近赤外光を検出して画像撮影することが可能となっており、第2波長NIRカメラ14−2a、14−2bは、1550nmの近赤外光を検出して画像撮影することが可能となっている。 The inspection unit 6 that performs an optical inspection on the granular material is housed inside the front box 12a and the rear box 12b installed with the falling locus a of the granular material in between. Inside the front box 12a, there are a CCD camera 13a which is a visible light detection unit, a first wavelength NIR camera 14-1a and a second wavelength NIR camera 14-2a which are near infrared light detection units, and a visible light source 15a. A near-infrared light source 16a and a background 17a of a CCD camera 13b, which will be described later, are accommodated. Further, in the rear box 12b, a CCD camera 13b which is a visible light detection unit, a first wavelength NIR camera 14-1b and a second wavelength NIR camera 14-2b which are near infrared light detection units, and a visible light source 15b And the near-infrared light source 16b and the background 17b of the CCD camera 13a are accommodated. The first wavelength NIR cameras 14-1a and 14-1b of the present embodiment can detect near-infrared light of 850 nm and take an image, and the second wavelength NIR cameras 14-2a, 14-2b is capable of detecting near-infrared light having a wavelength of 1550 nm and taking an image.

フロントボックス12a及びリヤボックス12bの、粒状物の落下軌跡aに面する側には透明な板状部材から成る透光部18a、18bが設けられている。そして、当該透光部18a、18bを介して、フロントボックス12a内のバックグラウンド17aがリヤボックス12b内のCCDカメラ13bに対向し、リヤボックス12b内のバックグラウンド17bがフロントボックス12a内のCCDカメラ13aに対向して配置されている。 Translucent portions 18a and 18b made of transparent plate-shaped members are provided on the sides of the front box 12a and the rear box 12b facing the falling locus a of the granular material. Then, the background 17a in the front box 12a faces the CCD camera 13b in the rear box 12b via the translucent portions 18a and 18b, and the background 17b in the rear box 12b is the CCD camera in the front box 12a. It is arranged so as to face 13a.

図2には、本実施形態の光学式粒状物判別装置1の概略ブロック図が示されている。図示されるように、粒状物から反射又は粒状物を透過した可視光成分を検出するCCDカメラ13a、13b、及び、粒状物から反射又は粒状物を透過した近赤外光成分を検出する第1波長NIRカメラ14−1a、14−1b、第2波長NIRカメラ14−2a、14−2bは判定部19に接続され、さらに、当該判定部19内の画像データを処理する信号処理部20に電気的に接続されている。 FIG. 2 shows a schematic block diagram of the optical granular material discriminating device 1 of the present embodiment. As shown, the CCD cameras 13a and 13b for detecting the visible light component reflected from the granules or transmitted through the granules, and the first near-infrared light component for detecting the reflected or transmitted near-infrared light component from the granules. The wavelength NIR cameras 14-1a and 14-1b and the second wavelength NIR cameras 14-2a and 14-2b are connected to the determination unit 19, and the signal processing unit 20 that processes the image data in the determination unit 19 is electrically connected. Is connected.

また、信号処理部20はCPU/メモリ部21に双方向通信可能に接続されている。CPU/メモリ部21では、信号処理部20で処理された画像を格納し、後述する演算処理を行って粒状物の判別のための閾値を計算することが可能となっている。さらに、信号処理部20は、エジェクタ駆動回路22を介してエジェクタノズル7が接続されており、CPU/メモリ部21にはタッチパネル等の入力手段を有するディスプレイ11が接続されている。 Further, the signal processing unit 20 is connected to the CPU / memory unit 21 so as to be capable of bidirectional communication. The CPU / memory unit 21 can store the image processed by the signal processing unit 20 and perform arithmetic processing described later to calculate a threshold value for discriminating granular matter. Further, the signal processing unit 20 is connected to the ejector nozzle 7 via the ejector drive circuit 22, and the CPU / memory unit 21 is connected to the display 11 having an input means such as a touch panel.

図3には、前述した判定部19の詳細ブロック図が示されている。図示されるように、信号処理部20は、CCDカメラ13a、13b及び第1波長NIRカメラ14−1a、14−1b、第2波長NIRカメラ14−2a、14−2bによって撮像された画像データを一時的に格納する画像データ取得部23と、CPU/メモリ部21で算出された閾値データを格納する閾値データ格納部24と、上記画像データを2値化処理する画像処理部25と、撮像された粒状物が良品であるのか不良品であるのかを判別する良・不良判別部26とを備えている。そして、良・不良判別部26からの信号をエジェクタ駆動回路22へ送り、エジェクタノズル7のバルブを開閉するように構成されている。 FIG. 3 shows a detailed block diagram of the determination unit 19 described above. As shown, the signal processing unit 20 receives image data captured by the CCD cameras 13a and 13b, the first wavelength NIR cameras 14-1a and 14-1b, and the second wavelength NIR cameras 14-2a and 14-2b. The image data acquisition unit 23 that temporarily stores the image data, the threshold data storage unit 24 that stores the threshold data calculated by the CPU / memory unit 21, and the image processing unit 25 that binarizes the image data are imaged. It is provided with a good / bad discriminating unit 26 for discriminating whether the granular material is a good product or a defective product. Then, a signal from the good / bad discriminating unit 26 is sent to the ejector drive circuit 22, and the valve of the ejector nozzle 7 is opened / closed.

図3に示されるように、CPU/メモリ部21は、画像データ取得部23からの画像データを格納する画像データ格納部27と、画像データ格納部27に格納された画像データに基づいて閾値を算出する閾値計算部28と、ディスプレイ11の入力手段からの操作信号を受信したり、画像データをディスプレイ11に出力する信号送受信部29とを少なくとも備えている。 As shown in FIG. 3, the CPU / memory unit 21 sets a threshold value based on the image data storage unit 27 that stores the image data from the image data acquisition unit 23 and the image data stored in the image data storage unit 27. At least a threshold calculation unit 28 for calculation and a signal transmission / reception unit 29 for receiving an operation signal from the input means of the display 11 and outputting image data to the display 11 are provided.

以下、本実施形態の光学式粒状物判別装置1による粒状物の判別処理手順を説明する。図5には、信号処理部20の処理手順を示すフロー図が示されている。図5中、ステップ101〜103は、操作者があらかじめ準備した粒状物の良品サンプル及び不良品(異物を含む)サンプルをそれぞれシュート3に流し、良品、不良品(異物を含む)に係る三次元光学相関データを判定部19に学習させる良品パターン/不良品パターン学習工程である。 Hereinafter, the procedure for discriminating granular matter by the optical granular material discriminating device 1 of the present embodiment will be described. FIG. 5 shows a flow chart showing a processing procedure of the signal processing unit 20. In FIGS. 5, in steps 101 to 103, a non-defective product sample and a defective product (including foreign matter) sample prepared in advance by the operator are flowed through the chute 3, respectively, and three-dimensionally relating to the non-defective product and the defective product (including foreign matter). This is a non-defective / defective pattern learning step in which the determination unit 19 learns the optical correlation data.

図5中、ステップ104〜108は、良品パターンと不良品パターンとの境界となる閾値を自動的に算出する閾値算出工程である。ステップ109は、閾値算出工程で算出された閾値を自動的に調整する閾値決定工程である。 In FIG. 5, steps 104 to 108 are threshold value calculation steps for automatically calculating a threshold value that is a boundary between a non-defective product pattern and a defective product pattern. Step 109 is a threshold value determination step that automatically adjusts the threshold value calculated in the threshold value calculation step.

(良品パターン/不良品パターン学習工程)
まずステップ101において、予め準備した良品サンプルをシュート3に流し、シュート3から落下した良品サンプルをCCDカメラ13a、13b及び第1波長NIRカメラ14−1a、14−1b、第2波長NIRカメラ14−2a、14−2bで撮像する。撮像された良品サンプルの画像データは、画像データ取得部23を経て画像データ格納部27に格納され、ディスプレイ11に表示される。
(Good product pattern / defective product pattern learning process)
First, in step 101, the non-defective sample prepared in advance is flowed to the chute 3, and the non-defective sample dropped from the chute 3 is used as the CCD cameras 13a and 13b, the first wavelength NIR cameras 14-1a and 14-1b, and the second wavelength NIR camera 14-. Images are taken at 2a and 14-2b. The image data of the captured non-defective sample is stored in the image data storage unit 27 via the image data acquisition unit 23, and is displayed on the display 11.

