JP2000147506A - Light illuminating device - Google Patents

Light illuminating device

Info

Publication number
JP2000147506A
JP2000147506A JP10331326A JP33132698A JP2000147506A JP 2000147506 A JP2000147506 A JP 2000147506A JP 10331326 A JP10331326 A JP 10331326A JP 33132698 A JP33132698 A JP 33132698A JP 2000147506 A JP2000147506 A JP 2000147506A
Authority
JP
Japan
Prior art keywords
light irradiation
light
substrate
polarizer
irradiation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10331326A
Other languages
Japanese (ja)
Other versions
JP3936086B2 (en
Inventor
Young Seok Choi
榮 錫 崔
Soon Bum Kwon
純 凡 權
Byung Duck Song
秉 徳 宋
Ki Hyuk Yoon
基 赫 尹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Publication of JP2000147506A publication Critical patent/JP2000147506A/en
Application granted granted Critical
Publication of JP3936086B2 publication Critical patent/JP3936086B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3066Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state involving the reflection of light at a particular angle of incidence, e.g. Brewster's angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable irradiation in a large area and to determine the alignment direction and pretilt angle of an alignment layer by designing the illuminating device in the manner that the light transmitted through a polarizer irradiates at a specified angle from the normal line of a stage where a substrate is mounted. SOLUTION: The polarizer is positioned at a first polarizer 33. When the illuminating device is observed from the x-z side, the light emitted from the optical system is tilted at a specified angle from the normal line of the substrate for the tilted exposure so that an alignment layer 25 is irradiated with partially polarized light at a specified angle. The pretilt angle of the liquid crystal molecules on the alignment layer 25 is controlled by the energy of the light irradiating the alignment layer 25, the material of the alignment layer and the polarization degree of the illuminating device. On the other hand, the alignment direction of the liquid crystal molecules is controlled by the direction of irradiation light in the tilted exposure. The usable angle θ of the light is preferably 0 to 45 deg..

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光照射装置に関する
ものであって、特に、液晶表示素子の光配向の工程に用
いられる大面積の光照射装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light irradiating apparatus, and more particularly to a large-area light irradiating apparatus used in a process of optical alignment of a liquid crystal display device.

【0002】[0002]

【従来の技術】一般的に、液晶表示素子はスペーサによ
り、所定の間隔をおいて対向配置された上下基板と、前
記上下基板の間に形成された液晶層からなる。上下基板
は、それぞれの対向面に所定のパターンの電極を保持し
ており、これの電極の上部には、液晶の配向を決める配
向膜が形成されている。
2. Description of the Related Art Generally, a liquid crystal display device comprises upper and lower substrates which are opposed to each other at a predetermined interval by a spacer, and a liquid crystal layer formed between the upper and lower substrates. The upper and lower substrates hold electrodes of a predetermined pattern on their opposing surfaces, and an alignment film for determining the alignment of the liquid crystal is formed on the electrodes.

【0003】前記配向膜を処理する配向方法としては、
ラビング(rubbing method)或は光配向法(photo-alig
nment method)などが用いられている。
As an alignment method for treating the alignment film, there are:
Rubbing method or photo-alig
nment method) is used.

【0004】前記ラビング法は基板にポリイミド(PI,p
olyimide)などの配向物質を塗布した後、ラビング布で
機械的摩擦を引き起こして液晶の配向方向をもたらす方
法であって、大面積化と高速処理とが可能となって工業
的に広く利用されているものである。
In the rubbing method, polyimide (PI, p
olyimide) is a method of applying mechanical alignment with a rubbing cloth after applying an alignment material to bring the alignment direction of the liquid crystal. Is what it is.

【0005】しかしながら、摩擦強度によって配向膜に
形成される微細溝の形態が変わるようになって液晶分子
の配列が一定ではないという問題点があり、これによる
不規則な位相歪曲(random phase distortion)と光散
乱(light scattering)とが発生されて、液晶表示素子
の性能を低下させるおそれがある。また、ラビング処理
の際発生するゴミ及び静電気は、歩留りを減少させる原
因となり、画素の分割をしてマルチドメインを具現する
場合には、繰り返されるフォトリソグラフィー(photol
ithography)工程で、配向膜の信頼性と安定性とを具現
することに難点を持っている。
However, there is a problem that the arrangement of the liquid crystal molecules is not constant because the shape of the fine grooves formed in the alignment film is changed according to the frictional strength, and thus irregular phase distortion is caused. And light scattering may occur, which may degrade the performance of the liquid crystal display device. In addition, dust and static electricity generated during the rubbing process cause a reduction in yield, and when a pixel is divided to implement a multi-domain, repeated photolithography (photol) is performed.
In the ithography process, it is difficult to realize the reliability and stability of the alignment film.

【0006】一方、前記光配向工程は、光配向膜が塗布
された基板上に紫外線を照射して液晶のプリチルトと配
向方向をもたらす方法であって、ラビング法と異なって
静電気やゴミが発生するおそれがなく、それによる歩留
りの減少を助けることができる。また、配向膜の全体に
わたって、液晶分子を均一に配列させることができるの
で、位相歪曲や光散乱という現象が生じることを防止で
きる。
On the other hand, the photo-alignment step is a method of irradiating ultraviolet rays onto a substrate on which a photo-alignment film is applied to bring a pretilt and an alignment direction of a liquid crystal. There is no danger, which can help reduce yield. In addition, since liquid crystal molecules can be uniformly arranged over the entire alignment film, it is possible to prevent the occurrence of phenomena such as phase distortion and light scattering.

【0007】特に、画素の分割による光視野角の液晶表
示素子の具現を実際に可能とする長所がある。
In particular, there is an advantage that it is possible to actually realize a liquid crystal display device having an optical viewing angle by dividing pixels.

【0008】前記のような光配向の工程に用いられる光
照射装置が、日本特許公開平10-90684(1998.4.10)及び
日本特許公開平10-161126(1998.6.19)で提案されたこと
がある。
The light irradiating device used in the photo-alignment process as described above has been proposed in Japanese Patent Application Laid-Open Nos. 10-90684 (1998.4.10) and 10-161126 (1998.6.19). is there.

【0009】図1は、前記日本特許公開平10-90684に記
載された従来の光照射装置の構成を示す概略図であっ
て、前記従来の光照射装置は、液晶表示素子の配向膜に
偏光された光を照射するための配向膜の光配向用の偏光
の光照射装置に関するものである。
FIG. 1 is a schematic view showing the structure of a conventional light irradiating device described in the above-mentioned Japanese Patent Publication No. 10-90684. The conventional light irradiating device includes a polarizing film on an alignment film of a liquid crystal display element. The present invention relates to an apparatus for irradiating polarized light for photo-alignment of an alignment film for irradiating the irradiated light.

