JP4603387B2 - Manufacturing apparatus for optical elements for liquid crystal display devices - Google Patents

Manufacturing apparatus for optical elements for liquid crystal display devices Download PDF

Info

Publication number
JP4603387B2
JP4603387B2 JP2005045731A JP2005045731A JP4603387B2 JP 4603387 B2 JP4603387 B2 JP 4603387B2 JP 2005045731 A JP2005045731 A JP 2005045731A JP 2005045731 A JP2005045731 A JP 2005045731A JP 4603387 B2 JP4603387 B2 JP 4603387B2
Authority
JP
Japan
Prior art keywords
polarizing element
photo
alignment
stage
alignment film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005045731A
Other languages
Japanese (ja)
Other versions
JP2006234922A (en
Inventor
上 佳奈美 池
谷 徳 久 守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2005045731A priority Critical patent/JP4603387B2/en
Publication of JP2006234922A publication Critical patent/JP2006234922A/en
Application granted granted Critical
Publication of JP4603387B2 publication Critical patent/JP4603387B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Description

本発明は、偏光光を照射して基材上の光配向膜に対して所望の分子方向配列をもたせる液晶表示装置用光学素子の製造装置に関する。   The present invention relates to an apparatus for manufacturing an optical element for a liquid crystal display device that irradiates polarized light and has a desired molecular orientation alignment with respect to a photo-alignment film on a substrate.

近年、フラットパネルディスプレイとして注目されている液晶表示装置(LCD)は液晶の電気光学的変化を利用した表示素子であり、薄型、軽量、低消費電力という特性から、ノート型PCなどの用途で市場が拡大してきた。さらに最近では従来のCRT−TVに替わり、TV用途の大型ディスプレイとして液晶表示装置の需要が急速に求められている。   In recent years, liquid crystal display devices (LCDs) that have attracted attention as flat panel displays are display elements that utilize electro-optical changes in liquid crystals, and are marketed for notebook PCs and other applications due to their thin, lightweight, and low power consumption characteristics. Has expanded. In recent years, there has been a rapid demand for a liquid crystal display device as a large display for TV, replacing the conventional CRT-TV.

液晶表示装置は、一対の光学素子と、一対の光学素子間に設けられた液晶セルとを備えている。このうち光学素子は基材と、基材の一方の面に設けられた光配向膜と、基材の他方の面に設けられ液晶表示素子補償板、液晶表示素子用視野角改良板、光学位相差板、旋光子、λ/4板、λ/2板などを含む光補償層とを有し、このことにより、より広視野角を得ることができる。特に広視野角を必要とするTV用途の大型ディスプレイにおいては光学素子は不可欠な部材である。これらの光学素子は液晶分子を特定の方向に配向・固定化させて作製するものであり、基材に塗膜した光配向膜上を配向処理する必要がある。   The liquid crystal display device includes a pair of optical elements and a liquid crystal cell provided between the pair of optical elements. Among these, the optical element is a base material, a photo-alignment film provided on one surface of the base material, a liquid crystal display element compensator provided on the other surface of the base material, a viewing angle improving plate for a liquid crystal display element, an optical position And a light compensation layer including a phase difference plate, an optical rotator, a λ / 4 plate, a λ / 2 plate, and the like, whereby a wider viewing angle can be obtained. In particular, an optical element is an indispensable member in a large display for TV use that requires a wide viewing angle. These optical elements are prepared by aligning and fixing liquid crystal molecules in a specific direction, and it is necessary to perform alignment treatment on the photo-alignment film coated on the substrate.

通常配向処理としては、ガラスなどの基板にポリイミドなどの高分子膜を設け、これを布などで一方向に摩擦するラビング法が用いられる。これにより、基板に接する液晶分子は、その長軸(ダイレクタ)がラビングの方向に平行又は垂直になるように配列される。ラビング法は製造工程において静電気や埃が発生するため、配向処理後に洗浄工程が必要となるとともに、特に近年多く用いられているTFT(薄層トランジスタ)方式の液晶セルでは静電気によりTFT素子が破壊され、製造における歩留まりを下げる原因になっている。   As the normal alignment treatment, a rubbing method is used in which a polymer film such as polyimide is provided on a substrate such as glass and is rubbed in one direction with a cloth or the like. As a result, the liquid crystal molecules in contact with the substrate are arranged so that their long axes (directors) are parallel or perpendicular to the rubbing direction. Since the rubbing method generates static electricity and dust in the manufacturing process, a cleaning process is required after the alignment process, and in particular, TFT elements are destroyed by static electricity in TFT (thin layer transistor) type liquid crystal cells that are widely used in recent years. This is a cause of lowering the manufacturing yield.

さらに近年の基材の大型化により、ラビング処理は装置・コスト面でも困難になりつつあり、非接触の手法が求められている。   Furthermore, with the recent increase in size of base materials, rubbing treatment is becoming difficult in terms of apparatus and cost, and a non-contact method is required.

非接触により配向層の配向方向を定める代表的な手法として、異方性吸収分子からなる光配向膜に対して偏光光を照射し、液晶分子を配向させる方法がある(特許文献1および2)。このような方法を用いた場合、非接触にて大領域の光配向膜に異方性を付与させることができる。   As a typical method for determining the alignment direction of the alignment layer in a non-contact manner, there is a method of aligning liquid crystal molecules by irradiating polarized light to a photo-alignment film made of anisotropic absorbing molecules (Patent Documents 1 and 2). . When such a method is used, anisotropy can be imparted to a large-area photo-alignment film in a non-contact manner.

また、光源側に偏光軸の回転が可能な偏光素子を設置することにより、光配向材料に所望の異方性を容易に与えることができる。(特許文献3)。   Further, by installing a polarizing element capable of rotating the polarization axis on the light source side, desired anisotropy can be easily given to the photo-alignment material. (Patent Document 3).

偏光露光装置としては、例えば偏光光を照射して配向膜の光配向を行うものがある。ランプから放出される紫外線を含む光は楕円集光鏡で集光され、第1平面鏡で反射してインテグレータレンズに入射する。インテグレータレンズから出射した光は、シャッタ、第2平面鏡を介してコリメータレンズに入射し、コリメータレンズにより平行光にされ、偏光素子に入射する。そして、偏光素子から出射する偏光光は配向層を有する基板上に入射する(特許文献4)。
米国特許第5,032,009号公報 米国特許第4,974,941号公報 特開2000−206525号公報 特開平10−194345号公報
As a polarization exposure apparatus, for example, there is an apparatus that performs optical alignment of an alignment film by irradiating polarized light. Light including ultraviolet rays emitted from the lamp is collected by the elliptical condensing mirror, reflected by the first plane mirror, and incident on the integrator lens. The light emitted from the integrator lens enters the collimator lens through the shutter and the second plane mirror, is converted into parallel light by the collimator lens, and enters the polarizing element. Then, the polarized light emitted from the polarizing element is incident on the substrate having the alignment layer (Patent Document 4).
US Pat. No. 5,032,009 U.S. Pat. No. 4,974,941 JP 2000-206525 A Japanese Patent Laid-Open No. 10-194345

