TW518427B - Light irradiating device - Google Patents
Light irradiating device Download PDFInfo
- Publication number
- TW518427B TW518427B TW088121545A TW88121545A TW518427B TW 518427 B TW518427 B TW 518427B TW 088121545 A TW088121545 A TW 088121545A TW 88121545 A TW88121545 A TW 88121545A TW 518427 B TW518427 B TW 518427B
- Authority
- TW
- Taiwan
- Prior art keywords
- polarizer
- substrate
- light
- patent application
- irradiation device
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3025—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
- G02B5/3066—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state involving the reflection of light at a particular angle of incidence, e.g. Brewster's angle
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
- G02F1/13378—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
- G02F1/133788—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/1303—Apparatus specially adapted to the manufacture of LCDs
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
- G02F1/133707—Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
- G02F1/133753—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Mathematical Physics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Liquid Crystal (AREA)
Abstract
Description
518427 _案號88121545_年月曰 修正_ 五、發明說明(1) 發明背景 發明領域 本案之發明領域係有關於光照射裝置,尤其是大尺寸 光照射裝置,係適用在多像域液晶顯示裝置之光對齊處 理。 習知技術說明 一般,多像域液晶顯示裝置包括配置互相面對的上下 基體,其中由隔板提供一項指定的間隙,且在上下基體之 間形成一液晶層。此上下基體分別具有在一側上的指定圖 樣之電極,及一位在電極上的對齊層,此對齊層決定液晶 的對齊。 使用一摩擦或光對齊方法,或其他的方式作為處理該 對齊層的對齊方法。摩擦方法包含在一基體上,塗敷一對 齊材料,如聚醯胺(ρ ο 1 y a m i d e,P I ),然後應用一摩擦布 以機械方式摩擦該基體。從上述處理程序中可得到在基體 上之液晶分子的對齊方向。以此方法可製造出大尺寸的 L C D,且可快速處理。 但是,在前面描述的摩擦方法中,由於在對齊層上形 成之微凹槽的圖形隨著摩擦強度而變,所以液晶分子的對 齊並不均勻。而且,此將導致光散射及隨機相位失真。還 有,由摩擦所產生的灰塵粒子及靜電放電將導致良率下518427 _Case No. 88121545_ Modification of the year and month _ V. Description of the invention (1) Field of the invention The field of invention of the present invention relates to light irradiation devices, especially large-size light irradiation devices, which are suitable for multi-domain liquid crystal display devices. Light alignment processing. Description of the Conventional Technology Generally, a multi-domain liquid crystal display device includes an upper and lower substrate arranged to face each other, wherein a partition is provided with a designated gap, and a liquid crystal layer is formed between the upper and lower substrates. The upper and lower substrates each have an electrode with a specified pattern on one side, and an alignment layer on the electrode. This alignment layer determines the alignment of the liquid crystal. A rubbing or light alignment method, or other method is used as the alignment method for processing the alignment layer. The rubbing method involves coating a pair of homogeneous materials, such as polyamide (ρ ο 1 y a m i d e, PI) on a substrate, and then mechanically rubbing the substrate with a rubbing cloth. The alignment direction of the liquid crystal molecules on the substrate can be obtained from the above processing procedure. In this way, large-size L C D can be manufactured and processed quickly. However, in the previously described rubbing method, since the pattern of the micro-grooves formed on the alignment layer changes with the rubbing strength, the alignment of the liquid crystal molecules is not uniform. Moreover, this will cause light scattering and random phase distortion. In addition, dust particles and electrostatic discharge generated by friction will cause lower yields.