【0010】その構成及び作用をみてみると、光源
(1)から放射される紫外光を含む光は集光鏡(2)で
集光され、第1反射鏡(3)で反射されて、集光レンズ
(5)に入射される。シャッター(4)を媒介として、
集光レンズ(5)から流れてきた光は第2反射鏡(6)
で反射され、視準レンズ(7)で平行光となって、偏光
素子(8)に入射される。偏光素子(8)は複数のガラ
ス板(8a)を間隔をおいて平行配置したものであっ
て、前記ガラス板(8a)は入射光に対してブリュース
タ角(Brewster angle)を成すように傾斜配置されたも
のであり、P偏光を透過させたS偏光の大部分を反射す
る。偏光素子(8)から出射されたP偏光は、マスク
(13)を媒介として基板(35)に照射される。
Looking at the structure and operation, light including ultraviolet light emitted from the light source (1) is condensed by the condenser mirror (2), reflected by the first reflector (3), and collected. The light enters the optical lens (5). Through the shutter (4)
The light flowing from the condenser lens (5) is reflected by the second reflecting mirror (6).
Are reflected by the collimating lens (7), become parallel light by the collimating lens (7), and enter the polarizing element (8). The polarizing element (8) has a plurality of glass plates (8a) arranged in parallel at an interval, and the glass plate (8a) is inclined so as to form a Brewster angle with respect to incident light. It is arranged and reflects most of the S-polarized light that has transmitted the P-polarized light. The P-polarized light emitted from the polarizing element (8) is applied to the substrate (35) via the mask (13).

【0011】前記のように構成された光照射装置では、
偏光比(polarization ratio :s/p,s: 垂直偏光、p:水
平偏光)を0.1以下に設定したし、偏光方向が一定な偏
光光を照射して液晶表示素子の配向膜に光配向を適用で
き、既存の他の装置より、透過率、波長の依存性、耐久
性、寿命などに優秀である。しかし、大面積の液晶表示
素子を製造するためには、前記偏光素子(8)のガラス
板(8a)を大きめに製造しなければならなく、さらに
効果的な光配向の工程に適用するには、偏光比の範囲が
適正ではないという問題がある。
[0011] In the light irradiation apparatus configured as described above,
The polarization ratio (s / p, s: vertical polarization, p: horizontal polarization) is set to 0.1 or less, and light is applied to the alignment film of the liquid crystal display device by irradiating polarized light with a constant polarization direction. It is excellent in transmittance, wavelength dependency, durability, lifetime, etc., compared with other existing devices. However, in order to manufacture a large-area liquid crystal display element, the glass plate (8a) of the polarizing element (8) must be manufactured relatively large. There is a problem that the range of the polarization ratio is not appropriate.

【0012】図2は、前記日本特許公開平10-161126に
記載された従来の光照射装置の構成を示す概略図であっ
て、その構成及び作用をみてみると、光源(1)と、集
光鏡(2)と、視準レンズ(7)と、多眼型レンズ(1
9)と、集光レンズ(5)と、前記光源(1)から発生
した光を基板(35)に導く一つ以上の反射鏡(3)
(6)を備えた露光装置にて、前記反射鏡の中、少なく
とも一つの反射鏡が、第1偏光を主に反射する反射型の
回折格子で構成される。
FIG. 2 is a schematic diagram showing the configuration of a conventional light irradiation device described in the above-mentioned Japanese Patent Application Laid-Open No. 10-161126. Optical mirror (2), collimating lens (7) and multi-lens (1
9), a condenser lens (5), and one or more reflecting mirrors (3) for guiding light generated from the light source (1) to a substrate (35).
In the exposure apparatus provided with (6), at least one of the reflecting mirrors is constituted by a reflective diffraction grating that mainly reflects the first polarized light.

【0013】第1反射鏡(3)は、一般的に第2反射鏡
(6)より小面積であるので、前記第1反射鏡(3)を
所定の回折格子で構成した場合、小面積の回折格子にで
きる利点がある。この際、所定の回折格子が多眼型レン
ズ(19)の前に位置するので、前記回折格子が多眼型
レンズの出力光に影響を及ぼすことが防止できる。
Since the first reflecting mirror (3) generally has a smaller area than the second reflecting mirror (6), when the first reflecting mirror (3) is formed of a predetermined diffraction grating, the first reflecting mirror (3) has a smaller area. There are advantages that a diffraction grating can do. At this time, since the predetermined diffraction grating is located in front of the multi-lens (19), it is possible to prevent the diffraction grating from affecting the output light of the multi-lens.

【0014】前記のように構成することによって、前記
光照射装置は、第1偏光を主に反射する反射型の回折格
子による反射光を照射することによって、偏光された光
を大面積に一括に照射できる。
With the above configuration, the light irradiating device irradiates the light reflected by the reflection type diffraction grating that mainly reflects the first polarized light, thereby collectively polarizing the polarized light over a large area. Can be irradiated.

【0015】しかしながら、前記光照射装置における回
折格子は、その偏光の特性が波長の依存性が大きい。
[0015] However, the polarization characteristics of the diffraction grating in the light irradiation device have a large wavelength dependence.

【0016】前記従来の技術等は、偏光された光を具現
するため既存の光照射装置に偏光手段を追加することの
みに焦点が合っているので、実際の光配向工程には、不
適宜であるという問題点がある。
The above-mentioned prior arts are focused only on adding a polarizing means to an existing light irradiation device to realize polarized light. There is a problem that there is.

【0017】[0017]

【発明が解決しようとする課題】本発明は前記従来技術
の問題点を鑑みてなされたものであって、大面積の照射
が可能であり、光を傾斜照射して配向膜の配向方向及び
プリチルト角を決める光照射装置を提供することを目的
とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and can irradiate a large area. An object of the present invention is to provide a light irradiation device that determines an angle.

【0018】[0018]

【課題を解決するための手段】前記目的を達成するた
め、本発明による光照射装置は、光学系と、前記光学系
からの光を偏光させる第1偏光子と、前記第1偏光子か
ら出た光が、基板が置かれてあるステージの法線に対し
て、所定の角度(θ)に傾斜されるように照射される。
In order to achieve the above object, a light irradiation device according to the present invention comprises an optical system, a first polarizer for polarizing light from the optical system, and a light output from the first polarizer. The emitted light is irradiated so as to be inclined at a predetermined angle (θ) with respect to the normal of the stage on which the substrate is placed.