次いで、良品サンプルの場合と同様にして、不良品サンプルをシュート3に流し、不良品サンプルをCCDカメラ13a、13b及び第1波長NIRカメラ14−1a、14−1b、第2波長NIRカメラ14−2a、14−2bで撮像する。撮影された不良品サンプルの画像データは、画像データ取得部23を経て画像データ格納部27に格納され、ディスプレイ11に表示される。ここまでは、実際の選別作業ではなく、後述する閾値を決定するための準備作業である。なお、良品パターン/不良品パターン学習工程においては、良品サンプルと不良品サンプルが予め選別されているので、エジェクタノズル7は稼働させない。 Next, in the same manner as in the case of the non-defective sample, the defective sample is flowed to the chute 3, and the defective sample is used as the CCD cameras 13a and 13b and the first wavelength NIR cameras 14-1a and 14-1b and the second wavelength NIR camera 14-. Images are taken at 2a and 14-2b. The image data of the photographed defective sample is stored in the image data storage unit 27 via the image data acquisition unit 23 and displayed on the display 11. Up to this point, it is not the actual sorting work, but the preparatory work for determining the threshold value described later. In the non-defective product pattern / defective product pattern learning step, since the non-defective product sample and the defective product sample are selected in advance, the ejector nozzle 7 is not operated.

次いで、ステップ102では、ディスプレイ11上に表示された各サンプルの画像を再度操作者が目視によって確認し、良品となすべきもの、不良品(異物を含む)となすべきものを入力操作によって指定する。なお、図4には、粒状物の良品サンプル及び不良品サンプルの画像が示されており、上から順に、CCDカメラ13a、13bにより撮像された可視光画像、第1波長NIRカメラ14−1a、14−1bにより撮像された近赤外光画像、CCDカメラ13a、13bによって得られた粒状物の輪郭に第1波長NIRカメラ14−1a、14−1bによる近赤外光画像を嵌め込んだ物体認識後の近赤外光画像、CCDカメラ13a、13bによって得られた粒状物の輪郭に第2波長NIRカメラ14−2a、14−2bによる近赤外光画像を嵌め込んだ物体認識後の近赤外光画像がそれぞれ上から順に示されている。すなわち、CCDカメラ13a、13bによる可視光画像は粒状物の輪郭がはっきりしているが、各NIRカメラによる近赤外光画像は粒状物の輪郭が不明瞭である。そこで、CCDカメラ13a、13bによって得られた粒状物の輪郭に、各NIRカメラによる近赤外光画像を嵌め込むことで、物体認識後の近赤外光画像が表示されるように構成されている。 Next, in step 102, the operator visually confirms the image of each sample displayed on the display 11 again, and specifies what should be a non-defective product and what should be a defective product (including foreign matter) by an input operation. .. In addition, FIG. 4 shows images of a good sample and a defective sample of granular material, and in order from the top, visible light images captured by the CCD cameras 13a and 13b, the first wavelength NIR camera 14-1a, and the like. An object in which the near-infrared light images taken by 14-1b and the near-infrared light images taken by the first wavelength NIR cameras 14-1a and 14-1b are embedded in the contours of the granules obtained by the CCD cameras 13a and 13b. Near-infrared light image after recognition, near after object recognition in which the near-infrared light image by the second wavelength NIR cameras 14-2a and 14-2b is fitted to the contour of the granular material obtained by the CCD cameras 13a and 13b. The infrared light images are shown in order from the top. That is, the visible light images taken by the CCD cameras 13a and 13b have a clear outline of the granules, but the near-infrared light images taken by each NIR camera have an unclear outline of the granules. Therefore, by fitting the near-infrared light image obtained by each NIR camera into the contour of the granular material obtained by the CCD cameras 13a and 13b, the near-infrared light image after object recognition is displayed. There is.

ここで、CCDカメラ13a、13bによって得られた粒状物の輪郭に、各NIRカメラによって撮像された近赤外光画像を嵌め込む際、CCDカメラ13a、13bによって得られた粒状物の可視光画像と、各NIRカメラによる粒状物の近赤外光画像にずれがあると、ずれている部分を不良部であると誤認識して、判別不良につながるおそれがある。したがって、可視光画像から得られる粒状物の輪郭から物体認識を行い、粒状物の輪郭に近赤外光画像を重ねたときにずれが生じないように、CCDカメラ13a、13b及び各NIRカメラの向きや位置を調整することが好ましい。 Here, when the near-infrared light images captured by the NIR cameras are fitted into the contours of the granules obtained by the CCD cameras 13a and 13b, the visible light images of the granules obtained by the CCD cameras 13a and 13b are used. If there is a deviation in the near-infrared light image of the granular material obtained by each NIR camera, the displaced portion may be mistakenly recognized as a defective portion, which may lead to poor discrimination. Therefore, object recognition is performed from the contour of the granular material obtained from the visible light image, and the CCD cameras 13a, 13b and each NIR camera are used so that the near-infrared light image is not displaced when the near-infrared light image is superimposed on the contour of the granular material. It is preferable to adjust the orientation and position.

また、本実施形態では、図4に示されるように、第1波長NIRカメラ14−1a、14−1bによって波長成分850nmの近赤外光画像と、第2波長NIRカメラ14−2a、14−2bによって波長成分1550nmの近赤外光画像とが撮像される。すなわち、図4の不良品No,1及びNo,2のように、CCD画像及び850nmの近赤外光画像から、良否の判別が困難である場合、1550nmの近赤外光画像が良品の不良品とで異なるため、これに基づいて判別対象物の良否を精度良く判別することが可能となる。 Further, in the present embodiment, as shown in FIG. 4, the first wavelength NIR cameras 14-1a and 14-1b provide a near-infrared optical image having a wavelength component of 850 nm and the second wavelength NIR cameras 14-2a and 14-. A near-infrared light image having a wavelength component of 1550 nm is imaged by 2b. That is, when it is difficult to determine the quality from the CCD image and the 850 nm near-infrared light image as in the defective products No. 1 and No. 2 in FIG. 4, the 1550 nm near-infrared light image is not a good product. Since it differs from a non-defective product, it is possible to accurately discriminate the quality of the discriminating object based on this.

次に、ステップ103に進み、多数の良品サンプル及び不良品サンプルの画像データに対し、赤(R)、緑(G)、青(B)の光の波長のうち、一つの波長成分と、二つの近赤外光成分(以下、「NIR」と称する場合がある)を三次元空間にプロットして、図8に示されるような、三次元光学相関図を作成する。これにより、従来、図16に示されるように、赤(R)、緑(G)、青(B)の光の波長成分では、良品と不良品とが判別できなかったという問題を効果的に解決することが可能となる。なお、本実施形態では、図8に図示されるように、G、第1波長NIR、第2波長NIR各軸の三次元空間に、良品サンプル及び不良品サンプルのプロットを行っており、第1波長NIRの波長成分は850nm、第2波長NIRの波長成分は1550nmとしている。また、赤(R)、緑(G)、青(B)の光の波長成分のうち、いずれの波長成分を選択するのかは、三次元空間へのプロット態様をディスプレイ11にて確認し、最も有意差のある(相関性の高い)波長成分を操作者が入力手段にて選択する。もちろん、操作者が選択することなく判定部19において自動的に選択するようにしてもよい。 Next, the process proceeds to step 103, and one wavelength component of the red (R), green (G), and blue (B) light wavelengths is added to the image data of a large number of non-defective and defective samples. Two near-infrared light components (hereinafter, sometimes referred to as "NIR") are plotted in a three-dimensional space to create a three-dimensional optical correlation diagram as shown in FIG. As a result, as shown in FIG. 16, the problem that a non-defective product and a defective product cannot be effectively distinguished by the wavelength components of red (R), green (G), and blue (B) light is effectively solved. It becomes possible to solve it. In this embodiment, as shown in FIG. 8, a good sample and a defective sample are plotted in the three-dimensional space of each axis of G, the first wavelength NIR, and the second wavelength NIR, and the first The wavelength component of the wavelength NIR is 850 nm, and the wavelength component of the second wavelength NIR is 1550 nm. In addition, which of the wavelength components of red (R), green (G), and blue (B) light is to be selected is determined by confirming the plotting mode in the three-dimensional space on the display 11. The operator selects a wavelength component having a significant difference (highly correlated) by the input means. Of course, the determination unit 19 may automatically select the item without the operator selecting the item.

