JP2000162244A - 直流電流センサ - Google Patents

直流電流センサ

Info

Publication number
JP2000162244A
JP2000162244A JP10338185A JP33818598A JP2000162244A JP 2000162244 A JP2000162244 A JP 2000162244A JP 10338185 A JP10338185 A JP 10338185A JP 33818598 A JP33818598 A JP 33818598A JP 2000162244 A JP2000162244 A JP 2000162244A
Authority
JP
Japan
Prior art keywords
current
coil
detection
exciting
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10338185A
Other languages
English (en)
Inventor
Makoto Kawakami
川上  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP10338185A priority Critical patent/JP2000162244A/ja
Publication of JP2000162244A publication Critical patent/JP2000162244A/ja
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • G01R15/183Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using transformers with a magnetic core
    • G01R15/185Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using transformers with a magnetic core with compensation or feedback windings or interacting coils, e.g. 0-flux sensors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Transformers For Measuring Instruments (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

(57)【要約】 【課題】 励磁信号が検出信号中に混入するのを防止
し、被測定導線に流れる直流電流に対応した信号のみが
検出コイルに捉え得るようにする。 【解決手段】 コア1、2に、励磁コイル3を逆相の磁
場が形成されるよう巻回する一方、両コア1、1に一括
して検出コイル4を巻回し、励磁コイル3には交流電源
の接続し、両コア1、2の中心を通して被測定導線7を
貫通配置し、前記励磁コイル3には交流電源を接続す
る。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、発電所,変電所の
制御設備、工業プラントの制御設備等、直流電源を用い
た設備の漏電検知に用いる直流電流センサ、特に直流配
電盤から多数に分岐された配線の漏電個所の特定を回路
自体とは物理的に非接触の状態で検出可能とした直流電
流センサに関する。
【0002】
【従来の技術】従来この種の直流電流センサは各種のも
のが提案され、実施されているが、構造的に簡単であっ
て、しかも高精度なものとしてフラックス・ゲート型の
直流電流センサが知られている。このフラックス・ゲー
ト型の直流電流センサの原理を図18に示す原理説明図
に基づいて説明する。
【0003】図18はフラックス・ゲート型の直流電流
センサの原理説明図であって、図18(a) に示す如く軟
質磁性体製の環状をなすコア51に励磁コイル52及び
検出コイル53を夫々トロイダル状に巻回して構成さ
れ、コア51の中心部に被測定導線50を貫通配置させ
てある。励磁コイル52には交流電源54が接続されて
いる。コア51の構成材料である軟質磁性体の磁気特性
は図18(b) に示す如く、磁場が小さい範囲では磁場の
大きさHと磁束密度Bとが略直線的な関係にあるが、磁
場の大きさが所定以上になると磁場の値に拘らず磁束密
度は略一定、即ち磁気飽和の状態となる。
【0004】このような励磁コイル52に交流電圧を印
加すると、コア51における磁場の大きさHは図18
(d) に示す如く三角波形に変化し、一方磁束密度は図1
8(c)に示す如く台形波形に変化する。この状態におい
て被測定導線50に電流値Iの直流が通流しているもの
とすると、電流値Iに相当する直流分の磁場及び磁束密
度が重畳され、図18(c),(d) に夫々破線で示す如くに
なる。磁束密度については図18(c) に示す如く上側の
台形波は外側に拡幅され、下方の台形波は逆に内側に縮