【0019】前記光学系は、光源とレンズと反射鏡とで
構成され、反射鏡は一つ以上で構成されることができ
る。また、前記レンズと反射鏡との間に第2偏光子が構
成されることができるし、必要によって第3偏光子も構
成されることができる。
The optical system includes a light source, a lens, and a reflecting mirror, and the reflecting mirror may include one or more. Further, a second polarizer may be provided between the lens and the reflecting mirror, and a third polarizer may be provided if necessary.

【0020】前記目的を達成するため、本発明による光
照射装置は、光源と、前記光源からの光を反射する第1
反射鏡と、複数のレンズからなった多眼型レンズと、前
記多眼型レンズからの光を反射する第2反射鏡と、前記
第2反射鏡からの光を平行光となるようにする視準レン
ズと、そして前記視準レンズからの光を偏光させる第1
偏光子と、前記第1偏光子から流れてくる光が基板の置
かれるステージの法線に対して、所定の角度(θ)に傾
斜されるように照射される。
In order to achieve the above object, a light irradiation device according to the present invention comprises a light source and a first light source for reflecting light from the light source.
A reflecting mirror, a multi-lens formed of a plurality of lenses, a second reflecting mirror for reflecting light from the multi-lens, and a view for converting the light from the second reflecting mirror into parallel light. A quasi-lens, and a first to polarize light from the collimating lens
The light flowing from the polarizer and the first polarizer is irradiated so as to be inclined at a predetermined angle (θ) with respect to the normal of the stage on which the substrate is placed.

【0021】前記光照射装置は、前記第1反射鏡と多眼
型レンズの間に第2偏光子を追加に含むか、前記多眼型
レンズと第2反射鏡の間に第3偏光子を追加に含む。
The light irradiation device may further include a second polarizer between the first reflecting mirror and the multi-lens lens, or may include a third polarizer between the multi-lens lens and the second reflecting mirror. Include in addition.

【0022】前記第1偏光子は、200nm〜800nmの波長の
光に対して、透過率が高いものがよく、好ましくは250n
m〜400nmの波長で、透過率が高いものがよい。
The first polarizer preferably has a high transmittance for light having a wavelength of 200 nm to 800 nm, and preferably has a transmittance of 250 nm.
Those having a wavelength of m to 400 nm and a high transmittance are preferable.

【0023】前記第1偏光子は、0〜1の偏光度を有
し、好ましくは0.2〜0.95の偏光度を有する。
The first polarizer has a polarization degree of 0 to 1, preferably 0.2 to 0.95.

【0024】前記角度(θ)は、0°〜45°の範囲内に
あるのが好ましい。
The angle (θ) is preferably in the range of 0 ° to 45 °.

【0025】[0025]

【発明の実施の形態】以下、図面を参照して本発明によ
る光照射装置を詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A light irradiation device according to the present invention will be described below in detail with reference to the drawings.

【0026】図3及び図4は、本発明の光照射装置のyz
及びxz側面図である。
FIGS. 3 and 4 show yz of the light irradiation apparatus of the present invention.
And xz side view.

【0027】本発明の光照射装置は、光源(1)と、集
光鏡(2)と、第1反射鏡(3)、レンズ(37)と、
多眼型レンズ(19)と、第2反射鏡(6)と、視準レ
ンズ(collimator lens)(7)と、マスク(13)
と、基板(35)が置かれるステージ(11)と、そし
て偏光子で構成される。
The light irradiation device of the present invention comprises a light source (1), a condenser mirror (2), a first reflector (3), a lens (37),
Multi-lens (19), second reflector (6), collimator lens (7), mask (13)
, A stage (11) on which a substrate (35) is placed, and a polarizer.

【0028】前記集光鏡(2)は、光源(1)からの光
を第1反射鏡(3)に向けるように調節し、多眼型レン
ズ(homogenizer ; fly eye lens)(19)は複数のレ
ンズからなっており、前記レンズのそれぞれを通過した
光が重ねるように光を屈折させる。第2反射鏡(6)
は、前記多眼型レンズ(19)から流れてきた光を反射
し、視準レンズ(7)は、前記第2反射鏡(6)で反射
された光を平行光として、基板(35)上に形成された
配向膜(25)へ導く。前記視準レンズ(7)はミラー
(mirror)或はレンズが可能であり、前記多眼型レンズ
は、凸型或は凹型の中いずれも可能である。
The condenser mirror (2) adjusts the light from the light source (1) so as to be directed to the first reflecting mirror (3), and has a plurality of homogenizers (fly eye lenses) (19). And refracts light so that light passing through each of the lenses overlaps. Second reflector (6)
Reflects the light flowing from the multi-lens lens (19), and the collimating lens (7) converts the light reflected by the second reflecting mirror (6) into parallel light on the substrate (35). To the alignment film (25) formed on the substrate. The collimating lens (7) can be a mirror or a lens, and the multi-lens can be either convex or concave.

【0029】本発明の光照射装置では、偏光子を第1偏
光子(33)の位置に構成し、必要によって前記多眼型
レンズの前(第2偏光子(31)の位置)及び/或は後
(図に示さない)の位置に、少なくとも一つ以上が構成
できる。
In the light irradiation device of the present invention, the polarizer is arranged at the position of the first polarizer (33), and if necessary, in front of the multi-lens (the position of the second polarizer (31)) and / or Can be configured at least one later in a position (not shown).

【0030】前記偏光子は積層された石英基板、積層さ
れたガラス基板、或はマルチ−コーティングされた基板
などからなり、耐熱性と耐久性とがよく、波長の依存性
が少ないものが好ましい。積層された石英基板或はガラ
ス基板は、基板に対してブリュースタ角(brewster ang
le, θ=tan-1n,n :石英或はガラスの屈折率)に傾斜さ
れたものを用いる。従って、ブリュースタ角は57〜60°
程度の範囲となる。積層された石英或はガラス基板を、
大面積の照射の際均一に光が照射でき、マルチ−コーテ
ィングされた基板は、基板上に無機膜がコーティングさ
れたものを用い、無機膜は主にSiO2である。
The polarizer comprises a laminated quartz substrate, a laminated glass substrate, a multi-coated substrate, or the like, and preferably has good heat resistance and durability, and has little wavelength dependence. The laminated quartz or glass substrate is placed at a Brewster angle with respect to the substrate.
le, θ = tan -1 n, n: a material inclined to the refractive index of quartz or glass. Therefore, the Brewster angle is 57-60 °
Range. The laminated quartz or glass substrate is
Light can be uniformly radiated when irradiating a large area, and a multi-coated substrate is a substrate in which an inorganic film is coated on a substrate, and the inorganic film is mainly SiO 2 .