518427518427
降,且用於由像素分割 (photolithography) 性0 ^成多像域的重複光蝕刻 处理將影響對齊層❺可靠度及穩定 另一万面 體 不 率 ,而決定液晶(LC)的初期傾斜;无牙透具有對齊層的基 會產生靜電放電,也不會產。相較於摩擦方法,既 。特別是,以此方法,可以塵粒子’因此維持良Reduction, and repeated photolithography for pixel division (photolithography) of 0 ^ into multiple image fields will affect the reliability of the alignment layer and stabilize the rate of another million facets, and determine the initial tilt of the liquid crystal (LC); A toothless substrate with an alignment layer will cause electrostatic discharge and will not produce. Compared to the friction method, both. In particular, in this way, dust particles ’can be maintained
LCD % 了以貫現以像素分割廣角的 出版)及 版)揭露上述在光對齊 JP-A-10-90684(1998年 4月 1〇日 JP-A-10 — 1 6 1 1 2 6 ( 1 9 9 8年 6月 19日出 處理中使用的光照射裝置。 罢、f丄為在乂卜夕0-9 0 684中提出的傳統使用之光照射裝 置的采構’其係關於極化光照射裝置,在lcd的對齊層上 照射極化光使用,作為對齊層之光對齊處理。 從光源1發射之該包含紫外光的光束被聚集於聚光器2 中,在第一反射鏡3中反射,並通過聚光鏡5。經快門4而 來自?κ光鏡5的光束在苐一反射鏡6中反射,且由準直透鏡 7使光束平行’然後通過極化器8。極化器包含多個在固定 間隔上呈平行置放的玻璃板8a,且對應插入光以一布魯斯 特(Brewster)角度置放。大部份的垂直極化光將被反射回 來’且水平傳送極化光。來自極化器8的水平極化光以罩LCD% has been published with pixel-separated wide-angle publishing) and editions) to expose the above-mentioned light alignment JP-A-10-90684 (April 10, 1998 JP-A-10 — 1 6 1 1 2 6 (1 The light irradiation device used in the treatment on June 19, 1998. F, is the structure of the traditional light irradiation device proposed in the 乂 乂 0-9 0 684, which is about polarized light The irradiating device is used to irradiate polarized light on the alignment layer of the LCD as the light alignment processing of the alignment layer. The light beam containing the ultraviolet light emitted from the light source 1 is collected in the condenser 2 and in the first reflector 3 Reflected and passed through the condenser 5. The light beam from the? Κ mirror 5 via the shutter 4 is reflected in the first mirror 6, and the beam is parallelized by the collimator lens 7 and then passes through the polarizer 8. The polarizer contains multiple A glass plate 8a is placed in parallel at a fixed interval, and the corresponding insertion light is placed at a Brewster angle. Most of the vertically polarized light will be reflected back 'and the polarized light is transmitted horizontally. From Horizontally polarized light of polarizer 8 is masked
518427 _案號88121545_年月日__ 五、發明說明(3) 幕1 3方式照射到基體3 5上。 在具有上述架構的光照射裝置中,設定該極化比率 (s / p,其中s為垂直極化光,p為水平極化光)為小於0 · 1。 為了對LCD的對齊層進行光對齊,照射具有相同極化方向 的極化光。此裝置具有相當良好的穿透性,波長相依性, 容忍度及生命周期。故,為了產生大尺寸的LCD,極化器8 的玻璃板8 a需要做得夠大。而且該裝置之極化比率的範圍 不適合用於有效地導入光對齊處理。 圖2為傳統使用之光照射裝置的架構之示意圖,可參 見JP-A-10-161126,其中曝光裝置包括含光源1,聚光鏡 2,準直透鏡7,均光器1 9及聚光鏡5,一個或一個以上的 反射鏡3及6,其將來自光源1的光導向基體35。而且,其 中至少一個反射鏡包括一反射性繞射光柵(g r a t i ng), 其主要反射第一極化光。 因為第一反射鏡3的尺寸比第二反射鏡6的尺寸小,當 第一反射鏡3包含一繞射光柵時,可使用小尺寸的繞射光 柵。因為繞射光柵定位在均光器1 9的前面,所以通過均光 器光可避免受到繞射光柵的影響。 經由上述說明的架構,可以經由來自主要反射第一極 化光的反射性繞射光柵照射反射的光,而該光照射裝置可 一次大量地照射極化光。在光照射裝置中之繞射光柵的極518427 _Case No. 88121545_Year Month Day__ V. Description of the invention (3) The curtain 13 is irradiated onto the substrate 35. In the light irradiation device having the above-mentioned architecture, the polarization ratio (s / p, where s is a vertically polarized light, and p is a horizontally polarized light) is set to be less than 0.1. In order to align the alignment layers of the LCD, polarized light having the same polarization direction is irradiated. This device has quite good penetrability, wavelength dependence, tolerance and life cycle. Therefore, in order to produce a large-sized LCD, the glass plate 8a of the polarizer 8 needs to be made sufficiently large. Moreover, the range of the polarization ratio of the device is not suitable for efficiently introducing light alignment processing. FIG. 2 is a schematic diagram of the structure of a conventional light irradiation device. See JP-A-10-161126. The exposure device includes a light source 1, a condenser lens 2, a collimator lens 7, a homogenizer 19, and a condenser lens 5. Or one or more mirrors 3 and 6, which guide the light from the light source 1 to the base body 35. Moreover, at least one of the reflecting mirrors includes a reflective diffraction grating (g r a t i ng), which mainly reflects the first polarized light. Since the size of the first reflecting mirror 3 is smaller than that of the second reflecting mirror 6, when the first reflecting mirror 3 includes a diffraction grating, a small-sized diffraction grating can be used. Because the diffraction grating is positioned in front of the homogenizer 19, the light passing through the homogenizer can be prevented from being affected by the diffraction grating. With the structure described above, the reflected light can be irradiated through the reflective diffraction grating that mainly reflects the first polarized light, and the light irradiation device can irradiate a large amount of polarized light at a time. Polarity of a diffraction grating in a light irradiation device