(閾値算出工程)
ステップ104に進むと、良品に係るドット(図8の黒の点)で形成される良品集合体と不良品に係るドット(図8のグレーの点)で形成される不良品集合体とに大まかな分類が行われ、ステップ105では、良品集合体/不良品集合体の集合体毎の多変量データの統計量が算出される。
(Threshold calculation process)
Proceeding to step 104, the non-defective product aggregate formed by the dots related to the non-defective product (black dots in FIG. 8) and the defective product aggregate formed by the dots related to the defective product (gray dots in FIG. 8) are roughly classified. In step 105, a statistic of multivariate data for each aggregate of non-defective product aggregate / defective product aggregate is calculated.

この統計量の算出は、重心ベクルや分散共分散行列の演算により行うとよい。例えば、重心ベクトルの演算式は、図7の(1)式によって表される。また、分散共分散行列の演算式は、図7の(2)式によって表される。 The calculation of this statistic may be performed by the calculation of the center of gravity vehicle or the variance-covariance matrix. For example, the calculation formula of the center of gravity vector is represented by the formula (1) in FIG. The arithmetic expression of the variance-covariance matrix is represented by the equation (2) of FIG.

次に、良品集合体及び不良品集合体の各重心ベクトルからのマハラノビス平方距離を求める。ここで、マハラノビス平方距離は、多変量データの値の関数となっており、マハラノビス平方距離の演算式は、図7の(3)式によって表される。 Next, the Mahalanobis square distance from each center of gravity vector of the non-defective product aggregate and the defective product aggregate is obtained. Here, the Mahalanobis square distance is a function of the value of the multivariate data, and the calculation formula of the Mahalanobis square distance is expressed by the formula (3) of FIG.

次に、ステップ106では、各集合体間の境界面を求める。この境界面を決定する際は、マハラノビス平方距離が最小となる集合体に多変量データの値を分類し、多変量空間内のすべての多変量データの値について属する集合体を決定する。そして、図8の符号mで示す境界面が決定されることになる。 Next, in step 106, the boundary surface between each aggregate is obtained. When determining this interface, the values of the multivariate data are classified into the aggregates that minimize the Mahalanobis square distance, and the aggregates that belong to all the values of the multivariate data in the multivariate space are determined. Then, the boundary surface represented by the reference numeral m in FIG. 8 is determined.

次に、ステップ107では、良品集合体と不良品集合体との重心間距離が最も離れるユークリッド距離を選択し、閾値有効範囲が広い境界面を探索する。このとき、良品集合体の重心ベクトルをP(Xp1,Xp2,Xp3,・・・Xpn)、不良品集合体の重心ベクトルをQ(Xq1,Xq2,Xq3,・・・Xqn)とすると、この間のユークリッド平方距離は、図7の(4)式によって表される。 Next, in step 107, the Euclidean distance at which the distance between the centers of gravity of the non-defective product aggregate and the defective product aggregate is the longest is selected, and the boundary surface having a wide threshold effective range is searched. At this time, if the center of gravity vector of the non-defective product aggregate is P (Xp1, Xp2, Xp3, ... Xpn) and the center of gravity vector of the defective product aggregate is Q (Xq1, Xq2, Xq3, ... Xqn), then The Euclidean square distance is expressed by the equation (4) in FIG.

次に、ステップ107では、各集合体間の境界面を求める。この境界面を決定する際は、ユークリッド平方距離が最大となる集合体に多変量データの値を分類し、図8の符号uで示す境界面が決定されることになる。 Next, in step 107, the boundary surface between the aggregates is obtained. When determining this boundary surface, the values of the multivariate data are classified into the aggregate having the maximum Euclidean square distance, and the boundary surface indicated by the symbol u in FIG. 8 is determined.

そして、上記マハラノビス距離を最小にする境界面の平面mの方程式は図7の(5)式で表され、上記ユークリッド距離を最大とする境界面の平面uの方程式は図7の(6)式で表されるとすると、図8に示すような2つの特徴的な平面mと平面uが得られることになる。そして、ステップ108にて、図8の三次元光学相関図を回転させ、これらの異なる2つの平面mと平面uとが交差して線分に見える位置に視線方向(視線ベクトル)を一致させる。これにより、図8に示される三次元空間から、図9に示されるような二次元平面に次元を減少させた最適な閾値が求められる。したがって、信号処理を大幅に簡略化し、操作者が扱いやすい光学式粒状物判別装置1を提供することができる。 The equation of the plane m of the boundary surface that minimizes the Mahalanobis distance is expressed by the equation (5) of FIG. 7, and the equation of the plane u of the boundary surface that maximizes the Euclidean distance is the equation (6) of FIG. If it is represented by, two characteristic planes m and u as shown in FIG. 8 can be obtained. Then, in step 108, the three-dimensional optical correlation diagram of FIG. 8 is rotated so that the line-of-sight direction (line-of-sight vector) coincides with a position where these two different planes m and u intersect and appear as a line segment. As a result, the optimum threshold value obtained by reducing the dimension from the three-dimensional space shown in FIG. 8 to the two-dimensional plane as shown in FIG. 9 is obtained. Therefore, it is possible to provide an optical granular material discriminating device 1 that greatly simplifies signal processing and is easy for an operator to handle.

図7の(5)式の平面mと、図7の(6)式の平面uとが交差した線分L(図8等参照)は、図7の(7)式にて求めることができる。そして、2つの平面m、平面uの法線ベクトルの外積計算により、交線の方向ベクトルeを求めると、図7の(8)式となる。そして、交線Lが通る点Pは、図7の(9)式となる。以上のように交線Lが求まると、交線L上に視点を置くような最適二次元平面におけるG・第1波長NIR・第2波長NIR相関図(図9参照)へ変換することが可能となる。 The line segment L (see FIG. 8 and the like) at which the plane m of the equation (5) of FIG. 7 and the plane u of the equation (6) of FIG. 7 intersect can be obtained by the equation (7) of FIG. .. Then, when the direction vector e of the line of intersection is obtained by the outer product calculation of the normal vectors of the two planes m and u, the equation (8) in FIG. 7 is obtained. Then, the point P through which the line of intersection L passes is given by the equation (9) in FIG. Once the line of intersection L is obtained as described above, it can be converted into a G / first wavelength NIR / second wavelength NIR correlation diagram (see FIG. 9) in an optimum two-dimensional plane in which the viewpoint is placed on the line of intersection L. It becomes.

(閾値算出工程)
次に、ステップ109では、図9の二次元平面上での交線Lに基づき、自動的に良品と不良品との判別閾値が算出されることになる。そこで、閾値算出工程の詳細について図6のフロー図に基づいて以下に説明する。
(Threshold calculation process)
Next, in step 109, the discrimination threshold between the non-defective product and the defective product is automatically calculated based on the line of intersection L on the two-dimensional plane of FIG. Therefore, the details of the threshold value calculation process will be described below based on the flow chart of FIG.