幅された状態となり、この結果検出コイル53には図1
8(c) に実線で示す磁束密度に相応する起電力と共に、
2次歪み波形に相応する起電力 (2次高調波) 、即ち励
磁信号周波数fの2倍の周波数2fの信号が表れる。そ
こでこの2倍の成分の検出信号をフィルタ等を用いて抽
出し、これに所定の処理を施すことで被測定導体50の
電流値Iを検出する。
【0005】ところでこのような直流電流センサは検出
磁場と励磁磁場との方向が同一、即ち平行であることか
ら平行フラックス・ゲート型と称される。このような平
行フラックス・ゲート型の直流電流センサは磁気回路の
構成が簡単であること、直流電流センサとしての平面
化、小型化が容易であること等の利点を有する反面、励
磁磁場、検出磁場の向きが同一方向であるため、検出コ
イル53には2次高調波と共に、励磁コイル52に対す
る励磁電流たる励磁信号がそのまま出力されることとな
り、検出信号の分離処理が欠かせないが、完全な分離が
難しいこと、分解能は励磁信号周波数でのコア51の保
磁力Hcと同一レベルであって、高感度化が難しいこ
と、加えて励磁磁場、検出磁場が同一方向であるため、
検出すべき直流電流が励磁電流を超えると検出出来なく
なる等の問題があった。
【0006】
【発明が解決しようとする課題】この対策として本発明
者等は励磁信号が検出コイルに捉えられる不都合を解消
した直交フラックス・ゲート型の直流電流センサを既に
提案している (特開平6−74978号公報) 。直交フ
ラックス・ゲート型の直流電流センサは励磁用のコアと
検出用のコアとを直角に交叉させてあり、励磁磁束が検
出コイルに対して直角に交わるため励磁コイルに対する
励磁電流、即ち励磁信号が検出コイルに表れないため高
感度であり、またコアの閉磁路の一部が磁気飽和により
等価的に開放状態となるため残留磁束が殆どなくなり、
励磁信号の1/100程度までの電流の検出が可能であ
る等の利点を有する。
【0007】しかし反面において、励磁磁場の方向と検
出磁場の方向とが直角であるため磁気回路が複雑とな
り、巻き線作業の機械化が難しく、必然的に手巻きとな
ることから巻き数に限界があり、励磁効率が悪く、大き
な励磁電流が必要となる。またコアは直角に交叉するよ
う構成するから立体型となり、変形に弱く、耐振性の確
保が難しく、更に検出電流が励磁電流を大きく超える状
態になると磁場の反転によるスイッチング動作が起き
ず、出力が低下する等の問題があった。
【0008】本発明はかかる事情に鑑みなされたもので
あって、その目的とするところは励磁コイルに対する励
磁信号を消去し、これが検出コイルの出力として表れる
のを防止し、また検出コイルに発生する残留磁束を特別
な脱磁処理を施すことなく、消磁して分解能を高め、測
定精度の向上を図った直流電流センサを提供することに
ある。
【0009】また他の目的は過漏電時に生じる励磁コイ
ルのインダクタンスの変化を検出し、励磁コイルによる
励磁レベルを調整することで、過漏電時における出力の
低下を防止した直流電流センサを提供することにある。
【0010】更に他の目的は検出信号の位相同期検波時
に、検出信号の位相ずれを、参照信号を励磁電流波形に
基づいてロックすることで、コアの磁気特性等のばらつ
きによる位相調整を自動的に補償し得るようにした直流
電流センサを提供することにある。
【0011】
【課題を解決するための手段】請求項1に係る発明の直
流電流センサは、中心部に直流電流が通流せしめられる
被測定導体を通すべく環状に形成された一対の磁性体コ
アと、交流通電時に形成される交流磁場が互いに打ち消
し合うように前記各コアに巻回された励磁コイルと、前
記両コアにこれらを一括するように巻回された検出コイ
ルとを備え、前記検出コイルにて前記被測定導体の直流
電流を検出するようにしたことを特徴とする。
【0012】この発明にあっては平行フラックス・ゲー
ト型の構造の特徴を生かしつつ、励磁コイルによって一
対のコアに発生させられる磁場を逆相とすることで励磁
信号を消去し、検出コイルに励磁信号が取り込まれるの
を防止出来ると共に、コアの残留磁場も自動的に消去し
得ることとなる。なお、励磁信号の消去をより完全に行
うためには、一対のコアを同軸配置とし、各々のコア断
面積と磁気特性をそろえ、一対のコア内に発生する各々
逆向きの磁束を等しくする(磁束の和がゼロになるよう
にする)ことが望ましい。また、逆向きの磁束を等しく
する(磁束の和をゼロにする)方法として、コア断面積
やコイル巻数を調整することも可能である。
【0013】請求項2に係る発明の直流電流センサは、
前記励磁コイルのインダクタンスを検出し、検出信号を
出力するインダクタンス検出回路と、前記検出したイン
ダクタンスに基づいて、前記励磁コイルによる励磁レベ
ルを調整する調整回路とを備えることを特徴とする。
【0014】この発明にあっては励磁信号の向きと検出
信号の向きが平行であることにより生じる検出信号のレ
ベルが励磁信号のレベルを上回るとコアの磁場が反転せ
ず、出力が低下するのを防止できる。
【0015】請求項3に係る発明の直流電流センサは、