【0031】また、前記偏光子は、200nm〜800nmの波長
の範囲の透過率が高いものがよく、250nm〜400nmの波長
の範囲の透過率が高いものが好ましい。
The polarizer preferably has a high transmittance in the wavelength range of 200 to 800 nm, and more preferably has a high transmittance in the wavelength range of 250 to 400 nm.

【0032】 は、0∠PD∠1の範囲の部分偏光(partiallypolarized)
となるものがよく、0.2∠PD∠0.95の範囲のものが好ま
しい。そして、配向膜(25)の種類によって適当な値
の偏光度を選ぶことができる。
[0032] Is partially polarized in the range 0∠PD∠1
And preferably in the range of 0.2 / PD / 0.95. Then, an appropriate polarization degree can be selected depending on the type of the alignment film (25).

【0033】図4に示したように、前記光照射装置をxz
側から見ると、光学系(100)から照射される光は、
光の傾斜露光のため基板の法線に対して、一定の角度に
傾けられており、光照射装置での最大の透過軸の方向
は、図でのように定義された光経路の平面(xz)に垂直
であったり、平行である。従って、前記のように構成す
ることによって、配向膜(25)の部分偏光された光を
傾斜照射することができる。
As shown in FIG. 4, the light irradiation device is
When viewed from the side, the light emitted from the optical system (100)
Due to the oblique exposure of light, it is tilted at a certain angle with respect to the normal of the substrate, and the direction of the maximum transmission axis in the light irradiation device is defined by the plane of the optical path (xz ) Perpendicular to or parallel to Therefore, with the above-described configuration, the partially polarized light of the alignment film (25) can be irradiated obliquely.

【0034】図5は本発明の光照射装置で、配向膜のプ
リチルト角の制御を示すxz側面図である。配向膜(2
5)上で液晶分子(27)のプリチルト角(θp)は、
前記配向膜(25)に照射される光のエネルギーの量や
配向膜の物質と、それによる光照射装置の偏光度により
調節される。それに反して、前記液晶分子(27)の配
向方向は、前記傾斜露光の際の光照射の方向によって決
められる。
FIG. 5 is an xz side view showing the control of the pretilt angle of the alignment film in the light irradiation apparatus of the present invention. Alignment film (2
5) In the above, the pretilt angle (θp) of the liquid crystal molecule (27) is
It is adjusted by the amount of energy of the light applied to the alignment film (25), the material of the alignment film, and the degree of polarization of the light irradiation device. On the other hand, the orientation direction of the liquid crystal molecules (27) is determined by the direction of light irradiation during the oblique exposure.

【0035】この際、使用可能な光照射の角度(θ)
は、0°〜45°の範囲内にあるのが好ましく、仮に、前
記光照射の角度(θ)が45°以上であれば、マスク
(13)と配向膜(25)との間のギャップ(gap)の
誤差による効果が極大化されるので、マスクのパターン
による配向膜上のパターン位置の誤差が大きくなる。
At this time, the usable light irradiation angle (θ)
Is preferably in the range of 0 ° to 45 °, and if the angle (θ) of the light irradiation is 45 ° or more, the gap between the mask (13) and the alignment film (25) ( Since the effect due to the error of the gap) is maximized, the error of the pattern position on the alignment film due to the pattern of the mask increases.

【0036】次の表は、マスクと配向膜との間のギャッ
プ(gap)誤差が、20μmである場合、光照射の角度
(θ)によるパターン位置の誤差を示す。
The following table shows the pattern position error depending on the light irradiation angle (θ) when the gap error between the mask and the alignment film is 20 μm.

【0037】[0037]

【表1】 [Table 1]

【0038】図6,7及び8は、本発明の光照射装置に
て、配向膜の配向方向の制御を示す第1、第2及び第3
実施例のxy側面図であり、図で厚い実線の矢印は、基板
の配向方向を示す。そして、実線の四角形は、基板の第
1位置(45)を、一点鎖線の四角形は、基板の第2位
置(47)をそれぞれ示す。
FIGS. 6, 7 and 8 show first, second and third views showing the control of the alignment direction of the alignment film in the light irradiation apparatus of the present invention.
It is an xy side view of an Example, and the thick solid arrow in the figure shows the orientation direction of a board | substrate. The solid line rectangle indicates the first position (45) of the substrate, and the dashed line square indicates the second position (47) of the substrate.

【0039】上記したように、本発明の装置では、傾斜
露光の際の光照射の方向によって、配向方向が決められ
るので、光配向の工程で基板上の光照射の方向、即ち、
光の方位角(azimuthangle)が重要である。この光の方
位角を調節する方法は、図6,7及び8に示している。
As described above, in the apparatus of the present invention, since the alignment direction is determined by the direction of light irradiation during oblique exposure, the direction of light irradiation on the substrate, that is,
The azimuth angle of light is important. This method of adjusting the azimuth of light is shown in FIGS.

【0040】図6の第1実施例のように、モノドメイン
(mono-domain)或はマルチドメイン(multi-domain)
の液晶表示素子を製造するにおいて、配向方向を基板の
長軸方向に対して、0°或は90°(45°或は135
°)に形成する場合、基板を90°回転させればよいの
で、光学系(100)は基板の長軸方向に対して、0°
或は45°の方向に位置するように配置される。
As in the first embodiment shown in FIG. 6, a mono-domain or a multi-domain is used.
In the manufacture of the liquid crystal display device of (1), the alignment direction is 0 ° or 90 ° (45 ° or 135 °) with respect to the major axis direction of the substrate.
°), the substrate may be rotated by 90 °, so that the optical system (100) is 0 ° with respect to the major axis direction of the substrate.
Alternatively, they are arranged so as to be located in the direction of 45 °.