図6のフロー図は、図5のステップ109の閾値算出工程を詳細に示したフロー図である。まず、ステップ201において、図9のグレーの点で示す不良品集合体に慣性等価楕円を当てはめる(図10参照)。ここで、慣性等価楕円とは、不良品集合体とほぼ等しい重心周りの二次モーメントと等価な楕円を表す特徴量であり、不良品集合体の広がり方の特徴をつかむことができる。実際には、不良品領域を不良品集合体の分布よりも十分に大きくするため、長軸の長さを標準偏差の倍数(正の整数倍)、短軸の長さを標準偏差の倍数(正の整数倍)として慣性等価楕円を作成する。これは経験値であって、粒状物の種類により変化するので、自由に変更できるようにするのが好ましい。 The flow chart of FIG. 6 is a flow chart showing in detail the threshold value calculation step of step 109 of FIG. First, in step 201, an inertial equivalent ellipse is applied to the defective assembly indicated by the gray dots in FIG. 9 (see FIG. 10). Here, the inertial equivalent ellipse is a feature quantity representing an ellipse equivalent to a quadratic moment around the center of gravity, which is substantially equal to the defective product aggregate, and it is possible to grasp the characteristics of how the defective product aggregate spreads. In practice, the length of the major axis is a multiple of the standard deviation (a positive integer multiple) and the length of the minor axis is a multiple of the standard deviation (in order to make the defective region sufficiently larger than the distribution of the defective aggregate). Create an inertial equivalent ellipse as a positive integer multiple). This is an empirical value and changes depending on the type of granules, so it is preferable to be able to change it freely.

そして、ステップ202において、慣性等価楕円の重心G及び長軸V方向の傾き角Θを求め、次いで、ステップ203において、長軸Vの距離、短軸Wの距離を算出していく(図10参照)。 Then, in step 202, the center of gravity G of the inertial equivalent ellipse and the inclination angle Θ in the major axis V direction are obtained, and then in step 203, the distance of the major axis V and the distance of the minor axis W are calculated (see FIG. 10). ).

ステップ204においては、上記慣性等価楕円において、短軸に平行で長軸の両端点を通る2直線と、長軸に平行で短軸の両端点を通る2直線を引く。すなわち、4つの直線によって前記慣性等価楕円の外接矩形を作成する(図11参照)。この外接矩形が自動感度作成時の仮の基準となる。 In step 204, in the inertial equivalent ellipse, two straight lines parallel to the short axis and passing through both end points of the long axis and two straight lines parallel to the long axis and passing through both end points of the short axis are drawn. That is, the circumscribing rectangle of the inertial equivalent ellipse is created by the four straight lines (see FIG. 11). This circumscribing rectangle serves as a tentative reference when creating automatic sensitivity.

次に、ステップ205においては、良品集合体側の重心を算出する。これは全ての良品データの単純平均を算出することで求められる(図11参照)。 Next, in step 205, the center of gravity on the non-defective product aggregate side is calculated. This is obtained by calculating a simple average of all non-defective product data (see FIG. 11).

そして、良品集合体と不良品集合体との関係性を求めるために以下の処理を行う。すなわち、ステップ206では、ステップ205で求めた良品集合体側の重心と、ステップ204で求めた不良品集合体側の外接矩形の長軸方向の両端点とを結び、2つの直線(図12、符号(2)及び(3)の直線)を作成する。 Then, the following processing is performed in order to obtain the relationship between the non-defective product aggregate and the defective product aggregate. That is, in step 206, the center of gravity on the non-defective product aggregate side obtained in step 205 and the both end points of the circumscribing rectangle on the defective product aggregate side obtained in step 204 are connected in the long axis direction, and two straight lines (FIG. 12, reference numerals (FIG. 12, reference numerals) 2) and (3) straight line) are created.

以上より、不良品集合体に当てはめた慣性等価楕円を囲んで閉領域を形成する6つの平面が作成される。すなわち、図13に示すように、慣性等価楕円を囲む6つの平面として、第1の平面はマハラノビス距離を最小とする境界面(1)、第2の平面は良品集合体側の重心と不良品集合体側の外接矩形の長軸方向の一端とを結ぶ平面(2)、第3の平面は良品集合体側の重心と不良品集合体側の外接矩形の長軸方向の他端とを結ぶ平面(3)、第4の平面は外接矩形の一方側の長辺(4)、第5の平面は外接矩形の他方側の長辺(5)、及び第6の平面は良品集合体から遠い側の外接矩形の一方側短辺(6)となる。 From the above, six planes forming a closed region surrounding the inertial equivalent ellipse fitted to the defective aggregate are created. That is, as shown in FIG. 13, as six planes surrounding the inertial equivalent ellipse, the first plane is the boundary plane (1) that minimizes the Maharanobis distance, and the second plane is the center of gravity on the good product aggregate side and the defective product set. The plane connecting one end of the circumscribing rectangle on the body side in the long axis direction (2), the third plane is the plane connecting the center of gravity on the good product aggregate side and the other end of the circumscribing rectangle on the defective product assembly side in the long axis direction (3). , The fourth plane is the long side (4) on one side of the circumscribing rectangle, the fifth plane is the long side (5) on the other side of the circumscribing rectangle, and the sixth plane is the circumscribing rectangle on the side far from the good product aggregate. It is the short side (6) on one side.

なお、上記閉領域を形成する6つの平面(図13、符号(1)乃至符号(6))は、外接矩形を作成するなどの作図によって求めたものであるが、これに限らず、上記作図により作成するといった複雑な演算処理を単純な配列の参照処理で置き換えて効率化を図るべく、あらかじめルックアップテーブル(LUT)に置き換えて、メモリなどに記憶させておくこともできる。 The six planes (FIG. 13, reference numerals (1) to (6)) forming the closed region are obtained by drawing such as creating an circumscribing rectangle, but the drawing is not limited to this. In order to improve efficiency by replacing complicated arithmetic processing such as being created by the above with a simple array reference processing, it is possible to replace it with a look-up table (LUT) in advance and store it in a memory or the like.

なお、上記段落0044の平面の作図上の例外として、各集合体の重心間の直線と境界面(1)とのなす角度γ(図14参照)、及び長軸と境界面(1)とのなす角度ω(図14参照)がともに45°より大きい場合には、前記第4の平面及び第5の平面は短辺側となり、前記第6の平面は長辺側となる。 As an exception to the drawing of the plane in paragraph 0044, the angle γ (see FIG. 14) formed by the straight line between the centers of gravity of each aggregate and the boundary surface (1), and the major axis and the boundary surface (1). When both angles ω (see FIG. 14) are larger than 45 °, the fourth plane and the fifth plane are on the short side, and the sixth plane is on the long side.

次に、図6のステップ208では、感度の調整が行われる。感度レベルとしては、その範囲が0〜100の数値レベルで表される。すなわち、感度レベル0のときは最小感度(MIN)であって、良品と不良品との判別ができず、選別の際に良品に不良品が混じるレベルであり、感度が鈍い。感度レベル50のときは中感度(MID)であって、良品と不良品とが精度よく判別できる。感度レベル100のときは最大感度(MAX)であって、良品と不良品とを極めて精度よく判別できるが、不良品とともに良品をも選別して歩留まりが悪い。 Next, in step 208 of FIG. 6, the sensitivity is adjusted. As the sensitivity level, the range is represented by a numerical level of 0 to 100. That is, when the sensitivity level is 0, the sensitivity is the minimum sensitivity (MIN), and it is not possible to distinguish between a non-defective product and a defective product, and the non-defective product is mixed with the defective product at the time of sorting, and the sensitivity is low. When the sensitivity level is 50, the sensitivity is medium (MID), and a good product and a defective product can be accurately discriminated from each other. When the sensitivity level is 100, the maximum sensitivity (MAX) is obtained, and a good product and a defective product can be discriminated with extremely high accuracy. However, the good product is also selected together with the defective product and the yield is poor.

また、図15に示すように、前述の慣性等価楕円を囲む6つの平面で作成した閾値の算出と、上記最小感度(MIN)、中感度(MID)及び最大感度(MAX)の3つの感度レベルとの対応関係は、以下のとおりとなる。 Further, as shown in FIG. 15, the calculation of the threshold value created by the six planes surrounding the inertial equivalent ellipse described above, and the three sensitivity levels of the above-mentioned minimum sensitivity (MIN), medium sensitivity (MID), and maximum sensitivity (MAX). The correspondence with is as follows.