518427 案號 88121545518427 Case No. 88121545
年A 曰 修正 五、發明說明(4) 化特性與波長有相當大的關係。 因為傳統光照射裝置集中於韌化(a η n e X i n g)極化裝 置以得到極化光,所以上述習知技術並不適用於實際上的 光對齊處理。 發明概述 本發明的目的係提供一種光照射裝置,可照射大尺 寸,且能夠以光傾斜照射決定對齊層的對齊方向與初期傾 斜角。 由下文中的說明或者是由本發明的動作應用,可了解 本發明的其他特性及優點,可由文中寫入的指定結構,申 請專利範圍及附圖了解本發明的目的及優點。 為了達成上述說明之本發明的目的,提供一種光照射 裝置,包括一光學系統與一第一極化器,第一極化器用於 極化來自該光學系統的光;在該載體上放置基體,在對應 載體的正常方向角度中傾斜照射來自該第一極化器的光。 該光學系統包括一光源,一透鏡及一個或一個以上的 或第 反射鏡。另外,可以在透鏡及反射鏡之間置放一第 三極化器。Year A is called Amendment 5. Explanation of the invention (4) The characteristics of wavelength and wavelength have a considerable relationship. Since the conventional light irradiation device focuses on the toughened (a η n e X i n g) polarization device to obtain polarized light, the above-mentioned conventional technique is not applicable to actual light alignment processing. SUMMARY OF THE INVENTION An object of the present invention is to provide a light irradiation device that can irradiate a large size and can determine the alignment direction and initial tilt angle of an alignment layer by oblique light irradiation. Other features and advantages of the present invention can be understood from the following description or by the application of the action of the present invention, and the purpose and advantages of the present invention can be understood from the specified structure written in the text, the scope of the patent and the drawings. In order to achieve the purpose of the present invention described above, a light irradiation device is provided, which includes an optical system and a first polarizer, the first polarizer is used to polarize light from the optical system; a substrate is placed on the carrier, The light from the first polarizer is irradiated obliquely in a normal direction angle of the corresponding carrier. The optical system includes a light source, a lens, and one or more or second reflectors. In addition, a third polarizer can be placed between the lens and the mirror.
第7頁 518427 __案號88121545_年月曰 修正_ 五、發明說明(5) 為了達成本發明的目的,提供一種光照射裝置,包 括:一光源;一第一反射鏡,反射來自該光源之光;一包 含多個透鏡的均光器;一第二反射鏡,反射來自該均光器 之光;一準直透鏡,用於將來自該第二反射鏡的光線平行 輸出;以及一第一極化器,將來自該_^透鏡的光極化, 在該載體上放置基體,在對應載體的方向角度中傾斜 照射來自該第一極化器的光。 m 上述之光照射裝置另外包含介於第一反射鏡及均光器 之間的第二極化器,或第三極化器,第三極化器是介於均 光器及第二反射鏡之間。最好該第一極化器,在波長範圍 介於約2 0 0 n m到8 0 0 n m之間時,具有相當高的光穿透率,更 佳的範圍是介於2 5 0nm到4 0 0nm之間。該第一極化器約0到1 之間的極化度(PD ),最好是約0 . 2到0 . 9 5之間。最好,該 角度範圍介於0°到4 5°之間。 如果有須要可以將1 9 98年11月6日申請之韓國第 1 9 9 8-4 74 9 0號專利申請案併入本申請案作為參考。 較佳實施例之詳細說明: 參考附圖在下文中將根據本發明詳細描述光照射裝 置。 根據本發明,.圖3A、3B及圖4為光照射裝置的yz及xzPage 7 518427 __Case No. 88121545_ Revised Year of the Month _ V. Description of the Invention (5) In order to achieve the purpose of the invention, a light irradiation device is provided, which includes: a light source; a first reflector that reflects from the light source A light homogenizer including a plurality of lenses; a second reflector that reflects light from the homogenizer; a collimator lens for parallelly outputting light from the second mirror; and a first A polarizer polarizes the light from the lens, places a substrate on the carrier, and obliquely irradiates the light from the first polarizer in a direction angle corresponding to the carrier. m The above light irradiation device further includes a second polarizer or a third polarizer interposed between the first reflector and the homogenizer, and the third polarizer is interposed between the homogenizer and the second reflector between. Preferably, the first polarizer has a relatively high light transmittance in a wavelength range between about 200 nm and 800 nm, and a more preferable range is between 250 nm and 40. Between 0nm. The first polarizer has a degree of polarization (PD) between about 0 and 1, preferably between about 0.2 and 0.95. Preferably, the angle ranges between 0 ° and 45 °. If necessary, the Korean Patent Application No. 199-8-474090, filed on November 6, 1998, can be incorporated into this application for reference. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT: The light irradiation device according to the present invention will be described in detail below with reference to the drawings. According to the present invention, FIGS. 3A, 3B and FIG. 4 are yz and xz of the light irradiation device.
