JPH1172749A - Irradiation optical system of liquid crystal molecule alignment substrate - Google Patents

Irradiation optical system of liquid crystal molecule alignment substrate

Info

Publication number
JPH1172749A
JPH1172749A JP24761197A JP24761197A JPH1172749A JP H1172749 A JPH1172749 A JP H1172749A JP 24761197 A JP24761197 A JP 24761197A JP 24761197 A JP24761197 A JP 24761197A JP H1172749 A JPH1172749 A JP H1172749A
Authority
JP
Japan
Prior art keywords
light
liquid crystal
substrate
wave
crystal molecule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24761197A
Other languages
Japanese (ja)
Inventor
Shunsuke Kobayashi
駿介 小林
Makoto Uehara
誠 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MEJIRO PRECISION KK
Mejiro Precision KK
Original Assignee
MEJIRO PRECISION KK
Mejiro Precision KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MEJIRO PRECISION KK, Mejiro Precision KK filed Critical MEJIRO PRECISION KK
Priority to JP24761197A priority Critical patent/JPH1172749A/en
Publication of JPH1172749A publication Critical patent/JPH1172749A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make it possible to irradiate a wide area with high irradiation intensity at a short optical path length and to impart alignment and pretilt angle to liquid crystal molecules at a low cost by arranging a plane mirror perpendicularly to the light obtd. by irradiating a liquid crystal molecule alignment substrate diagonally with light source light from a light paralleling means and reflecting this light from the liquid crystal molecule alignment substrate. SOLUTION: The light source 10 consists of a super-high pressure mercury lamp 11, an elliptic mirror 2, a rod 13 and a lens 14. The light paralleling means 20 which forms a secondary light source 15 and consists of a concave mirror aligning its focus to this secondary light source 15 forms parallel light beams. The liquid crystal molecule alignment substrate 40 coated with polyimide on glass is irradiated with these parallel light beams diagonally from a direction A. The beams are partly reflected by the substrate 40. The substrate 40 is again irradiated with the light reflected by the plane mirror 30 arranged perpendicularly to the reflected light from a direction B. The S wave of the irradiation light contributes to the alignment of the liquid crystal molecules. The P wave thereof contributes to the formation of the pretilt angle. Namely, the light cast from the direction A is nearly equal in the intensity of the S wave and the P wave and the light cast from the direction B is polarized to the direction S.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は液晶分子の配向技術
に関し、特に光(紫外光を含む。以下同じ。)を用いた
配向に用いられる光の照射装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for aligning liquid crystal molecules, and more particularly to a light irradiation apparatus used for alignment using light (including ultraviolet light; the same applies hereinafter).

【0002】[0002]