最小感度(MIN)は、第6の平面(6)、中感度(MID)は、第1の平面(1)、最大感度(MAX)は、第2の平面(2)と第3の平面(3)とのなす角を2等分する直線と垂直となる直線で形成される第7の平面(7)とそれぞれ同じになる。つまり、図15の第6の平面(6)、第1の平面(1)及び第7の平面(7)のそれぞれに、上記感度レベルが設定されており、例えば、感度レベルが中感度(MID)に設定されれば、図15上の第1の平面(1)よりも上方が良品領域、下方が不良品領域となって、図示される粒状物Aは良品、粒状物Bは不良品として良・不良判別部26によって判定される。 The minimum sensitivity (MIN) is the sixth plane (6), the medium sensitivity (MID) is the first plane (1), and the maximum sensitivity (MAX) is the second plane (2) and the third plane (3). It is the same as the seventh plane (7) formed by a straight line that divides the angle formed by 3) into two equal parts and a straight line that is perpendicular to the straight line. That is, the sensitivity level is set in each of the sixth plane (6), the first plane (1), and the seventh plane (7) in FIG. 15, for example, the sensitivity level is medium sensitivity (MID). ), The area above the first plane (1) on FIG. 15 is a non-defective product region, and the region below is a defective product region. It is determined by the good / bad determination unit 26.

上記のような第1の平面、第6の平面及び第7の平面により作成した3つの閾値と、最小感度(MIN)、中感度(MID)及び最大感度(MAX)からなる3つの感度レベルとの対応付けは、ディスプレイ11上に配置した感度作成ボタン(図示略)をタッチすることで自動的に作成されるようになる。また、図8の三次元空間から図9の二次元平面に次元を減少させて閾値が算出されるため、信号処理を大幅に簡略化することができる。 Three thresholds created by the first plane, the sixth plane, and the seventh plane as described above, and three sensitivity levels consisting of the minimum sensitivity (MIN), the medium sensitivity (MID), and the maximum sensitivity (MAX). The correspondence of is automatically created by touching the sensitivity creation button (not shown) arranged on the display 11. Further, since the threshold value is calculated by reducing the dimension from the three-dimensional space of FIG. 8 to the two-dimensional plane of FIG. 9, signal processing can be greatly simplified.

閾値計算部28において前述したようなフローに基づいて決定された閾値は、信号処理部20の閾値データ格納部24に格納される。続いて、実際の判別作業を行い、エジェクタノズル7を駆動可能とした状態で、判別対象となる粒状物を貯留タンク4からシュート3に流す。当該シュート3から落下した粒状物が検査部6に達すると、この粒状物をCCDカメラ13a、13b及び第1波長NIRカメラ14−1a、14−1b、第2波長NIRカメラ14−2a、14−2bが撮像する。 The threshold value determined by the threshold value calculation unit 28 based on the flow as described above is stored in the threshold value data storage unit 24 of the signal processing unit 20. Subsequently, the actual discrimination operation is performed, and the granular material to be discriminated is flowed from the storage tank 4 to the chute 3 in a state where the ejector nozzle 7 can be driven. When the granules dropped from the chute 3 reach the inspection unit 6, the granules are transferred to the CCD cameras 13a, 13b, the first wavelength NIR cameras 14-1a, 14-1b, and the second wavelength NIR cameras 14-2a, 14-. 2b takes an image.

良・不良判別部26は、閾値データ格納部24から閾値を読み込み、この閾値を基準にして、CCDカメラ13a、13b及び第1波長NIRカメラ14−1a、14−1b、第2波長NIRカメラ14−2a、14−2bが撮像した画像データから緑(G)の波長成分及び二つの近赤外光成分を用いて、粒状物が良品であるか不良品であるか判別する。もちろん、良品と比較して明らかな色彩上の相違がある不良品の場合は、緑(G)の波長成分のみで良・不良を判別することができる。 The good / bad discriminating unit 26 reads a threshold value from the threshold data storage unit 24, and based on this threshold value, the CCD cameras 13a, 13b, the first wavelength NIR cameras 14-1a, 14-1b, and the second wavelength NIR camera 14 From the image data captured by -2a and 14-2b, it is determined whether the granular material is a good product or a defective product by using the wavelength component of green (G) and the two near-infrared light components. Of course, in the case of a defective product having a clear color difference as compared with a non-defective product, good / defective can be discriminated only by the wavelength component of green (G).

良・不良判別部26が良品であると判断した粒状物がエジェクタノズル7を通過しても、エジェクタ駆動回路22はエジェクタノズル7のバルブを開くことはなく、粒状物は良品回収部8に向かって自然落下する。良・不良判別部26が不良品であると判断した粒状物がエジェクタノズル7に達すると、エジェクタ駆動回路22がエジェクタノズル7のバルブを開き、エジェクタノズル7からの噴風により粒状物が落下軌跡から吹き飛ばされて不良品回収部9に落下する。 Even if the good / bad discriminating unit 26 determines that the granular material is a good product, the ejector drive circuit 22 does not open the valve of the ejector nozzle 7, and the granular material goes to the non-defective product collecting unit 8. And fall naturally. When the good / bad discriminating unit 26 determines that the granular material is defective reaches the ejector nozzle 7, the ejector drive circuit 22 opens the valve of the ejector nozzle 7, and the granular material falls due to the blown air from the ejector nozzle 7. It is blown away from the defective product collection unit 9 and falls.

なお、第1の実施形態では、光学的検査を行う検査部6が、粒状物の落下軌跡aを挟んで前側のフロントボックス12a(第1の検査部)と、後側のリヤボックス12b(第2の検査部)とから構成され、それぞれに可視光検出部であるCCDカメラと、近赤外光検出部である第1波長NIRカメラ及び第2波長NIRカメラが収容されている。したがって、一つの粒状物に対して、二つの可視光画像及び二つの第1波長近赤外光画像、二つの第2波長近赤外光画像が取得される。このように構成されることで、例えば、前側又は後側のいずれか一方でも不良品と判定された場合は、エジェクタノズル7によって不良品回収部9へ回収することが可能となり、精度の高い判別を行うことが可能となる。 In the first embodiment, the inspection unit 6 that performs the optical inspection has a front box 12a (first inspection unit) on the front side and a rear box 12b (first inspection unit) on the rear side with the falling locus a of the granular material in between. 2 inspection units), each of which houses a CCD camera that is a visible light detection unit, and a first wavelength NIR camera and a second wavelength NIR camera that are near-infrared light detection units. Therefore, two visible light images, two first-wavelength near-infrared light images, and two second-wavelength near-infrared light images are acquired for one granular material. With this configuration, for example, if it is determined that either the front side or the rear side is defective, it can be collected by the ejector nozzle 7 to the defective product collecting unit 9, and the determination is highly accurate. Can be done.

〔その他の実施形態〕
以上、本発明の光学式粒状物判別装置の実施例のうち、第1の実施形態について説明した。しかし、本発明は前述の実施形態に必ずしも限定されるものではなく、例えば以下のような変形例も含まれる。
[Other Embodiments]
The first embodiment of the examples of the optical granular material discriminating device of the present invention has been described above. However, the present invention is not necessarily limited to the above-described embodiment, and includes, for example, the following modifications.