例えば特許文献4において、光の入射角が0°に近い光軸近傍では所望の偏光光が得られるが、光照射領域の外周部に向かうに従って入射角度が小さくなり、光の入射角度によっては、外周部では無偏光光の光の成分が多くなり、光配向膜において特定方向以外のポリマも反応する為、照射面内の中心部と外周部で軸ズレが生じる。さらに、偏光素子の構成条件や光の入射角度により偏光素子の外周部で偏光方向が変化する場合がある。例えば、15枚の石英ガラスから構成される偏光素子に発散光が入射した場合、光照射領域の両側においては、最大6°偏光方向が傾くことがある。   For example, in Patent Document 4, a desired polarized light is obtained in the vicinity of the optical axis where the incident angle of light is close to 0 °, but the incident angle decreases toward the outer periphery of the light irradiation region, and depending on the incident angle of light, The light component of non-polarized light increases at the outer peripheral portion, and a polymer other than the specific direction reacts in the photo-alignment film, so that an axial deviation occurs between the central portion and the outer peripheral portion in the irradiation surface. Furthermore, the polarization direction may change at the outer periphery of the polarizing element depending on the configuration conditions of the polarizing element and the incident angle of light. For example, when diverging light is incident on a polarizing element composed of 15 quartz glasses, the polarization direction may be tilted by a maximum of 6 ° on both sides of the light irradiation region.

ここで、光配向膜に光学異方性付与する場合について説明する。液晶表示装置用光学素子の製造にあたって、液晶表示装置の1画面分のサイズに応じて、また製造コスト削減の為に、1枚の大型ガラス基板に配向処理済の光配向膜を多面付けで形成することがある。特に近年のLCD画面の大型化に伴い、大型基板上にさらなる多面付けにより配向処理済の光配向膜を形成して効率向上を図っている。第6世代といわれる基板サイズは1600×1800mm、第7世代では2000×2000mmの大きさになる。大型基板は通常、その面付け数や位置によって、X軸またはY軸方向の1軸又は2軸方向に基板を移動させている。   Here, the case where optical anisotropy is imparted to the photo-alignment film will be described. In the production of optical elements for liquid crystal display devices, alignment-processed photo-alignment films are formed on a single large glass substrate according to the size of one screen of the liquid crystal display device and to reduce manufacturing costs. There are things to do. In particular, along with the recent increase in the size of LCD screens, alignment efficiency is improved by forming a photo-alignment film that has been subjected to alignment treatment on a large substrate by further multi-faceting. The substrate size referred to as the sixth generation is 1600 × 1800 mm, and the seventh generation is 2000 × 2000 mm. In general, a large substrate is moved in the direction of one axis or two axes in the X-axis or Y-axis direction depending on the number or position of the imposition.

しかしながら基板サイズを大型化すると、一枚の基板内で配向処理済の光配向膜を均一に多数形成することはむずかしい。   However, when the substrate size is increased, it is difficult to uniformly form a large number of alignment films that have undergone alignment treatment within one substrate.

本発明はこのような点を考慮してなされたものであり、一枚の基材内に配向処理済光配向膜を多面付けで形成することができ、かつ各配向処理済光配向膜が同一の配向方向をもった液晶表示装置用光学素子を製造することができる液晶表示装置用光学素子の製造装置を提供することを目的とする。   The present invention has been made in consideration of the above points, and the alignment-processed photo-alignment film can be formed in a single substrate with multiple faces, and each alignment-processed photo-alignment film is the same. An object of the present invention is to provide an apparatus for manufacturing an optical element for a liquid crystal display device, which can manufacture an optical element for a liquid crystal display device having an alignment direction of.

本発明は、表面に光配向性材料を含む光配向膜が形成された基材を載置するステージと、ステージ上方に配置され、光を照射する光源と、光源からの光を偏光光とし、この偏光光によりステージ上の基材の光配向膜を照射して配向膜に所望の分子方向配向をもたせる偏光素子と、ステージと偏光素子との間に配置された開口を有するマスクとを備え、マスクの開口の中心は偏光素子からの偏光光の中心に一致し、ステージはステージ駆動部によりマスクの開口に対して相対的に移動し、ステージ上の基材の所望位置に配向処理済光配向膜を多面付けで複数形成し、ステージ側に、光配向膜および基材を透過した偏光光が到着する追加偏光素子を設けるとともに、追加偏光素子の裏面に受光器を設け、受光器に偏光素子を回動させる駆動制御部を接続し、この駆動制御部は受光器からの信号に基づいて、偏光素子の透過軸と追加偏光素子の透過軸との間の角度差が所定値をもつよう偏光素子を回転させることを特徴とする液晶表示装置用光学素子の製造装置である。 The present invention comprises a stage on which a substrate on which a photo-alignment film containing a photo-alignment material is formed is placed, a light source that is disposed above the stage and that emits light, and light from the light source is polarized light. A polarizing element that irradiates the photo-alignment film of the base material on the stage with this polarized light to give the alignment film a desired molecular orientation, and a mask having an opening disposed between the stage and the polarizing element, The center of the opening of the mask coincides with the center of the polarized light from the polarizing element, the stage is moved relative to the opening of the mask by the stage drive unit, and the alignment-processed optical alignment is performed at a desired position of the substrate on the stage. A plurality of films are formed in multiple faces, and an additional polarizing element on which the polarized light that has passed through the photo-alignment film and the substrate arrives is provided on the stage side, and a light receiver is provided on the back surface of the additional polarizing element, and the polarizing element is provided in the light receiver. Drive control unit that rotates The drive controller is configured to rotate the polarizing element based on a signal from the light receiver so that the angle difference between the transmission axis of the polarizing element and the transmission axis of the additional polarizing element has a predetermined value. An apparatus for manufacturing an optical element for a liquid crystal display device .

本発明は、駆動制御部は偏光素子の透過軸と、追加偏光素子の透過軸との間の角度差が90°となるよう偏光素子を回転させることを特徴とする液晶表示装置用光学素子の製造装置である。   In the optical element for a liquid crystal display device according to the present invention, the drive control unit rotates the polarizing element so that the angle difference between the transmission axis of the polarizing element and the transmission axis of the additional polarizing element is 90 °. It is a manufacturing device.

本発明は、駆動制御部は偏光素子の透過軸と、追加偏光素子の透過軸との間の角度差が0°となるよう偏光素子を回転させることを特徴とする液晶表示装置用光学素子の製造装置である。   In the optical element for a liquid crystal display device according to the present invention, the drive control unit rotates the polarizing element so that the angle difference between the transmission axis of the polarizing element and the transmission axis of the additional polarizing element is 0 °. It is a manufacturing device.

本発明は、追加偏光素子はステージに、回転自在に取付けられていることを特徴とする液晶表示装置用光学素子の製造装置である。   The present invention is the optical element manufacturing apparatus for a liquid crystal display device, wherein the additional polarizing element is rotatably attached to the stage.

以上のように本発明によれば、基板上に多面付けにて配向処理済配向膜を形成することができ、かつ各配向処理済配向膜が同一の配向方向をもつ液晶表示装置用光学素子を精度良く確実に製造することができる。   As described above, according to the present invention, an optical element for a liquid crystal display device that can form an alignment-treated alignment film on a substrate in multiple faces and each alignment-processed alignment film has the same alignment direction is provided. It can be manufactured accurately and reliably.