前記検出コイルから出力される信号を、前記励磁コイル
に供給した励磁電流周波数の2倍の周波数の参照信号に
基づいて位相検波するに際し、前記励磁電流のピーク値
に合わせて参照信号の波形をロックし、参照信号を前記
検出コイルから出力される信号の位相変化に追従させる
手段を備えることを特徴とする。
【0016】この発明にあっては参照信号の位相を励磁
電流のピーク位置に対応させてロックすることにより参
照信号は励磁電流の増加に対応して位相が変化する検出
信号の位相と対応し、正確な位相検波出力が得られる。
【0017】〔原理〕以下、先ず本発明に係る直流電流
センサの基本原理を図1に示す説明図に基づいて説明す
る。図1(a) は基本構造図であり、1、2は軟質磁性体
製の同形、等大に構成された円環状をなすコア、3は各
コア1、2に等しい回数巻回された励磁コイル、4は両
コア1、2にわたるよう一括して巻回された検出コイル
を示している。励磁コイル3には図示しない交流電源
が、また検出コイル4には図示しない検出回路が接続さ
れている。7は電流を測定する対象物たる被測定導線で
ある。励磁コイル3はこれに通電したとき両コア1、2
に生じる磁場が逆相であって互いに打ち消し合うようコ
ア1、2に巻回されている。
【0018】図1(b) は励磁コイル3に励磁電流iEX
通電したとき、各コア1、2に生じる磁束密度 (B) の
経時変化を示している。図18(b) においても説明した
如く、軟質磁性体製のコア1、2の磁気特性は磁場の大
きさHが所定範囲内では磁場の大きさHと磁束密度Bと
は直線的な関係にあるが、磁場の大きさHが所定値を超
えると、磁束密度Bが変化しない、所謂磁気飽和の状態
となる関係にあることから、励磁コイル3に励磁電流i
EXを通電すると、各コア1, 2に発生する磁束密度は
上,下対称の台形波 (実線で示す) 状に変化し、しかも
相互に180°位相がずれた状態になる。
【0019】いま被測定導線7に矢印で示す如く下向き
に直流電流値Iが通流しているものとすると、この直流
分に相当する磁束密度が重畳される結果、磁束密度Bは
図1(b) に破線で示す如く、台形波のうち、上方の台形
波はその幅が拡大され、一方下方の台形波はその幅が縮
小された状態となる。
【0020】図1(c) はコア1, 2に生じた磁束密度B
の変化を正弦波 (起電力に対応) で表現した波形図であ
る。図1(b) に実線で示す台形波に対応して図1(c) に
は実線で示す如く180°位相がずれた周波数fの正弦
波 (起電力) が表れるが、これらは180°ずれている
ため互いに打ち消し合う。一方図1(b) に破線で示す台
形波に対応して図1(c) には破線で示す如き2倍の周波
数2fの2次高調波が表れ、この2次高調波は位相が3
60°ずれているため、相互に重畳して図1(c) の最下
段に示す如き信号となり、これが検出コイル4にて検出
される。この検出コイル4に捉えられた検出信号は被測
定導線7を流れる直流の電流値Iに対応しており、これ
を処理することで電流値Iを検出出来る。
【0021】
【発明の実施の形態】以下本発明をその実施の形態を示
す図面に基づき具体的に説明する。図2は本発明に係る
差動平行フラックス・ゲート型の直流電流センサのセン
サヘッドを示す模式図、図3は同じくその製作過程を示
す模式図である。図2、3において、1、2は軟質磁性
体 (例えばパーマロイ) 製であって、円環状をなすコ
ア、3 (3a, 3b) は励磁コイル、4は検出コイルを
示している。各コア1、2は内径44mm、外径59mm、
厚さ3. 75mmの同形、等大の円形環状に形成され、夫
々に励磁コイル3a、3bが等回数 (1000ターン)
同方向に巻回され、両励磁コイル3a、3bの一端同士
を、交流電流の通電時に形成される磁場の向きが逆相と
なるように直列に接続して励磁コイル3としてある。特
に、外部磁場の影響を防止するためには、励磁コイル、
検出コイルの各々を図示の如くコアの全周にわたり、均
等に巻回することが望ましい。
【0022】コア1、2の軟質磁性材料としてはパーマ
ロイが好ましいが、他にケイ素鋼板、アモルファス鋼
板、電磁鋼板、ソフトフェライト等の材料も使用可能で
あり、またこれらを組合せて用いてもよい。またコア
1、2は円環状とした場合を説明したが、これに限ら
ず、楕円環状、矩形枠状等でもよく、軟質磁性材料が電
磁気的な閉回路を構成できるよう接続、例えばコア1、
2を夫々2分割しておき、組立て時に一体的に接着する
こととしてもよい。
【0023】両コア1、2は励磁コイル3a、3bをト
ロイダル状に夫々巻回した状態で、その間に内, 外径を
コア1、2のそれと略同じくしたリング状をなす層間絶
縁紙5を介在させて同心上に位置せしめ、両コア1、2
にわたるようにキュープラ・テープ6を、コア1、2及
び励磁コイル3a、3bが外部に露出しないように巻き
付ける。但し、励磁コイル3a、3bの端子は外部に導
出しておく。そしてキュープラ・テープ6の外周に検出
コイル4をトロイダル状に所定回数 (1500ターン)
巻回して図2に示す如くに構成されている。励磁コイル