【従来の技術】液晶分子を基板表面に平行に配向させる
方法として、現在は基板を布で一方向に機械的に擦るい
わゆるラビング法が多用されている。しかし、ラビング
による配向処理は一般に布を使用するので布切れがゴミ
として発生する上、静電気も発生するという問題があ
る。そこで光を用いて液晶分子を配向させる方法、いわ
ゆる光配向法が近年注目されている。ところで、液晶を
表示素子として利用する場合、各液晶分子にプレティル
ト角を与えておかなければ、リバースティルトによるデ
ィスクリネイションが発生し、光の漏れや散乱による液
晶表示素子のコントラストの低下が生じる。このため従
来の光配向法では、ポリイミドを塗布したガラス基板に
対して斜めから偏光を照射することによって配向膜を形
成していた。これに用いられる照射光学系は図3のよう
な構成になっている。すなわち、光源10と、光平行化
手段20と、偏光素子50から成り、光平行化手段20
から液晶分子配向基板40へ斜めから偏光を照射するよ
うになっている。
2. Description of the Related Art As a method for aligning liquid crystal molecules in parallel with a substrate surface, a so-called rubbing method in which a substrate is mechanically rubbed with a cloth in one direction is frequently used. However, since the orientation treatment by rubbing generally uses a cloth, there is a problem that the cloth is cut off as dust and static electricity is generated. Therefore, a method of aligning liquid crystal molecules using light, a so-called photo-alignment method, has attracted attention in recent years. By the way, when a liquid crystal is used as a display element, disclination due to reverse tilt occurs unless a pretilt angle is given to each liquid crystal molecule, and the contrast of the liquid crystal display element decreases due to light leakage and scattering. Therefore, in the conventional photo-alignment method, an alignment film is formed by irradiating polarized light obliquely to a glass substrate coated with polyimide. The irradiation optical system used for this has a configuration as shown in FIG. That is, the light collimating means 20 includes the light source 10, the light collimating means 20, and the polarizing element 50.
The liquid crystal molecule alignment substrate 40 is irradiated with polarized light obliquely.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来の照射光
学系には以下の欠点があった。第1の欠点は光の照射強
度が弱い点である。偏光素子の透過率は半分以下しかな
いため従来の照射光学系は照射強度が弱かった。第2の
欠点は照射面積を大きくすることができないことであ
る。大面積の偏光素子は制作が極めて困難だからであ
る。第3の欠点は光路長が長い点である。偏光素子は光
の入射角が指定されているものが多く、必要な面積の偏
光素子を設置するには照射光学系の光路長がかなり長く
なる場合が多かった。第4の欠点はコストが高いことで
ある。ポリイミドは紫外光で照射する必要があるが、紫
外領域で使用できる偏光素子は極めて高価なため、従来
の照射光学系はコストを下げることができなかった。そ
こで、本発明は照射強度が強く、広い面積を短い光路長
で照射でき、かつ低コストでありながら液晶分子に配向
とプレティルト角を与えられる照射光学系を提供するこ
とを目的とする。
However, the conventional irradiation optical system has the following disadvantages. The first disadvantage is that the light irradiation intensity is weak. Since the transmittance of the polarizing element is less than half, the conventional irradiation optical system has a low irradiation intensity. The second disadvantage is that the irradiation area cannot be increased. This is because large-area polarizing elements are extremely difficult to produce. A third disadvantage is that the optical path length is long. In many cases, the incident angle of light is specified for the polarizing element, and in many cases, the optical path length of the irradiation optical system is considerably long in order to install a polarizing element having a required area. A fourth disadvantage is high cost. It is necessary to irradiate polyimide with ultraviolet light. However, since a polarizing element that can be used in the ultraviolet region is extremely expensive, the cost of the conventional irradiation optical system cannot be reduced. Accordingly, it is an object of the present invention to provide an irradiation optical system which has a high irradiation intensity, can irradiate a wide area with a short optical path length, and can give an alignment and a pretilt angle to liquid crystal molecules at low cost.

【0004】[0004]

【課題を解決するための手段】光源10と、光平行化手
段20と、平面鏡30から成り、光平行化手段20から
液晶分子配向基板40へ斜めから光を照射するととも
に、液晶分子配向基板40から反射した光に対し平面鏡
30を垂直に配置する。
The light source 10, the light collimating means 20, and the plane mirror 30 irradiate the light from the light collimating means 20 to the liquid crystal molecule alignment substrate 40 obliquely. The plane mirror 30 is arranged perpendicularly to the light reflected from.

【0005】[0005]

【発明の実施の形態】図1に本発明の実施の形態を示
す。10は光源、20は光平行化手段、30は平面鏡で
ある。また、40はガラスの上にポリイミドを塗布した
液晶分子配向基板(以下基板という)である。光源10
は、超高圧水銀灯11、楕円鏡12、ロッド13、レン
ズ14、から成り、2次光源15を形成する。光平行化
手段20は、焦点を2次光源15に合致させた凹面鏡で
あり、平行光を作成する。光平行化手段20には凹面鏡
のほかコンデンサーレンズやフレネルレンズも適用でき
る。
FIG. 1 shows an embodiment of the present invention. 10 is a light source, 20 is a light collimating means, and 30 is a plane mirror. Reference numeral 40 denotes a liquid crystal molecular alignment substrate (hereinafter, referred to as a substrate) in which polyimide is applied on glass. Light source 10
Comprises an ultra-high pressure mercury lamp 11, an elliptical mirror 12, a rod 13, and a lens 14, and forms a secondary light source 15. The light collimating means 20 is a concave mirror whose focal point matches the secondary light source 15, and creates parallel light. As the light collimating means 20, a condenser lens or a Fresnel lens other than a concave mirror can be applied.