以下、図面を参照して本発明の実施の形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1乃至図9は本発明による液晶表示装置用光学素子の製造装置を示す図であり、まず図2(a)(b)に示すように、垂直配向モードの液晶表示装置15は一対の液晶表示装置用光学素子16a、16bと、この一対の液晶表示装置用光学素子16a、16b間に設けられた液晶17とを備えている。   FIGS. 1 to 9 are views showing an apparatus for manufacturing an optical element for a liquid crystal display device according to the present invention. First, as shown in FIGS. 2A and 2B, a vertical alignment mode liquid crystal display device 15 is a pair of liquid crystals. The display device optical elements 16a and 16b and the liquid crystal 17 provided between the pair of liquid crystal display optical elements 16a and 16b are provided.

このうち一方(下方)の光学素子16aは、ガラス基板等の基材3と、基材3の一方の面に設けられた光配向性材料を含む光配向膜7と、基材3の他方の面に設けられた偏光板18とを有している。   Among these, one (downward) optical element 16a includes a base material 3 such as a glass substrate, a photo-alignment film 7 including a photo-alignment material provided on one surface of the base material 3, and the other of the base material 3. And a polarizing plate 18 provided on the surface.

また他方(上方)の光学素子16bはガラス基板等の基材3と、基材3の一方の面に設けられた光配向性材料を含む光配向膜7と、基材3の他方の面に設けられた光学補償層8とを有している。   The other (upper) optical element 16b is formed on a base material 3 such as a glass substrate, a photo-alignment film 7 including a photo-alignment material provided on one surface of the base material 3, and the other surface of the base material 3. And an optical compensation layer 8 provided.

さらに光学素子16bは、光学補償層8上に設けられた偏光板18を有している。   Further, the optical element 16 b has a polarizing plate 18 provided on the optical compensation layer 8.

次に、図2(b)により光学素子16bの光学補償層8について説明する。図2(b)に示すように光学補償層8はガラス基板等の基材8dと、基材8d上に設けられ一定の分子配向配列を有する光配向膜8aと、光配向膜8a上に設けられた液晶層8bと、液晶層8b上に設けられた液晶層8cとを有している。   Next, the optical compensation layer 8 of the optical element 16b will be described with reference to FIG. As shown in FIG. 2B, the optical compensation layer 8 is provided on a base material 8d such as a glass substrate, a photo-alignment film 8a provided on the base material 8d and having a certain molecular orientation arrangement, and the photo-alignment film 8a. And the liquid crystal layer 8c provided on the liquid crystal layer 8b.

各光学素子16a、16bを作製する場合、基材3の一方の面に例えばカルコン、クマリン、ポリビニルシンナメート、ポリイミド、アドベンゼン等の光配向性材料を含む光配向膜(文献名、LCDにおける最新配向技術)7を形成し、この光配向膜7に対して後述する液晶表示装置用光学素子の製造装置により偏光光を照射している。   When producing each optical element 16a, 16b, a photo-alignment film containing a photo-alignment material such as chalcone, coumarin, polyvinyl cinnamate, polyimide, adbenzene, etc. on one surface of the substrate 3 (literature, latest in LCD) Alignment technology) 7 is formed, and the optical alignment film 7 is irradiated with polarized light by an optical element manufacturing apparatus for a liquid crystal display device described later.

また、図2(a)において液晶17を挟んで上方の基材3および光配向膜7から下方の光配向膜7および基材3まで、すなわち上方から順に基材3、光配向膜7、液晶17、光配向膜7および基材3により、液晶セル17aが構成されている。   Further, in FIG. 2A, the upper substrate 3 and the photo-alignment film 7 from the upper substrate 3 and the photo-alignment film 7 to the lower photo-alignment film 7 and the substrate 3, that is, the substrate 3, the photo-alignment film 7, and the liquid crystal in this order from above. 17, the photo-alignment film 7 and the substrate 3 constitute a liquid crystal cell 17a.

次にこのような光学素子16を製造するための液晶表示装置用光学素子16の製造装置について説明する。図1に示すように、液晶表示装置用光学素子の製造装置は、表面に光配向性材料を含む光配向膜7が形成されたガラス基板等の基材3を載置するステージ4と、ステージ4上方に配置され光を照射する光源1と、光源1とステージ4との間に回転自在に配置された偏光素子(第1偏光素子)2と、ステージ4上であって光配向膜7および基材3の下方に配置された追加偏光素子(第2偏光素子)5とを備えている。   Next, an apparatus for manufacturing the optical element 16 for a liquid crystal display device for manufacturing such an optical element 16 will be described. As shown in FIG. 1, an optical element manufacturing apparatus for a liquid crystal display device includes a stage 4 on which a substrate 3 such as a glass substrate on which a photo-alignment film 7 including a photo-alignment material is formed is placed on a surface, 4, a light source 1 disposed above and irradiating light, a polarizing element (first polarizing element) 2 rotatably disposed between the light source 1 and the stage 4, a photo-alignment film 7 on the stage 4 and And an additional polarizing element (second polarizing element) 5 disposed below the substrate 3.

このうち、第1偏光素子2と第2偏光素子5は、いずれもフィルム状偏光素子、偏光ビームスプリッター、PBS(プルースター角の一つまたはそれ以上のプレートからなる)、異方性吸収媒体、反射面、または散乱媒体からなるが、その他、第1偏光素子2および第2偏光素子5として、ワイヤーグリッドのようなものが挙げられる。   Among these, the first polarizing element 2 and the second polarizing element 5 are all film-like polarizing elements, polarizing beam splitters, PBSs (consisting of one or more plates with a proofer angle), anisotropic absorbing media, Although it consists of a reflective surface or a scattering medium, as the 1st polarizing element 2 and the 2nd polarizing element 5, things like a wire grid are mentioned.

また第1偏光素子2は、光源1からの光を偏光光とし、この偏光光によりステージ4上の基材3の光配向膜7を照射して、光配向膜7に所望の分子方向配列をもたせるようになっている。さらにこの第1偏光素子2は、駆動制御部9により回転するようになっている。   The first polarizing element 2 converts the light from the light source 1 into polarized light, and irradiates the photo-alignment film 7 of the substrate 3 on the stage 4 with this polarized light, thereby arranging a desired molecular orientation array on the photo-alignment film 7. It comes to be able to give. Further, the first polarizing element 2 is rotated by the drive control unit 9.

さらに第2偏光素子5の裏面側に受光器6が設けられ、この受光器6は駆動制御部9に接続されている。駆動制御部9は、受光器6からの信号に基づいて第1偏光素子2の透過軸と第2偏光素子5の透過軸との間の角度差が所定値、例えば90°または0°となるよう第1偏光素子2を回転駆動するようになっている。   Furthermore, a light receiver 6 is provided on the back side of the second polarizing element 5, and this light receiver 6 is connected to the drive control unit 9. Based on the signal from the light receiver 6, the drive control unit 9 sets the angle difference between the transmission axis of the first polarizing element 2 and the transmission axis of the second polarizing element 5 to a predetermined value, for example, 90 ° or 0 °. The first polarizing element 2 is driven to rotate.

さらにまた、ステージ4上に設けられた第2偏光素子2も、ステージ4上において回転するようになっている。   Furthermore, the second polarizing element 2 provided on the stage 4 also rotates on the stage 4.