518427 修正518427 correction
t 號 881215W 五、發明說明(6) 平面。根據本發明光昭M莊 二 反射鏡3,透鏡37小、尺射f置包括光源卜!光鏡2,第一 射鏡6,準直透鏡7,罩暮f化态3 1 ’均光态1 9,第二反 極化器33。 幕13,放置基體35的載體Π,及一 放置聚光鏡2使得尬止 鏡 。勺八少柄# 先源1發出之光可傳輸到第一反射 包各夕=透鏡的均光器(例如,化合物透鏡或飛眼 爽 射來自透鏡的光線或光束,以重疊 、或β先束/一反射鏡6反射來自均光器的光。準直 7使得來自第二反射鏡6之光線或光束可平行且指向到 f基體35上形成的對齊層25。使用—鏡子或透鏡作為準直 透鏡7,且均光器可為外凸型或内凹型。 依據本發明的光S?、射裝置也可以在第一極化器μ的位 置處包含一極化器,而且如果需要的話,位在均光器19的 前側或後側,亦可包含如圖3 Α及3Β所示的第二極化器3认 第三極化器5 1 (小尺寸極化器)。 苐一 ’第二及笫二極化器33’ 31,及5 1均包含一極化 器基體,其為一薄層的(laminated)石英基體,一薄層 的破璃基體,或者是多覆層基體,而且此極化器具有相當 良好的熱阻,容忍度,及相當低的波長相關性。使用一薄 層的石英或玻璃基體’以對應基體之布魯斯特(Brewster) 角(=t a η Mn,在此η為石英或玻璃之拆射係數)。因此,布 魯斯特角的範圍約57。至60° 。薄層的石英或玻璃基體可 518427 _案號88121545_年月曰 修正_ 五、發明說明(7) 在大尺寸的照射之例子中,以均勻方式照射光。應用一無 機層塗敷一多覆層基體,該無機層通常為Si02。 最好,在波長範圍為20 Onm到80 Onm的範圍内,尤其是 在2 5 0到4 0 0 nm範圍内,該極化器3 3為高光穿透性者。而 且,最好極化程度(PD = (Im ax - Im in)/(Im ax - Im in)在0 < PD < 1的範圍内(即部份極化光),尤其是可在 0. 2 < PD < (K 9 5的範圍内。可依據對齊層的型式,適當 地選擇極化程度。 如圖4所示,其中顯示在xy平面中的光照射裝置,來 自光學系統1 0 0的照射對應一用於以傾斜方式曝光的載體 的正常方向傾斜一角度,且最大穿透軸垂直或平行在圖中 定義之光路程的xz平面。因此,經由合成上述之照射裝 置,可在對齊層2 5上以傾斜方式照射部份極化光。 圖5為一 xz平面圖,其中顯示在依據本發明之光照射 裝置中的對齊層中初期傾斜角之控制。在對齊層2 5中液晶 分子2 7的初期傾斜角((9 )為在對齊層上照射的光能量,薄 層材料,或光照射裝置的極化程度所控制。由傾斜曝光中 照射的方向決定液晶分子2 7的對齊方向。 最好可使用光照射角度(0 )的範圍介於約0°到45° 之間,而且,如果光照射角度(0 )大於約45°時,則在罩 幕1 3及對齊層2 5之間間隙誤差的效應,可達到最大,使得t number 881215W V. Description of the invention (6) Plane. According to the present invention, the Guangzhao Mzhuang second reflecting mirror 3, the lens 37 is small, and the ruler f includes a light source. The light mirror 2, the first mirror 6, the collimating lens 7, and the cover state 3 1 'uniform light state 1 9. Second reverse polarizer 33. The curtain 13, a carrier Π on which the base body 35 is placed, and a condenser lens 2 are placed to make the lens stop.匙 八 少 柄 # The light emitted by the first source 1 can be transmitted to the first reflection package. Each evening = lens homogenizer (for example, a compound lens or a flying eye cools the light or beam from the lens to overlap, or β first beam / A mirror 6 reflects the light from the homogenizer. The collimation 7 enables the light or beam from the second mirror 6 to be parallel and directed to the alignment layer 25 formed on the f base 35. Use-a mirror or lens as collimation The lens 7 and the homogenizer may be of a convex type or a concave type. The light S? And the emitting device according to the present invention may also include a polarizer at the position of the first polarizer μ, and if necessary, The front or rear side of the light equalizer 19 may also include a second polarizer 3 as shown in FIGS. 3A and 3B and a third polarizer 5 1 (a small-sized polarizer). The two polarizers 33 ′ 31 and 51 each include a polarizer substrate, which is a thin laminated quartz substrate, a thin layer of broken glass substrate, or a multi-clad substrate. Polarizers have fairly good thermal resistance, tolerance, and relatively low wavelength dependence. Use a thin layer of quartz The glass substrate 'corresponds to the Brewster angle of the substrate (= ta η Mn, where η is the refraction coefficient of quartz or glass). Therefore, the Brewster angle ranges from about 57. to 60 °. Thin quartz Or the glass substrate can be 518427 _ case number 88121545 _ revised month five. Description of the invention (7) In the case of large-sized irradiation, light is irradiated in a uniform manner. An inorganic layer is applied to coat a multi-layered substrate, which The inorganic layer is usually SiO 2. Preferably, the polarizer 33 is a high light transmissive in a wavelength range of 20 Onm to 80 Onm, especially in a range of 250 to 400 nm. , The best degree of polarization (PD = (Im ax-Im in) / (Im ax-Im in) is in the range of 0 < PD < 1 (that is, partially polarized light), especially in 0. 