【0041】即ち、前記配向方向を含んだ任意の配向方
向を形成しようとする際には、図7の第2実施例と図8
の第3実施例のように配置するのがよく、好ましくは図
8に示した実施例がよい。図7では、基板が置かれたス
テージ(11)を、所定の角度(φ)に回転させること
によって、必要な配向方向が容易に形成できる。しか
し、前記配置ではマルチドメインの液晶表示素子を製造
する場合、マスクを一緒に回転すべきであるので、マス
クと基板の間のギャップの保持が必要となる。図8で
は、光学系(100)を所定の角度(φ)に移動させる
ことによって、第1配向方向及び光学系の移動による第
2配向方向を形成して液晶セルの領域中の偏光方向が、
二つ以上が混在するマルチドメインが具現できる。
That is, when an arbitrary alignment direction including the above-described alignment direction is to be formed, the second embodiment shown in FIG.
The third embodiment is preferably arranged as in the third embodiment, and is preferably the embodiment shown in FIG. In FIG. 7, the required orientation direction can be easily formed by rotating the stage (11) on which the substrate is placed at a predetermined angle (φ). However, in the above arrangement, when manufacturing a multi-domain liquid crystal display element, it is necessary to keep the gap between the mask and the substrate because the mask must be rotated together. In FIG. 8, by moving the optical system (100) to a predetermined angle (φ), a first alignment direction and a second alignment direction due to the movement of the optical system are formed, and the polarization direction in the region of the liquid crystal cell becomes
A multi-domain in which two or more are mixed can be realized.

【0042】図9は、本発明の光照射装置にて配向膜の
露光領域を示すxz側面図である。
FIG. 9 is an xz side view showing an exposure area of an alignment film in the light irradiation apparatus of the present invention.

【0043】マルチドメインの液晶表示素子を製造する
ためマスクを用いる際には、マスク(13)と基板(3
5)上の配向膜(25)との間に、一定のギャップ
(d)を保持しなければならなく、前記ギャップは30μ
m〜100μmが好ましい。
When a mask is used for manufacturing a multi-domain liquid crystal display element, the mask (13) and the substrate (3) are used.
5) A constant gap (d) must be maintained between the upper alignment film (25) and the gap (30 μm).
m to 100 μm is preferred.

【0044】前記図でのように、所定の光照射の角度
(θ)に入射される光が、マスク(13)を通過して配
向膜(25)に照射されると、露光される領域は前記光
照射の角度に対して、Δx(Δx=dtanθ)ほどが移動され
るので、マスク(13)のパターン或は前記数値ほど移
動して形成される。
As shown in the figure, when the light incident at a predetermined light irradiation angle (θ) passes through the mask (13) and irradiates the alignment film (25), the exposed area becomes Since it is moved by about Δx (Δx = dtan θ) with respect to the angle of the light irradiation, it is formed by being moved by the pattern of the mask (13) or the above numerical value.

【0045】従って、実質的な光配向の工程では、マス
ク(13)と基板(35)との間に、一定のギャップを
正確に測定し、測定されたギャップと光照射の角度を考
えて基板を初期の整列状態から移動させ、光照射するこ
とが必須的である。
Accordingly, in the substantial photo-alignment step, a certain gap is accurately measured between the mask (13) and the substrate (35), and the substrate is determined by considering the measured gap and the angle of light irradiation. Is moved from the initial alignment state and light irradiation is essential.

【0046】前記のようにするためには、前記過程中
で、ギャップ測定用の装置が必要であり、レーザーなど
の測定用の補助光源を用いてギャップを測定する。この
際、ギャップの測定位置は、3〜4の位置を選定してギ
ャップを測定し、測定位置の間のギャップの誤差を縮め
るため微細な位置別のギャップの補正装置をステージ
(11)の下段に設けて、光配向の工程をより精密に遂
行する。
In order to perform the above, an apparatus for measuring a gap is required during the above process, and the gap is measured using an auxiliary light source for measurement such as a laser. At this time, the gap measurement position is selected from 3 to 4 positions to measure the gap, and a fine position-dependent gap correction device is provided at the lower stage of the stage (11) to reduce the gap error between the measurement positions. To perform the photo-alignment process more precisely.

【0047】[0047]

【発明の効果】本発明の光照射装置は、偏光子を光照射
される基板に対して、所定の角度に傾斜されるように配
置して部分偏光された光を傾斜照射することによって、
配向膜の配向方向及びプリチルト角を、一回の照射に決
めることができる。
According to the light irradiation apparatus of the present invention, the substrate to be irradiated with the polarizer is arranged so as to be inclined at a predetermined angle, and the partially polarized light is obliquely irradiated to the substrate.
The orientation direction and the pretilt angle of the orientation film can be determined for one irradiation.

【0048】また、マルチドメインの液晶表示素子を製
造するためマスクと基板とのギャップを精密に測定し、
配向膜上に均一なパターンを形成すことによって、大面
積及びマルチドメインの液晶表示素子を効果的に具現で
きる。
Further, in order to manufacture a multi-domain liquid crystal display device, the gap between the mask and the substrate is precisely measured,
By forming a uniform pattern on the alignment film, a large-area and multi-domain liquid crystal display device can be effectively realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 図1は、従来の光照射装置の概略図。FIG. 1 is a schematic view of a conventional light irradiation device.

【図2】 図2は、従来の他の光照射装置の概略図。FIG. 2 is a schematic diagram of another conventional light irradiation device.

【図3】 図3は、本発明の光照射装置のyz側面図。FIG. 3 is a yz side view of the light irradiation device of the present invention.

【図4】 図4は、本発明の光照射装置のxz側面図。FIG. 4 is an xz side view of the light irradiation device of the present invention.

【図5】 図5は、本発明の光照射装置にて配向膜のプ
リチルト角の制御を示すxz側面図。
FIG. 5 is an xz side view showing control of a pretilt angle of an alignment film in the light irradiation device of the present invention.

【図6】 図6は、本発明の光照射装置にて配向膜の配
向方向の制御を示す第1、第2及び第3実施例のxy側面
図。
FIG. 6 is an xy side view of the first, second and third embodiments showing the control of the alignment direction of the alignment film in the light irradiation device of the present invention.

【図7】 図7は、本発明の光照射装置にて配向膜の配
向方向の制御を示す第1、第2及び第3実施例のxy側面
図。
FIG. 7 is an xy side view of the first, second and third embodiments showing the control of the alignment direction of the alignment film in the light irradiation apparatus of the present invention.

【図8】 図8は、本発明の光照射装置にて配向膜の配
向方向の制御を示す第1、第2及び第3実施例のxy側面
図。
FIG. 8 is an xy side view of the first, second and third embodiments showing the control of the alignment direction of the alignment film in the light irradiation device of the present invention.

【図9】 図9は、本発明の光照射装置にて配向膜の露
光領域を示すxz側面図。
FIG. 9 is an xz side view showing an exposure region of an alignment film in the light irradiation device of the present invention.