また、ステージ4と第1偏光素子2との間には、開口20aを有するマスク20が配置されている。この場合、マスク20の開口20aの中心は、第1偏光素子2からの偏光光の中心に一致している。さらにステージ4はステージ駆動部4aにより、マスク20の開口20aに対して平面からみてX方向およびY方向に相対的に移動することができる(図3乃至図9参照)。   A mask 20 having an opening 20 a is disposed between the stage 4 and the first polarizing element 2. In this case, the center of the opening 20 a of the mask 20 coincides with the center of the polarized light from the first polarizing element 2. Further, the stage 4 can be moved relative to the opening 20a of the mask 20 relative to the opening 20a of the mask 20 in the X direction and the Y direction by a stage drive (see FIGS. 3 to 9).

図3乃至図9において、Y方向は基材3の搬送方向に一致し、X方向は基材3の搬送方向に直交する方向となっている。   3 to 9, the Y direction coincides with the transport direction of the base material 3, and the X direction is a direction orthogonal to the transport direction of the base material 3.

光源1からの光が第1偏光素子2を透過して得られる偏光光は、ステージ4上において、有効照射エリア21を有する。有効照射エリア21のうち中央部分は偏光光の軸ずれが少ない中央エリア21aとなっている(図9参照)。ここで、図9は偏光光の軸分布を示す図である。   The polarized light obtained by transmitting the light from the light source 1 through the first polarizing element 2 has an effective irradiation area 21 on the stage 4. A central portion of the effective irradiation area 21 is a central area 21a with little axis deviation of polarized light (see FIG. 9). Here, FIG. 9 is a diagram showing an axial distribution of polarized light.

ステージ4は上述のようにステージ駆動部4aによって平面からみてX方向およびY方向に移動し、このことにより光源1、第1偏光素子2、およびマスク20の開口20aに対して相対的にX方向およびY方向に移動する。   As described above, the stage 4 is moved in the X direction and the Y direction when viewed from the plane by the stage driving unit 4a, whereby the X direction is relative to the light source 1, the first polarizing element 2, and the opening 20a of the mask 20. And move in the Y direction.

このようにして、第1偏光素子2およびマスク20の開口20aを透過した偏光光の中央エリア21aをステージ4上の基材3の所望位置にもってくることができ、基材3の所望位置において偏光光の中央エリア21aを利用して光配向膜7に対して後述する配向処理を施して配向処理済光配向膜7aを形成することができる。   In this way, the central area 21a of the polarized light transmitted through the first polarizing element 2 and the opening 20a of the mask 20 can be brought to the desired position of the substrate 3 on the stage 4, and at the desired position of the substrate 3. By using the central area 21a of the polarized light, the alignment process described later can be applied to the photo-alignment film 7 to form the alignment-processed photo-alignment film 7a.

本実施の形態において、ステージ4をX方向およびY方向に移動させることにより、ステージ4上に載置された1枚の基材3上の光配向膜7に、X方向およびY方向に各々複数並んだ配向処理済光配向膜7aを形成することができる。この場合、各配向処理済光配向膜7aの分子方向配向は互いに同一方向を向くことになる。   In the present embodiment, by moving the stage 4 in the X direction and the Y direction, a plurality of optical alignment films 7 on the single substrate 3 placed on the stage 4 are respectively provided in the X direction and the Y direction. The aligned alignment-processed photo-alignment films 7a can be formed. In this case, the molecular orientations of the alignment-treated photo-alignment films 7a are in the same direction.

このようにして、基材3上の光配向膜7に複数の配向処理済光配向膜7aを多面付けにて形成することにより、多面付けされた多面付け光学素子16Aが得られる。このようにして形成された多面付け光学素子16Aは、後工程において配向処理済光配向膜7a毎に切断されて光学素子16aが得られる。   In this way, by forming a plurality of alignment-treated photo-alignment films 7a on the photo-alignment film 7 on the substrate 3 by multi-sided attachment, a multi-sided multi-faced optical element 16A is obtained. The multi-faced optical element 16A formed in this way is cut for each alignment-processed photo-alignment film 7a in the subsequent process, and the optical element 16a is obtained.

次にこのような構成からなる本実施の形態の作用について説明する。   Next, the operation of the present embodiment having such a configuration will be described.

まず、ステージ4上に、一方の面に配向膜7が形成された基材3を載置する。次にステージ4側の第2偏光素子5を回転させ、この第2偏光素子5の透過軸の方向が基材3上に設けられた光配向膜7に形成される所望の分子方向配列に対して0°または90°となるように調整する。   First, the base material 3 having the alignment film 7 formed on one surface is placed on the stage 4. Next, the second polarizing element 5 on the stage 4 side is rotated, and the direction of the transmission axis of the second polarizing element 5 is relative to the desired molecular orientation array formed on the photo-alignment film 7 provided on the substrate 3. Adjust to 0 ° or 90 °.

次に光源1からの光を照射し、光源1からの光を第1偏光素子2を通して偏光光とする。次に第1偏光素子2からの偏光光を、マスク20の開口20aを経てステージ4上に配置された基材3上の光配向膜7に向って照射する。このとき、第1偏光素子2からの偏光光は、光配向膜7および基材3を経て第2偏光素子5に到る。   Next, the light from the light source 1 is irradiated, and the light from the light source 1 is converted into polarized light through the first polarizing element 2. Next, the polarized light from the first polarizing element 2 is irradiated toward the photo-alignment film 7 on the base material 3 disposed on the stage 4 through the opening 20 a of the mask 20. At this time, the polarized light from the first polarizing element 2 reaches the second polarizing element 5 through the photo-alignment film 7 and the substrate 3.

第2偏光素子5の背面には受光器6が設けられており、受光器6からの信号が駆動制御部9に送られる。   A light receiver 6 is provided on the back surface of the second polarizing element 5, and a signal from the light receiver 6 is sent to the drive controller 9.

駆動制御部9は、受光器6で受光した光の強度が最小のとき、すなわち受光器6によりほとんど光を受光しないとき、第1偏光素子2の透過軸と第2偏光素子5の透過軸との間の角度差が90°であると判断し、受光器6で受光した光の強度が最大のとき、第1偏光素子2の透過軸と第2偏光素子5の透過軸との間の角度差が0°であると判断する。   When the intensity of the light received by the light receiver 6 is minimum, that is, when the light is not received by the light receiver 6, the drive control unit 9 transmits the transmission axis of the first polarizing element 2 and the transmission axis of the second polarizing element 5. The angle between the transmission axis of the first polarizing element 2 and the transmission axis of the second polarizing element 5 is determined when it is determined that the angle difference between them is 90 ° and the intensity of the light received by the light receiver 6 is maximum. It is determined that the difference is 0 °.

駆動制御部9は、第1偏光素子2の透過軸と第2偏光素子5の透過軸との間の角度差が、90°または0°となるよう、第1偏光素子2を回転させる。   The drive control unit 9 rotates the first polarizing element 2 so that the angle difference between the transmission axis of the first polarizing element 2 and the transmission axis of the second polarizing element 5 is 90 ° or 0 °.

この状態で第1偏光素子2からの偏光光をマスク20の開口20aを経て基材3上の光配向膜7に対して照射することにより、光配向膜7に対して配向処理を施し、配向膜7に所望の分子方向配列をもった配向済光配向膜7aを形成することができる。   In this state, the light alignment film 7 on the substrate 3 is irradiated with the polarized light from the first polarizing element 2 through the opening 20a of the mask 20, thereby performing an alignment process on the photo-alignment film 7. An oriented photo-alignment film 7 a having a desired molecular direction arrangement can be formed on the film 7.