2 < PD < (K 9 5 range. The degree of polarization can be appropriately selected according to the type of the alignment layer. As shown in FIG. 4, the light irradiation device shown in the xy plane is from the optical system 1 0 An irradiation of 0 corresponds to a normal direction of a carrier used for oblique exposure is inclined at an angle, and the maximum penetration axis is vertical or flat The xz plane of the light path defined in the figure. Therefore, by synthesizing the above-mentioned irradiation device, a part of polarized light can be irradiated on the alignment layer 25 in an oblique manner. Control of the initial tilt angle in the alignment layer in the light irradiation device. The initial tilt angle of the liquid crystal molecules 27 in the alignment layer 25 ((9) is the light energy, thin layer material, or light irradiation on the alignment layer. The degree of polarization of the device is controlled. The alignment direction of the liquid crystal molecules 27 is determined by the direction of irradiation in oblique exposure. It is best to use a light irradiation angle (0) in the range of about 0 ° to 45 °, and if the light irradiation angle (0) is greater than about 45 °, then the distance between the mask 1 3 and the alignment layer 2 5 The effect of the gap error can be maximized, so that
518427 __案號88121545_年月曰 修正_ 五、發明說明(8) 由罩幕圖樣所導致之圖樣位置誤差將變得相當大。 在罩幕1 3及對齊層2 5之間的間隙誤差約為2 0// in的例 子中,下表顯示圖樣位置誤差,其為光照射角度(0 )的函 數。 照射角度) 0度 3 0度 4 5度 6 0度 圖樣誤差 Q μ m 1 1. 5// m 20μ m 34. 6/z m 圖6 A,6B及6C為本發明第一,第二及第三實施例的xy 平面之視圖,其表示薄層之對齊方向的控制。在這些圖形 中,粗實線箭頭表示基體的對齊方向;實線所圍繞出來的 矩形表示基體的第一位置4 5,而由虛線所圍繞矩形表示基 體的第二位置47。 如上文中所說明者,在本發明的光照射裝置中,在光 對齊處理中於基體上的光照射方向(即光的方位角)相當重 要,考量由在傾斜曝光中的光照射方向決定對齊方向之 故。在圖6 A,6 B及6 C中表示控制光之方位角的方法。 如圖6 A的第一實施例中所示者,在產生單像域或多像 域液晶設計裝置時,為了使得對應基體之長度方向的對齊 方向可為0°或9 0° ( 4 5°或1 3 5° ),光學系統1 0 0設計使 得對應基體的長度方向可為約0°到4 5° ,考量由經由簡518427 __Case No. 88121545_ Year Month Revision_ V. Description of the invention (8) The pattern position error caused by the mask pattern will become quite large. In the example where the gap error between the mask 1 3 and the alignment layer 25 is about 20 // in, the following table shows the pattern position error as a function of the light irradiation angle (0). Irradiation angle) 0 degrees 3 0 degrees 4 5 degrees 6 0 degrees Pattern error Q μ m 1 1. 5 // m 20 μ m 34. 6 / zm Figure 6 A, 6B and 6C are the first, second and A view of the xy plane of the three embodiments, which shows the control of the alignment direction of the thin layers. In these figures, the thick solid line arrows indicate the alignment direction of the substrate; the rectangle surrounded by the solid line indicates the first position 45 of the substrate, and the rectangle surrounded by the dashed line indicates the second position 47 of the substrate. As explained above, in the light irradiation device of the present invention, the light irradiation direction (ie, the azimuth angle of light) on the substrate in the light alignment process is very important, and the alignment direction is determined by the light irradiation direction in oblique exposure The reason. A method of controlling the azimuth of light is shown in Figs. 6A, 6B, and 6C. As shown in the first embodiment of FIG. 6A, when a single-domain or multi-domain liquid crystal design device is generated, the alignment direction of the length direction of the corresponding substrate may be 0 ° or 90 ° (45 °). Or 1 3 5 °), the optical system 1 0 0 is designed so that the length direction of the corresponding substrate can be about 0 ° to 4 5 °.