例えば、前述の第1の実施形態では、判別対象となる粒状物を黒ひまわりの種としたが、他の粒状物であってもよく、例えば、米を判別対象とすることも可能である。具体的には、図17に示されるように、光学的検査に基づいて決定された閾値を基準として、判別対象となる粒状物の中から、白米としらたを良品とし、着色米や薄焼け米、異物を不良品として判別することが可能である。例えば、図示されるように、「白米」及び「しらた」、「異物」は、可視光画像では判別ができないが、「しらた」は850nmの近赤外光画像によって白米と区別することが可能であり、さらに「異物」については、1550nmの近赤外光画像によって白米と区別することが可能となる。そして、撮像された各近赤外光画像と可視光画像に基づいて三次元光学相関図を作成し、前述の実施形態と同様にして閾値を求めることにより、良品と不良品とを正確に判別することが可能となる。なお、図示される別実施形態では、「しらた」を良品としているが、操作者の設定に応じて「しらた」を不良品とすることも可能であり、歩留まりとの関係において、良品と不良品とを自由に選択することが可能である。 For example, in the above-mentioned first embodiment, the granules to be discriminated are black sunflower seeds, but other granules may be used, and for example, rice can be discriminated. Specifically, as shown in FIG. 17, based on the threshold value determined based on the optical inspection, white rice and sardine are regarded as non-defective products from among the granular substances to be discriminated, and colored rice and lightly burnt. It is possible to discriminate rice and foreign matter as defective products. For example, as shown in the figure, "white rice", "shirata", and "foreign matter" cannot be distinguished from white rice by a visible light image, but "shirata" can be distinguished from white rice by a near-infrared light image of 850 nm. It is possible, and further, "foreign matter" can be distinguished from white rice by a near-infrared light image of 1550 nm. Then, a three-dimensional optical correlation diagram is created based on each of the captured near-infrared light images and visible light images, and the threshold value is obtained in the same manner as in the above-described embodiment to accurately discriminate between non-defective products and defective products. It becomes possible to do. In the other embodiment shown in the figure, "Shirata" is regarded as a non-defective product, but "Shirata" can be regarded as a defective product according to the setting of the operator, and in relation to the yield, it is regarded as a non-defective product. It is possible to freely select defective products.

また、判別対象は上記した黒ひまわりの種や米に限らず、麦類、豆類、ナッツ類等の穀粒の他、ペレット、ビーズ等の樹脂片、医薬品、鉱石類、シラス等の細かい物品、その他の粒状物からなる原料を良品と不良品とに選別したり、原料に混入する異物等を排除したりする場合に、本発明の光学式粒状物判別装置は有効に適用することが可能である。 In addition, the objects to be discriminated are not limited to the above-mentioned black sunflower seeds and rice, but also grains such as wheat, beans and nuts, resin pieces such as pellets and beads, and fine articles such as pharmaceuticals, ores and silas. The optical granular material discriminating device of the present invention can be effectively applied when sorting raw materials composed of other granular materials into non-defective products and defective products and eliminating foreign substances mixed in the raw materials. be.

前述の第1の実施形態では、判別対象を黒ひまわりの種とし、緑(G)の可視光、波長850nmの近赤外光の反射成分及び波長1550nmの近赤外光の反射成分を検出して、三次元光学相関図を作成したが、判別対象の種類に応じて、最も有意差が現れる可視光及び近赤外光の波長を選択することが可能である。可視光及び近赤外光の波長を選択するに際し、操作者がディスプレイ11に表示される三次元光学相関図を視認して選択してもよく、判定部19において自動的に選択されるように構成してもよい。 In the first embodiment described above, the discrimination target is a black sunflower seed, and the visible light of green (G), the reflection component of near-infrared light having a wavelength of 850 nm, and the reflection component of near-infrared light having a wavelength of 1550 nm are detected. Therefore, the three-dimensional optical correlation diagram was created, and it is possible to select the wavelengths of visible light and near-infrared light in which the most significant difference appears, depending on the type of discrimination target. When selecting the wavelengths of visible light and near-infrared light, the operator may visually select the three-dimensional optical correlation diagram displayed on the display 11, and the determination unit 19 automatically selects the wavelength. It may be configured.

より具体的には、他の近赤外光成分である1200nmの近赤外光画像を撮像するNIRカメラを増設(1つのNIRカメラで複数波長の撮像が可能なものを含む)してもよく、判別対象の種類に応じて複数波長の近赤外光画像を取得することが可能である。そしてこの場合、赤(R)、緑(G)、青(B)の波長成分と、850nm、1200nm、1550nmの近赤外光の波長成分を含めて多変量解析を行い、各波長成分のうち、最も相関性の高い波長成分によっての三次元光学相関図を作成することが可能となるため、様々な種類の判別対象物に対し、適切な閾値を設定して精度の高い判別が可能となる。 More specifically, NIR cameras that capture near-infrared light images of 1200 nm, which are other near-infrared light components, may be added (including those capable of capturing multiple wavelengths with one NIR camera). , It is possible to acquire near-infrared light images of a plurality of wavelengths according to the type of discrimination target. In this case, multivariate analysis is performed including the wavelength components of red (R), green (G), and blue (B) and the wavelength components of near-infrared light of 850 nm, 1200 nm, and 1550 nm, and among the wavelength components, Since it is possible to create a three-dimensional optical correlation diagram based on the wavelength component with the highest correlation, it is possible to set appropriate thresholds for various types of discrimination objects and perform highly accurate discrimination. ..

また、第1の実施形態では、可視光検出部として赤(R)、緑(G)、青(B)の3つの波長成分を検出可能なCCDカメラを用いたが、特定の波長のみを検出可能な可視光検出部を用いることも可能である。さらに、第1の実施形態では、近赤外光の波長に応じて、第1波長NIRカメラ14−1a、14−1bと第2波長NIRカメラ14−2a、14−2bとを設けたが、1つのNIRカメラで複数種類の波長成分が撮影できるカメラを使用してもよい。 Further, in the first embodiment, a CCD camera capable of detecting three wavelength components of red (R), green (G), and blue (B) is used as a visible light detection unit, but only a specific wavelength is detected. It is also possible to use a possible visible light detection unit. Further, in the first embodiment, the first wavelength NIR cameras 14-1a and 14-1b and the second wavelength NIR cameras 14-2a and 14-2b are provided according to the wavelength of the near infrared light. A camera capable of capturing a plurality of types of wavelength components with one NIR camera may be used.

また、第1の実施形態では、可視光画像から得られる粒状物の輪郭から物体認識を行い、粒状物の輪郭に近赤外光画像を重ねたときにずれが生じないように、CCDカメラ13a、13b及び第1波長NIRカメラ14−1a、14−1bと第2波長NIRカメラ14−2a、14−2bの向きや位置を調整するように構成したが、必ずしもこのような方法に限られず、例えば、ディスプレイ11に表示された物体認識後の近赤外光画像にずれが認められた場合は、画像の位置補正を手動又は自動で行うことによってずれを補正することも可能である。 Further, in the first embodiment, the object is recognized from the contour of the granular material obtained from the visible light image, and the CCD camera 13a is prevented from shifting when the near-infrared light image is superimposed on the contour of the granular material. , 13b and the first wavelength NIR cameras 14-1a and 14-1b and the second wavelength NIR cameras 14-2a and 14-2b are configured to be adjusted, but the method is not necessarily limited to such a method. For example, when a deviation is observed in the near-infrared light image displayed on the display 11 after recognition of an object, the deviation can be corrected by manually or automatically correcting the position of the image.

また、第1の実施形態では、フロントボックス12a及びリヤボックス12bにそれぞれ設けられた可視光検出部であるCCDカメラと、近赤外光検出部であるNIRカメラによって、一つの粒状物に対して、二つの可視光画像及び二つの近赤外光画像を取得して、精度の高い判別を行った。しかしながら、必ずしもこのような構成に限られるものではなく、例えば、フロントボックス12a及びリヤボックス12bのうち、いずれか一方のみに、可視光検出部であるCCDカメラと、近赤外光検出部であるNIRカメラを設けるようにしてもよい。さらに別の変形例では、フロントボックス12a及びリヤボックス12bのうち、いずれか一方のCCDカメラ及びNIRカメラを故障時の予備として備えることも可能である。 Further, in the first embodiment, the CCD camera, which is a visible light detection unit, and the NIR camera, which is a near-infrared light detection unit, provided in the front box 12a and the rear box 12b, respectively, are used for one granular object. , Two visible light images and two near-infrared light images were acquired, and high-precision discrimination was performed. However, the configuration is not necessarily limited to this, and for example, only one of the front box 12a and the rear box 12b includes a CCD camera that is a visible light detection unit and a near-infrared light detection unit. A NIR camera may be provided. In yet another modification, one of the front box 12a and the rear box 12b, the CCD camera and the NIR camera, can be provided as a spare in case of failure.