このようにして上記光学素子の製造装置を用いて、偏光光により基材3上の光配向膜7を照射して光配向膜7の所望位置に所望の分子方向配列をもった複数の多面付けされた配向処理済光配向膜7aを形成する。その後、基材3の他方の面に光学補償層8を形成して多面付け光学素子16Aを形成する。次に多面付け光学素子16Aを各々の配向処理済光配向膜7a毎に切断することにより光学素子16aを得ることができる。   In this way, by using the above optical element manufacturing apparatus, a plurality of polyfaces having a desired molecular orientation array at a desired position of the photo-alignment film 7 by irradiating the photo-alignment film 7 on the substrate 3 with polarized light. The aligned alignment-processed photo-alignment film 7a is formed. Thereafter, the optical compensation layer 8 is formed on the other surface of the substrate 3 to form the multifaceted optical element 16A. Next, the optical element 16a can be obtained by cutting the multi-faced optical element 16A for each alignment-treated photo-alignment film 7a.

同様にして基材3の一方の面に形成された光配向膜7を照射して配向処理済光配向層7aを形成し、基材3の他方の面に光補償層8および偏光板18を順次設けて多面付け光学素子16Aを形成し、配向処理済光配向膜7a毎に切断して光学素子16bを得る。   Similarly, the photo-alignment film 7 formed on one surface of the substrate 3 is irradiated to form an alignment-processed photo-alignment layer 7a, and the photo-compensation layer 8 and the polarizing plate 18 are formed on the other surface of the substrate 3. The optical element 16b is obtained by sequentially forming the multi-faceted optical element 16A and cutting it for each alignment-processed photo-alignment film 7a.

次に光配向膜7に対して偏光光を照射することにより光配向膜7の所望位置に複数の配向処理済光配向膜7を形成する作用について詳述する。   Next, the action of forming a plurality of alignment-treated photo-alignment films 7 at desired positions of the photo-alignment film 7 by irradiating the photo-alignment film 7 with polarized light will be described in detail.

上述のように第1偏光素子2およびマスク20の開口20aを透過した偏光光はステージ4上において有効照射エリア21を有し、また有効照射エリア21の中央部分は偏光光の軸ずれが少ない中央エリア21aとなる(図3)。   As described above, the polarized light transmitted through the first polarizing element 2 and the opening 20a of the mask 20 has the effective irradiation area 21 on the stage 4, and the central portion of the effective irradiation area 21 is the center where the axis deviation of the polarized light is small. It becomes area 21a (FIG. 3).

そこでステージ4上に載置された基材3の所望位置がこの中央エリア21aに対応する位置にくるようステージ駆動部4aによりステージ4をX方向およびY方向に移動させる。   Therefore, the stage drive unit 4a moves the stage 4 in the X direction and the Y direction so that the desired position of the substrate 3 placed on the stage 4 comes to a position corresponding to the central area 21a.

まず基材3上にX方向に2つの配向処理済配向膜7aを形成する場合について述べる。   First, the case where two alignment-treated alignment films 7a are formed on the substrate 3 in the X direction will be described.

はじめにステージ4上の基材3は、その中央部分が中央エリア21aに対応する位置にある(図4)。   First, the base material 3 on the stage 4 is at a position where the central portion thereof corresponds to the central area 21a (FIG. 4).

次にステージ4をX方向左方に移動させ、基材3の右側部分が中央エリア21aに対応する位置にくるようにし、この状態で偏光光を照射して基材3の右側部分に配向処理済光配向膜7aを形成する(図5(a))。   Next, the stage 4 is moved to the left in the X direction so that the right side portion of the base material 3 comes to a position corresponding to the central area 21a. In this state, the right side portion of the base material 3 is subjected to orientation treatment by irradiating polarized light. A finished photo-alignment film 7a is formed (FIG. 5A).

次にステージ4をX方向右方に移動させ、基材3の左側部分が中央エリア21aに対応する位置にくるようにし、この状態で偏光光を照射して基材3の左側部分に配向処理済光配向膜7aを形成する(図5(b))。   Next, the stage 4 is moved to the right in the X direction so that the left side portion of the base material 3 comes to a position corresponding to the central area 21a. In this state, the left side portion of the base material 3 is subjected to orientation treatment by irradiating polarized light. A finished photo-alignment film 7a is formed (FIG. 5B).

このようにして基材3上にX方向に並んだ2つの配向処理済光配向膜7aを形成することができる。   In this way, two alignment-processed photo-alignment films 7 a arranged in the X direction can be formed on the base material 3.

次に基材3上にY方向に2つの配向処理済光配向膜7aを形成する場合について述べる。   Next, the case where two alignment-processed photo-alignment films 7a are formed in the Y direction on the substrate 3 will be described.

まずステージ4がY方向の後方にあって、基材3の前方部分が中央エリア21aに対応する位置にくるようにし、この状態で偏光光を照射して基材3の前方部分に配向処理済光配向膜7aを形成する(図6(a))。   First, the stage 4 is located behind the Y direction so that the front part of the base material 3 comes to a position corresponding to the central area 21a. In this state, the front part of the base material 3 has been subjected to the orientation treatment by irradiating polarized light. A photo-alignment film 7a is formed (FIG. 6A).

次にステージ4をY方向前方に移動させ、基材3の後方部分が中央エリア21aに対応する位置にくるようにし、この状態で偏光光を照射して基材3の後方部分に配向処理済光配向膜7aを形成する(図6(b))。   Next, the stage 4 is moved forward in the Y direction so that the rear part of the base material 3 comes to a position corresponding to the central area 21a. In this state, the rear part of the base material 3 is subjected to the alignment treatment by irradiating polarized light. A photo-alignment film 7a is formed (FIG. 6B).

このようにして基材3上にY方向に並んだ2つの配向処理済光配向膜7aを形成することができる。   In this way, two alignment-treated photo-alignment films 7a arranged in the Y direction can be formed on the base material 3.

次に基材3上にX方向に2つ、Y方向に3つの配向処理済光処理膜7aを形成する場合について述べる。   Next, the case where two alignment-processed light-treated films 7a in the X direction and three in the Y direction are formed on the substrate 3 will be described.

図7(a)(b)に示すように、第1偏光素子2およびマスク20の開口20aを透過した偏光光は、中央に中央エリア21aを有する有効照射エリア21をもっている。そこで、ステージ4をX方向およびY方向に順次移動させ、基材3の所望位置を中央エリア21aに対応する位置までもってきて、基材3上の光配向膜7に対して偏光光を照射させることにより、基材3上にX方向に2つ、Y方向に3つ並んだ配向処理済光配向膜7aを形成することができる。   As shown in FIGS. 7A and 7B, the polarized light transmitted through the first polarizing element 2 and the opening 20a of the mask 20 has an effective irradiation area 21 having a central area 21a in the center. Therefore, the stage 4 is sequentially moved in the X direction and the Y direction to bring the desired position of the base material 3 to a position corresponding to the central area 21a, and irradiate the photo-alignment film 7 on the base material 3 with polarized light. By doing so, the alignment-processed photo-alignment film 7a can be formed on the substrate 3 in which two in the X direction and three in the Y direction are arranged.