第11頁 518427 _案號88121545_年月曰 修正_ 五、發明說明(9) 單的方式轉動基體約9 0°而建立此目的之故。 因此,為了形成某一對齊方向,圖6 B及6 C為較佳之設 計,而圖6C中的設計更好。圖6B顯示所需要之對齊方向可 經由轉動載體1 1經角度(Φ )而形成該方向,其中在該載體 上置放該基體。但是,在上述設計中,為了產生多像域液 晶設計裝置,需要維持罩幕及基體之間的間隙,以便一起 轉動罩幕。圖6 C顯示經由將光學系統1 0 0轉動過一角度 (0 ),且然後形成第一及第二對齊方向,而達成多像域之 目的,其中該像域具有二或多個對齊方向。 圖7之xz平面顯示本發明之對齊層的曝光區域。當使 用罩幕以產生一多像域液晶顯示裝置時,需要在基體3 5的 罩幕1 3及對齊層2 5之間維持一指定的間隙,且最好該間隙 的大小介於約3 0 /z m到1 0 0 // m之間。 如上圖中所表示者,如果傾斜一角度(Θ )的光在對齊 層2 5上經由罩幕1 3照射,則曝光區域對應該角度移動一段 △ χ(Δ x = d tan0 )的距離,且然後在移動位置中形成罩幕 1 3的圖樣。 因此,在實際的光對齊處理中,需要在罩幕1 3及基體 3 5之間維持一指定的間隙,而且最好罩幕及基體平行置 放。而且,在精確量測間隙之後,依據量測的間隙及光照 射的角度需要從初始位置移動基體,且然後照射光。Page 11 518427 _Case No. 88121545_ Year and month Amendment_ V. Description of the invention (9) The purpose of establishing this purpose is to rotate the substrate about 90 ° in a single way. Therefore, in order to form a certain alignment direction, FIGS. 6B and 6C are better designs, and the design in FIG. 6C is better. Fig. 6B shows that the required alignment direction can be formed by rotating the carrier 11 through the angle (Φ), wherein the substrate is placed on the carrier. However, in the above design, in order to generate a multi-domain liquid crystal design device, it is necessary to maintain the gap between the mask and the substrate so as to rotate the mask together. FIG. 6C shows that the objective of the multi-image domain is achieved by rotating the optical system 100 through an angle (0), and then forming the first and second alignment directions, wherein the image domain has two or more alignment directions. The xz plane of FIG. 7 shows the exposed areas of the alignment layer of the present invention. When a mask is used to produce a multi-image-domain liquid crystal display device, a specified gap needs to be maintained between the mask 13 of the base 35 and the alignment layer 25, and preferably the size of the gap is between about 30 / zm to 1 0 0 // m. As shown in the figure above, if light inclined at an angle (Θ) is irradiated on the alignment layer 25 through the mask 13, the exposure area is moved by a distance of △ χ (Δ x = d tan0) corresponding to the angle, and The pattern of the mask 13 is then formed in the moving position. Therefore, in the actual light alignment process, it is necessary to maintain a specified gap between the mask 13 and the base 35, and it is preferable to place the mask and the base in parallel. Moreover, after the gap is accurately measured, it is necessary to move the substrate from the initial position according to the measured gap and the angle of light irradiation, and then irradiate the light.
518427 _案號88121545_年月日 修正_ 五、發明說明(10) 為了說明上述的處理程序,最好使用一間隙量測裝 置,及一供給光源(如雷射)去量測間隙。需要在載體1 1下 方安裝間隙更正裝置,選擇三或四個將量測的間隙位置, 以減少量測位置之間的間隙誤差。 依據本發明的光照射裝置,藉由只照射一次,在對應 載體的角度中傾斜照射該極化器的光,去決定對齊層的對 齊方向與初期傾斜角,且然後傾斜地照射部份極化光。 而且,可經由精確地量測罩幕及基體之間的間隙,而 有效地了解大尺寸及多像域液晶顯示裝置,然後在對齊層 上形成均勻的圖樣。 熟習本技術者須了解上文中對於所提出之本發明的較 佳實施例,可進行多項的修改及變更,而不偏離本發明的 精神及觀點。本發明係定義在下文中的申請專利範圍及該 申請專利範圍的對等涵義中,及其修改及變更。518427 _Case No. 88121545_ year, month, day, amendment_ V. Description of the invention (10) In order to explain the above processing procedure, it is best to use a gap measurement device and a light source (such as a laser) to measure the gap. A gap correction device needs to be installed below the carrier 11 and three or four gap positions to be measured are selected to reduce the gap error between the measurement positions. According to the light irradiation device of the present invention, the light of the polarizer is irradiated obliquely at an angle corresponding to the carrier by irradiating only once, to determine the alignment direction of the alignment layer and the initial tilt angle, and then to irradiate part of the polarized light obliquely . Moreover, the gap between the mask and the substrate can be accurately measured to effectively understand the large-size and multi-image-domain liquid crystal display device, and then form a uniform pattern on the alignment layer. Those skilled in the art must understand that the above-mentioned preferred embodiments of the present invention can be modified and changed without departing from the spirit and perspective of the present invention. The present invention is defined in the following patent application scope and its equivalent meaning in the patent application scope, and its modifications and alterations.