1 光学式粒状物判別装置
2 機体
3 シュート
4 貯留タンク
5 振動フィーダ
6 検査部
7 エジェクタノズル
8 良品回収部
9 不良品回収部
10 ドア
11 ディスプレイ
12a フロントボックス
12b リヤボックス
13a,13b CCDカメラ
14−1a,14−1b 第1波長NIRカメラ
14−2a,14−2b 第2波長NIRカメラ
15a,15b 可視光源
16a,16b 近赤外光源
17a,17b バックグラウンド
18a,18b 透光部
19 判定部
20 信号処理部
21 CPU及びメモリ部
22 エジェクタ駆動回路
23 画像データ取得部
24 閾値データ格納部
25 画像処理部
26 良・不良判別部
27 画像データ格納部
28 閾値計算部
29 信号送受信部
1 Optical granularity discriminator 2 Machine 3 Shoot 4 Storage tank 5 Vibration feeder 6 Inspection unit 7 Ejector nozzle 8 Good product collection unit 9 Defective product collection unit 10 Door 11 Display 12a Front box 12b Rear box 13a, 13b CCD camera 14-1a , 14-1b 1st wavelength NIR camera 14-2a, 14-2b 2nd wavelength NIR camera 15a, 15b Visible light source 16a, 16b Near infrared light source 17a, 17b Background 18a, 18b Transmissive unit 19 Judgment unit 20 Signal processing Unit 21 CPU and memory unit 22 Ejector drive circuit 23 Image data acquisition unit 24 Threshold data storage unit 25 Image processing unit 26 Good / bad discrimination unit 27 Image data storage unit 28 Threshold calculation unit 29 Signal transmission / reception unit

Claims (10)

移送手段で移送される粒状物に光学的検査を行う検査部と、該検査部による光学的検査に基づいて前記粒状物が良品であるか不良品であるかを判別する判定部とを備えた光学式粒状物判別装置において、
前記検査部は、前記粒状物に可視光を照射する可視光源と、前記粒状物に近赤外光を照射する近赤外光源と、前記粒状物を透過した可視光又は前記粒状物から反射した可視光を検出する可視光検出部と、前記粒状物を透過した近赤外光又は前記粒状物から反射した近赤外光を検出する近赤外光検出部と、を少なくとも有し、
前記判定部は、
複数の良品サンプル及び複数の不良品サンプルに対し、前記可視光検出部が検出した赤(R)、緑(G)、青(B)の光のうち、1つの波長成分と、前記近赤外光検出部が検出した複数の近赤外光成分を三次元空間にプロットして三次元光学相関図を作成し、閾値を設定する
ことを特徴とする光学式粒状物判別装置。
It is provided with an inspection unit that optically inspects the granules transferred by the transfer means, and a determination unit that determines whether the granules are non-defective or defective based on the optical inspection by the inspection unit. In the optical granularity discriminator
The inspection unit reflected visible light that irradiates the granules with visible light, a near-infrared light source that irradiates the granules with near-infrared light, and visible light transmitted through the granules or reflected from the granules. It has at least a visible light detection unit that detects visible light and a near-infrared light detection unit that detects near-infrared light transmitted through the granules or near-infrared light reflected from the granules.
The determination unit
One wavelength component of the red (R), green (G), and blue (B) light detected by the visible light detection unit and the near infrared light for a plurality of non-defective sample and a plurality of defective samples. An optical granularity discriminating device characterized in that a plurality of near-infrared light components detected by the light detection unit are plotted in a three-dimensional space to create a three-dimensional optical correlation diagram and a threshold value is set.
前記判定部は、
前記三次元光学相関図に、良品集合体と不良品集合体とを仕切るマハラノビス距離境界面及びユークリッド距離境界面を作成し、
前記マハラノビス距離境界面とユークリッド距離境界面との交線に垂直な二次元平面を作成し、
前記二次元平面上の不良品集合体に慣性等価楕円を当てはめて閉領域を作成するとともに、該閉領域内に閾値を設定する
請求項1に記載の光学式粒状物判別装置。
The determination unit
The Mahalanobis distance boundary surface and the Euclidean distance boundary surface that separate the non-defective product aggregate and the defective product aggregate are created on the three-dimensional optical correlation diagram.
Create a two-dimensional plane perpendicular to the line of intersection between the Mahalanobis distance boundary surface and the Euclidean distance boundary surface.
The optical granular material discriminating device according to claim 1, wherein a closed region is created by applying an inertial equivalent ellipse to the defective aggregate on the two-dimensional plane, and a threshold value is set in the closed region.
前記判定部は、
複数の良品サンプル及び複数の不良品サンプルに対し、前記可視光検出部が検出した赤(R)、緑(G)、青(B)の光のうち、1つの波長成分と、前記近赤外光検出部が検出した複数種の組合せによる2つの近赤外光成分を三次元空間にプロットして複数種の三次元光学相関図を作成する
請求項1又は2に記載の光学式粒状物判別装置。
The determination unit
One wavelength component of the red (R), green (G), and blue (B) light detected by the visible light detection unit and the near infrared light for a plurality of non-defective sample and a plurality of defective samples. The optical granularity discrimination according to claim 1 or 2, wherein two near-infrared light components obtained by a combination of a plurality of types detected by the light detection unit are plotted in a three-dimensional space to create a plurality of types of three-dimensional optical correlation diagrams. Device.
前記近赤外光検出部が検出した近赤外光成分は、前記可視光検出部が検出した前記粒状物の輪郭内の近赤外光成分である
請求項1乃至3に記載の光学式粒状物判別装置。
The optical granules according to claims 1 to 3, wherein the near-infrared light component detected by the near-infrared light detection unit is a near-infrared light component within the contour of the granules detected by the visible light detection unit. Object discrimination device.
前記判定部は、
前記閉領域内に前記閾値を設定するに際し、前記慣性等価楕円の短軸に平行で長軸の両端点を通る2直線及び長軸に平行で短軸の両端点を通る2直線からなる外接矩形を作成し、前記良品集合体の重心と該外接矩形の長軸方向の両端点とを結ぶ2直線を作成する
請求項1乃至4のいずれかに記載の光学式粒状物判別装置。
The determination unit
When setting the threshold value in the closed region, an circumscribing rectangle consisting of two straight lines parallel to the minor axis of the inertial equivalent ellipse and passing through both end points of the major axis and two straight lines parallel to the major axis and passing through both end points of the minor axis. The optical granular material discriminating device according to any one of claims 1 to 4, wherein the two straight lines connecting the center of gravity of the non-defective product aggregate and both end points of the circumscribing ellipse in the major axis direction are created.
前記判定部は、
前記閉領域内に前記閾値を設定するに際し、第1の平面としてマハラノビス距離を最小とする前記マハラノビス距離境界面を利用し、第2の平面として良品集合体の重心と前記外接矩形の長軸方向の一端とを結ぶ平面を利用し、第3の平面として良品集合体の重心と前記外接矩形の長軸方向の他端とを結ぶ平面を利用し、第4の平面として前記外接矩形の一方側の長辺を利用し、第5の平面として前記外接矩形の他方側の長辺を利用し、第6の平面として良品集合体から遠い側の前記外接矩形の一方側短辺を利用する
請求項1乃至5のいずれかに記載の光学式粒状物判別装置。
The determination unit
When setting the threshold value in the closed region, the Maharanobis distance boundary surface that minimizes the Maharanobis distance is used as the first plane, and the center of gravity of the good product aggregate and the long axis direction of the circumscribing rectangle are used as the second plane. As a third plane, a plane connecting the center of gravity of the non-defective assembly and the other end of the circumscribing rectangle in the long axis direction is used as a third plane, and one side of the circumscribing rectangle is used as a fourth plane. The long side of the extrinsic rectangle is used as the fifth plane, the long side of the other side of the extrinsic rectangle is used as the fifth plane, and the short side of one side of the extrinsic rectangle far from the non-defective aggregate is used as the sixth plane. The optical granular material discriminating device according to any one of 1 to 5.
ディスプレイと、前記ディスプレイにおける表示内容に基づいて操作者による入力が可能な入力手段と、を備え、
前記ディスプレイは、赤(R)、緑(G)、青(B)の光のうち、任意の1つの波長成分と、任意の2つの近赤外光成分とによる複数の前記三次元光学相関図を表示可能であり、
前記入力手段は、操作者の操作に基づいて前記ディスプレイに表示される前記三次元光学相関図を選択可能である
請求項1乃至6のいずれかに記載の光学式粒状物判別装置。
A display and an input means capable of input by an operator based on the display contents on the display are provided.
The display has a plurality of the three-dimensional optical correlation diagrams of red (R), green (G), and blue (B) light having an arbitrary wavelength component and two arbitrary near-infrared light components. Can be displayed,
The optical granular material discriminating device according to any one of claims 1 to 6, wherein the input means can select the three-dimensional optical correlation diagram displayed on the display based on the operation of the operator.
前記検査部は、移送される前記粒状物の前側に位置する第1の検査部と、前記粒状物の後側に位置する第2の検査部と、を備え、
前記第1の検査部及び前記第2の検査部は、それぞれ前記可視光検出部と前記近赤外光検出部とを備えている
請求項1乃至7のいずれかに記載の光学式粒状物判別装置。
The inspection unit includes a first inspection unit located on the front side of the granular material to be transferred and a second inspection unit located on the rear side of the granular material.
The optical granular material discrimination according to any one of claims 1 to 7, wherein the first inspection unit and the second inspection unit include the visible light detection unit and the near infrared light detection unit, respectively. Device.
移送手段で移送される前記粒状物は、種子又は穀粒である
請求項1乃至8のいずれかに記載の光学式粒状物判別装置。
The optical granularity discriminating device according to any one of claims 1 to 8, wherein the granular material transferred by the transfer means is a seed or a grain.
移送手段で移送される粒状物に光学的検査を行う検査部と、該検査部による光学的検査に基づいて前記粒状物が良品であるか不良品であるかを判別する判定部とを備えた光学式粒状物判別装置において、
前記検査部は、前記粒状物に可視光を照射する可視光源と、前記粒状物に近赤外光を照射する近赤外光源と、前記粒状物を透過した可視光又は前記粒状物から反射した可視光を検出する可視光検出部と、前記粒状物を透過した近赤外光又は前記粒状物から反射した近赤外光を検出する近赤外光検出部と、を少なくとも有し、
前記判定部は、
複数の良品サンプル及び複数の不良品サンプルに対し、前記可視光検出部が検出した赤(R)、緑(G)、青(B)の3つの波長成分及び前記近赤外光検出部が検出した複数の近赤外光成分をパラメータとして多変量解析し、
前記多変量解析の結果に基づいて、前記可視光検出部が検出した波長成分と、前記近赤外光検出部が検出した近赤外光成分をプロットして三次元光学相関図を作成し、閾値を設定する
ことを特徴とする光学式粒状物判別装置。
It is provided with an inspection unit that optically inspects the granules transferred by the transfer means, and a determination unit that determines whether the granules are non-defective or defective based on the optical inspection by the inspection unit. In the optical granularity discriminator
The inspection unit reflected visible light that irradiates the granules with visible light, a near-infrared light source that irradiates the granules with near-infrared light, and visible light transmitted through the granules or reflected from the granules. It has at least a visible light detection unit that detects visible light and a near-infrared light detection unit that detects near-infrared light transmitted through the granules or near-infrared light reflected from the granules.
The determination unit
The three wavelength components of red (R), green (G), and blue (B) detected by the visible light detector and the near-infrared light detector detect a plurality of non-defective samples and a plurality of defective samples. Multivariate analysis using multiple near-infrared light components as parameters
Based on the result of the multivariate analysis, the wavelength component detected by the visible light detection unit and the near infrared light component detected by the near infrared light detection unit are plotted to create a three-dimensional optical correlation diagram. An optical granularity discriminating device characterized by setting a threshold value.
JP2020010380A 2020-01-24 2020-01-24 Optical particulate discrimination device Active JP7392495B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2020010380A JP7392495B2 (en) 2020-01-24 2020-01-24 Optical particulate discrimination device
EP21744066.8A EP4094851A4 (en) 2020-01-24 2021-01-22 Optical granular material discriminating device
PCT/JP2021/002322 WO2021149820A1 (en) 2020-01-24 2021-01-22 Optical granular material discriminating device
US17/794,195 US20230059349A1 (en) 2020-01-24 2021-01-22 Optical grain discriminating apparatus
BR112022014565A BR112022014565A2 (en) 2020-01-24 2021-01-22 GRAIN OPTICAL DISCRIMINATION APPARATUS
CN202180010708.3A CN115004016A (en) 2020-01-24 2021-01-22 Optical granular object discriminating device
KR1020227027091A KR20220125301A (en) 2020-01-24 2021-01-22 Optical granular object discrimination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020010380A JP7392495B2 (en) 2020-01-24 2020-01-24 Optical particulate discrimination device

Publications (2)

Publication Number Publication Date
JP2021117091A true JP2021117091A (en) 2021-08-10
JP7392495B2 JP7392495B2 (en) 2023-12-06

Family

ID=77174622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020010380A Active JP7392495B2 (en) 2020-01-24 2020-01-24 Optical particulate discrimination device

Country Status (1)

Country Link
JP (1) JP7392495B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115963074A (en) * 2023-02-23 2023-04-14 中国人民解放军国防科技大学 Rapid detection method and system for spore and hypha ratio of microbial material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012108026A (en) 2010-11-18 2012-06-07 Ishizuka Glass Co Ltd Detection method of foreign material-contaminated product
JP6037125B2 (en) 2013-02-18 2016-11-30 株式会社サタケ Optical granular material sorter
CN106269570A (en) 2015-05-29 2017-01-04 合肥美亚光电技术股份有限公司 The sorting unit of material and method for separating
JP2019148607A (en) 2019-06-12 2019-09-05 Jfeテクノリサーチ株式会社 Inspection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115963074A (en) * 2023-02-23 2023-04-14 中国人民解放军国防科技大学 Rapid detection method and system for spore and hypha ratio of microbial material

Also Published As

Publication number Publication date
JP7392495B2 (en) 2023-12-06

Similar Documents

Publication Publication Date Title
JP6152845B2 (en) Optical granular material sorter
JP6037125B2 (en) Optical granular material sorter
EP1083007B1 (en) Method and apparatus for sorting granular objects with at least two different threshold levels
JP6481263B2 (en) Preparation method of quality discrimination standard in granular material appearance quality discrimination device
WO2021149820A1 (en) Optical granular material discriminating device
JP5201390B2 (en) Optical discriminating device for granular materials, etc., and optical sorting device for granular materials, etc.
JP2021117091A (en) Optical granule discrimination device
JP2000180369A (en) Method and apparatus for measurement of appearance quality of grain
JP2001041895A (en) Granular material quality level discriminator
Gong et al. Recent developments of seeds quality inspection and grading based on machine vision
JP2021117090A (en) Optical granule discrimination device
KR101919748B1 (en) Color sorting apparatus having quality inspect unit
KR102198917B1 (en) Grain grading system and method
JP2981762B2 (en) O-ring inspection method
JPH10160676A (en) Rice grain inspection device
Liu et al. Intelligent bamboo part sorting system design via machine vision
Pearson Low-cost bi-chromatic image sorting device for grains
CN117347384A (en) Plastic bucket quality detection method and device, electronic equipment and storage medium
CN114136987A (en) Lens deformation defect detection device and method
CN103464385A (en) Optical particulate material sorting machine
Morade Application of Image Processing for Automatic Cleaning of Rice
JPH03120450A (en) Rush inspecting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231106

R150 Certificate of patent or registration of utility model

Ref document number: 7392495

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150