【0006】平行光は基板40をA方向から斜めに照射
し、一部の光は基板40で反射する。平面鏡30はこの
反射光に対して垂直に配置されているため、反射光は元
の光路を逆進し、B方向から再度基板40を照射する。
このため、基板40は左右両方(図1のA方向及びB方
向)から光が照射されることになる。ところで、基板に
斜めから光を照射したとき、照射光のS波は液晶分子の
配向に寄与し、P波はプレティルト角の形成に寄与す
る。
The parallel light irradiates the substrate 40 obliquely from the direction A, and a part of the light is reflected by the substrate 40. Since the plane mirror 30 is arranged perpendicularly to the reflected light, the reflected light travels backward in the original optical path and irradiates the substrate 40 again from the B direction.
For this reason, the substrate 40 is irradiated with light from both the left and right sides (A direction and B direction in FIG. 1). When the substrate is irradiated with light obliquely, the S wave of the irradiated light contributes to the alignment of the liquid crystal molecules, and the P wave contributes to the formation of the pretilt angle.

【0007】ここで、液晶分子の配向は基板と平行方向
なので、図1のA方向、B方向のどちらから光が照射さ
れてもともに同方向の配向に寄与する。従ってS波はA
方向、B方向のどちらから照射してもかまわない。一
方、プレティルト角は基板と非平行な方向に形成される
ため、図1のA方向、B方向のどちらから光が照射され
るかによってプレティルト角の形成方向が逆になる。従
って、P波はA方向、B方向の片方からのみ照射されな
ければならない。
Here, since the orientation of the liquid crystal molecules is in the direction parallel to the substrate, light irradiation from either the A direction or the B direction in FIG. 1 contributes to the alignment in the same direction. Therefore, the S wave is A
Irradiation may be performed from any of the directions B and B. On the other hand, since the pretilt angle is formed in a direction non-parallel to the substrate, the direction of forming the pretilt angle is reversed depending on whether light is irradiated from the direction A or the direction B in FIG. Therefore, the P wave must be irradiated only from one of the A direction and the B direction.

【0008】ところで、光が物体に対して斜めから入射
した場合、そのフレネル反射率は一般に図2のようにな
る。すなわち、P波は光の入射角がブリュースター角に
なったときに反射率が0になるなど、比較的反射率が低
いのに対し、S波は入射角が大きくなると反射率が単調
増加しており、あらゆる入射角でS波の反射率はP波の
反射率を上回る。つまり、斜入射した光が反射した後、
光はS方向に強く偏光する。
By the way, when light is obliquely incident on an object, its Fresnel reflectance is generally as shown in FIG. That is, the reflectivity of the P wave is relatively low, such as the reflectance becomes 0 when the incident angle of light becomes the Brewster angle, whereas the reflectivity of the S wave increases monotonically as the incident angle increases. At all angles of incidence, the reflectance of the S-wave exceeds that of the P-wave. In other words, after obliquely incident light is reflected,
Light is strongly polarized in the S direction.

【0009】すなわち、本光学系において基板40で反
射した光はS方向に強く偏光しており、平面鏡30で反
射してB方向から基板40を照射する光も同様にS方向
に偏光していることになる。結局、本照射光学系でA方
向から照射する光はほぼS波とP波の強度が等しいのに
対し、B方向から照射する光は強くS方向に偏光してい
る。このため、P波はほぼA方向からのみ照射されるこ
とになり、プレティルト角の形成は阻害されない。ま
た、S波はA方向のみならずB方向からも照射され、液
晶分子の配向に寄与する。
That is, in this optical system, the light reflected by the substrate 40 is strongly polarized in the S direction, and the light reflected by the plane mirror 30 and irradiated on the substrate 40 from the B direction is also polarized in the S direction. Will be. As a result, the light irradiated from the direction A in the irradiation optical system has almost the same intensity of the S wave and the P wave, whereas the light irradiated from the direction B is strongly polarized in the S direction. For this reason, the P wave is irradiated almost only from the direction A, and the formation of the pretilt angle is not hindered. In addition, the S wave is irradiated not only from the A direction but also from the B direction, and contributes to the alignment of the liquid crystal molecules.