518427 __案號88121545_年月日__ 圖式簡單說明 由下文中的說明可更進一步了解本發明之特徵及優 點,閱讀時請參考附圖。附圖係用於使熟習本技術者可了 解本發明,且併入本發明之說明書中,本發明中的實施例 及說明可使用熟習本技術者了解本發明的原理; 圖1顯示傳統的光照射裝置; 圖2顯示另一傳統使用的光照射裝置; 圖3A及3B顯示依據本發明之光照射裝置的yz平面視 圖; 圖4為依據本發明之光照射裝置的xz平面之視圖; 圖5是一 xz平面視圖,顯示根據本發明說明如何去控 制對齊層之初期傾斜角; 圖6A,6B,6C為本發明之第一,第二及第三實施例的 xz平面視圖,說明如何去控制本發明對齊層的對齊方向; 以及 圖7之xz平面視圖,顯示本發明對齊層的曝光區域。 圖號說明 1 光源 2 聚光鏡 3 第一反射鏡 6 第二反射鏡 7 準直透鏡 11 載體 13 罩幕518427 __Case No. 88121545_Year Month Day__ Brief Description of the Drawings The features and advantages of the present invention can be further understood from the description below. Please refer to the drawings when reading. The drawings are used to enable those skilled in the art to understand the present invention, and are incorporated into the description of the present invention. The embodiments and descriptions of the present invention can be used to understand the principles of the present invention by those skilled in the art; FIG. 1 shows a conventional light Illumination device; Fig. 2 shows another conventionally used light irradiation device; Figs. 3A and 3B show yz plan views of the light irradiation device according to the present invention; Fig. 4 is a view of the xz plane of the light irradiation device according to the present invention; Is an xz plan view showing how to control the initial tilt angle of the alignment layer according to the present invention; FIGS. 6A, 6B and 6C are xz plan views of the first, second and third embodiments of the present invention, illustrating how to control The alignment direction of the alignment layer of the present invention; and an xz plan view of FIG. 7 showing the exposed area of the alignment layer of the present invention. Explanation of drawing numbers 1 light source 2 condenser 3 first reflector 6 second reflector 7 collimator lens 11 carrier 13 mask
518427518427
第15頁Page 15
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019980047490A KR100323731B1 (en) | 1998-11-06 | 1998-11-06 | Light irradiating device |
Publications (1)
Publication Number | Publication Date |
---|---|
TW518427B true TW518427B (en) | 2003-01-21 |
Family
ID=19557359
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW088121545A TW518427B (en) | 1998-11-06 | 1999-12-09 | Light irradiating device |
Country Status (6)
Country | Link |
---|---|
JP (1) | JP3936086B2 (en) |
KR (1) | KR100323731B1 (en) |
DE (1) | DE19953356B4 (en) |
FR (1) | FR2785687B1 (en) |
GB (1) | GB2343525B (en) |
TW (1) | TW518427B (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6791749B2 (en) * | 2001-08-29 | 2004-09-14 | Delpico Joseph | Polarized exposure for web manufacture |
US6874899B2 (en) * | 2002-07-12 | 2005-04-05 | Eastman Kodak Company | Apparatus and method for irradiating a substrate |
JP4329424B2 (en) * | 2003-06-18 | 2009-09-09 | ソニー株式会社 | Manufacturing method of liquid crystal display device, lighting device |
JP4622409B2 (en) * | 2004-09-16 | 2011-02-02 | ウシオ電機株式会社 | Photo-alignment method |
KR101044473B1 (en) * | 2004-09-30 | 2011-06-27 | 엘지디스플레이 주식회사 | Apparatus for illuminating polarization |
JP2007078824A (en) * | 2005-09-12 | 2007-03-29 | Joyo Kogaku Kk | Orientation processing method and apparatus |
KR100911459B1 (en) * | 2008-08-06 | 2009-08-11 | 삼성전자주식회사 | Method of forming an alignment layer, method of manufacturing liquid crystal display apparatus using the same and apparatus for forming the alignment layer |
KR101113721B1 (en) * | 2011-05-03 | 2012-02-27 | 이현순 | Device of polarized light |
JP2015500508A (en) | 2011-12-05 | 2015-01-05 | エルジー・ケム・リミテッド | Polarization separation element |
BR112014013560A2 (en) * | 2011-12-05 | 2017-06-13 | Lg Chemical Ltd | ultraviolet polarization separation element, methods for manufacturing an ultraviolet polarization separation element, and for radiating light, and light irradiation device |