【符号の説明】[Explanation of symbols]

1 光源 2 集光鏡 3 第1反射鏡 4 シャッター(shutter) 5 集光レンズ 6 第2反射鏡 7 視準レンズ(collimator lens) 8 偏光素子 8a ガラス板 10 配向顕微鏡 11 ステージ 13 マスク 19 多眼型レンズ(homogenizer) 25 配向膜 27 液晶分子 31 第2偏光子 33 第1偏光子 35 基板 37 レンズ 41 第1配向方向 43 第2配向方向 45 基板の第1位置 47 基板の第2位置 100 光学系 DESCRIPTION OF SYMBOLS 1 Light source 2 Condensing mirror 3 First reflecting mirror 4 Shutter 5 Condensing lens 6 Second reflecting mirror 7 Collimator lens 8 Polarizing element 8a Glass plate 10 Orientation microscope 11 Stage 13 Mask 19 Multi-eye type Lens (homogenizer) 25 Alignment film 27 Liquid crystal molecule 31 Second polarizer 33 First polarizer 35 Substrate 37 Lens 41 First alignment direction 43 Second alignment direction 45 First position of substrate 47 Second position of substrate 100 Optical system

フロントページの続き (72)発明者 宋 秉 徳 大韓民国京畿道安養市東安區虎渓洞無窮花 振興アパート502−401 (72)発明者 尹 基 赫 大韓民国ソウル特別市瑞草區盤浦1洞三湖 ガートンアパート8−805 Fターム(参考) 2H090 LA05 LA09 LA12 LA16 LA20 MA15 MB14 Continuing on the front page (72) Inventor Song Byung-deok, Korea, Korea, Gyeonggi-do, Anyang-si, Dongan-gu, Hugye-dong, Mugyeon-do Promotion Apartment 502-401 Garton apartment 8-805 F term (reference) 2H090 LA05 LA09 LA12 LA16 LA20 MA15 MB14

Claims (43)