3a、3bは、その一方の端子同士は交流電流を通電し
たときに形成される交流磁場の向きが逆相となるように
直列接続し、各他方の端子及び検出コイル4の両端子は
図4に示す如き検出回路に接続される。
【0024】図4は直流電流センサの検出回路の構成を
示すブロック図であり、図中10は水晶発振子又はセラ
ミック発振子等で構成された発振子であり、この発振子
10で発振された矩形波は発振・分周回路11によって
周波数fとその2倍の周波数2fとの矩形波信号に分周
され、周波数fの矩形波信号は振幅調整回路12へ、ま
た周波数2fの矩形波信号は位相調整回路17へ夫々出
力される。振幅調整回路12は後述する励磁コイルイン
ダクタンス検出回路15からの信号であるコイルインダ
クタンスの低下を示す信号 (直流電圧信号) に基づいて
インダクタンスの低下に相応して振幅を増大、即ち励磁
コイル3によるコア1、2に対する励磁レベルを上昇さ
せるべく振幅調整を施して正弦波化フィルタ13へ出力
する。
【0025】正弦波化フィルタ13は、振幅調整された
矩形波信号についてその基本波成分を通過させ、それ以
外の通過を阻止することで正弦波に変換し、これを増幅
回路14へ出力する。増幅回路14は励磁コイル3に対
する所定の励磁電流が得られるよう正弦波を増幅し、こ
れを励磁コイルへ3へ出力すると共に、励磁コイルイン
ダクタンス検出回路15及び励磁電流ピーク検出回路1
6へ出力する。
【0026】励磁コイル3へ出力された励磁電流によっ
て、コア1、2には図1(b) に示した如く逆相で180
°位相がずれた台形波状に変化する磁束密度を発生させ
るが、この磁束密度は被測定導線7に流れる直流電流分
だけ偏磁する。この結果、図1(c) に示す如く180°
位相がずれた状態の基本波の他に励磁電流の周波数fの
2倍の周波数2fを持ち、相互に360°ずれた2次高
調波を発生させる。励磁コイル3によってコア1、2に
は上述の如く逆相の磁場が交互に発生する結果、コア
1、2は常に解磁された状態となり、残留磁場が存続す
ることはない。つまり、特別な解磁処理をすることな
く、消磁された状態に維持される。
【0027】両コア1、2に生じた高調波は図1(c) の
最下段に示す如く重畳された信号、即ち検出信号として
検出コイル4に検出され、図4に示す検出回路へ入力さ
れ、周波数2fの帯域通過フィルタ18へ通され、周波
数2fの検出信号のみが抽出されて位相同期検波回路
(PSD) 19へ出力される。位相同期検波回路19は
位相調整回路17にて作成した参照信号で同期検波して
脈動波を得、これを低域通過フィルタ20を通して平滑
化し、電流値Iを得、これを、例えば表示器等に表示さ
せるべく出力する。
【0028】前記励磁コイルインダクタンス検出回路1
5は励磁コイル3に印加された電流をシャント抵抗等を
用いて検出し、電流の基本波成分と印加電流との位相比
較を行う。励磁コイル3のインダクタンスが小さくなる
と電流の位相遅れが小さくなるから、この位相遅れ、即
ちインダクタンス低下分を電圧信号に換算して振幅調整
回路12へ出力する。
【0029】振幅調整回路12は前述した如く発振・分
周回路11から入力された矩形波信号を励磁コイルイン
ダクタンス検出回路15から入力された励磁コイル3の
インダクタンス低下信号、換言すれば電圧信号に基づい
て振幅を調整する。例えば電圧信号が上昇すればこれに
対応して矩形波信号の振幅を大きくし、逆に電圧信号が
小さくなればこれに対応して矩形波信号の振幅を小さく
する。
【0030】このような励磁コイルインダクタンス検出
回路15を設ける理由は、過電流特性、即ち励磁コイル
3と検出コイル4とにおける励磁信号、検出信号の向き
が同一方向であるため、検出信号のレベルが励磁信号の
レベルを上回ると、コア1、2の磁場が反転しなくな
り、結果として検出信号が零となってしまう現象を回避
するためである。
【0031】つまり、検出信号のレベルが励磁信号のレ
ベルを上回る状態では励磁コイル3のインダクタンスが
大幅に低減された状態となっているから、このインダク
タンスの低下を検知し、コア1、2に対する励磁レベル
を高めるべく励磁コイル3に対する供給電流が大きくな
るよう振幅を調整することで検出信号に対する励磁信号
の値を相対的に大きくし、過漏電時における検出信号の
低下を防止し得ることとなる。なお簡便な方法として、
精度は悪いがインダクタンス低下時は励磁電流が大きく
なるからこの電流の大きさを直流電圧に変換して出力す
ることとしてもよい。
【0032】一方励磁電流ピーク検出回路16は、励磁
コイル3を流れる励磁電流の位相変化点はコア1、2の
磁化の向きの反転タイミングと同期しており、磁化の反
転時に励磁コイル3にパルス状の起電力が発生するか
ら、このパルス状の起電力を検出し、このピークの検出
信号、換言すればタイミング信号を位相調整回路17へ
出力する。図5は参照信号の位相ロックの態様を示す説
明図であり、位相調整回路17は発振・分周回路11に
て作成された図5(a) に示す如き周波数2fの矩形波信
号である参照信号の立上がり、又は立下がりのタイミン