KR102007751B1 (en) * | 2018-03-05 | 2019-08-06 | 동우 화인켐 주식회사 | Light orientation illuminating apparatus |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2773795B2 (en) * | 1995-05-10 | 1998-07-09 | スタンレー電気株式会社 | Manufacturing method of liquid crystal alignment structure and liquid crystal display device |
DE19703682B9 (en) * | 1996-02-01 | 2006-11-23 | Lg. Philips Lcd Co., Ltd. | UV light irradiation apparatus for photo alignment method and irradiation method using the same |
KR0169063B1 (en) * | 1996-02-01 | 1999-03-20 | 구자홍 | Apparatus of irradiation ultraviolet light for photo-orientation |
JP3146998B2 (en) * | 1996-09-12 | 2001-03-19 | ウシオ電機株式会社 | Polarized light irradiator for photo-alignment of alignment film of liquid crystal display device |
US6191836B1 (en) * | 1996-11-07 | 2001-02-20 | Lg Philips Lcd, Co., Ltd. | Method for fabricating a liquid crystal cell |
JP3784118B2 (en) * | 1996-12-03 | 2006-06-07 | ランテクニカルサービス株式会社 | Exposure equipment |
KR100238377B1 (en) * | 1997-05-03 | 2000-01-15 | 김영환 | Optical alignment apparatus and method |
US6307609B1 (en) * | 1997-08-05 | 2001-10-23 | Wayne M. Gibbons | Polarized light exposure systems for aligning liquid crystals |
-
1998
- 1998-11-06 KR KR1019980047490A patent/KR100323731B1/en not_active IP Right Cessation
- 1998-11-20 JP JP33132698A patent/JP3936086B2/en not_active Expired - Lifetime
-
1999
- 1999-11-05 GB GB9926307A patent/GB2343525B/en not_active Expired - Lifetime
- 1999-11-05 FR FR9913900A patent/FR2785687B1/en not_active Expired - Lifetime
- 1999-11-05 DE DE19953356A patent/DE19953356B4/en not_active Expired - Lifetime
- 1999-12-09 TW TW088121545A patent/TW518427B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
FR2785687A1 (en) | 2000-05-12 |
DE19953356B4 (en) | 2008-04-10 |
GB9926307D0 (en) | 2000-01-12 |
DE19953356A1 (en) | 2000-05-18 |
JP3936086B2 (en) | 2007-06-27 |
GB2343525A (en) | 2000-05-10 |
JP2000147506A (en) | 2000-05-26 |
KR20000031441A (en) | 2000-06-05 |
KR100323731B1 (en) | 2002-05-09 |
FR2785687B1 (en) | 2003-06-06 |
GB2343525B (en) | 2002-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6639720B2 (en) | Large scale polarizer and polarizer system employing it | |
US7375887B2 (en) | Method and apparatus for correcting a visible light beam using a wire-grid polarizer | |
JP3075917B2 (en) | Liquid crystal display device, its manufacturing method and its manufacturing device | |
JP3146998B2 (en) | Polarized light irradiator for photo-alignment of alignment film of liquid crystal display device | |
TW518427B (en) | Light irradiating device | |
JP3678120B2 (en) | Polarized light irradiation device | |
CN101995598B (en) | There is the liquid crystal layer at the inclination angle spatially changed | |
JPS6060624A (en) | Liquid crystal display panel and its production | |
TW512251B (en) | Irradiation device for polarized light for optical alignment of a liquid crystal cell element | |
JPH10161126A (en) | Method for forming oriented film and exposing device | |
US7061679B1 (en) | Light irradiating device | |
JP2000122062A (en) | Optical element, its production, optical device and its production | |
TW201222167A (en) | Exposure apparatus | |
JP4135557B2 (en) | Polarized light irradiation device for photo-alignment | |
JP2004233708A (en) | Manufacturing method of liquid crystal display, and exposure lighting device | |
JPH02109086A (en) | Hologram printing equipment | |
JP7430906B2 (en) | Beam scanning wide angle system | |
JP4725004B2 (en) | Display device | |
TW580604B (en) | Optical exposure systems and processes for alignment of liquid crystals | |
JPS59129950A (en) | Optical pickup | |
KR19980065953A (en) | Light Irradiation Light Irradiation Apparatus and its Investigation Method | |
JP2000338473A (en) | Production of hologram and liquid crystal display device | |
JPH1172749A (en) | Irradiation optical system of liquid crystal molecule alignment substrate | |
JPH0916060A (en) | Hologram exposure device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MK4A | Expiration of patent term of an invention patent |