【特許請求の範囲】[Claims] 【請求項1】 光学系と、 前記光学系からの光を偏光させる第1偏光子と、 前記第1偏光子から出た光が基板が置かれるステージの
法線に対して、所定の角度(θ)に傾斜されるように照
射されることを特徴とする光照射装置。
1. An optical system, a first polarizer for polarizing light from the optical system, and a light emitted from the first polarizer at a predetermined angle with respect to a normal to a stage on which a substrate is placed. A light irradiation device, which is irradiated so as to be inclined to θ).
【請求項2】 前記光学系が光源とレンズと反射鏡とで
構成された請求項1記載の光照射装置。
2. The light irradiation device according to claim 1, wherein the optical system includes a light source, a lens, and a reflecting mirror.
【請求項3】 前記反射鏡は一つ以上で構成された請求
項2記載の光照射装置。
3. The light irradiation device according to claim 2, wherein the reflecting mirror comprises one or more.
【請求項4】 前記第1偏光子が積層されたガラス基
板、積層された石英基板、或はマルチコーティングされ
た基板で構成された請求項1記載の光照射装置。
4. The light irradiation device according to claim 1, comprising a glass substrate on which the first polarizer is laminated, a quartz substrate on which the first polarizer is laminated, or a multi-coated substrate.
【請求項5】 前記積層されたガラス基板及び積層され
た石英基板が、基板に対してブリュースタ角度に傾けら
れて積層された請求項4記載の光照射装置。
5. The light irradiation apparatus according to claim 4, wherein the laminated glass substrate and the laminated quartz substrate are laminated at a Brewster angle with respect to the substrate.
【請求項6】 前記マルチコーティングされた基板が、
無機膜がコーティングされた請求項4記載の光照射装
置。
6. The multi-coated substrate,
The light irradiation device according to claim 4, wherein the inorganic film is coated.
【請求項7】 前記レンズと反射鏡との間に、第2偏光
子が追加に含まれた請求項2記載の光照射装置。
7. The light irradiation device according to claim 2, wherein a second polarizer is additionally provided between the lens and the reflecting mirror.
【請求項8】 前記第2偏光子が積層されたガラス基
板、積層された石英基板、或はマルチコーティングされ
た基板で構成された請求項7記載の光照射装置。
8. The light irradiation apparatus according to claim 7, comprising a glass substrate on which the second polarizer is laminated, a quartz substrate on which the second polarizer is laminated, or a multi-coated substrate.
【請求項9】 前記第2偏光子が前記積層されたガラス
基板及び積層された石英基板が、基板に対してブリュー
スタ角度に傾けられて積層された請求項7記載の光照射
装置。
9. The light irradiation apparatus according to claim 7, wherein the glass substrate on which the second polarizer is laminated and the quartz substrate on which the second polarizer is laminated are laminated at a Brewster angle with respect to the substrate.
【請求項10】 前記マルチコーティングされた基板
が、無機膜がコーティングされた請求項7記載の光照射
装置。
10. The light irradiation apparatus according to claim 7, wherein the multi-coated substrate is coated with an inorganic film.
【請求項11】 前記第1偏光子が200nm〜800nmの波長
の光を追加させる請求項1記載の光照射装置。
11. The light irradiation device according to claim 1, wherein the first polarizer adds light having a wavelength of 200 nm to 800 nm.
【請求項12】 前記第1偏光子が250nm〜400nmの波長
の光を追加させる請求項11記載の光照射装置。
12. The light irradiation apparatus according to claim 11, wherein the first polarizer adds light having a wavelength of 250 nm to 400 nm.
【請求項13】 前記第1偏光子が0〜1の偏光度を有
する請求項1記載の光照射装置。
13. The light irradiation device according to claim 1, wherein the first polarizer has a degree of polarization of 0 to 1.
【請求項14】 前記第1偏光子が0.2〜0.95の偏光度
を有する請求項1記載の光照射装置。
14. The light irradiation device according to claim 1, wherein the first polarizer has a degree of polarization of 0.2 to 0.95.
【請求項15】 前記角度(θ)が0〜45°である請
求項1記載の光照射装置。
15. The light irradiation device according to claim 1, wherein the angle (θ) is 0 to 45 °.
【請求項16】 前記ステージが回転する請求項1記載
の光照射装置。
16. The light irradiation device according to claim 1, wherein the stage rotates.
【請求項17】 前記光学系が回転する請求項1記載の
光照射装置。
17. The light irradiation device according to claim 1, wherein the optical system rotates.
【請求項18】 前記基板上にマスクを追加に含んでマ
ルチドメインを具現する請求項1記載の光照射装置。
18. The light irradiation apparatus according to claim 1, wherein a multi-domain is implemented by additionally including a mask on the substrate.
【請求項19】 前記マスクと基板との間に一定のギャ
ップが保持される請求項18記載の光照射装置。
19. The light irradiation apparatus according to claim 18, wherein a constant gap is maintained between the mask and the substrate.
【請求項20】 光源と、 前記光源からの光を反射する第1反射鏡と、 複数のレンズからなる多眼型レンズと、 前記多眼型レンズからの光を反射する第2反射鏡と、 前記第2反射鏡からの光を平行光となるようにする視準
レンズと、 前記視準レンズからの光を偏光させる第1偏光子と、 前記第1偏光子から流れてくる光が、基板が置かれるス
テージの法線に対して、所定の角度(θ)に傾斜される
ように照射されることを特徴とする光照射装置。
20. A light source, a first reflecting mirror for reflecting light from the light source, a multi-lens lens composed of a plurality of lenses, a second reflecting mirror for reflecting light from the multi-lens lens, A collimating lens for converting the light from the second reflecting mirror into parallel light, a first polarizer for polarizing the light from the collimating lens, and a light flowing from the first polarizer. A light irradiating device that irradiates the light so as to be inclined at a predetermined angle (θ) with respect to a normal of a stage on which the light is placed.
【請求項21】 前記第1反射鏡と多眼型レンズとの間
に、第2偏光子を追加に含む請求項20記載の光照射装
置。
21. The light irradiation apparatus according to claim 20, further comprising a second polarizer between the first reflecting mirror and the multi-lens type lens.
【請求項22】 前記多眼型レンズと第2反射鏡との間
に、第3偏光子を追加に含む請求項20記載の光照射装
置。
22. The light irradiation apparatus according to claim 20, further comprising a third polarizer between the multi-lens and the second reflecting mirror.
【請求項23】 前記第1偏光子が、前記視準レンズか
らの光を部分偏光させる請求項20記載の光照射装置。
23. The light irradiation device according to claim 20, wherein the first polarizer partially polarizes the light from the collimating lens.
【請求項24】 前記第1偏光子が200nm〜400nmの波長
の光を透過させる請求項20記載の光照射装置。
24. The light irradiation device according to claim 20, wherein the first polarizer transmits light having a wavelength of 200 nm to 400 nm.
【請求項25】 前記第1偏光子が250nm〜400nmの波長
の光を透過させる請求項24記載の光照射装置。
25. The light irradiation device according to claim 24, wherein the first polarizer transmits light having a wavelength of 250 nm to 400 nm.
【請求項26】 前記第1偏光子が、0〜1の偏光度を
有する請求項20記載の光照射装置。
26. The light irradiation device according to claim 20, wherein the first polarizer has a degree of polarization of 0 to 1.
【請求項27】 前記第1偏光子が、0.2〜0.95の偏光
度を有する請求項26記載の光照射装置。
27. The light irradiation device according to claim 26, wherein the first polarizer has a degree of polarization of 0.2 to 0.95.
【請求項28】 前記角度(θ)が0〜45°の範囲に
ある請求項20記載の光照射装置。
28. The light irradiation device according to claim 20, wherein the angle (θ) is in a range of 0 to 45 °.
【請求項29】 前記ステージが、回転する請求項20
記載の光照射装置。
29. The stage according to claim 20, wherein the stage rotates.
The light irradiation device according to claim 1.
【請求項30】 前記光学系が、回転する請求項20記
載の光照射装置。
30. The light irradiation device according to claim 20, wherein the optical system rotates.
【請求項31】 前記基板上にマスクを追加に含んでマ
ルチドメインを具現する請求項20記載の光照射装置。
31. The light irradiation apparatus according to claim 20, wherein a multi-domain is implemented by additionally including a mask on the substrate.
【請求項32】 前記マスクと基板との間に、一定のギ
ャップが保持される請求項31記載の光照射装置。
32. The light irradiation apparatus according to claim 31, wherein a constant gap is maintained between the mask and the substrate.
【請求項33】 前記ギャップを測定するギャップの測
定装置が追加に含まれる請求項32記載の光照射装置。
33. The light irradiation device according to claim 32, further comprising a gap measuring device for measuring the gap.
【請求項34】 前記ギャップを補正するギャップの補
正装置が追加に含まれる請求項32記載の光照射装置。
34. The light irradiation device according to claim 32, further comprising a gap correction device for correcting the gap.
【請求項35】 前記第1偏光子が積層されたガラス基
板、積層された石英基板、或はマルチコーティングされ
た基板である請求項20記載の光照射装置。
35. The light irradiation apparatus according to claim 20, wherein the first polarizer is a laminated glass substrate, a laminated quartz substrate, or a multi-coated substrate.
【請求項36】 前記積層された石英或はガラス基板
が、基板に対してブリュースタ角度に傾けられた請求項
35記載の光照射装置。
36. The light irradiation device according to claim 35, wherein the laminated quartz or glass substrate is inclined at a Brewster angle with respect to the substrate.
【請求項37】 前記マルチコーティングされた基板
は、無機膜がコーティングされた請求項35記載の光照
射装置。
37. The light irradiation apparatus according to claim 35, wherein the multi-coated substrate is coated with an inorganic film.
【請求項38】 前記第2偏光子が積層されたガラス基
板、積層された石英基板、或はマルチコーティングされ
た基板である請求項21記載の光照射装置。
38. The light irradiation device according to claim 21, wherein the second polarizer is a laminated glass substrate, a laminated quartz substrate, or a multi-coated substrate.
【請求項39】 前記積層された石英或はガラス基板
が、基板に対してブリュースタ角度に傾けられた請求項
38記載の光照射装置。
39. The light irradiation apparatus according to claim 38, wherein the laminated quartz or glass substrate is inclined at a Brewster angle with respect to the substrate.
【請求項40】 前記マルチコーティングされた基板
は、無機膜がコーティングされた請求項38記載の光照
射装置。
40. The light irradiation apparatus according to claim 38, wherein the multi-coated substrate is coated with an inorganic film.
【請求項41】 前記第3偏光子が積層されたガラス基
板、積層された石英基板、或はマルチコーティングされ
た基板である請求項22記載の光照射装置。
41. The light irradiation apparatus according to claim 22, wherein the third polarizer is a laminated glass substrate, a laminated quartz substrate, or a multi-coated substrate.
【請求項42】 前記積層された石英或はガラス基板
が、基板に対してブリュースタ角度に傾けられた請求項
41記載の光照射装置。
42. The light irradiation apparatus according to claim 41, wherein the laminated quartz or glass substrate is inclined at a Brewster angle with respect to the substrate.
【請求項43】 前記マルチコーティングされた基板
は、無機膜がコーティングされた請求項41記載の光照
射装置。
43. The light irradiation apparatus according to claim 41, wherein the multi-coated substrate is coated with an inorganic film.
JP33132698A 1998-11-06 1998-11-20 Light irradiation device Expired - Lifetime JP3936086B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1998-47490 1998-11-06
KR1019980047490A KR100323731B1 (en) 1998-11-06 1998-11-06 Light irradiating device