グを、励磁電流ピーク検出回路16にて検出した図5
(b) に示す如きパルス状起電力のピークにタイミングを
合わせて図5(c) に示す如くに参照信号を位相ロックし
た状態で位相同期検波回路 (PSD) 19へ出力する。
この結果、位相同期検波回路19においては帯域通過フ
ィルタ18から入力される検出信号と、位相調整回路1
7から入力される参照信号とのタイミングは図5(c) 、
図5(d) に示す如くに一致し、位相同期検波回路19か
ら図5(e) に示す如き脈動波が得られることとなる。
【0033】参照信号の位相を位相ロックして位相同期
検波回路19へ出力するのは以下の理由による。即ち、
通常、被測定導線7の電流 (測定電流又は貫通電流とい
う) が零の状態では励磁コイル3は高いインダクタンス
を示すため励磁電流は励磁電圧より90°近く位相が遅
れた状態となっている。しかし、貫通電流が増加する
と、コア1、2の直流偏磁によりインダクタンスが小さ
くなり、線抵抗が支配的となって、励磁電流の電圧に対
する位相遅れは小さくなる。この為、貫通電流によって
励磁電流の位相が変化することとなり、検出信号はコア
1、2の磁束変化と同期しているため、励磁電圧から見
た検出信号の位相は、貫通電流の大きさにより変化す
る。コア1、2に印加される磁場のゼロクロスタイミン
グは貫通電流と、励磁電流の合成成分が零になった時に
起こり、このタイミングは、貫通電流の大きさ、励磁信
号のレベルにより変化する。検出信号はこのゼロクロス
タイミングに同期して発生するため、貫通電流、励磁電
流の大きさにより位相が変化する。
【0034】図6は貫通電流 (測定電流) と検出信号位
相角 (°) との関係を示すグラフであり、横軸に貫通電
流 (A) を、また縦軸に検出信号位相角 (°) をとって
示してある。このグラフから明らかなように測定電流
(貫通電流) が大きくなるに従って検出信号の位相角の
変化が大きくなることが解る。
【0035】検出信号は図6に示す如く位相が180°
以上シフトするため、図7に示す如く参照信号と検出信
号との間に位相差が発生する。図7(a) には位相が90
°ずれた状態では検出出力は零となり、更に位相がずれ
ると図7(b) に示す如く検出出力は負に反転することと
なる。そこで参照信号についても位相をシフトする必要
が生じるのである。
【0036】次に本発明に係る実施の形態についての試
験結果を図8〜図17に示すグラフに基づいて説明す
る。図8は被測定導線7の直流電流、換言すれば測定電
流{貫通電流 (mA) }を横軸に、また縦軸に検出コイ
ル4の出力電圧 (V) をとって示してあり、測定電流を
−50mA〜+50mAまで変化(向きを逆にする)さ
せたときの出力電圧の推移を示している。これから測定
電流が0. 2〜20mAの範囲内で出力電圧と測定電流
とは略直線的な関係にあり、この範囲内で用いることで
正確な直流電流の測定が可能であることが解る。
【0037】図8に示すグラフ中○印と●印とは測定電
流の流れる向きが逆の場合を示している。これから明ら
かなように測定電流が0. 1〜10mAの範囲では測定
電流の流れる向きの如何に拘らず、測定電流 (mA) と
出力電圧 (V) とは直線的な関係にあることが解る。
【0038】図9は被測定導線7を流れる測定電流 (m
A) と検出コイル4の出力電圧 (V) との関係を示すグ
ラフであり、横軸に測定電流を、また縦軸に出力電圧
(V)をとって示してある。グラフ中○印でプロットして
あるのは励磁コイル3に励磁電圧を印加していない状態
(バージン状態) での出力電圧 (V) を、また△印は励
磁コイル3に−1Aの電流を流してコア1、2にこれに
相当する程度の着磁を行った後の入力─出力の関係を示
している。このグラフから明らかなように−1Aの着磁
をした後においてもバージン状態と変わらぬ直線性が得
られていることが解る。
【0039】図10は図9とは逆に測定電流の向きを逆
向きにしてコアに対し+1A相当分の着磁を行った際の
出力電圧とバージン状態とを対比して示してあり、両者
に実質的な差異のない結果が得られていることが解る。
【0040】図11は直流電流センサに45°ずつ角度
を替えて外部から磁場 (5Oe) を印加し、夫々におけ
る検出コイル4からの出力電圧 (V) を検出した結果を
示すグラフである。グラフ中、実線はセンサヘッドにお
ける測定電流と同方向 (軸心線方向) に、また破線はセ
ンサヘッドの側方から夫々磁場を印加 (5Oe) した場
合の結果を夫々示している。図11中●印はセンサヘッ
ドの被測定導線方向に磁場を、○印は被測定導線と直交
する方向に磁場を印加した場合を示している。このグラ
フから明らかなように外部からの磁場の印加による変化
はいずれの方向からであっても大きな影響を受けず出力
電圧は0. 001Vに留まっており、極めて高い測定精
度が得られることが解る。このセンサは、回転対称性の
良い環形状を有し、かつ励磁コイル及び検出コイルがコ
アの全周にわたり均等に巻回され、部分的に片寄って配
置されていないため、外部からの磁束は各々コイルに鎖