【0010】[0010]

【発明の効果】本発明によれば照射強度が強く、広い面
積を短い光路長で照射でき、かつ低コストでありながら
液晶分子に配向とプレティルト角を与えられる照射光学
系を提供できる。
According to the present invention, it is possible to provide an irradiation optical system which has a high irradiation intensity, can irradiate a wide area with a short optical path length, and can give an alignment and a pretilt angle to liquid crystal molecules at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる照射光学系の全体構成図であ
る。
FIG. 1 is an overall configuration diagram of an irradiation optical system according to the present invention.

【図2】入射角に対し、S波とP波の反射率を表すグラ
フである。
FIG. 2 is a graph showing the reflectance of an S wave and a P wave with respect to an incident angle.

【図3】従来の照射光学系の全体構成図である。FIG. 3 is an overall configuration diagram of a conventional irradiation optical system.

【符号の説明】[Explanation of symbols]

10 光源 20 光平行化手段 30 平面鏡 40 液晶分子配向基板 50 偏光素子 Reference Signs List 10 light source 20 light collimating means 30 plane mirror 40 liquid crystal molecule alignment substrate 50 polarizing element

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】光源10と、光平行化手段20と、平面鏡
30から成り、光平行化手段20から液晶分子配向基板
40へ斜めから光を照射するとともに、液晶分子配向基
板40から反射した光に対し平面鏡30を垂直に配置し
たことを特徴とする液晶分子配向基板の照射光学系。
A light source, a light collimating means, and a plane mirror, which irradiate light obliquely from the light collimating means to a liquid crystal molecule alignment substrate and reflect light reflected from the liquid crystal molecule alignment substrate. An optical system for irradiating a liquid crystal molecule alignment substrate, wherein a plane mirror 30 is arranged perpendicularly to the substrate.
JP24761197A 1997-08-29 1997-08-29 Irradiation optical system of liquid crystal molecule alignment substrate Pending JPH1172749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24761197A JPH1172749A (en) 1997-08-29 1997-08-29 Irradiation optical system of liquid crystal molecule alignment substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24761197A JPH1172749A (en) 1997-08-29 1997-08-29 Irradiation optical system of liquid crystal molecule alignment substrate

Publications (1)

Publication Number Publication Date
JPH1172749A true JPH1172749A (en) 1999-03-16

Family

ID=17166089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24761197A Pending JPH1172749A (en) 1997-08-29 1997-08-29 Irradiation optical system of liquid crystal molecule alignment substrate

Country Status (1)

Country Link
JP (1) JPH1172749A (en)

Similar Documents

Publication Publication Date Title
US6292296B1 (en) Large scale polarizer and polarizer system employing it
US6307609B1 (en) Polarized light exposure systems for aligning liquid crystals
US20020101659A1 (en) Polarizer apparatus for producing a generally polarized beam of light
US6061138A (en) Optical exposure systems and processes for alignment of liquid crystals
TW200403717A (en) Apparatus and method for irradiating a substrate
JPH1090684A (en) Oriented film light orienting polarization light irradiating device for liquid crystal display element
JPH10505435A (en) Polarizing element
JP3603758B2 (en) Polarizing element of polarized light irradiation device for photo-alignment of liquid crystal alignment film
US6724530B2 (en) Polarized light illuminator with a polarized light beam splitter
JP3784118B2 (en) Exposure equipment
JP3384346B2 (en) Polarized light irradiation device for photo alignment of liquid crystal display devices
JP3936086B2 (en) Light irradiation device
JP2001056451A (en) Illumination device and projection type display device using it
JPH1172749A (en) Irradiation optical system of liquid crystal molecule alignment substrate
JP4135557B2 (en) Polarized light irradiation device for photo-alignment
TW201118477A (en) Manufacturing method of photo-alignment layer
JP2000171676A (en) Polarizing device using large area polarizing plate
TWI262336B (en) Manufacturing method of LCD apparatus and device thereof
JP2001066602A (en) Formation of alignment layer and device therefor
KR100201249B1 (en) A photo irradiating apparatus for photo-alignment process and method of the same
JPH05210098A (en) Liquid crystal display device
WO2018139274A1 (en) Polarized light radiation device and polarized light radiation method
JP2023092284A (en) Lighting device and system for vehicle lamp
JPH03196015A (en) Polarized light source device
JPH0916060A (en) Hologram exposure device