同様にして、図8に示すように、基材3上にX方向に3つ、Y方向に2つ並んだ配向処理済光配向膜7aを形成することができる。   Similarly, as shown in FIG. 8, the alignment-processed photo-alignment film 7 a can be formed on the base material 3, with three aligned in the X direction and two aligned in the Y direction.

次に本発明の実施例について述べる。   Next, examples of the present invention will be described.

まずステージ4と、第1偏光素子2と、光源1とを有する自動露光機(KP−5002型、ウシオ電機製)を準備する。次にこのステージ4上に第2偏光素子5となるフィルム状偏光素子をその透過軸がX軸方向(⇔、90°方向とする)になるように設置した。   First, an automatic exposure machine (KP-5002, manufactured by USHIO INC.) Having a stage 4, a first polarizing element 2, and a light source 1 is prepared. Next, a film-like polarizing element to be the second polarizing element 5 was placed on the stage 4 so that its transmission axis was in the X-axis direction (⇔, 90 ° direction).

本実施例において、第1偏光素子2の透過軸が0°方向を向くとき、第1偏光素子の透過軸と第2偏光素子5の透過軸との角度差は90°となる。   In this embodiment, when the transmission axis of the first polarizing element 2 is oriented in the 0 ° direction, the angle difference between the transmission axis of the first polarizing element and the transmission axis of the second polarizing element 5 is 90 °.

この間、第2偏光素子5の裏面に設けられた受光器6としての照度計により365nmの波長の照度を測定して透過強度を求めた。そして照度が0mW/cmとなるよう駆動制御部9により第1偏光素子2を1°ずつ回転させた。 During this time, the illuminance at a wavelength of 365 nm was measured with an illuminometer as the light receiver 6 provided on the back surface of the second polarizing element 5 to determine the transmission intensity. And the 1st polarizing element 2 was rotated 1 degree at a time by the drive control part 9 so that illumination intensity might be set to 0 mW / cm < 2 >.

この状態で第1偏光素子2からの偏光光をマスク20の開口20aを経てステージ4上に設けた基材3の一方の面に形成された光配向膜7に照射する。このことにより光配向膜7の所望位置に所望の分子方向配列をもった複数の配向処理済光配向膜7aを多面付けで形成する。次に基材3の他方の面に光学補償層8および偏光板18を設けた。このようにして多面付けの光学素子16Aを作製した。   In this state, the polarized light from the first polarizing element 2 is applied to the photo-alignment film 7 formed on one surface of the substrate 3 provided on the stage 4 through the opening 20a of the mask 20. As a result, a plurality of alignment-processed photo-alignment films 7 a having a desired molecular direction arrangement at desired positions of the photo-alignment film 7 are formed in a multifaceted manner. Next, the optical compensation layer 8 and the polarizing plate 18 were provided on the other surface of the substrate 3. In this way, a multifaceted optical element 16A was produced.

他方、第1偏光素子2を回転調整することなく第1偏光素子2からの偏光光を基材3の一方の面に形成された光配向膜7に照射した後、基材3の他方の面に光学補償層8および偏光板18を設けて比較例としての多面付けの光学素子を作製した。   On the other hand, after the polarized light from the first polarizing element 2 is irradiated to the photo-alignment film 7 formed on one surface of the base material 3 without adjusting the rotation of the first polarizing element 2, the other surface of the base material 3 The optical compensation layer 8 and the polarizing plate 18 were provided on the substrate to produce a multi-faceted optical element as a comparative example.

(基材および配向膜)
適当な洗浄処理をほどこした基材3としてのガラス基板(1737材、コーニング社製)上に、フレキソ印刷により配向膜7を600Åの厚さで形成した。次に光配向膜7に対して本発明による場合と、比較例による場合にわけて、偏光光を5J/cm照射し、配向膜7に一軸性の異方性を付与した。
(Base material and alignment film)
An alignment film 7 having a thickness of 600 mm was formed by flexographic printing on a glass substrate (1737 material, manufactured by Corning) as a base material 3 subjected to appropriate cleaning treatment. Next, the alignment film 7 was given uniaxial anisotropy by irradiating the alignment film 7 with polarized light of 5 J / cm 2 depending on whether the present invention or the comparative example was used.

本発明では基材3としてガラス基板を用いているが、本発明はガラス基板にのみ限定されるものではない。基材3としてポリカーボネート、ポリメチルメタクリレート、ポリエチレンテレフタレート、トリアセチルセルロールなどからなるプラスチック基板を用いてもよく、またポリエーテルスルホン、ポリスルホン、ポリプロプレン、ポリイミド、ポリアミドイミド、ポリエーテルケトンなどのフィルムを用いることもできる。   In the present invention, a glass substrate is used as the base material 3, but the present invention is not limited to the glass substrate. A plastic substrate made of polycarbonate, polymethyl methacrylate, polyethylene terephthalate, triacetyl cellulose, or the like may be used as the base material 3, and a film of polyethersulfone, polysulfone, polyproprene, polyimide, polyamideimide, polyetherketone, or the like may be used. It can also be used.

(光学補償層の形成)
光学補償層8は、上述のように光配向膜8a、液晶層8b、8cを含む多層構造となっている。このうち光配向膜8aは以下のようにして作製される。
(Formation of optical compensation layer)
As described above, the optical compensation layer 8 has a multilayer structure including the photo-alignment film 8a and the liquid crystal layers 8b and 8c. Among these, the photo-alignment film 8a is produced as follows.

インキの調整
液晶材料として、紫外線照射により硬化が可能なアクリレート基を有するRMM34(メルク社製)を用いた。溶剤としてプロピレングリコールモノメチルエーテルアセテートに20重量部のRMM34を溶解し、位相差層用インキとした。
Preparation of ink RMM34 (manufactured by Merck) having an acrylate group that can be cured by ultraviolet irradiation was used as a liquid crystal material. 20 parts by weight of RMM34 was dissolved in propylene glycol monomethyl ether acetate as a solvent to obtain a retardation layer ink.

光学補償層の光配向膜8a
調整したインキを、スピンコーティング法を用いて基材8d上に塗布した。なお本実施例ではスピンコーティング法を適用したが、基材8d上に均一に塗布が可能であればこれに限られる訳ではなく、ダイコーティング、スリットコーティング、およびこれらを組み合わせた手法であってもよく、特に限定されない。
Optical alignment film 8a of optical compensation layer
The adjusted ink was applied onto the substrate 8d using a spin coating method. In this embodiment, the spin coating method is applied. However, the present invention is not limited to this as long as it can be uniformly applied on the substrate 8d, and die coating, slit coating, and a combination thereof may be used. Well, not particularly limited.

続いて調整インキが塗布された基材8dが、ホットプレート上で100℃、5分間加熱され、残存溶剤を除去し液晶構造を発現させた。紫外線照射を行い(500mJ/cm2、365nm)、液晶構造を固定化して光学補償層8の配向膜8aを形成した。   Subsequently, the base material 8d coated with the adjustment ink was heated on a hot plate at 100 ° C. for 5 minutes to remove the residual solvent and develop a liquid crystal structure. Ultraviolet irradiation was performed (500 mJ / cm 2, 365 nm), the liquid crystal structure was fixed, and the alignment film 8 a of the optical compensation layer 8 was formed.