Publications (2)

Publication Number Publication Date
JP2000147506A true JP2000147506A (en) 2000-05-26
JP3936086B2 JP3936086B2 (en) 2007-06-27

Family

ID=19557359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33132698A Expired - Lifetime JP3936086B2 (en) 1998-11-06 1998-11-20 Light irradiation device

Country Status (6)

Country Link
JP (1) JP3936086B2 (en)
KR (1) KR100323731B1 (en)
DE (1) DE19953356B4 (en)
FR (1) FR2785687B1 (en)
GB (1) GB2343525B (en)
TW (1) TW518427B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005010411A (en) * 2003-06-18 2005-01-13 Sony Corp Manufacturing method of liquid crystal display
JP2006084800A (en) * 2004-09-16 2006-03-30 Ushio Inc Method for optical alignment
JP2007078824A (en) * 2005-09-12 2007-03-29 Joyo Kogaku Kk Orientation processing method and apparatus
JP2010039485A (en) * 2008-08-06 2010-02-18 Samsung Electronics Co Ltd Alignment film forming method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6791749B2 (en) 2001-08-29 2004-09-14 Delpico Joseph Polarized exposure for web manufacture
US6874899B2 (en) * 2002-07-12 2005-04-05 Eastman Kodak Company Apparatus and method for irradiating a substrate
KR101044473B1 (en) * 2004-09-30 2011-06-27 엘지디스플레이 주식회사 Apparatus for illuminating polarization
KR101113721B1 (en) * 2011-05-03 2012-02-27 이현순 Device of polarized light
BR112014013560A2 (en) * 2011-12-05 2017-06-13 Lg Chemical Ltd ultraviolet polarization separation element, methods for manufacturing an ultraviolet polarization separation element, and for radiating light, and light irradiation device
EP2790043B1 (en) 2011-12-05 2022-07-13 LG Chem, Ltd. Polarization separation element
KR102007751B1 (en) * 2018-03-05 2019-08-06 동우 화인켐 주식회사 Light orientation illuminating apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2773795B2 (en) * 1995-05-10 1998-07-09 スタンレー電気株式会社 Manufacturing method of liquid crystal alignment structure and liquid crystal display device
FR2744536B1 (en) * 1996-02-01 2004-03-05 Lg Electronics Inc ULTRAVIOLET IRRADIATION DEVICE FOR A PHOTOALIGNMENT PROCESS, AND IRRADIATION METHOD USING THE SAME
KR0169063B1 (en) * 1996-02-01 1999-03-20 구자홍 Apparatus of irradiation ultraviolet light for photo-orientation
JP3146998B2 (en) * 1996-09-12 2001-03-19 ウシオ電機株式会社 Polarized light irradiator for photo-alignment of alignment film of liquid crystal display device
US6191836B1 (en) * 1996-11-07 2001-02-20 Lg Philips Lcd, Co., Ltd. Method for fabricating a liquid crystal cell
JP3784118B2 (en) * 1996-12-03 2006-06-07 ランテクニカルサービス株式会社 Exposure equipment
KR100238377B1 (en) * 1997-05-03 2000-01-15 김영환 Optical alignment apparatus and method
US6307609B1 (en) * 1997-08-05 2001-10-23 Wayne M. Gibbons Polarized light exposure systems for aligning liquid crystals

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005010411A (en) * 2003-06-18 2005-01-13 Sony Corp Manufacturing method of liquid crystal display
JP2006084800A (en) * 2004-09-16 2006-03-30 Ushio Inc Method for optical alignment
JP4622409B2 (en) * 2004-09-16 2011-02-02 ウシオ電機株式会社 Photo-alignment method
JP2007078824A (en) * 2005-09-12 2007-03-29 Joyo Kogaku Kk Orientation processing method and apparatus
JP2010039485A (en) * 2008-08-06 2010-02-18 Samsung Electronics Co Ltd Alignment film forming method

Also Published As

Publication number Publication date
GB9926307D0 (en) 2000-01-12
GB2343525B (en) 2002-07-10
GB2343525A (en) 2000-05-10
DE19953356B4 (en) 2008-04-10
FR2785687B1 (en) 2003-06-06
TW518427B (en) 2003-01-21
FR2785687A1 (en) 2000-05-12
KR20000031441A (en) 2000-06-05
DE19953356A1 (en) 2000-05-18
KR100323731B1 (en) 2002-05-09
JP3936086B2 (en) 2007-06-27

Similar Documents

Publication Publication Date Title
US6639720B2 (en) Large scale polarizer and polarizer system employing it
TWI375834B (en)
US6433850B2 (en) Pretilt angle direction in a liquid crystal cell
EP1970734B1 (en) A method of fabricating a space-variant liquid-crystal waveplate
JP3946441B2 (en) Exposure system and method for aligning liquid crystals
US20080239273A1 (en) Illumination system and polarizer for a microlithographic projection exposure apparatus
JPH1090684A (en) Oriented film light orienting polarization light irradiating device for liquid crystal display element
JP3936086B2 (en) Light irradiation device
JP3678120B2 (en) Polarized light irradiation device
CN101995598B (en) There is the liquid crystal layer at the inclination angle spatially changed
JP4603387B2 (en) Manufacturing apparatus for optical elements for liquid crystal display devices
JP3784118B2 (en) Exposure equipment
TW201241523A (en) Exposure device, liquid crystal display device, and method of manufacturing same
US7061679B1 (en) Light irradiating device
US20050088730A1 (en) Polarized light exposure apparatus for photo-alignment and adjustment method of polarization direction therein
JP4135557B2 (en) Polarized light irradiation device for photo-alignment
TW580604B (en) Optical exposure systems and processes for alignment of liquid crystals
TW202240142A (en) Light source intensity control systems and methods for improved light scattering polarimetry measurements
KR19980065953A (en) Light Irradiation Light Irradiation Apparatus and its Investigation Method
JPH1172749A (en) Irradiation optical system of liquid crystal molecule alignment substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061201

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070322

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term