交し難い。従って、検出コイルから外部磁束による出力
が出にくい構造となっていることが解る。
【0041】図12は直流電流センサの温度特性試験の
結果を示すグラフであり、横軸に環境温度 (℃) を、ま
た縦軸に出力電圧 (V) をとって示してある。測定電流
は正方向、逆方向に夫々流す電流値を−5mA〜5mA
の範囲で変えてある。この結果−20℃〜40℃の範囲
では殆ど温度変化の影響を受けないことが解る。
【0042】図13は直流電流センサの振動試験結果を
示すグラフであり、横軸に加振回数を、また縦軸に出力
電圧 (V) をとって示してある。なお試験条件A、Bは
下記のとおりである。
【0043】
【表1】
【0044】図13から明らかなように振動に対する出
力電圧 (V) の変化は全くなく、極めて耐振性能が大き
いことが解る。
【0045】図14はステップ応答特性を示すグラフで
あり、図14(b) に示す如く測定電流 (mA) を10m
Aに3秒間ステップ状に変化させた場合、検出コイル4
からの出力電圧 (V) は1Vまで上昇し、1. 2秒後に
略整定されていることが解る。
【0046】図15は直流電流センサの分解能に関する
試験結果を示すグラフであり、測定電流を一方向に0.
1mA、逆方向に0. 1mAに数秒間隔で切り換え入力
し、夫々における出力電圧 (mV) の変化を検出した。
この結果、正, 負逆向きの0. 1mAの変化を明瞭に識
別し得る分解能を持つことが解る。
【0047】図16は検出信号の同期検波に際して参照
信号の位相を励磁電流値に基づいてロックし、検出信号
の位相ずれに自動的に追従させた場合と、この機能を備
えない場合との出力電圧 (V) の変化を示している。グ
ラフ中●印は前者の、また□印は後者の結果を示してい
る。グラフから明らかなように測定電流が100mAを
超えて高くなると出力電圧が急激に低下しているが、本
発明ではこれを阻止出来ていることが解る。
【0048】図17は平衡電流特性を示すグラフであ
り、センサヘッド内に往路と復路との2本の被測定導線
を折り返した状態で通し、両被測定導線7に地絡に相当
する−100〜+100Aの範囲の電流差を付けた際の
検出コイル4からの出力電圧差(V)(検出誤差) を求め
てある。なおグラフ中●印は2本の被測定導線7をコア
1、2内に横並びに、また○印はこれと90°向きを変
えて縦並びに配した場合を示している。このグラフから
明らかなようにその誤差は0. 01V以下に納まってい
ることが解る。
【0049】
【発明の効果】請求項1に係る発明にあっては励磁用コ
イルへの通電によって形成される磁束は180°ずれた
状態で互いに打ち消し合うこととなり、検出コイルには
両コア夫々の周波数が360°ずれた状態で重畳される
から励磁信号に影響されることなく、検出信号が得ら
れ、また逆相の磁場を形成することでコアに残留磁場が
残存するのを防止出来て、解磁処理を要しない。
【0050】請求項2に係る発明にあっては貫通電流が
増大した際、これに対応して励磁信号レベルを高めるこ
とで過漏電時の出力低下を防止出来て安全性、信頼性を
高め得た。
【0051】請求項3に係る発明にあっては同期検波用
の参照信号を励磁コイルに流す電流の波形に対応させて
ロックすることにより検出信号の同期検波時の位相ずれ
を防止出来、計測範囲を大電流領域まで拡大することが
出来る。
【図面の簡単な説明】
【図1】本発明の原理説明図である。
【図2】本発明に係るセンサヘッドの模式図である。
【図3】センサヘッドの製作態様を示す模式説明図であ
る。
【図4】センサヘッドに接続される検出回路を示すブロ
ック図である。
【図5】参照信号の位相ロックの態様を示す説明図であ
る。
【図6】貫通電流 (測定電流) と検出信号位相角 (°)
との関係を示すグラフである。
【図7】参照信号と検出信号との位相がずれた場合を示
す説明図である。
【図8】実施の形態についての試験結果であり、測定電
流と出力電圧との関係を示すグラフである。
【図9】測定電流の向きを変えた場合の出力電圧を示す
グラフである。
【図10】測定電流の向きを変えた場合の出力電圧を示
すグラフである。
【図11】耐磁場特性を示すグラフである。
【図12】温度特性を示すグラフである。
【図13】振動試験結果を示すグラフである。
【図14】ステップ応答特性を示すグラフである。
【図15】分解能を示すグラフである。
【図16】参照信号の位相ロックをした場合としない場
合との比較結果を示すグラフである。
【図17】平衡電流特性を示すグラフである。
【図18】一般的な平行フラックス・ゲート型の直流電
流センサの原理説明図である。
【符号の説明】
1、2 コア 3 励磁コイル 4 検出コイル 5 層間絶縁紙 6 シールドテープ(キュープラ・テープ) 7 被測定導線 10 発振子 11 発振・分周回路 12 振幅調整回路 13 正弦波化フィルタ 14 増幅回路 15 励磁コイルインダクタンス検出回路 16 励磁電流ピーク検出回路 17 位相調整回路 18 帯域通過フィルタ 19 位相同期検波回路 20 低域通過フィルタ

Claims (3)

    【特許請求の範囲】
  1. 【請求項1】 中心部に直流電流が通流せしめられる被
    測定導体を通すべく環状に形成された一対の磁性体コア
    と、 交流通電時に形成される交流磁場が互いに打ち消し合う
    ように前記各コアに巻回された励磁コイルと、 前記両コアにこれらを一括するように巻回された検出コ
    イルとを備え、前記検出コイルにて前記被測定導体の直
    流電流を検出するようにしたことを特徴とする直流電流
    センサ。
  2. 【請求項2】 前記励磁コイルのインダクタンスを検出
    し、検出信号を出力するインダクタンス検出回路と、 前記検出したインダクタンスに基づいて、前記励磁コイ
    ルによる励磁レベルを調整する調整回路とを備えること
    を特徴とする請求項1に記載の直流電流センサ。
  3. 【請求項3】 前記検出コイルから出力される信号を、
    前記励磁コイルに供給した励磁電流周波数の2倍の周波
    数の参照信号に基づいて位相検波するに際し、前記励磁
    電流のピーク値に合わせて参照信号の波形をロックし、
    参照信号を前記検出コイルから出力される信号の位相変
    化に追従させる手段を備えることを特徴とする請求項1
    又は2に記載の直流電流センサ。
JP10338185A 1998-11-27 1998-11-27 直流電流センサ Pending JP2000162244A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10338185A JP2000162244A (ja) 1998-11-27 1998-11-27 直流電流センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10338185A JP2000162244A (ja) 1998-11-27 1998-11-27 直流電流センサ

Publications (1)

Publication Number Publication Date
JP2000162244A true JP2000162244A (ja) 2000-06-16

Family

ID=18315733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10338185A Pending JP2000162244A (ja) 1998-11-27 1998-11-27 直流電流センサ

Country Status (1)

Country Link
JP (1) JP2000162244A (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2370363A (en) * 2000-12-22 2002-06-26 Nada Electronics Ltd Measuring DC component of AC current
KR100968633B1 (ko) 2008-06-27 2010-07-06 김장수 전류센서
JP2012127718A (ja) * 2010-12-14 2012-07-05 Fuji Electric Co Ltd 電流検知装置
JP2012159445A (ja) * 2011-02-02 2012-08-23 Mitsubishi Electric Corp 直流漏電検出装置
JP2013061322A (ja) * 2011-08-25 2013-04-04 Mitsubishi Electric Corp 直流電流検出装置
WO2013128803A1 (ja) 2012-02-29 2013-09-06 富士電機機器制御株式会社 電流検出装置
JP2013213725A (ja) * 2012-04-02 2013-10-17 Fuji Electric Fa Components & Systems Co Ltd 電流検知装置
JP2013217914A (ja) * 2012-03-12 2013-10-24 Ferrotec Corp 電流センサ、センサ素子および制御装置
JP2014202512A (ja) * 2013-04-02 2014-10-27 富士電機機器制御株式会社 電流検知装置
JP2015068725A (ja) * 2013-09-30 2015-04-13 東日本旅客鉄道株式会社 電流検出装置及びこれを備えた変電設備
CN114994389A (zh) * 2022-05-25 2022-09-02 北京中联太信科技有限公司 一种磁超导微直流检测装置及方法
JP7444706B2 (ja) 2020-06-15 2024-03-06 株式会社日立産機システム 電流センサ

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2370363A (en) * 2000-12-22 2002-06-26 Nada Electronics Ltd Measuring DC component of AC current
KR100968633B1 (ko) 2008-06-27 2010-07-06 김장수 전류센서
JP2012127718A (ja) * 2010-12-14 2012-07-05 Fuji Electric Co Ltd 電流検知装置
JP2012159445A (ja) * 2011-02-02 2012-08-23 Mitsubishi Electric Corp 直流漏電検出装置
JP2013061322A (ja) * 2011-08-25 2013-04-04 Mitsubishi Electric Corp 直流電流検出装置
KR20140136917A (ko) 2012-02-29 2014-12-01 후지 덴키 기기세이교 가부시끼가이샤 전류 검출 장치
WO2013128803A1 (ja) 2012-02-29 2013-09-06 富士電機機器制御株式会社 電流検出装置
US9541580B2 (en) 2012-02-29 2017-01-10 Fuji Electric Fa Components & Systems Co., Ltd. Current detecting device
JP2013217914A (ja) * 2012-03-12 2013-10-24 Ferrotec Corp 電流センサ、センサ素子および制御装置
JP2013213725A (ja) * 2012-04-02 2013-10-17 Fuji Electric Fa Components & Systems Co Ltd 電流検知装置
JP2014202512A (ja) * 2013-04-02 2014-10-27 富士電機機器制御株式会社 電流検知装置
JP2015068725A (ja) * 2013-09-30 2015-04-13 東日本旅客鉄道株式会社 電流検出装置及びこれを備えた変電設備
JP7444706B2 (ja) 2020-06-15 2024-03-06 株式会社日立産機システム 電流センサ
CN114994389A (zh) * 2022-05-25 2022-09-02 北京中联太信科技有限公司 一种磁超导微直流检测装置及方法
CN114994389B (zh) * 2022-05-25 2023-09-26 北京中联太信科技有限公司 一种磁超导微直流检测装置及方法

Similar Documents

Publication Publication Date Title
US4692703A (en) Magnetic field sensor having a Hall effect device with overlapping flux concentrators
JP3286431B2 (ja) 直流電流センサー
JP5948958B2 (ja) 電流検出装置
EP0579462B1 (en) DC current sensor
US6411078B1 (en) Current sensor apparatus
US5223789A (en) AC/DC current detecting method
JPH10513549A (ja) 副ループ動作された電流変圧器を有する直流及び交流電流センサ
JP2650211B2 (ja) 補償原理による電流センサ
EP0380562B1 (en) Magnetometer employing a saturable core inductor
JP2000162244A (ja) 直流電流センサ
US3260932A (en) Magnet-field measuring device with a galvanomagnetic resistance probe
US3621382A (en) Anistropic thin ferromagnetic film magnetometer
US5982176A (en) Geomagnetic direction sensor
JP2816175B2 (ja) 直流電流測定装置
JPH10232259A (ja) 漏電センサー
JP2003315374A (ja) 直流漏電検出装置
Inada et al. Quick response large current sensor using amorphous MI element resonant multivibrator
JPH10309031A (ja) 交直両用漏電検出器
KR102039268B1 (ko) 교류 및 직류 전류 감지 회로
KR102656037B1 (ko) 자기장 검출 장치
US20060192549A1 (en) Current sensor with magnetic toroid dual frequency detection scheme
JP2020165716A (ja) 勾配磁界センサ
JP2008014921A (ja) 直流電流検出方法及び直流電流検出器
JPH0261710B2 (ja)
KR102039270B1 (ko) 지락 전류 감지 회로