(測定)
上述のようにして得られた本発明による光学素子と、比較例としての光学素子の透過軸のズレをアペック製スゴニオフォトメーター(変角光度計自動測定装置)を用いて測定した。この測定方法は具体的には2枚のT字状に配置した偏光子の間でサンプルを回転させたときの透過強度を測定するものである。
(Measurement)
The deviation of the transmission axis of the optical element according to the present invention obtained as described above and the optical element as a comparative example was measured using an Apec Sgoniophotometer (an automatic variable photometer measuring device). Specifically, this measurement method measures the transmission intensity when a sample is rotated between two T-shaped polarizers.

この結果、本発明により製造された光学素子はほとんど透過軸のズレがみられなかった。   As a result, the optical element produced according to the present invention hardly showed any deviation of the transmission axis.

なお、上記実施の形態において、本発明による液晶表示装置用光学素子の製造装置10を用いて、基材3の一方の面に形成された配向膜7に対して光を照射することにより、配向膜7に対して所望の分子方向配列をもたせた例を説明した。   In the above embodiment, alignment is performed by irradiating the alignment film 7 formed on one surface of the substrate 3 with light using the optical element manufacturing apparatus 10 for a liquid crystal display device according to the present invention. The example in which the film 7 has a desired molecular orientation has been described.

しかしながら、この液晶表示装置用光学素子の製造装置10を用いて、光補償層8の基材8dに光配向膜8aを形成しておき、この光配向膜8aに対して光を照射することにより、光配向膜8aに対して所望の分子方向配列をもたせてもよい。   However, the optical alignment film 8a is formed on the base material 8d of the optical compensation layer 8 by using the optical element manufacturing apparatus 10 for a liquid crystal display device, and light is applied to the optical alignment film 8a. The photo-alignment film 8a may have a desired molecular orientation.

また基材3の一方の面に形成された光配向膜7に対して光を照射することにより光配向膜7に対して所望の分子方向配列をもたせた例を説明したが、基材3の一方の面にカラーフィルタを介して光配向膜7を形成し、この光配向膜7に対して光を照射して所望の分子方向配列をもたせてもよい。   Moreover, although the example which gave the desired molecular direction arrangement | sequence with respect to the photo-alignment film 7 by irradiating light with respect to the photo-alignment film 7 formed in the one surface of the base material 3 was demonstrated. The photo-alignment film 7 may be formed on one surface via a color filter, and the photo-alignment film 7 may be irradiated with light to have a desired molecular orientation.

本発明による液晶表示装置用光学素子の製造装置の一実施の形態を示す図。The figure which shows one Embodiment of the manufacturing apparatus of the optical element for liquid crystal display devices by this invention. 液晶表示装置を示す概略図。Schematic which shows a liquid crystal display device. 偏光光の有効照射エリアを示す平面図。The top view which shows the effective irradiation area of polarized light. 偏光光の有効照射エリアと基材との配置関係を示す平面図。The top view which shows the arrangement | positioning relationship between the effective irradiation area of polarized light, and a base material. 基材にX方向に並んだ配向処理済配向膜を形成する平面図。The top view which forms the alignment processing completed alignment film located in a line with the X direction on the base material. 基材にY方向に並んだ配向処理済配向膜を形成する平面図。The top view which forms the alignment-processed alignment film lined up in the Y direction on the base material. 基材にX方向およびY方向に並んだ配向処理済配向膜を形成する平面図。The top view which forms the alignment-processed alignment film lined up in the X direction and the Y direction on the base material. 基材にX方向およびY方向に並んだ配向処理済配向膜を形成する平面図。The top view which forms the alignment-processed alignment film lined up in the X direction and the Y direction on the base material. 偏光光の有効照射エリア内の軸分布を示す図。The figure which shows axial distribution within the effective irradiation area of polarized light.

符号の説明Explanation of symbols

1 光源
2 第1偏光素子
3 基材
4 ステージ
4a ステージ駆動部
5 第2偏光素子
6 受光器
7 光配向膜
7a 配向処理済光配向膜
8 光学補償層
9 駆動制御部
10 光学素子の製造装置
15 液晶表示装置
16 光学素子
16a 多面付け光学素子
20 マスク
20a 開口
21 有効照射エリア
21a 中央エリア
DESCRIPTION OF SYMBOLS 1 Light source 2 1st polarizing element 3 Base material 4 Stage 4a Stage drive part 5 2nd polarizing element 6 Light receiver 7 Optical alignment film 7a Alignment-processed photo-alignment film 8 Optical compensation layer 9 Drive control part 10 Optical element manufacturing apparatus 15 Liquid crystal display device 16 Optical element 16a Multi-faceted optical element 20 Mask 20a Aperture 21 Effective irradiation area 21a Central area

Claims (4)

表面に光配向性材料を含む光配向膜が形成された基材を載置するステージと、
ステージ上方に配置され、光を照射する光源と、
光源からの光を偏光光とし、この偏光光によりステージ上の基材の光配向膜を照射して配向膜に所望の分子方向配向をもたせる偏光素子と、
ステージと偏光素子との間に配置された開口を有するマスクとを備え、
マスクの開口の中心は偏光素子からの偏光光の中心に一致し、
ステージはステージ駆動部によりマスクの開口に対して相対的に移動し、ステージ上の基材の所望位置に配向処理済光配向膜を多面付けで複数形成し、
ステージ側に、光配向膜および基材を透過した偏光光が到着する追加偏光素子を設けるとともに、追加偏光素子の裏面に受光器を設け、
受光器に偏光素子を回動させる駆動制御部を接続し、
この駆動制御部は受光器からの信号に基づいて、偏光素子の透過軸と追加偏光素子の透過軸との間の角度差が所定値をもつよう偏光素子を回転させることを特徴とする液晶表示装置用光学素子の製造装置。
A stage on which a substrate on which a photo-alignment film containing a photo-alignment material is formed is placed;
A light source disposed above the stage and irradiating light;
A polarizing element that converts light from a light source into polarized light and irradiates the photo-alignment film of the base material on the stage with this polarized light, thereby causing the alignment film to have a desired molecular orientation.
A mask having an aperture disposed between the stage and the polarizing element;
The center of the mask opening coincides with the center of the polarized light from the polarizing element,
The stage is moved relative to the opening of the mask by the stage drive unit, and a plurality of alignment-processed photo-alignment films are formed at a desired position of the base material on the stage by multi-faceting ,
On the stage side, an additional polarizing element is provided on which the polarized light transmitted through the photo-alignment film and the base material arrives, and a light receiver is provided on the back surface of the additional polarizing element.
Connect the drive control unit that rotates the polarizing element to the receiver,
The drive control unit rotates the polarizing element based on a signal from the light receiver so that the angle difference between the transmission axis of the polarizing element and the transmission axis of the additional polarizing element has a predetermined value. Equipment for manufacturing optical elements for equipment.
駆動制御部は偏光素子の透過軸と、追加偏光素子の透過軸との間の角度差が90°となるよう偏光素子を回転させることを特徴とする請求項記載の液晶表示装置用光学素子の製造装置。 The drive control unit and the transmission axis of the polarizing element, a liquid crystal display device for an optical element according to claim 1, wherein the angular difference is equal to or rotating the polarizing element so as to be 90 ° between the transmission axis of the additional polarizing element Manufacturing equipment. 駆動制御部は偏光素子の透過軸と、追加偏光素子の透過軸との間の角度差が0°となるよう偏光素子を回転させることを特徴とする請求項記載の液晶表示装置用光学素子の製造装置。 The drive control unit and the transmission axis of the polarizing element, a liquid crystal display device for an optical element according to claim 1, wherein the angular difference is equal to or rotating the polarizing element so that a 0 ° between the transmission axis of the additional polarizing element Manufacturing equipment. 追加偏光素子はステージに、回転自在に取付けられていることを特徴とする請求項記載の液晶表示装置用光学素子の製造装置。 Add polarizing element to the stage, an apparatus for manufacturing a liquid crystal display device for an optical element according to claim 1, wherein the rotatably mounted.
JP2005045731A 2005-02-22 2005-02-22 Manufacturing apparatus for optical elements for liquid crystal display devices Expired - Fee Related JP4603387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005045731A JP4603387B2 (en) 2005-02-22 2005-02-22 Manufacturing apparatus for optical elements for liquid crystal display devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005045731A JP4603387B2 (en) 2005-02-22 2005-02-22 Manufacturing apparatus for optical elements for liquid crystal display devices

Publications (2)

Publication Number Publication Date
JP2006234922A JP2006234922A (en) 2006-09-07
JP4603387B2 true JP4603387B2 (en) 2010-12-22

Family

ID=37042679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005045731A Expired - Fee Related JP4603387B2 (en) 2005-02-22 2005-02-22 Manufacturing apparatus for optical elements for liquid crystal display devices

Country Status (1)

Country Link
JP (1) JP4603387B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011002775A (en) 2009-06-22 2011-01-06 Hitachi Displays Ltd Liquid crystal display
JP5106561B2 (en) 2010-03-15 2012-12-26 株式会社ジャパンディスプレイイースト Liquid crystal display
CN102436098A (en) * 2011-12-21 2012-05-02 深圳市华星光电技术有限公司 Aligning equipment and method for polymer-stabilized vertically-aligned liquid crystal panel
CN102722054B (en) * 2012-06-21 2016-01-06 深圳市华星光电技术有限公司 A kind of light alignment method of liquid crystal material and device
JP5935546B2 (en) * 2012-07-02 2016-06-15 東芝ライテック株式会社 Polarized light irradiation device
JP5862616B2 (en) * 2013-07-17 2016-02-16 ウシオ電機株式会社 Polarizing light irradiation apparatus for photo-alignment and polarized light irradiation method for photo-alignment
CN113156713B (en) * 2021-04-12 2022-12-06 Tcl华星光电技术有限公司 Optical alignment device and control method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4974941A (en) * 1989-03-08 1990-12-04 Hercules Incorporated Process of aligning and realigning liquid crystal media
JPH02309321A (en) * 1989-05-25 1990-12-25 Nec Corp Orientation treating device
JPH08122789A (en) * 1994-10-19 1996-05-17 Internatl Business Mach Corp <Ibm> Device and method for manufacturing liquid crystal display device and liquid crystal display device
JPH08271898A (en) * 1995-03-30 1996-10-18 New Oji Paper Co Ltd Oriented film inspecting device as well as production of liquid crystal display panel and apparatus therefor
JPH11202336A (en) * 1998-01-09 1999-07-30 Sony Corp Method and device for radiating light and method and device for producing high molecular alignment layer
JP2000122302A (en) * 1998-10-12 2000-04-28 Ushio Inc Proximity exposure method for irradiating diagonally with light
JP2000206525A (en) * 1999-01-14 2000-07-28 Ushio Inc Polarized light irradiating device for optical alignment of liquid crystal display element
JP2006113180A (en) * 2004-10-13 2006-04-27 Hitachi Displays Ltd Polarized light irradiation method for photo orientation and apparatus therefor
JP2006234913A (en) * 2005-02-22 2006-09-07 Dainippon Printing Co Ltd Apparatus of manufacturing optical element for liquid crystal display device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4974941A (en) * 1989-03-08 1990-12-04 Hercules Incorporated Process of aligning and realigning liquid crystal media
US5032009A (en) * 1989-03-08 1991-07-16 Hercules Incorporated Process of aligning and realigning liquid crystal media
JPH02309321A (en) * 1989-05-25 1990-12-25 Nec Corp Orientation treating device
JPH08122789A (en) * 1994-10-19 1996-05-17 Internatl Business Mach Corp <Ibm> Device and method for manufacturing liquid crystal display device and liquid crystal display device
JPH08271898A (en) * 1995-03-30 1996-10-18 New Oji Paper Co Ltd Oriented film inspecting device as well as production of liquid crystal display panel and apparatus therefor
JPH11202336A (en) * 1998-01-09 1999-07-30 Sony Corp Method and device for radiating light and method and device for producing high molecular alignment layer
JP2000122302A (en) * 1998-10-12 2000-04-28 Ushio Inc Proximity exposure method for irradiating diagonally with light
JP2000206525A (en) * 1999-01-14 2000-07-28 Ushio Inc Polarized light irradiating device for optical alignment of liquid crystal display element
JP2006113180A (en) * 2004-10-13 2006-04-27 Hitachi Displays Ltd Polarized light irradiation method for photo orientation and apparatus therefor
JP2006234913A (en) * 2005-02-22 2006-09-07 Dainippon Printing Co Ltd Apparatus of manufacturing optical element for liquid crystal display device

Also Published As

Publication number Publication date
JP2006234922A (en) 2006-09-07

Similar Documents

Publication Publication Date Title
JP4603387B2 (en) Manufacturing apparatus for optical elements for liquid crystal display devices
JP4666417B2 (en) Manufacturing method of liquid crystal display device and aligner exposure apparatus
US6292296B1 (en) Large scale polarizer and polarizer system employing it
US7894029B2 (en) Apparatus for optically arranging surface of alignment film and method for manufacturing liquid crystal display device using the same
KR20100113477A (en) Phase difference plate, method of manufacturing same, and display device
TW200842417A (en) Optical compensation plate, liquid crystal display device, projection type liquid crystal display device, display device manufacturing method, and adjusting method
KR20130037126A (en) Cotalable polarizer and method of fabricating thereof
JP4610368B2 (en) Manufacturing apparatus for optical elements for liquid crystal display devices
KR20140061227A (en) Method for producing phase difference plate and phase difference plate produced thereby
JP3502930B2 (en) Optical alignment device
KR20090054746A (en) Optical retarder film and method of manufacturing for the same and display device using the same
CN103620487B (en) Light directional illumination device
TW201241523A (en) Exposure device, liquid crystal display device, and method of manufacturing same
JP3936086B2 (en) Light irradiation device
CN106681058B (en) Optical alignment equipment
JP2012123207A (en) Exposure apparatus and exposure method
JP4797468B2 (en) Phase difference control member, manufacturing method thereof, and liquid crystal display device
JP2012078697A (en) Alignment layer exposure method for liquid crystal, its device and liquid crystal panel produced by applying the method
US20100085640A1 (en) Polarizing plate and polarizing device comprising the same
TW201118477A (en) Manufacturing method of photo-alignment layer
JP4135557B2 (en) Polarized light irradiation device for photo-alignment
JP2000227595A (en) Production of liquid crystal display device
US7092058B2 (en) Method and apparatus for imparting alignment to alignment layer through generation of two kinds of polarized light from a single light source and treatment with both
JP2000171676A (en) Polarizing device using large area polarizing plate
JP6756106B2 (en) Optical film and image display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4603387

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees