JP2000119775A - Lead-free free cutting copper alloy - Google Patents

Lead-free free cutting copper alloy

Info

Publication number
JP2000119775A
JP2000119775A JP10288590A JP28859098A JP2000119775A JP 2000119775 A JP2000119775 A JP 2000119775A JP 10288590 A JP10288590 A JP 10288590A JP 28859098 A JP28859098 A JP 28859098A JP 2000119775 A JP2000119775 A JP 2000119775A
Authority
JP
Japan
Prior art keywords
weight
alloy
machinability
free
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10288590A
Other languages
Japanese (ja)
Other versions
JP3734372B2 (en
Inventor
Keiichiro Oishi
恵一郎 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANBO COPPER ALLOY CO Ltd
Original Assignee
SANBO COPPER ALLOY CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP28859098A priority Critical patent/JP3734372B2/en
Application filed by SANBO COPPER ALLOY CO Ltd filed Critical SANBO COPPER ALLOY CO Ltd
Priority to DE69832097T priority patent/DE69832097T2/en
Priority to EP05017190A priority patent/EP1600516B1/en
Priority to EP05075421.7A priority patent/EP1559802B1/en
Priority to EP98953071A priority patent/EP1045041B1/en
Priority to KR1020007006434A priority patent/KR100352213B1/en
Priority to CA002314144A priority patent/CA2314144C/en
Priority to DE69840585T priority patent/DE69840585D1/en
Priority to EP05017189A priority patent/EP1600515B8/en
Priority to DE69838115T priority patent/DE69838115T2/en
Priority to PCT/JP1998/005157 priority patent/WO2000022182A1/en
Priority to DE69839830T priority patent/DE69839830D1/en
Priority to EP05017191A priority patent/EP1600517B1/en
Priority to AU10541/99A priority patent/AU744335B2/en
Priority to TW088103879A priority patent/TW421674B/en
Publication of JP2000119775A publication Critical patent/JP2000119775A/en
Priority to US09/987,173 priority patent/US6413330B1/en
Application granted granted Critical
Publication of JP3734372B2 publication Critical patent/JP3734372B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent

Abstract

PROBLEM TO BE SOLVED: To improve the machinability of a copper alloy without the incorporation of Pb by allowing it to have a specified compsn. contg. Cu, Si, and the balance Zn. SOLUTION: This alloy contains, by weight, 69 to 79% Cu, 2.0 to 4.0% Si and the balance Zn. In the case the quantity of Si to be added is <2.0%, the formation of γ phases sufficient for securing industrially satisfiable machinability can not be executed. On the other hand, in the case the quantity of Si to be added exceeds 4.0%, further machinability improving effect is not shown. By the addition of Si, fluidity at the time of casting, strength, wear resistance, stress corrosion cracking resistance and high temp. oxidation resistance are improved as well as machinability. The alloy is preferably incorporated with at least one among 0.02 to 0.4% Bi 0.02 to 0.4% Te and 0.02 to 0.4% Se as well. In this way, even in the case a complicated shape is subjected to machining at a high speed, machinability of a high degree can be exhibited.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鉛成分を含有しな
い快削性銅合金に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a free-cutting copper alloy containing no lead component.

【0002】[0002]

【従来の技術】被削性に優れた銅合金として、一般に、
JIS H5111 BC6等の青銅系合金やJIS
H3250−C3604,C3771等の黄銅系合金が
知られている。これらは1.0〜6.0重量%程度の鉛
を含有することによって被削性を向上させたものであ
り、工業的に満足しうる被削性を確保したものである。
2. Description of the Related Art As a copper alloy having excellent machinability, generally,
Bronze alloys such as JIS H5111 BC6 and JIS
Brass alloys such as H3250-C3604 and C3771 are known. These have improved machinability by containing about 1.0 to 6.0% by weight of lead, and have ensured industrially satisfactory machinability.

【0003】鉛を含有する銅合金は、上記した如く被削
性に優れるものであることから、従来からも種々の製品
(例えば、上水道用配管の水栓金具,給排水金具,バル
ブ等)の構成材として重宝されている。しかし、鉛が人
体や環境に悪影響を及ぼす有害物質であるところから、
近時においては、その用途が大幅に制限される傾向にあ
る。例えば、合金の溶解,鋳造等の高温作業時に発生す
る金属蒸気には鉛成分が含まれることになり、或いは飲
料水等との接触により水栓金具や弁等から鉛成分が溶出
する虞れがあり、人体や環境衛生上問題がある。
Since lead-containing copper alloys are excellent in machinability as described above, they have been used in various products (for example, faucets for water supply pipes, plumbing fittings, plumbing fittings, valves, etc.). It is useful as a material. However, because lead is a harmful substance that has a negative effect on human health and the environment,
In recent years, their applications tend to be severely limited. For example, metal vapor generated during high-temperature work such as melting and casting of alloys may contain lead components, or lead components may be eluted from faucet fittings or valves due to contact with drinking water or the like. Yes, there are problems with human health and environmental health.

【0004】[0004]

【発明が解決しようとする課題】そこで、近時、米国等
の先進国においては銅合金における鉛含有量を大幅に制
限する傾向にあり、わが国においても鉛含有量を可及的
に低減した快削性銅合金の開発が強く要請されている。
Therefore, in recent years, developed countries such as the United States have tended to greatly limit the lead content in copper alloys, and even in Japan, the lead content has been reduced as much as possible. There is a strong demand for the development of machinable copper alloys.

【0005】本発明は、かかる世界的な傾向及び要請に
応えるべくなされたもので、鉛を含有することなく、工
業的に満足しうる被削性を有する無鉛快削性銅合金を提
供することを目的とするものである。
The present invention has been made in response to such global trends and demands, and provides a lead-free free-cutting copper alloy containing no lead and having industrially satisfactory machinability. It is intended for.

【0006】[0006]

【課題を解決するための手段】本発明は、上記の目的を
達成すべく、次のような無鉛快削性銅合金を提案する。
The present invention proposes the following lead-free free-cutting copper alloy to achieve the above object.

【0007】すなわち、第1発明においては、被削性に
優れた無鉛快削性銅合金として、銅69〜79重量%と
珪素2.0〜4.0重量%とを含有し、且つ残部が亜鉛
からなる合金組成をなす銅合金(以下「第1発明合金」
という)を提案する。
That is, in the first invention, the lead-free free-cutting copper alloy having excellent machinability contains 69 to 79% by weight of copper and 2.0 to 4.0% by weight of silicon, and the balance is as follows. Copper alloy having an alloy composition of zinc (hereinafter referred to as “first invention alloy”
).

【0008】鉛はマトリックスに固溶せず、粒状をなし
て分散することによって、被削性を向上させるものであ
る。一方、珪素は金属組織中にγ相(場合によってはκ
相)を出現させることにより、被削性を改善するもので
ある。このように、両者は合金特性における機能を全く
異にするものであるが、被削性を改善させる点では共通
する。かかる点に着目して、第1発明合金にあっては、
鉛に代えて珪素を添加することにより、工業的に満足し
うる被削性を確保せんとする。すなわち、第1発明合金
は、珪素の添加によるγ相形成により被削性を改善した
ものである。
[0008] Lead does not form a solid solution in the matrix, but is dispersed in a granular form to improve machinability. On the other hand, silicon contains a γ phase (or κ
By improving the phase, the machinability is improved. As described above, the two have completely different functions in alloy characteristics, but they are common in improving machinability. Focusing on this point, in the first invention alloy,
By adding silicon instead of lead, it is intended to ensure industrially satisfactory machinability. That is, the first invention alloy has improved machinability by forming a γ phase by adding silicon.

【0009】而して、珪素の添加量が2.0重量%未満
では、工業的に満足しうる被削性を確保するに充分なγ
相の形成が行われない。また、被削性は珪素添加量の増
大に伴って向上するが、4.0重量%を超えて添加して
も、その添加量に見合う被削性改善効果はない。ところ
で、珪素は融点が高く比重が小さいため又酸化し易いた
め、合金溶融時に珪素単体で炉内に装入すると、当該珪
素が湯面に浮くと共に、溶融時に酸化されて珪素酸化物
ないし酸化珪素となり、珪素含有銅合金の製造が困難と
なる。したがって、珪素含有銅合金の鋳塊製造にあって
は、通常、珪素添加をCu−Si合金とした上で行うこ
とになり、製造コストが高くなる。このような合金製造
コストを考慮した場合にも、被削性改善効果が飽和状態
となる量(4.0重量%)を超えて珪素を添加すること
は好ましくない。また、実験によれば、珪素を2.0〜
4.0重量%添加したときにおいて、Cu−Zn系合金
本来の特性を維持するためには、亜鉛含有量との関係を
も考慮した場合、銅含有量は69〜79重量%の範囲と
しておくことが好ましいことが判明した。このような理
由から、第1発明合金にあっては、銅及び珪素の含有量
を夫々69〜79重量%及び2.0〜4.0重量%とし
た。なお、珪素の添加により、被削性が改善される他、
鋳造時の湯流れ性,強度,耐摩耗性,耐応力腐蝕割れ
性,耐高温酸化性も改善される。また、延性,耐脱亜鉛
腐蝕性も或る程度改善される。
[0009] When the amount of silicon is less than 2.0% by weight, γ sufficient to ensure industrially satisfactory machinability is required.
No phase formation takes place. Further, the machinability is improved as the amount of silicon added increases, but even if added over 4.0% by weight, there is no machinability improvement effect commensurate with the added amount. By the way, since silicon has a high melting point and a low specific gravity and is easily oxidized, when silicon alone is charged into a furnace during melting of the alloy, the silicon floats on the molten metal surface and is oxidized at the time of melting to form silicon oxide or silicon oxide. And it becomes difficult to produce a silicon-containing copper alloy. Therefore, in the production of an ingot of a silicon-containing copper alloy, the addition of silicon is usually performed after a Cu-Si alloy is added, which increases the production cost. Even in consideration of such alloy production costs, it is not preferable to add silicon in an amount exceeding the amount (4.0% by weight) at which the machinability improving effect is saturated. Further, according to the experiment, the silicon content was 2.0 to
When 4.0 wt% is added, in order to maintain the original characteristics of the Cu—Zn alloy, the copper content is set in a range of 69 to 79 wt% in consideration of the relationship with the zinc content. Has been found to be preferable. For these reasons, in the first invention alloy, the contents of copper and silicon are set to 69 to 79% by weight and 2.0 to 4.0% by weight, respectively. The addition of silicon improves machinability,
The flowability, strength, wear resistance, stress corrosion cracking resistance and high temperature oxidation resistance during casting are also improved. Also, ductility and dezincification corrosion resistance are improved to some extent.

【0010】また、第2発明においては、同じく被削性
に優れた無鉛快削性銅合金として、銅69〜79重量%
と、珪素2.0〜4.0重量%と、ビスマス0.02〜
0.4重量%、テルル0.02〜0.4重量%及びセレ
ン0.02〜0.4重量%から選択された1種以上の元
素とを含有し、且つ残部が亜鉛からなる合金組成をなす
銅合金(以下「第2発明合金」という)を提案する。
In the second invention, the lead-free free-cutting copper alloy also having excellent machinability includes 69-79% by weight of copper.
2.0-4.0% by weight of silicon and 0.02-bismuth
An alloy composition containing at least one element selected from the group consisting of 0.4% by weight, 0.02 to 0.4% by weight of tellurium, and 0.02 to 0.4% by weight of selenium, and the balance being zinc. The proposed copper alloy (hereinafter referred to as “second invention alloy”) is proposed.

【0011】すなわち、第2発明合金は、第1発明合金
にビスマス0.02〜0.4重量%、テルル0.02〜
0.4重量%及びセレン0.02〜0.4重量%の少な
くとも1つを更に含有させた合金組成をなすものであ
る。
That is, the second invention alloy is composed of the first invention alloy containing 0.02 to 0.4% by weight of bismuth and 0.02 to 2.0% of tellurium.
The alloy composition further contains at least one of 0.4% by weight and 0.02 to 0.4% by weight of selenium.

【0012】ビスマス、テルル又はセレンは、鉛と同様
に、マトリックスに固溶せず、粒状をなして分散するこ
とによって、被削性を向上させる機能を発揮するもので
あり、珪素と異なった機能により被削性を改善させるも
のである。したがって、これらを珪素と共添させると、
珪素の添加による被削性改善限度を超えて被削性を更に
向上させることが可能となる。第2発明合金では、かか
る点に着目して、第1発明合金における被削性を更に改
善すべく、ビスマス、テルル及びセレンのうちの少なく
とも1つを添加させることとした。特に、珪素に加えて
ビスマス、テルル又はセレンを添加することにより、複
雑な形状を高速で切削加工する場合にも、高度の被削性
を発揮する。しかし、ビスマス、テルル又はセレンの添
加による被削性向上効果は、各々の添加量が0.02重
量%未満では発揮されない。一方、これらは銅に比して
高価なものであるから、0.4重量%を超えて添加して
も、被削性は僅かながらも添加量の増加に応じて向上す
るものの、経済的に添加量に見合う程の効果は認められ
ない。また、添加量が0.4重量%を超えると、熱間で
の加工性(例えば、鍛造性等)が悪くなり、冷間での加
工性(延性)も低下する。また、ビスマス等の重金属に
ついて仮に鉛同様の問題が生じる可能性があったとして
も、0.4重量%以下の微量添加であれば、格別の問題
を生じる虞れもないと考えられる。これらの点から、第
2発明合金では、ビスマス、テルル又はセレンの添加量
を0.02〜0.4重量%とした。なお、ビスマス、テ
ルル又はセレンは上記した如く珪素と異なる機能により
被削性を向上させるものであるから、これらの添加によ
り銅及び珪素の適正含有量は影響されない。したがっ
て、銅及び珪素の含有量は第1発明合金と同一とした。
Bismuth, tellurium, or selenium, like lead, does not form a solid solution in the matrix but exhibits a function of improving machinability by being dispersed in a granular form, and has a different function from silicon. To improve machinability. Therefore, when these are co-added with silicon,
The machinability can be further improved beyond the limit of machinability improvement by addition of silicon. In the second invention alloy, paying attention to this point, at least one of bismuth, tellurium, and selenium is added to further improve the machinability of the first invention alloy. In particular, by adding bismuth, tellurium, or selenium in addition to silicon, a high degree of machinability is exhibited even when a complicated shape is cut at a high speed. However, the effect of improving the machinability due to the addition of bismuth, tellurium or selenium is not exhibited when the amount of each addition is less than 0.02% by weight. On the other hand, since these are more expensive than copper, even if they are added in excess of 0.4% by weight, the machinability is improved with a slight increase in the added amount, but economically. No effect commensurate with the amount added was observed. If the amount exceeds 0.4% by weight, hot workability (for example, forgeability) deteriorates, and cold workability (ductility) also decreases. Even if heavy metals such as bismuth may have the same problem as lead, it is considered that there is no possibility that a special problem will occur if a trace amount of 0.4 wt% or less is added. From these points, in the second invention alloy, the addition amount of bismuth, tellurium, or selenium is set to 0.02 to 0.4% by weight. Since bismuth, tellurium, or selenium improves machinability by a function different from that of silicon as described above, the proper content of copper and silicon is not affected by their addition. Therefore, the contents of copper and silicon were set to be the same as those of the first invention alloy.

【0013】また、第3発明においては、同じく被削性
に優れた無鉛快削性銅合金として、銅70〜80重量%
と、珪素1.8〜3.5重量%と、錫0.3〜3.5重
量%、アルミニウム1.0〜3.5重量%及び燐0.0
2〜0.25重量%から選択された1種以上の元素とを
含有し、且つ残部が亜鉛からなる合金組成をなす銅合金
(以下「第3発明合金」という)を提案する。
In the third invention, the lead-free free-cutting copper alloy also having excellent machinability includes 70-80% by weight of copper.
1.8 to 3.5% by weight of silicon, 0.3 to 3.5% by weight of tin, 1.0 to 3.5% by weight of aluminum and 0.0% of phosphorus
The present invention proposes a copper alloy containing one or more elements selected from 2 to 0.25% by weight and having an alloy composition consisting of zinc in the remainder (hereinafter, referred to as "third invention alloy").

【0014】錫は、Cu−Zn系合金に添加した場合、
珪素と同様に、γ相を形成して被削性を向上させるもの
である。例えば、錫は、58〜70重量%のCuを含有
するCu−Zn系合金において1.8〜4.0重量%添
加させることにより、珪素が添加されておらずとも、良
好な被削性を示す。したがって、Cu−Si−Zn系合
金に錫を添加させることにより、γ相の形成を促進させ
ることができ、Cu−Si−Zn系合金の被削性を更に
向上させることができる。錫によるγ相の形成は1.0
重量%以上で行なわれ、3.5重量%に達すると飽和状
態となる。なお、錫の添加量が3.5重量%を超える
と、γ相の形成効果が飽和状態となるばかりでなく、却
って延性が低下する。また、錫の添加量が1.0重量%
未満ではγ相の形成効果が少ないものの、添加量が0.
3重量%以上であれば、珪素により形成されるγ相を分
散させて均一化させる効果があり、このようなγ相の分
散効果によっても被削性が改善される。すなわち、錫の
添加量が0.3重量%以上であれば、その添加により被
削性が改善されることになる。
When tin is added to a Cu—Zn-based alloy,
Like silicon, it forms a γ phase to improve machinability. For example, by adding 1.8 to 4.0% by weight of tin to a Cu-Zn-based alloy containing 58 to 70% by weight of Cu, even if silicon is not added, good machinability is obtained. Show. Therefore, by adding tin to the Cu—Si—Zn-based alloy, the formation of the γ phase can be promoted, and the machinability of the Cu—Si—Zn-based alloy can be further improved. The formation of the gamma phase by tin is 1.0
When the amount reaches 3.5% by weight, a saturated state is reached. If the amount of tin exceeds 3.5% by weight, not only the effect of forming the γ phase becomes saturated, but also the ductility decreases. Also, the amount of tin added was 1.0% by weight.
When the amount is less than 0.5, the effect of forming the γ phase is small, but the amount of addition is 0.1.
When the content is 3% by weight or more, there is an effect of dispersing and homogenizing the γ phase formed by silicon, and the machinability is also improved by the dispersion effect of the γ phase. That is, if the amount of tin added is 0.3% by weight or more, the machinability is improved by the addition.

【0015】また、アルミニウムも、錫と同様に、γ相
形成を促進させる機能を有するものであり、錫と共に或
いはこれに代えて添加することにより、Cu−Si−Z
n系合金の被削性を更に向上させることができる。アル
ミニウムには、被削性の他、強度,耐摩耗性,耐高温酸
化性を改善させる機能や合金比重を低下させる機能もも
あるが、被削性改善機能が発揮されるためには、少なく
とも1.0重量%添加させる必要がある。しかし、3.
5重量%を超えて添加しても、添加量に見合った被削性
改善効果はみられないし、錫と同様に延性の低下を招来
する。
Aluminum also has a function of accelerating the formation of the γ phase, similar to tin. When added together with or in place of tin, aluminum is added to Cu-Si-Z.
The machinability of the n-based alloy can be further improved. Aluminum has a function to improve the strength, abrasion resistance, resistance to high-temperature oxidation, and a function to lower the alloy specific gravity, in addition to the machinability. It is necessary to add 1.0% by weight. However, 3.
Even if it is added in excess of 5% by weight, the machinability improving effect commensurate with the added amount is not observed, and the ductility is reduced as in the case of tin.

【0016】また、燐には、錫やアルミニウムのような
γ相の形成機能はないが、珪素の添加により又はこれと
錫,アルミニウムの一方若しくは両方を共添させること
により生成したγ相を均一に分散して、γ相分布を良好
なものとする機能があり、かかる機能によってγ相形成
による被削性の更なる向上を図ることができる。また、
燐の添加により、γ相の分散化と同時にマトリックスに
おけるα相の結晶粒を微細化して、熱間加工性を向上さ
せ、強度,耐応力腐蝕割れ性も向上させる。さらに、鋳
造時の湯流れ性を著しく向上させる効果もある。このよ
うな燐添加による効果は0.02重量%未満の添加では
発揮されない。一方、燐の添加量が0.25重量%を超
えると、添加量に見合った被削性改善等の効果は得られ
ないし、過剰添加により却って熱間鍛造性,押出性の低
下を招来する。
Phosphorus does not have the function of forming a γ phase unlike tin and aluminum, but the γ phase formed by adding silicon or by co-adding one or both of tin and aluminum with phosphorus is uniform. And the function of improving the γ-phase distribution is provided. With such a function, the machinability by the γ-phase formation can be further improved. Also,
By the addition of phosphorus, the crystal grains of the α phase in the matrix are refined at the same time as the dispersion of the γ phase, thereby improving the hot workability and improving the strength and the stress corrosion cracking resistance. Further, there is also an effect of remarkably improving the flowability of the molten metal during casting. Such an effect by the addition of phosphorus is not exhibited when the addition is less than 0.02% by weight. On the other hand, if the added amount of phosphorus exceeds 0.25% by weight, the effect of improving machinability or the like corresponding to the added amount cannot be obtained, and excessive addition leads to deterioration of hot forgeability and extrudability.

【0017】第3発明合金では、かかる点に着目して、
Cu−Si−Zn系合金に、錫0.3〜3.5重量%、
アルミニウム1.0〜3.5重量%及び燐0.02〜
0.25重量%のうち少なくとも1つを添加させること
より、被削性の更なる向上を図っている。
In the third invention alloy, focusing on this point,
0.3-3.5% by weight of tin in a Cu-Si-Zn-based alloy,
1.0 to 3.5% by weight of aluminum and 0.02 to phosphorus
By adding at least one of 0.25% by weight, the machinability is further improved.

【0018】ところで、錫、アルミニウム又は燐は、上
記した如くγ相の形成機能又はγ相の分散機能により被
削性を改善させるものであり、γ相による被削性改善を
図る上で、珪素と密接な関係を有するものである。した
がって、珪素に錫、アルミニウム又は燐を共添させた第
3発明合金では、第1発明合金の珪素に置き換えて被削
性を向上させる機能が発揮され、γ相とは関係なく被削
性を改善させる機能(マトリックスに粒状をなして分散
することにより被削性を向上させる機能)を発揮するビ
スマス、テルル又はセレンを添加した第2発明合金に比
して、珪素の必要添加量が少なくなる。すなわち、珪素
添加量が2.0重量%未満であっても、1.8重量%以
上であれば、錫、アルミニウム又は燐の共添により、工
業的に満足しうる被削性を得ることができる。しかし、
珪素の添加量が4.0重量%以下であっても、3.5重
量%を超えると、錫、アルミニウム又は燐を共添するこ
とにより、珪素添加による被削性改善効果は飽和状態と
なる。かかる点から、第3発明合金では、珪素の添加量
を1.8〜3.5重量%とした。また、かかる珪素の添
加量との関係及び錫、アルミニウム又は燐を添加させる
こととの関係から、銅配合量の上下限値は第2発明合金
より若干大きくして、その好ましい含有量を70〜80
重量%とした。
By the way, tin, aluminum or phosphorus improves the machinability by the function of forming the γ phase or the function of dispersing the γ phase as described above. Has a close relationship with Therefore, in the third invention alloy in which tin, aluminum or phosphorus is added to silicon, the function of improving the machinability by replacing the first invention alloy with silicon is exhibited, and the machinability is improved irrespective of the γ phase. The required addition amount of silicon is smaller than that of the second invention alloy to which bismuth, tellurium, or selenium is added, which exhibits a function of improving (a function of improving machinability by dispersing in a matrix form in a granular form). . That is, even if the silicon addition amount is less than 2.0% by weight, and if it is 1.8% by weight or more, it is possible to obtain industrially satisfactory machinability by co-adding tin, aluminum or phosphorus. it can. But,
Even if the amount of silicon is 4.0% by weight or less, if it exceeds 3.5% by weight, the effect of improving machinability by adding silicon becomes saturated by co-adding tin, aluminum or phosphorus. . From this point, in the third invention alloy, the addition amount of silicon is set to 1.8 to 3.5% by weight. Further, from the relation with the addition amount of silicon and the relation with addition of tin, aluminum or phosphorus, the upper and lower limits of the copper content are slightly larger than those of the second invention alloy, and the preferable content is 70 to 70%. 80
% By weight.

【0019】また、第4発明においては、同じく被削性
に優れた無鉛快削性銅合金として、銅70〜80重量%
と、珪素1.8〜3.5重量%と、錫0.3〜3.5重
量%、アルミニウム1.0〜3.5重量%及び燐0.0
2〜0.25重量%から選択された1種以上の元素と、
ビスマス0.02〜0.4重量%、テルル0.02〜
0.4重量%及びセレン0.02〜0.4重量%から選
択された1種以上の元素とを含有し、且つ残部が亜鉛か
らなる合金組成をなす銅合金(以下「第4発明合金」と
いう)を提案する。
Further, in the fourth invention, the lead-free free-cutting copper alloy also having excellent machinability includes 70-80% by weight of copper.
1.8 to 3.5% by weight of silicon, 0.3 to 3.5% by weight of tin, 1.0 to 3.5% by weight of aluminum and 0.0% of phosphorus
One or more elements selected from 2 to 0.25% by weight;
Bismuth 0.02-0.4% by weight, tellurium 0.02-
A copper alloy containing 0.4% by weight and one or more elements selected from 0.02 to 0.4% by weight of selenium, and a balance of zinc (hereinafter referred to as "the fourth invention alloy") ).

【0020】すなわち、第4発明合金は、第3発明合金
にビスマス0.02〜0.4重量%、テルル0.02〜
0.4重量%及びセレン0.02〜0.4重量%の少な
くとも1つを更に含有させた合金組成をなすものであ
り、これらを添加させる理由及び添加量の決定理由は第
2発明合金について述べたと同様である。
That is, in the fourth invention alloy, bismuth 0.02 to 0.4% by weight and tellurium 0.02 to
The alloy composition further contains at least one of 0.4% by weight and 0.02 to 0.4% by weight of selenium. The reason for adding these elements and the reason for determining the amount of addition are as follows. Same as described.

【0021】また、第5発明においては、被削性に加え
て耐蝕性にも優れた無鉛快削性銅合金として、銅69〜
79重量%と、珪素2.0〜4.0重量%と、錫0.3
〜3.5重量%、燐0.02〜0.25重量%、アンチ
モン0.02〜0.15重量%及び砒素0.02〜0.
15重量%から選択された1種以上の元素とを含有し、
且つ残部が亜鉛からなる合金組成をなす銅合金(以下
「第5発明合金」という)を提案する。
Further, in the fifth invention, a lead-free free-cutting copper alloy which is excellent in corrosion resistance in addition to machinability is made of copper 69-
79% by weight, silicon 2.0 to 4.0% by weight, tin 0.3%
To 3.5% by weight, phosphorus 0.02 to 0.25% by weight, antimony 0.02 to 0.15% by weight and arsenic 0.02 to 0.
Containing at least one element selected from 15% by weight,
Further, a copper alloy (hereinafter, referred to as a "fifth invention alloy") having an alloy composition of zinc is proposed.

【0022】すなわち、第5発明合金は、第1発明合金
に錫0.3〜3.5重量%、燐0.02〜0.25重量
%、アンチモン0.02〜0.15重量%及び砒素0.
02〜0.15重量%の少なくとも1つを更に含有させ
た合金組成をなすものである。
That is, the fifth invention alloy is the same as the first invention alloy except that tin is contained in an amount of 0.3 to 3.5% by weight, phosphorus is used in an amount of 0.02 to 0.25% by weight, antimony is used in an amount of 0.02 to 0.15% by weight, and arsenic is used. 0.
The alloy composition further contains at least one of 02 to 0.15% by weight.

【0023】錫には、被削性改善機能の他、耐蝕性(耐
脱亜鉛腐蝕性,耐漬食性)及び鍛造性を向上させる機能
がある。すなわち、α相マトリックスの耐蝕性を向上さ
せ、γ相の分散化により耐蝕性、鍛造性及び耐応力腐蝕
割れ性の改善を図ることができる。第5発明合金では、
錫のかかる機能により耐蝕性の改善を図り、被削性の改
善は主として珪素添加効果により図っている。したがっ
て、珪素及び銅の含有量は第1発明合金と同一としてあ
る。一方、耐蝕性,鍛造性の改善機能を発揮させるため
には、錫の添加量を少なくとも0.3重量%とする必要
がある。しかし、錫添加による耐蝕性,鍛造性の改善機
能は、3.5重量%を超えて添加しても、添加量に見合
うだけの効果が得られず、経済的にも無駄である。
In addition to the function of improving machinability, tin has a function of improving corrosion resistance (anti-zinc corrosion resistance, corrosion resistance) and forgeability. That is, the corrosion resistance of the α-phase matrix can be improved, and the corrosion resistance, forgeability, and stress corrosion cracking resistance can be improved by dispersing the γ phase. In the fifth invention alloy,
Corrosion resistance is improved by such a function of tin, and machinability is improved mainly by the effect of silicon addition. Therefore, the contents of silicon and copper are the same as those of the first invention alloy. On the other hand, in order to exhibit the function of improving corrosion resistance and forgeability, it is necessary that the amount of tin added be at least 0.3% by weight. However, the effect of improving the corrosion resistance and forgeability by adding tin exceeds 3.5% by weight, the effect corresponding to the added amount cannot be obtained, and it is economically useless.

【0024】また、燐は、上記した如くγ相を均一分散
化させる共にマトリックスにおけるα相の結晶粒を細分
化させることにより、被削性改善機能の他、耐蝕性(耐
脱亜鉛腐食性,耐漬食性)、鍛造性、耐応力腐蝕割れ性
及び機械的強度を向上させる機能を発揮するものであ
る。第5発明合金では、燐のかかる機能により耐蝕性等
の改善を図り、被削性の改善は主として珪素添加効果に
より図っている。燐添加による耐蝕性等の改善効果は、
微量の燐添加により発揮されるものであり、0.02重
量%以上の添加で発揮される。しかし、0.25重量%
を超えて添加しても、添加量に見合った効果が得られな
いばかりか、熱間鍛造性,押出性が却って低下する。
As described above, phosphorus not only has a function of improving machinability but also has a corrosion resistance (dezincification corrosion resistance, It has the function of improving pickling resistance, forgeability, stress corrosion cracking resistance and mechanical strength. In the fifth invention alloy, the function of phosphorus improves corrosion resistance and the like, and the machinability is improved mainly by the effect of silicon addition. The effect of improving the corrosion resistance etc. by adding phosphorus is
This is exhibited by adding a small amount of phosphorus, and is exhibited by adding 0.02% by weight or more. However, 0.25% by weight
If the amount exceeds the above range, not only the effect corresponding to the added amount is not obtained, but also the hot forgeability and the extrudability are rather lowered.

【0025】また、アンチモン及び砒素も、燐と同様
に、微量(0.02重量%以上)で耐脱亜鉛腐食性等を
向上させるものである。しかし、0.15重量%を超え
て添加しても、添加量に見合う効果が得られないばかり
か、燐の過剰添加と同様に、熱間鍛造性,押出性が却っ
て低下する。
Antimony and arsenic also improve anti-zinc-corrosion resistance and the like in a very small amount (0.02% by weight or more), like phosphorus. However, even if it is added in excess of 0.15% by weight, not only the effect commensurate with the amount added is not obtained, but also the hot forgeability and extrudability are rather reduced, as in the case of excessive addition of phosphorus.

【0026】これらのことから、第5発明合金では、第
1発明合金におけると同量の銅及び珪素に加えて、耐蝕
性向上元素として錫、燐、アンチモン及び砒素の少なく
とも1つを上記した範囲内で添加させることにより、被
削性のみならず、耐蝕性等をも向上させることができる
のである。なお、第5発明合金にあっては、錫及び燐
は、主として、アンチモン及び砒素と同様の耐蝕性改善
元素として機能するため、珪素以外に被削性改善元素を
添加しない第1発明合金と同様に、銅及び珪素の配合量
は、夫々、69〜79重量%及び2.0〜4.0重量%
としてある。
From these facts, in the fifth invention alloy, in addition to the same amount of copper and silicon as in the first invention alloy, at least one of tin, phosphorus, antimony and arsenic as an element for improving corrosion resistance is in the above range. By adding it within, not only the machinability but also the corrosion resistance and the like can be improved. Note that, in the fifth invention alloy, tin and phosphorus mainly function as corrosion resistance improving elements similar to antimony and arsenic, and thus are similar to the first invention alloy in which no machinability improving element is added other than silicon. The amounts of copper and silicon are 69-79% by weight and 2.0-4.0% by weight, respectively.
There is.

【0027】また、第6発明においては、同じく被削性
及び耐蝕性に優れた無鉛快削性銅合金として、銅69〜
79重量%と、珪素2.0〜4.0重量%と、錫0.3
〜3.5重量%、燐0.02〜0.25重量%、アンチ
モン0.02〜0.15重量%及び砒素0.02〜0.
15重量%から選択された1種以上の元素と、ビスマス
0.02〜0.4重量%、テルル0.02〜0.4重量
%及びセレン0.02〜0.4重量%から選択された1
種以上の元素とを含有し、且つ残部が亜鉛からなる合金
組成をなす銅合金(以下「第6発明合金」という)を提
案する。
In the sixth invention, the lead-free free-cutting copper alloy which is also excellent in machinability and corrosion resistance is copper 69-
79% by weight, silicon 2.0 to 4.0% by weight, tin 0.3%
To 3.5% by weight, phosphorus 0.02 to 0.25% by weight, antimony 0.02 to 0.15% by weight and arsenic 0.02 to 0.
One or more elements selected from 15% by weight and selected from 0.02 to 0.4% by weight of bismuth, 0.02 to 0.4% by weight of tellurium and 0.02 to 0.4% by weight of selenium 1
The present invention proposes a copper alloy (hereinafter, referred to as "sixth invention alloy") containing at least one kind of element and having an alloy composition composed of zinc with the balance being zinc.

【0028】すなわち、第6発明合金は、第5発明合金
にビスマス0.02〜0.4重量%、テルル0.02〜
0.4重量%及びセレン0.02〜0.4重量%の少な
くとも1つを更に含有させた合金組成をなすものであ
り、第2発明合金と同様に、珪素並びにビスマス、テル
ル及びセレンのうちから選択した少なくとも1つを添加
することにより被削性を改善すると共に、第5発明合金
と同様に、錫、燐、アンチモン及び砒素のうちから選択
した少なくとも1つを添加することにより耐蝕性等を改
善したものである。したがって、銅、珪素、ビスマス、
テルル及びセレンの添加量については第2発明合金と同
一とし、錫、燐、アンチモン及び砒素の添加量について
は第5発明合金と同一とした。
That is, in the sixth invention alloy, bismuth 0.02 to 0.4% by weight and tellurium 0.02 to
The alloy composition further comprises at least one of 0.4% by weight and 0.02 to 0.4% by weight of selenium. Similar to the second invention alloy, silicon and bismuth, tellurium and selenium are included. And at least one selected from the group consisting of tin, phosphorus, antimony and arsenic is added to improve the corrosion resistance and the like. Is an improvement. Therefore, copper, silicon, bismuth,
The contents of tellurium and selenium were the same as those of the second invention alloy, and the contents of tin, phosphorus, antimony and arsenic were the same as those of the fifth invention alloy.

【0029】また、第7発明においては、被削性に加え
て高力性,耐摩耗性に優れた無鉛快削性銅合金として、
銅62〜78重量%と、珪素2.5〜4.5重量%と、
錫0.3〜3.0重量%、アルミニウム0.2〜2.5
重量%及び燐0.02〜0.25重量%から選択された
1種以上の元素と、マンガン0.7〜3.5重量%及び
ニッケル0.7〜3.5重量%から選択された1種以上
の元素とを含有し、且つ残部が亜鉛からなる合金組成を
なす銅合金(以下「第7発明合金」という)を提案す
る。
Further, in the seventh invention, a lead-free free-cutting copper alloy excellent in machinability, high strength and wear resistance is provided.
62-78% by weight of copper, 2.5-4.5% by weight of silicon,
0.3-3.0% by weight of tin, 0.2-2.5% of aluminum
% Or one or more elements selected from 0.02 to 0.25% by weight of phosphorus and one or more elements selected from 0.7 to 3.5% by weight of manganese and 0.7 to 3.5% by weight of nickel. The present invention proposes a copper alloy (hereinafter, referred to as a "seventh invention alloy") containing at least one kind of element and having an alloy composition composed of zinc with the balance being zinc.

【0030】マンガン又はニッケルは、珪素と結合して
MnX SiY 又はNiX SiY の微細金属間化合物を形
成して、マトリックスに均一に析出し、それにより耐摩
耗性,強度を向上させる。したがって、マンガン及びニ
ッケルの一方又は両方を添加することにより、高力性,
耐摩耗性が改善される。かかる効果は、マンガン及びニ
ッケルを夫々0.7重量%以上添加することに発揮され
る。しかし、3.5重量%を超えて添加しても、効果が
飽和状態となり、添加量に見合う効果が得られない。珪
素は、マンガン又はニッケルの添加に伴い、これらとの
金属間化合物形成に要する消費量を考慮して、2.5〜
4.5重量%を添加させることとした。
Manganese or nickel combines with silicon to form a fine intermetallic compound of Mn X Si Y or Ni X Si Y and precipitates uniformly on the matrix, thereby improving wear resistance and strength. Therefore, by adding one or both of manganese and nickel, high strength,
The wear resistance is improved. Such effects are exhibited when manganese and nickel are each added in an amount of 0.7% by weight or more. However, even if it is added in excess of 3.5% by weight, the effect becomes saturated, and an effect commensurate with the added amount cannot be obtained. Silicon is added with manganese or nickel, taking into account the amount of consumption required for the formation of an intermetallic compound with manganese or nickel.
It was decided to add 4.5% by weight.

【0031】また、錫、アルミニウム及び燐の添加によ
り、マトリックスのα相が強化され、被削性も改善され
る。錫及び燐は、α相,γ相の分散により強度,耐摩耗
性を向上させ、被削性も向上させる。錫は、0.3重量
%以上の添加により強度及び被削性を向上させるが、
3.0重量%を超えて添加すると延性が低下する。した
がって、高力性,耐摩耗性の改善を図る第7発明合金に
おいては、被削性改善効果も考慮して、錫の添加量を
0.3〜3.0重量%とした。また、アルミニウムは、
耐摩耗性改善に寄与し、マトリックスの強化機能は0.
2重量%以上の添加により発揮される。しかし、2.5
重量%を超えて添加すると、延性が低下する。したがっ
て、被削性改善効果も考慮して、アルミニウムの添加量
は0.2〜2.5重量%とした。また、燐の添加によ
り、γ相の分散化と同時にマトリックスにおけるα相の
結晶粒を微細化して、熱間加工性を向上させ、強度,耐
摩耗性も向上させる。しかも、鋳造時の湯流れ性を著し
く向上させる効果もある。このような効果は、燐を0.
02〜0.25重量%の範囲で添加することにより奏せ
られる。なお、銅の配合量については、珪素添加量との
関係及びマンガン,ニッケルが珪素と結合する関係か
ら、62〜78重量%とした。
The addition of tin, aluminum and phosphorus strengthens the α phase of the matrix and improves machinability. Tin and phosphorus improve the strength and wear resistance by dispersing the α phase and the γ phase, and also improve the machinability. Tin improves the strength and machinability by adding 0.3% by weight or more,
When added in excess of 3.0% by weight, ductility decreases. Therefore, in the seventh invention alloy in which high strength and wear resistance are improved, the addition amount of tin is set to 0.3 to 3.0% by weight in consideration of the effect of improving machinability. Aluminum is
It contributes to the improvement of abrasion resistance and the matrix strengthening function is 0.1%.
It is exhibited by addition of 2% by weight or more. However, 2.5
If added in excess of weight percent, the ductility decreases. Therefore, considering the machinability improvement effect, the addition amount of aluminum is set to 0.2 to 2.5% by weight. Further, by adding phosphorus, the crystal grains of the α-phase in the matrix are refined at the same time as the dispersion of the γ-phase, thereby improving the hot workability and improving the strength and wear resistance. In addition, there is also an effect of significantly improving the flowability of the molten metal during casting. Such an effect can be achieved by adding phosphorus to 0.1.
This can be achieved by adding in the range of 02 to 0.25% by weight. The amount of copper was set to 62 to 78% by weight based on the relationship with the amount of silicon added and the relationship between manganese and nickel combined with silicon.

【0032】また、第8発明においては、同じく被削性
及び高力性,耐摩耗性に優れた無鉛快削性銅合金とし
て、銅62〜78重量%と、珪素2.5〜4.5重量%
と、錫0.3〜3.0重量%、アルミニウム1.0〜
2.5重量%及び燐0.02〜0.25重量%から選択
された1種以上の元素と、マンガン0.7〜3.5重量
%及びニッケル0.7〜3.5重量%から選択された1
種以上の元素と、ビスマス0.02〜0.4重量%、テ
ルル0.02〜0.4重量%及びセレン0.02〜0.
4重量%から選択された1種以上の元素とを含有し、且
つ残部が亜鉛からなる合金組成をなす銅合金(以下「第
8発明合金」という)を提案する。
In the eighth aspect of the present invention, the lead-free free-cutting copper alloy also having excellent machinability, high strength and abrasion resistance contains 62 to 78% by weight of copper and 2.5 to 4.5% of silicon. weight%
0.3 to 3.0% by weight of tin and 1.0 to 1.0% of aluminum
At least one element selected from 2.5% by weight and 0.02 to 0.25% by weight of phosphorus, and selected from 0.7 to 3.5% by weight of manganese and 0.7 to 3.5% by weight of nickel; Done 1
More than one element, bismuth 0.02-0.4 wt%, tellurium 0.02-0.4 wt% and selenium 0.02-0.4 wt%.
The present invention proposes a copper alloy (hereinafter, referred to as an "eighth invention alloy") containing at least one element selected from 4% by weight and having an alloy composition of zinc.

【0033】すなわち、第8発明合金は、第7発明合金
にビスマス0.02〜0.4重量%、テルル0.02〜
0.4重量%及びセレン0.02〜0.4重量%の少な
くとも1つを更に含有させた合金組成をなすものであ
り、前記した如く珪素と異なる機能により被削性を改善
する元素であるビスマス等を添加することにより、第7
発明合金と同様の高力性,耐摩耗性を確保しつつ、被削
性の更なる改善を図ったものである。ビスマス等の被削
性改善元素についての添加理由及び添加量決定理由は、
第2発明合金、第4発明合金又は第6発明合金と同様で
ある。その他の元素(銅,亜鉛,錫,マンガン,ニッケ
ル)についての添加理由及び添加量決定理由は、第7発
明合金と同様である。
That is, in the eighth invention alloy, bismuth 0.02 to 0.4% by weight and tellurium 0.02 to
It is an alloy composition further containing at least one of 0.4% by weight and 0.02 to 0.4% by weight of selenium, and is an element which improves machinability by a function different from silicon as described above. By adding bismuth, etc., the seventh
It is intended to further improve the machinability while ensuring the same high strength and wear resistance as the inventive alloy. Reasons for adding machinability improving elements such as bismuth and reasons for determining the amount
This is the same as the second invention alloy, the fourth invention alloy or the sixth invention alloy. The reasons for adding other elements (copper, zinc, tin, manganese, nickel) and the reasons for determining the amount of addition are the same as in the seventh invention alloy.

【0034】さらに、第9発明においては、被削性に加
えて耐高温酸化性に優れた無鉛快削性銅合金として、銅
69〜79重量%、珪素2.0〜4.0重量%、アルミ
ニウム0.1〜1.5重量%及び燐0.02〜0.25
重量%を含有し、且つ残部が亜鉛からなる合金組成をな
す銅合金(以下「第9発明合金」という)を提案する。
Furthermore, in the ninth invention, 69-79% by weight of copper, 2.0-4.0% by weight of silicon, and 0.1-1.5% by weight of aluminum and 0.02-0.25 of phosphorus
The present invention proposes a copper alloy (hereinafter, referred to as a "ninth invention alloy") containing an alloy composition containing 0.1% by weight and the balance being zinc.

【0035】アルミニウムは、強度,被削性,耐摩耗性
を改善させる他、耐高温酸化性を改善させる元素であ
る。また、珪素も、上記した如く、被削性,強度,耐摩
耗性,耐応力腐蝕割れ性を改善させる他、耐高温酸化性
を改善する機能を発揮する。アルミニウムによる耐高温
酸化性の改善は、珪素との共添によって、0.1重量%
以上の添加で行なわれる。しかし、アルミニウムを1.
5重量%を超えて添加しても、添加量に見合う耐高温酸
化性改善効果はみられない。かかる点から、アルミニウ
ムの添加量は0.1〜1.5重量%とした。
Aluminum is an element that improves the strength, machinability and wear resistance, and also improves the high-temperature oxidation resistance. As described above, silicon also has functions of improving machinability, strength, abrasion resistance, stress corrosion cracking resistance, and high temperature oxidation resistance. Improvement of high-temperature oxidation resistance by aluminum is 0.1% by weight by co-addition with silicon.
The above addition is performed. However, aluminum was added to 1.
Even if it is added in excess of 5% by weight, the effect of improving high-temperature oxidation resistance corresponding to the amount added is not observed. From this point, the addition amount of aluminum is set to 0.1 to 1.5% by weight.

【0036】燐は、合金鋳造時における湯流れ性を向上
させるために添加される。また、燐は、かかる湯流れ性
の他、上記した被削性,耐脱亜鉛腐蝕性に加えて、耐高
温酸化性をも改善する。このような燐の添加効果は0.
02重量%以上で発揮される。しかし、0.25重量%
を超えて添加しても、添加量に見合う効果はみられず、
却って合金の脆性化を招くことになる。かかる点から、
燐の添加量は、0.02〜0.25重量%とした。
[0036] Phosphorus is added to improve the flowability of the molten metal during casting of the alloy. Phosphorus improves not only the flowability of the molten metal but also the high-temperature oxidation resistance in addition to the above-mentioned machinability and dezincification corrosion resistance. The effect of such phosphorus addition is 0.1.
Exhibited at 02% by weight or more. However, 0.25% by weight
Even if added beyond the above, the effect corresponding to the added amount is not seen,
On the contrary, the alloy becomes brittle. From this point,
The addition amount of phosphorus was 0.02 to 0.25% by weight.

【0037】また、珪素は、上記した如く被削性を改善
させるために添加されるものであるが、燐と同様に湯流
れ性を向上させる機能も有するものである。珪素による
湯流れ性の向上は2.0重量%以上の添加により発揮さ
れ、被削性を向上させるに必要な添加範囲と重複する。
したがって、珪素の添加量は、被削性の改善を考慮し
て、2.0〜4.0重量%とした。
Although silicon is added to improve machinability as described above, silicon also has a function of improving the flowability of molten metal like phosphorus. The improvement of the melt flowability by silicon is exhibited by the addition of 2.0% by weight or more, and overlaps the addition range necessary for improving the machinability.
Therefore, the addition amount of silicon is set to 2.0 to 4.0% by weight in consideration of improvement in machinability.

【0038】また、第10発明においては、同じく被削
性及び耐高温酸化性に優れた無鉛快削性銅合金として、
銅69〜79重量%と、珪素2.0〜4.0重量%と、
アルミニウム0.1〜1.5重量%と、燐0.02〜
0.25重量%と、クロム0.02〜0.4重量%及び
チタン0.02〜0.4重量%から選択された1種以上
の元素とを含有し、且つ残部が亜鉛からなる合金組成を
なす銅合金(以下「第10発明合金」という)を提案す
る。
Further, in the tenth invention, a lead-free free-cutting copper alloy also having excellent machinability and high-temperature oxidation resistance,
69-79% by weight of copper, 2.0-4.0% by weight of silicon,
0.1 to 1.5% by weight of aluminum and 0.02 to phosphorus
Alloy composition containing 0.25% by weight and one or more elements selected from 0.02 to 0.4% by weight of chromium and 0.02 to 0.4% by weight of titanium, with the balance being zinc (Hereinafter, referred to as a “tenth invention alloy”).

【0039】クロム及びチタンは耐高温酸化性を向上さ
せる機能を有するものであり、その機能は、特に、アル
ミニウムとの共添による相乗効果によって顕著に発揮さ
れる。かかる機能は、これらを単独添加すると共添する
とに拘わらず、夫々、0.02重量%以上で発揮され、
0.4重量%で飽和状態となる。このような点から、第
10発明合金においては、第9発明合金にクロム0.0
2〜0.4重量%及びチタン0.02〜0.4重量%の
少なくとも1つを更に含有させた合金組成をなすものと
して、第9発明合金の耐高温酸化性を更に向上させるべ
く図っている。
Chromium and titanium have a function of improving high-temperature oxidation resistance, and the function is particularly remarkably exhibited by the synergistic effect of co-addition with aluminum. Such functions are exhibited at 0.02% by weight or more, regardless of whether they are added alone or co-added,
It is saturated at 0.4% by weight. From such a point, in the tenth invention alloy, chromium 0.0
In order to further improve the high-temperature oxidation resistance of the ninth invention alloy, the alloy composition further contains at least one of 2 to 0.4% by weight and 0.02 to 0.4% by weight of titanium. I have.

【0040】また、第11発明においては、同じく被削
性及び耐高温酸化性に優れた無鉛快削性銅合金として、
銅69〜79重量%と、珪素2.0〜4.0重量%と、
アルミニウム0.1〜1.5重量%と、燐0.02〜
0.25重量%と、ビスマス0.02〜0.4重量%、
テルル0.02〜0.4重量%及びセレン0.02〜
0.4重量%から選択された1種以上の元素とを含有
し、且つ残部が亜鉛からなる合金組成をなす銅合金(以
下「第11発明合金」という)を提案する。
Further, in the eleventh invention, a lead-free free-cutting copper alloy also having excellent machinability and high-temperature oxidation resistance,
69-79% by weight of copper, 2.0-4.0% by weight of silicon,
0.1 to 1.5% by weight of aluminum and 0.02 to phosphorus
0.25% by weight, bismuth 0.02 to 0.4% by weight,
Tellurium 0.02-0.4 wt% and selenium 0.02-
A copper alloy containing one or more elements selected from 0.4% by weight and having an alloy composition with the balance being zinc is proposed (hereinafter, referred to as an "eleventh invention alloy").

【0041】すなわち、第11発明合金は、第9発明合
金にビスマス0.02〜0.4重量%、テルル0.02
〜0.4重量%及びセレン0.02〜0.4重量%の少
なくとも1つを更に含有させた合金組成をなすものであ
り、前記した如く珪素と異なる機能により被削性を改善
する元素であるビスマス等を添加することにより、第9
発明合金と同様の耐高温酸化性を確保しつつ、被削性の
更なる改善を図ったものである。
That is, the eleventh invention alloy is composed of the ninth invention alloy containing 0.02 to 0.4% by weight of bismuth and 0.02% of tellurium.
~ 0.4% by weight and at least one of 0.02 ~ 0.4% by weight of selenium. The alloy composition further improves machinability by a function different from that of silicon as described above. By adding certain bismuth, etc., the ninth
It is intended to further improve the machinability while ensuring the same high-temperature oxidation resistance as the inventive alloy.

【0042】また、第12発明においては、同じく被削
性及び耐高温酸化性に優れた無鉛快削性銅合金として、
銅69〜79重量%と、珪素2.0〜4.0重量%と、
アルミニウム0.1〜1.5重量%と、燐0.02〜
0.25重量%と、クロム0.02〜0.4重量%及び
チタン0.02〜0.4重量%から選択された1種以上
の元素と、ビスマス0.02〜0.4重量%、テルル
0.02〜0.4重量%及びセレン0.02〜0.4重
量%から選択された1種以上の元素とを含有し、且つ残
部が亜鉛からなる合金組成をなす銅合金(以下「第12
発明合金」という)を提案する。
Also, in the twelfth invention, a lead-free free-cutting copper alloy, which is also excellent in machinability and high-temperature oxidation resistance,
69-79% by weight of copper, 2.0-4.0% by weight of silicon,
0.1 to 1.5% by weight of aluminum and 0.02 to phosphorus
0.25% by weight, one or more elements selected from 0.02 to 0.4% by weight of chromium and 0.02 to 0.4% by weight of titanium, and 0.02 to 0.4% by weight of bismuth; Copper alloys containing at least one element selected from the group consisting of 0.02 to 0.4% by weight of tellurium and 0.02 to 0.4% by weight of selenium, and a balance of zinc (hereinafter referred to as " Twelfth
Inventive alloy ").

【0043】すなわち、第12発明合金は、第10発明
合金にビスマス0.02〜0.4重量%、テルル0.0
2〜0.4重量%及びセレン0.02〜0.4重量%の
少なくとも1つを更に含有させた合金組成をなすもので
あり、前記した如く珪素と異なる機能により被削性を改
善する元素であるビスマス等を添加することにより、第
10発明合金と同様の耐高温酸化性を確保しつつ、被削
性の更なる改善を図ったものである。
That is, the twelfth invention alloy is the same as the tenth invention alloy, except that 0.02 to 0.4% by weight of bismuth and
An alloy composition further containing at least one of 2 to 0.4% by weight and 0.02 to 0.4% by weight of selenium, and as described above, an element which improves machinability by a function different from silicon. By adding bismuth or the like, the machinability is further improved while maintaining the same high-temperature oxidation resistance as the tenth invention alloy.

【0044】また、第13発明においては、上記した各
発明合金に400〜600℃で30分〜5時間の熱処理
を施しておくことより、その被削性を更に改善した無鉛
快削性銅合金(以下「第13発明合金」という)を提案
する。
Further, in the thirteenth invention, a lead-free free-cutting copper alloy whose machinability is further improved by subjecting each of the above-mentioned alloys to a heat treatment at 400 to 600 ° C. for 30 minutes to 5 hours. (Hereinafter, referred to as a “thirteenth invention alloy”).

【0045】第1〜第12発明合金は珪素等の被削性改
善元素を添加したものであり、かかる元素の添加により
優れた被削性を有するものであるが、特に、銅濃度が高
く、α,β,γ,δ相以外の相(主としてκ相)が多い
場合には、熱処理により、κ相がγ相に相変化して、γ
相が微細に分散析出することにより、被削性が更に改善
されることがある。例えば、銅濃度が高いものでは、マ
トリックスの延性が高くγ相の絶対量が少ないことか
ら、冷間加工性に優れるが、カシメ等の冷間加工と切削
加工が必要な場合、上記した熱処理が極めて有効とな
る。すなわち、第1〜第12 発明合金における銅濃度が
高いものであって、γ相が少なく且つκ相が多いもの
(以下「高銅濃度合金」という)については、熱処理に
よりκ相がγ相に変化して、γ相が微細に分散析出する
ことにより、被削性が更に改善される。また、実際の鋳
物,展伸材,熱間鍛造品の製造を想定した場合、鋳造条
件や熱間加工(熱間押出,熱間鍛造等)後の生産性,作
業環境等の条件によって、それらの材料が強制空冷,水
冷される場合がある。かかる場合、第1〜第12発明に
おいて、銅濃度が低いもの(以下「低銅濃度合金」とい
う)では、γ相が若干少なく且つβ相を含んでいるが、
熱処理を施すと、これによりβ相がγ相に変化すると共
にγ相が微細に分散析出することになり、被削性が改善
される。実験により確認したところでは、銅及び珪素と
他の添加元素(亜鉛を除く)Aとの配合比が67≦Cu
−3Si+aAとなるような組成の高銅濃度合金又は6
4≧Cu−3Si+aAとなるような組成の低銅濃度合
金において、熱処理による効果が特に著しい。なお、a
は添加元素Aによって異なる係数であり、例えば、錫:
a=−0.5、アルミニウム:a=−2、燐:a=−
3、アンチモン:a=0、砒素:a=0、マンガン:a
=+2.5、ニッケル:a=+2.5である。
The first to twelfth invention alloys are those to which a machinability improving element such as silicon is added, and which have excellent machinability due to the addition of such elements. When there are many phases other than the α, β, γ, and δ phases (mainly the κ phase), the heat treatment changes the κ phase to the γ phase,
When the phase is finely dispersed and precipitated, machinability may be further improved. For example, those having a high copper concentration are excellent in cold workability because the ductility of the matrix is high and the absolute amount of the γ phase is small, but when the cold working and cutting such as caulking are required, the heat treatment described above is performed. It is extremely effective. That is, in the alloys having a high copper concentration and a small γ phase and a large κ phase (hereinafter referred to as “high copper concentration alloy”), the κ phase becomes the γ phase by heat treatment. The machinability is further improved by changing and finely dispersing and precipitating the γ phase. In addition, when assuming the production of actual castings, wrought materials, and hot forged products, depending on the conditions of the casting conditions, productivity after hot working (hot extrusion, hot forging, etc.), work environment, etc. May be forcibly air-cooled or water-cooled. In such a case, in the first to twelfth inventions, those having a low copper concentration (hereinafter, referred to as “low copper concentration alloy”) have a slightly smaller γ phase and include a β phase,
When heat treatment is performed, the β phase changes to the γ phase and the γ phase is finely dispersed and precipitated, thereby improving machinability. According to experiments, it was confirmed that the compounding ratio of copper and silicon to another additive element A (excluding zinc) was 67 ≦ Cu
-3Si + aA high copper concentration alloy or 6
The effect of the heat treatment is particularly remarkable in a low copper concentration alloy having a composition satisfying 4 ≧ Cu-3Si + aA. Note that a
Is a coefficient that varies depending on the additive element A. For example, tin:
a = -0.5, aluminum: a = -2, phosphorus: a =-
3, antimony: a = 0, arsenic: a = 0, manganese: a
= + 2.5, nickel: a = + 2.5.

【0046】しかし、何れの場合においても、熱処理温
度が400℃未満であれば、上記した相変化速度が遅く
なり、熱処理に極めて長時間を要するため、経済的にも
実用できない。逆に、600℃を超えると、却ってκ相
が増大し或いはβ相が出現するため、被削性の改善効果
が得られない。したがって、実用性をも考慮した場合、
被削性改善のためには、400〜600℃の条件で30
分〜5時間の熱処理を行なうことが好ましい。
However, in any case, if the heat treatment temperature is lower than 400 ° C., the above-mentioned phase change rate becomes slow, and the heat treatment takes an extremely long time, so that it is not economically practical. Conversely, when the temperature exceeds 600 ° C., the κ phase increases or the β phase appears, so that the effect of improving machinability cannot be obtained. Therefore, considering practicality,
In order to improve machinability, 30 to 400 ° C to 600 ° C
It is preferable to perform the heat treatment for a period of minutes to 5 hours.

【0047】[0047]

【実施例】実施例として、表1〜表35に示す組成の鋳
塊(外径100mm,長さ150mmの円柱形状のも
の)を熱間(750℃)で外径15mmの丸棒状に押出
加工して、第1発明合金No.1001〜No.100
8、第2発明合金No.2001〜No.2011、第
3発明合金No.3001〜No.3012、第4発明
合金No.4001〜No.4049、第5発明合金N
o.5001〜No.5020、第6発明合金No.6
001〜No.6105、第7発明合金No.7001
〜No.7030、第8発明合金No.8001〜N
o.8147、第9発明合金No.9001〜No.9
005、第10発明合金No.10001〜No.10
008、第11発明合金No.11001〜No.11
007及び第12発明合金No.12001〜No.1
2021を得た。また、表36に示す組成の鋳塊(外径
100mm,長さ150mmの円柱形状のもの)を熱間
(750℃)で外径15mmの丸棒状に押出加工した
上、その押出材を表36に示す条件で熱処理して、第1
3発明合金No.13001〜No.13006を得
た。すなわち、No.13001は第1発明合金No.
1005と同一組成をなす押出材を580℃,30分の
条件で熱処理したものであり、No.13002はN
o.13001と同一組成をなす押出材を450℃,2
時間の条件で熱処理したものであり、No.13003
は第1発明合金No.1007と同一組成をなす押出材
をNo.13001と同一条件(580℃,30分)で
熱処理したものであり、No.13004はNo.10
07と同一組成をなす押出材をNo.13002と同一
条件(450℃,2時間)で熱処理したものであり、N
o.13005は第1発明合金No.1008と同一組
成をなす押出材をNo.13001と同一条件(580
℃,30分)で熱処理したものであり、No.1300
6はNo.1008と同一組成をなす押出材をNo.1
3002と同一条件(450℃,2時間)で熱処理した
ものである。
EXAMPLE As an example, an ingot (having a cylindrical shape having an outer diameter of 100 mm and a length of 150 mm) having a composition shown in Tables 1 to 35 was extruded into a round bar having an outer diameter of 15 mm while hot (750 ° C.). Then, the first invention alloy No. 1001-No. 100
8, the second invention alloy No. 2001-No. 2011, the third invention alloy No. 3001-No. 3012, 4th invention alloy No. 4001-No. 4049, Fifth invention alloy N
o. 5001-No. 5020, the sixth invention alloy No. 6
001-No. 6105, 7th invention alloy No. 7001
-No. 7030, Eighth Invention Alloy No. 8001-N
o. 8147, ninth invention alloy No. 9001-No. 9
005, 10th invention alloy No. 10001-No. 10
008, Eleventh Invention Alloy No. 11001-No. 11
007 and the twelfth invention alloy no. 12001-No. 1
2021 was obtained. Further, an ingot (having a cylindrical shape having an outer diameter of 100 mm and a length of 150 mm) having the composition shown in Table 36 was extruded into a round bar having an outer diameter of 15 mm by hot (750 ° C.). Heat treatment under the conditions shown in
Inventive alloy No. 3 No. 13001-No. 130006 was obtained. That is, No. 13001 is the first invention alloy No.
An extruded material having the same composition as No. 1005 was heat-treated at 580 ° C. for 30 minutes. 13002 is N
o. Extruded material having the same composition as 13001
No. 10 was heat-treated under the condition of time. 13003
Is the first invention alloy No. The extruded material having the same composition as No. 1007 was No. 1007. No. 13001 was heat-treated under the same conditions (580 ° C., 30 minutes). No. 13004 is No. 10
No. 07 extruded material having the same composition as No. 07 Heat-treated under the same conditions as 13002 (450 ° C., 2 hours)
o. 13005 is the first invention alloy No. The extruded material having the same composition as No. 1008 was No. 1008. Same conditions as 13001 (580
C. for 30 minutes). 1300
No. 6 is No. The extruded material having the same composition as No. 1008 was No. 1008. 1
Heat treatment was performed under the same conditions (450 ° C., 2 hours) as 3002.

【0048】また、比較例として、表37に示す組成の
鋳塊(外径100mm,長さ150mmの円柱形状のも
の)を熱間(750℃)で押出加工して、外径15mm
の丸棒状押出材(以下「従来合金」という)No.14
001〜No.14006を得た。なお、No.140
01は「JIS C3604」に相当するものであり、
No.14002は「CDA C36000」に相当す
るものであり、No.14003は「JIS C377
1」に相当するものであり、No.14004は「CD
A C69800」に相当するものである。また、N
o.14005は「JIS C6191」に相当するも
のであり、JISに規定される伸銅品の中で強度,耐磨
耗性に最も優れるアルミニウム青銅である。また、N
o.14006は「JIS C4622」に相当するも
のであり、JISに規定される伸銅品の中で耐蝕性に最
も優れるネーバル黄銅である。
As a comparative example, an ingot (having a cylindrical shape having an outer diameter of 100 mm and a length of 150 mm) having the composition shown in Table 37 was extruded hot (750 ° C.) to obtain an outer diameter of 15 mm.
No. extruded material (hereinafter referred to as “conventional alloy”) No. 14
001-No. 140006 was obtained. In addition, No. 140
01 is equivalent to “JIS C3604”,
No. No. 14002 corresponds to “CDA C36000”. 14003 is "JIS C377
No. 1 ". 14004 is "CD
AC69800 ". Also, N
o. 14005 is equivalent to "JIS C 6191" and is an aluminum bronze having the best strength and abrasion resistance among the copper brass products specified in JIS. Also, N
o. 14006 is equivalent to "JIS C4622", and is a naval brass having the best corrosion resistance among the brass products specified in JIS.

【0049】[0049]

【表1】 [Table 1]

【0050】[0050]

【表2】 [Table 2]

【0051】[0051]

【表3】 [Table 3]

【0052】[0052]

【表4】 [Table 4]

【0053】[0053]

【表5】 [Table 5]

【0054】[0054]

【表6】 [Table 6]

【0055】[0055]

【表7】 [Table 7]

【0056】[0056]

【表8】 [Table 8]

【0057】[0057]

【表9】 [Table 9]

【0058】[0058]

【表10】 [Table 10]

【0059】[0059]

【表11】 [Table 11]

【0060】[0060]

【表12】 [Table 12]

【0061】[0061]

【表13】 [Table 13]

【0062】[0062]

【表14】 [Table 14]

【0063】[0063]

【表15】 [Table 15]

【0064】[0064]

【表16】 [Table 16]

【0065】[0065]

【表17】 [Table 17]

【0066】[0066]

【表18】 [Table 18]

【0067】[0067]

【表19】 [Table 19]

【0068】[0068]

【表20】 [Table 20]

【0069】[0069]

【表21】 [Table 21]

【0070】[0070]

【表22】 [Table 22]

【0071】[0071]

【表23】 [Table 23]

【0072】[0072]

【表24】 [Table 24]

【0073】[0073]

【表25】 [Table 25]

【0074】[0074]

【表26】 [Table 26]

【0075】[0075]

【表27】 [Table 27]

【0076】[0076]

【表28】 [Table 28]

【0077】[0077]

【表29】 [Table 29]

【0078】[0078]

【表30】 [Table 30]

【0079】[0079]

【表31】 [Table 31]

【0080】[0080]

【表32】 [Table 32]

【0081】[0081]

【表33】 [Table 33]

【0082】[0082]

【表34】 [Table 34]

【0083】[0083]

【表35】 [Table 35]

【0084】[0084]

【表36】 [Table 36]

【0085】[0085]

【表37】 [Table 37]

【0086】そして、第1〜第13発明合金の被削性を
従来合金との比較において確認すべく、次のような切削
試験を行い、切削主分力、切屑状態及び切削表面形態を
判定した。
Then, in order to confirm the machinability of the first to thirteenth invention alloys in comparison with the conventional alloys, the following cutting test was performed, and the main component force of the cutting, the chip state and the cutting surface morphology were determined. .

【0087】すなわち、上記の如くして得られた各押出
材の外周面を、真剣バイト(すくい角:−8°)を取り
付けた旋盤により、切削速度:50m/分,切込み深さ
(切削代):1.5mm,送り量:0.11mm/re
v.の条件で切削し、バイトに取り付けた3分力動力計
からの信号を重歪測定器により電圧信号に変換してレコ
ーダで記録し、これを切削抵抗に換算した。ところで、
切削抵抗の大小は3分力つまり主分力、送り分力及び背
分力によって判断されるが、ここでは、3分力のうち最
も大きな値を示す主分力(N)をもって切削抵抗の大小
を判断することとした。その結果は、表38〜表66に
示す通りであった。
That is, the outer peripheral surface of each extruded material obtained as described above was cut by a lathe equipped with a serious cutting tool (rake angle: -8 °) at a cutting speed of 50 m / min and a cutting depth (cutting allowance). ): 1.5 mm, feed amount: 0.11 mm / re
v. The signal from the three-component dynamometer attached to the cutting tool was converted into a voltage signal by a heavy strain measuring instrument, recorded by a recorder, and converted into a cutting resistance. by the way,
The magnitude of the cutting force is determined by the three-component force, namely, the main component, the feed component and the back component. In this case, the magnitude of the cutting force is determined by the main component (N) showing the largest value among the three components. It was decided to judge. The results were as shown in Tables 38 to 66.

【0088】また、切削により生成した切屑の状態を観
察し、その形状によって図1(A)〜(D)に示す如く
4つに分類して、表1〜表37に示した。ところで、切
屑が、(D)図に示す如く、3巻以上の螺旋形状をなし
ている場合には、切屑の処理(切屑の回収や再利用等)
が困難となる上、切屑がバイトに絡み付いたり、切削表
面を損傷させる等のトラブルが発生して、良好な切削加
工を行なうことができない。また、切屑が、(C)図に
示す如く、半巻程度の円弧形状から2巻程度の螺旋形状
をなしている場合には、3巻以上の螺旋形状をなす場合
のような大きなトラブルは生じないものの、やはり切屑
の処理が容易ではなく、連続切削加工を行う場合等にあ
ってはバイトへの絡み付きや切削表面の損傷等を生じる
虞れがある。しかし、切屑が、(A)の如き微細な針形
状片や(B)の如き扇形状片又は円弧形状片に剪断され
る場合には、上記のようなトラブルが生じることがな
く、(C)図や(D)図に示すもののように嵩張らない
ことから、切屑の処理も容易である。但し、切屑が
(A)図のような微細形状に剪断される場合には、旋盤
等の工作機械の摺動面に潜り込んで機械的障害を発生し
たり、作業者の手指,目に刺さる等の危険を伴うことが
ある。したがって、被削性を判断する上では、(B)図
に示すものが最良であり、(A)図に示すものがこれに
続き、(C)図や(D)図に示すものは不適当とするの
が相当である。表38〜表66においては、(B)に示
す最良の切屑状態が観察されたものを「◎」で、(A)
図に示すやや良好な切屑状態が観察されたものを「○」
で、(C)図に示す不良な切屑状態が観察されたものを
「△」で、(D)に示す最悪の切屑状態が観察されたも
のを「×」で示した。
Further, the state of the chips generated by the cutting was observed and classified into four types as shown in FIGS. 1 (A) to 1 (D) according to their shapes, and the results are shown in Tables 1 to 37. By the way, as shown in Fig. (D), when the chip has a spiral shape of three or more turns, processing of the chip (collection and reuse of the chip, etc.)
In addition, it becomes difficult to perform cutting, and troubles such as chip entanglement with the cutting tool and damage to the cutting surface occur, so that good cutting cannot be performed. Further, as shown in Fig. (C), when the chip has a spiral shape of about two turns from an arc shape of about half a roll, a big trouble such as a spiral shape of three or more turns occurs. However, it is still not easy to treat chips, and in the case of performing continuous cutting, there is a possibility that the cutting tool may be entangled or the cutting surface may be damaged. However, when the chip is sheared into a fine needle-shaped piece as shown in (A) or a fan-shaped piece or an arc-shaped piece as shown in (B), the above trouble does not occur, and (C) Since it is not bulky as shown in the figures and (D), the processing of chips is easy. However, if the chips are sheared into a fine shape as shown in FIG. 3A, the chips may sneak into the sliding surface of a machine tool such as a lathe to cause a mechanical obstacle, or to be stuck by fingers or eyes of an operator. May be dangerous. Therefore, in judging the machinability, the one shown in FIG. (B) is the best, the one shown in (A) follows, and the one shown in (C) or (D) is inappropriate. It is appropriate to do. In Tables 38 to 66, those in which the best chip state shown in FIG.
In the figure, a somewhat good chip condition was observed, and "○"
In the graph, (も の) indicates the case where the bad chip state shown in FIG. 7 (C) was observed, and “×” indicates the case where the worst chip state shown in (D) was observed.

【0089】また、切削後において、切削表面の良否を
表面粗さにより判定した。その結果は、表38〜表66
に示す通りであった。ところで、表面粗さの基準として
は最大高さ(Rmax )が使用されることが多く、黄銅製
品の用途にもよるが、一般に、Rmax <10μmであれ
ば極めて被削性に優れると判断することができ、10μ
m≦Rmax <15μmであれば工業的に満足しうる被削
性を得ることができたものと判断でき、Rmax ≧15μ
mの場合には被削性に劣るものと判断できる。表38〜
表65においては、Rmax <10μmの場合を「○」
で、10μm≦Rmax <15μmの場合を「△」で、R
max ≧15μmの場合を「×」で示した。
After cutting, the quality of the cut surface was judged by the surface roughness. The results are shown in Tables 38 to 66.
As shown in FIG. By the way, the maximum height (Rmax) is often used as a standard of the surface roughness, and although it depends on the use of the brass product, it is generally judged that if Rmax <10 μm, the machinability is extremely excellent. 10μ
If m ≦ Rmax <15 μm, it can be determined that industrially satisfactory machinability has been obtained, and Rmax ≧ 15 μm
In the case of m, it can be determined that the machinability is poor. Table 38-
In Table 65, the case where Rmax <10 μm is indicated by “○”.
In the case of 10 μm ≦ Rmax <15 μm, “△” indicates that R
The case where max ≧ 15 μm is indicated by “x”.

【0090】表38〜表66に示す切削試験の結果から
明らかなように、第1発明合金No.1001〜No.
1008、第2発明合金No.2001〜No.201
1、第3発明合金No.3001〜No.3012、第
4発明合金No.4001〜No.4049、第5発明
合金No.5001〜No.5020、第6発明合金N
o.6001〜No.6105、第7発明合金No.7
001〜No.7030、第8発明合金No.8001
〜No.8147、第9発明合金No.9001〜N
o.9005、第10発明合金No.10001〜N
o.10008、第11発明合金No.11001〜N
o.11007及び第12発明合金No.12001〜
No.12021は、その何れにおいても、鉛を大量に
含有する従来合金No.14001〜No.14003
と同等の被削性を有するものである。特に、切屑の生成
状態に限っては、鉛含有量が0.1重量%以下である従
来合金No.14004〜No.14006に比しては
勿論、鉛を大量に含有する従来合金No.14001〜
No.14003に比しても、良好な被削性を有する。
As is clear from the results of the cutting tests shown in Tables 38 to 66, the first invention alloy No. 1001-No.
1008, the second invention alloy No. 2001-No. 201
1, the third invention alloy No. 3001-No. 3012, 4th invention alloy No. 4001-No. 4049, Fifth Invention Alloy No. 5001-No. 5020, sixth invention alloy N
o. 6001-No. 6105, 7th invention alloy No. 7
001-No. 7030, Eighth Invention Alloy No. 8001
-No. 8147, ninth invention alloy no. 9001-N
o. 9005, 10th invention alloy No. 10001-N
o. 10008, Eleventh Invention Alloy No. 11001-N
o. No. 11007 and the twelfth invention alloy no. 12001-
No. No. 12021 is a conventional alloy no. No. 14001-No. 14003
It has the same machinability as. In particular, as far as the state of chip formation is concerned, the conventional alloy No. having a lead content of 0.1% by weight or less is used. 14004-No. Compared with the conventional alloy No. 14006 containing a large amount of lead, 14001-
No. It has good machinability as compared to 14003.

【0091】また、表38及び表65から明らかなよう
に、第13発明合金No.13001〜No.1300
6は、これらと同一組成をなす第1発明合金No.10
05、No.1007及びNo.1008に比して被削
性が向上しており、適当な熱処理を施すことにより被削
性を更に向上させ得ることが確認された。
As is clear from Tables 38 and 65, the thirteenth invention alloy no. No. 13001-No. 1300
No. 6 is a first invention alloy No. 6 having the same composition as these. 10
05, no. 1007 and no. The machinability was improved as compared with 1008, and it was confirmed that the machinability could be further improved by performing an appropriate heat treatment.

【0092】次に、第1〜第13発明合金の熱間加工性
及び機械的性質を、従来合金との比較において確認すべ
く、次のような熱間圧縮試験及び引張試験を行った。
Next, in order to confirm the hot workability and mechanical properties of the first to thirteenth invention alloys in comparison with the conventional alloys, the following hot compression test and tensile test were performed.

【0093】すなわち、上記の如くして得られた各押出
材から同一形状(外径15mm,長さ25mm)の第1
及び第2試験片を切り出した。そして、熱間圧縮試験に
おいては、各第1試験片を700℃に加熱して30分間
保持した上、軸線方向に70%の圧縮率で圧縮(第1試
験片の高さ(長さ)が25mmから7.5mmになるま
で圧縮)して、圧縮後の表面形態(700℃変形能)を
目視判定した。その結果は、表38〜表66に示す通り
であった。変形能の判定は試験片側面におけるクラック
の状態から目視により行い、表38〜表66において
は、クラックが全く生じなかったものを「○」で、小さ
なクラックが生じたものを「△」で、大きなクラックが
生じたものを「×」で示した。また、各第2試験片を使
用して、常法による引張試験を行ない、引張強さ(N/
mm2 )及び伸び(%)を測定した。
That is, from each extruded material obtained as described above, the first material having the same shape (outer diameter 15 mm, length 25 mm) was obtained.
And the 2nd test piece was cut out. Then, in the hot compression test, each first test piece was heated to 700 ° C. and held for 30 minutes, and then compressed at a compression rate of 70% in the axial direction (the height (length) of the first test piece was reduced). It was compressed from 25 mm to 7.5 mm), and the surface morphology (deformability at 700 ° C.) after compression was visually determined. The results were as shown in Tables 38 to 66. Judgment of the deformability was visually performed from the state of cracks on the side surface of the test piece, and in Tables 38 to 66, those in which no cracks occurred were indicated by “○”, and those in which small cracks occurred were indicated by “△”, Those having large cracks are indicated by "x". Further, a tensile test was carried out using each of the second test pieces by a conventional method, and the tensile strength (N /
mm 2 ) and elongation (%) were measured.

【0094】表38〜表66に示す熱間圧縮試験及び引
張試験の結果から、第1〜第13発明合金は、従来合金
No.14001〜No.14004及びNo.140
06と同等若しくはそれ以上の熱間加工性及び機械的性
質を有するものであり、工業的に好適に使用できるもの
であることが確認された。特に、第7及び第8発明合金
については、JISに規定される伸銅品の中で強度に最
も優れるアルミニウム青銅である従来合金No.140
05と同等の機械的性質を有するものであり、高力性に
優れることが理解される。
From the results of the hot compression test and the tensile test shown in Tables 38 to 66, the first to thirteenth invention alloys are the same as those of the conventional alloy No. No. 14001-No. 14004 and no. 140
It has a hot workability and a mechanical property equal to or higher than that of 06, and it has been confirmed that it can be industrially suitably used. In particular, regarding the seventh and eighth invention alloys, the conventional alloy No. which is aluminum bronze which is the most excellent in the strength among the copper products according to JIS. 140
It has mechanical properties equivalent to that of No. 05, and is understood to be excellent in high strength.

【0095】また、第1〜第6発明合金及び第9〜第1
3発明合金の耐蝕性及び耐応力腐蝕割れ性を、従来合金
との比較において確認すべく、「ISO 6509」に
定める方法による脱亜鉛腐蝕試験及び「JIS H32
50」に規定される応力腐蝕割れ試験を行った。
The first to sixth invention alloys and the ninth to first alloys
In order to confirm the corrosion resistance and stress corrosion cracking resistance of the No. 3 invention alloy in comparison with the conventional alloy, a dezincification corrosion test according to the method specified in "ISO 6509" and "JIS H32"
A stress corrosion cracking test specified in “50” was conducted.

【0096】すなわち、「ISO 6509」の脱亜鉛
腐蝕試験においては、各押出材から採取した試料を、暴
露試料表面が当該押出材の押出し方向に対して直角とな
るようにしてフェノール樹脂材に埋込み、試料表面をエ
メリー紙により1200番まで研磨した後、これを純水
中で超音波洗浄して乾燥した。かくして得られた被腐蝕
試験試料を、1.0%の塩化第2銅2水和塩(CuCl
2 ・2H2O)の水溶液(12.7g/l)中に浸漬
し、75℃の温度条件下で24時間保持した後、水溶液
中から取出して、その脱亜鉛腐蝕深さの最大値(最大脱
亜鉛腐蝕深さ)を測定した。その結果は、表38〜表5
0及び表61〜表66に示す通りであった。
That is, in the dezincification corrosion test of “ISO 6509”, a sample collected from each extruded material was embedded in a phenol resin material such that the surface of the exposed sample was perpendicular to the extrusion direction of the extruded material. The surface of the sample was polished with emery paper to # 1200, and the surface was ultrasonically washed in pure water and dried. The corrosion test sample thus obtained was treated with 1.0% cupric chloride dihydrate (CuCl 2).
Immersed in 2 · 2H 2 O) aqueous solution (12.7 g / l), was held for 24 hours at a temperature of 75 ° C., and taken out from the aqueous solution, the maximum value of the dezincification corrosion depth (maximum Dezincification corrosion depth) was measured. The results are shown in Tables 38 to 5
0 and Tables 61 to 66.

【0097】表38〜表50及び表61〜表66に示す
脱亜鉛腐蝕試験の結果から理解されるように、第1〜第
4発明合金及び第9〜第13発明合金は、大量の鉛を含
有する従来合金No.14001〜No.14003に
比して優れた耐蝕性を有し、特に、被削性と共に耐蝕性
の向上を図った第5及び第6発明合金については、JI
Sに規定される伸銅品の中で耐蝕性に最も優れるネーバ
ル黄銅である従来合金No.14006に比しても極め
て優れた耐蝕性を有することが確認された。
As understood from the results of the dezincification corrosion tests shown in Tables 38 to 50 and Tables 61 to 66, the first to fourth invention alloys and the ninth to thirteenth invention alloys produced a large amount of lead. Conventional alloy No. No. 14001-No. 5th and 6th invention alloys which have excellent corrosion resistance compared to 14003, and which improve corrosion resistance as well as machinability,
Conventional alloy No., which is a Naval brass with the highest corrosion resistance among the brass products specified in S. It was confirmed that the material had extremely excellent corrosion resistance as compared with 140006.

【0098】また、「JIS H3250」の応力腐蝕
割れ試験においては、各押出材から長さ150mmの試
料を切り出し、各試料を、その中央部を半径40mmの
円弧状治具に当てた状態で、その一端部が他端部に対し
て45°となるように折曲させて、試験片とした。この
ようにして引張残留応力を付加された各試験片を脱脂,
乾燥処理した上、12.5%のアンモニア水(アンモニ
アを等量の純水で薄めたもの)を入れたデシケータ内の
アンモニア雰囲気(25℃)中に保持させた。すなわ
ち、各試験片をデシケータ内におけるアンモニア水面か
ら約80mm上方の位置に保持する。そして、試験片の
アンモニア雰囲気中における保持時間が、2時間,8時
間,24時間を経過した時点で、試験片をデシケータか
ら取り出して、10%の硫酸で洗浄した上、当該試験片
の割れの有無を拡大鏡(倍率:10倍)で視認した。そ
の結果は、表38〜表50及び表61〜表66に示す通
りであった。これらの表においては、アンモニア雰囲気
中での保持時間が2時間である場合に明瞭な割れが認め
られたものについては「××」で、2時間経過時におい
ては割れが認められなかったが、8時間経過時において
は明瞭な割れが認められたものについては「×」で、8
時間経過時においては割れが認められなかったが、24
時間経過時においては明瞭な割れが認められたものにつ
いては「△」で、24時間経過時においても割れが全く
認められなかったものについては「○」で示した。
In the stress corrosion cracking test of “JIS H3250”, a sample having a length of 150 mm was cut out from each extruded material, and each sample was placed on an arc-shaped jig having a radius of 40 mm. The test piece was bent so that one end thereof was at 45 ° to the other end. Each specimen to which the residual tensile stress was applied in this way was degreased,
After being dried, it was kept in an ammonia atmosphere (25 ° C.) in a desiccator containing 12.5% ammonia water (ammonia diluted with an equal amount of pure water). That is, each test piece is held at a position about 80 mm above the ammonia water level in the desiccator. When the holding time of the test piece in the ammonia atmosphere has passed for 2 hours, 8 hours, and 24 hours, the test piece was taken out of the desiccator, washed with 10% sulfuric acid, and the test piece was cracked. The presence or absence was visually recognized with a magnifying glass (magnification: 10 times). The results were as shown in Tables 38 to 50 and 61 to 66. In these tables, those in which a clear crack was observed when the holding time in the ammonia atmosphere was 2 hours were "XX", and no crack was observed after 2 hours. When a clear crack was observed after 8 hours, it was marked with "X".
No crack was observed after the elapse of time.
A sample in which a clear crack was observed over time was indicated by "△", and a sample in which no crack was observed even after 24 hours was indicated by "○".

【0099】表38〜表50及び表61〜表66に示す
応力腐蝕割れ試験の結果から理解されるように、被削性
と共に耐蝕性の向上を図った第5及び第6発明合金につ
いては勿論、耐蝕性については格別の配慮をしていない
第1〜第4発明合金及び第9〜第13発明合金について
も、亜鉛を含まないアルミニウム青銅である従来合金1
4005と同等の耐応力腐蝕割れ性を有し、JISに規
定される伸銅品の中で耐蝕性に最も優れるネーバル黄銅
である従来合金No.14006より優れた耐応力腐蝕
割れ性を有することが確認された。
As understood from the results of the stress corrosion cracking tests shown in Tables 38 to 50 and Tables 61 to 66, the fifth and sixth invention alloys of which not only the machinability but also the corrosion resistance were improved were used. Also, the first to fourth invention alloys and the ninth to thirteenth invention alloys, for which corrosion resistance is not particularly taken into consideration, also include the conventional alloy 1 which is aluminum bronze containing no zinc.
Conventional alloy No. which is Naval brass, which has the same stress corrosion cracking resistance as 4005 and is the most excellent in corrosion resistance among the brass products specified in JIS. It was confirmed to have stress corrosion cracking resistance superior to 140006.

【0100】また、第9〜第12発明合金の耐高温酸化
性を、従来合金との比較において確認すべく、次のよう
な酸化試験を行った。
Further, in order to confirm the high-temperature oxidation resistance of the ninth to twelfth invention alloys in comparison with the conventional alloys, the following oxidation tests were performed.

【0101】すなわち、各押出材No.9001〜N
o.9005、No.10001〜No.10008、
No.11001〜No.11007、No.1200
1〜No.12021及びNo.14001〜1400
6から、外径が14mmとなるように表面研削され且つ
長さ30mmに切断された丸棒状の試験片を得て、各試
験片の重量(以下「酸化前重量」という)を測定した。
しかる後、各試験片を、磁性坩堝に収納した状態で、5
00℃に保持された電気炉内に放置した。そして、放置
時間が100時間を経過した時点で電気炉から取り出し
て、各試験片の重量(以下「酸化後重量」という)を測
定した上、酸化前重量と酸化後重量とから酸化増量を算
出した。ここに、酸化増量とは、試験片の表面積10c
2 当たりの酸化による増加重量(mg)の程度を示す
ものであり、「酸化増量(mg/10cm2 )=(酸化
後重量(mg)−酸化前重量(mg))×(10cm2
/試験片の表面積(cm2 )」の式から算出されたもの
である。すなわち、各試験片の酸化後重量は酸化前重量
より増加しているが、これは高温酸化によるものであ
る。つまり、高温に晒されると、酸素と銅,亜鉛,珪素
とが結合してCu2O,ZnO,SiO2 となり、その
酸素増分により重量が増加するのである。したがって、
この増加重量の程度(酸化増量)が小さい程、耐高温酸
化性に優れているということができ、表61〜表64及
び表66に示す結果となった。
That is, each extruded material No. 9001-N
o. 9005, no. 10001-No. 10008,
No. 11001-No. No. 11007, no. 1200
1 to No. 12021 and no. 14001 to 1400
From 6, a round bar-shaped test piece whose surface was ground to an outer diameter of 14 mm and cut to a length of 30 mm was obtained, and the weight of each test piece (hereinafter referred to as “weight before oxidation”) was measured.
Thereafter, each test piece was stored in a magnetic crucible,
It was left in an electric furnace maintained at 00 ° C. Then, when the standing time has passed 100 hours, the test piece is taken out of the electric furnace, the weight of each test piece (hereinafter referred to as “post-oxidation weight”) is measured, and the oxidation increase is calculated from the pre-oxidation weight and the post-oxidation weight. did. Here, the oxidation increase refers to the surface area 10c of the test piece.
It indicates the degree of weight increase (mg) due to oxidation per m 2 , and “weight increase by oxidation (mg / 10 cm 2 ) = (weight after oxidation (mg) −weight before oxidation (mg)) × (10 cm 2 )
/ Surface area of test piece (cm 2 ) ”. That is, the weight after oxidation of each test piece is greater than the weight before oxidation, which is due to high-temperature oxidation. That is, when exposed to a high temperature, oxygen and copper, zinc, and silicon combine to form Cu 2 O, ZnO, and SiO 2 , and the weight increases due to the oxygen increment. Therefore,
It can be said that the smaller the degree of the increase in weight (increase in oxidation), the more excellent the high-temperature oxidation resistance was, and the results shown in Tables 61 to 64 and 66 were obtained.

【0102】表61〜表64及び表66に示す酸化試験
の結果から明らかなように、第9〜第12発明合金の酸
化増量は、JISに規定される伸銅品の中でも高度の耐
高温酸化性を有するアルミニウム青銅である従来合金N
o.14005と同等であり、他の従来合金よりは極め
て小さくなっている。したがって、第9〜第12発明合
金が、被削性に加えて、耐高温酸化性にも極めて優れた
ものであることが確認された。
As is clear from the results of the oxidation tests shown in Tables 61 to 64 and Table 66, the oxidized weight gains of the ninth to twelfth invention alloys are the highest in high temperature oxidation resistance among the copper products specified in JIS. Conventional alloy N which is aluminum bronze
o. 14005, which is much smaller than other conventional alloys. Therefore, it was confirmed that the ninth to twelfth invention alloys were extremely excellent in high-temperature oxidation resistance in addition to machinability.

【0103】[0103]

【表38】 [Table 38]

【0104】[0104]

【表39】 [Table 39]

【0105】[0105]

【表40】 [Table 40]

【0106】[0106]

【表41】 [Table 41]

【0107】[0107]

【表42】 [Table 42]

【0108】[0108]

【表43】 [Table 43]

【0109】[0109]

【表44】 [Table 44]

【0110】[0110]

【表45】 [Table 45]

【0111】[0111]

【表46】 [Table 46]

【0112】[0112]

【表47】 [Table 47]

【0113】[0113]

【表48】 [Table 48]

【0114】[0114]

【表49】 [Table 49]

【0115】[0115]

【表50】 [Table 50]

【0116】[0116]

【表51】 [Table 51]

【0117】[0117]

【表52】 [Table 52]

【0118】[0118]

【表53】 [Table 53]

【0119】[0119]

【表54】 [Table 54]

【0120】[0120]

【表55】 [Table 55]

【0121】[0121]

【表56】 [Table 56]

【0122】[0122]

【表57】 [Table 57]

【0123】[0123]

【表58】 [Table 58]

【0124】[0124]

【表59】 [Table 59]

【0125】[0125]

【表60】 [Table 60]

【0126】[0126]

【表61】 [Table 61]

【0127】[0127]

【表62】 [Table 62]

【0128】[0128]

【表63】 [Table 63]

【0129】[0129]

【表64】 [Table 64]

【0130】[0130]

【表65】 [Table 65]

【0131】[0131]

【表66】 [Table 66]

【0132】また、第2の実施例として、表14〜表3
1に示す組成の鋳塊(外径100mm,長さ200mm
の円柱形状のもの)を熱間(700℃)で外径35mm
の丸棒状に押出加工して、第7発明合金No.7001
a〜No.7030a及び第8発明合金No.8001
a〜No.8147aを得た。また、第2の比較例とし
て、表37に示す組成の鋳塊(外径100mm,長さ2
00mmの円柱形状のもの)を熱間(700℃)で押出
加工して、外径35mmの丸棒状押出材(以下「従来合
金」という)No.14001a〜No.14006a
を得た。なお、No.7001a〜No.7030a、
No.8001a〜No.8147a及びNo.140
01a〜No.14006aは、夫々、前記した銅合金
No.7001〜No.7030、No.8001〜N
o.8147及びNo.14001〜No.14006
と同一の合金組成をなすものである。
As a second embodiment, Tables 14 to 3
Ingot of composition shown in 1 (outer diameter 100 mm, length 200 mm
Cylindrical shape) is hot (700 ° C) with an outer diameter of 35 mm
Of the seventh invention alloy No. 7001
a-No. 7030a and the eighth invention alloy no. 8001
a-No. 8147a was obtained. In addition, as a second comparative example, an ingot (outer diameter 100 mm, length 2
Extruded into a round bar-shaped extruded material (hereinafter referred to as “conventional alloy”) having an outer diameter of 35 mm. 14001a-No. 14006a
I got In addition, No. 7001a-No. 7030a,
No. 8001a-No. 8147a and no. 140
01a-No. No. 14006a is the copper alloy No. described above. 7001-No. 7030, no. 8001-N
o. 8147 and no. No. 14001-No. 14006
Have the same alloy composition as

【0133】そして、第7発明合金No.7001a〜
No.7030a及び第8発明合金No.8001a〜
No.8147aの耐摩耗性を、従来合金No.140
01a〜No.14006aとの比較において確認すべ
く、次のような摩耗試験を行った。
The seventh invention alloy No. 7001a-
No. 7030a and the eighth invention alloy no. 8001a-
No. The wear resistance of conventional alloy No. 8147a was 140
01a-No. The following abrasion test was performed in order to confirm in comparison with 140006a.

【0134】すなわち、上記の如くして得られた各押出
材から、その外周面を切削した上、穴明け加工及び切断
加工を施すことにより、外径32mm,厚さ(軸線方向
長さ)10mmのリング状試験片を得た上、各試験片を
回転自在な軸に嵌合固定して、これと軸線を平行とする
外径48mmのSUS304製ロールに50kgの荷重
を掛けて押圧接触させた状態に保持させる。しかる後、
SUS304製ロール及びこれに転接する試験片を、当
該試験片の外周面にマルチオイルを滴下しつつ、同一回
転数(209r.p.m.)で回転駆動させる。そし
て、当該試験片の回転数が10万回に達した時点で、S
US304製ロール及び試験片の回転を停止して、各試
験片の回転前後における重量差つまり摩耗減量(mg)
を測定した。かかる摩耗減量が少ない程、耐摩耗性に優
れた銅合金ということができるが、その結果は、表67
〜表77に示す通りであった。
That is, each extruded material obtained as described above was cut on its outer peripheral surface, and then punched and cut to obtain an outer diameter of 32 mm and a thickness (length in the axial direction) of 10 mm. After obtaining a ring-shaped test piece, each test piece was fitted and fixed to a rotatable shaft, and a 50 kg load was applied to a SUS304 roll having an outer diameter of 48 mm, whose axis was parallel to the test piece, to make pressure contact. Keep in state. After a while
The SUS304 roll and the test piece rolling thereon are driven to rotate at the same rotation speed (209 rpm) while multi-oil is dropped on the outer peripheral surface of the test piece. When the number of rotations of the test piece reaches 100,000 times, S
The rotation of the US304 roll and the test piece was stopped, and the weight difference before and after the rotation of each test piece, that is, the wear loss (mg)
Was measured. As the wear loss is smaller, it can be said that the copper alloy is more excellent in wear resistance.
~ As shown in Table 77.

【0135】表67〜表77に示す摩耗試験の結果から
明らかなように、第7発明合金No.7001a〜N
o.7030a及び第8発明合金No.8001a〜N
o.8147aは、従来合金No.14001〜No.
14004及びNo.14005に比しては勿論、JI
Sに規定される伸銅品の中で耐磨耗性に最も優れるアル
ミニウム青銅である従来合金No.14005に比して
も、耐摩耗性が優れることが確認された。したがって、
上記した引張試験の結果をも考慮して総合的に判断した
場合、第7及び第8発明合金は、被削性に加えて、JI
Sに規定される伸銅品の中で耐磨耗性に最も優れるアル
ミニウム青銅と同等以上の高力性,耐摩耗性を有するも
のであるということができる。
As is evident from the results of the wear tests shown in Tables 67 to 77, the seventh invention alloy No. 7 has the following characteristics. 7001a-N
o. 7030a and the eighth invention alloy no. 8001a-N
o. 8147a is a conventional alloy No. No. 14001-No.
14004 and no. JI compared to 14005
Conventional bronze alloy No. S, which is an aluminum bronze having the highest wear resistance among the copper products specified in S.S. It was confirmed that the abrasion resistance was superior to that of 14005. Therefore,
When comprehensively judged also in consideration of the results of the above-described tensile tests, the seventh and eighth invention alloys have JI in addition to machinability.
It can be said that it has the same high strength and wear resistance as aluminum bronze which is the most excellent in wear resistance among the copper products specified in S.

【0136】[0136]

【表67】 [Table 67]

【0137】[0137]

【表68】 [Table 68]

【0138】[0138]

【表69】 [Table 69]

【0139】[0139]

【表70】 [Table 70]

【0140】[0140]

【表71】 [Table 71]

【0141】[0141]

【表72】 [Table 72]

【0142】[0142]

【表73】 [Table 73]

【0143】[0143]

【表74】 [Table 74]

【0144】[0144]

【表75】 [Table 75]

【0145】[0145]

【表76】 [Table 76]

【0146】[0146]

【表77】 [Table 77]

【0147】[0147]

【発明の効果】以上の説明から容易に理解されるよう
に、第1〜第13発明合金は、被削性改善元素である鉛
成分を全く含まないにも拘わらず、極めて被削性に富む
ものであり、鉛を大量に含有する従来の快削性銅合金の
代替材料として安全に使用できるものであり、切屑の再
利用等を含めて環境衛生上の問題が全くなく、鉛含有製
品が規制されつつある近時の傾向に充分対応することが
できる。
As will be easily understood from the above description, the first to thirteenth invention alloys are extremely rich in machinability although they do not contain any lead component which is a machinability improving element. It can safely be used as a substitute for conventional free-cutting copper alloys containing a large amount of lead, and has no environmental health problems including the reuse of chips. Responding to recent trends that are being regulated.

【0148】さらに、第5及び第6発明合金は、被削性
に加えて耐蝕性にも優れるものであり、耐蝕性を必要と
する切削加工品,鍛造品,鋳物製品等(例えば、給水
栓,っ給排水金具,バルブ,ステム,給湯配管部品,シ
ャフト,熱交換器部品等)の構成材として好適に使用す
ることができるものであり、その実用的価値極めて大な
るものである。
Further, the fifth and sixth invention alloys are excellent in corrosion resistance in addition to machinability, and are used for cutting products, forgings, castings, etc. requiring corrosion resistance (for example, water taps). , Water supply and drain fittings, valves, stems, hot water supply piping parts, shafts, heat exchanger parts, etc.), and their practical value is extremely large.

【0149】また、第7及び第8発明合金は、被削性に
加えて高力性,耐摩耗性にも優れるものであり、高力
性,耐摩耗性を必要とする切削加工品,鍛造品,鋳物製
品等(例えば、軸受,ボルト,ナット,ブッシュ,歯
車,ミシン部品,油圧部品等)の構成材として好適に使
用することができるものであり、その実用的価値極めて
大なるものである。
Further, the seventh and eighth invention alloys are excellent not only in machinability but also in high strength and abrasion resistance, and are required to have high strength and abrasion resistance. Products such as bearings, bolts, nuts, bushings, gears, sewing machine parts, hydraulic parts, etc., and have extremely large practical value. .

【0150】また、第9〜第12発明合金は、被削性に
加えて耐高温酸化性にも優れるものであり、耐高温酸化
性を必要とする切削加工品,鍛造品,鋳物製品等(例え
ば、石油・ガス温風ヒータ用ノズル,バーナヘッド,給
湯器用ガスノズル等)の構成材として好適に使用するこ
とができるものであり、その実用的価値極めて大なるも
のである。
Further, the ninth to twelfth invention alloys are excellent in high-temperature oxidation resistance in addition to machinability. For example, it can be suitably used as a constituent material of a nozzle for an oil / gas hot air heater, a burner head, a gas nozzle for a water heater, etc., and its practical value is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】切屑の形態を示す斜視図である。FIG. 1 is a perspective view showing a form of a chip.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 銅69〜79重量%及び珪素2.0〜
4.0重量%を含有し、且つ残部が亜鉛からなる合金組
成をなすことを特徴とする無鉛快削性銅合金。
1. 69 to 79% by weight of copper and 2.0 to 2.0% of silicon
A lead-free free-cutting copper alloy containing 4.0% by weight and the balance being zinc.
【請求項2】 錫0.3〜3.5重量%、燐0.02〜
0.25重量%、アンチモン0.02〜0.15重量%
及び砒素0.02〜0.15重量%から選択された1種
以上の元素を更に含有することを特徴とする、請求項1
に記載する無鉛快削性銅合金。
2. Tin 0.3 to 3.5% by weight, phosphorus 0.02 to
0.25% by weight, 0.02-0.15% by weight of antimony
2. The composition according to claim 1, further comprising at least one element selected from the group consisting of arsenic and 0.02 to 0.15% by weight.
Lead-free free-cutting copper alloys described in 1.
【請求項3】 銅70〜80重量%と、珪素1.8〜
3.5重量%と、錫0.3〜3.5重量%、アルミニウ
ム1.0〜3.5重量%及び燐0.02〜0.25重量
%から選択された1種以上の元素とを含有し、且つ残部
が亜鉛からなる合金組成をなすことを特徴とする無鉛快
削性銅合金。
3. The method according to claim 1, wherein 70 to 80% by weight of copper and 1.8% to silicon
3.5% by weight, and one or more elements selected from 0.3 to 3.5% by weight of tin, 1.0 to 3.5% by weight of aluminum and 0.02 to 0.25% by weight of phosphorus. A lead-free free-cutting copper alloy comprising an alloy composition containing zinc and the balance being zinc.
【請求項4】 銅62〜78重量%と、珪素2.5〜
4.5重量%と、錫0.3〜3.0重量%、アルミニウ
ム0.2〜2.5重量%及び燐0.02〜0.25重量
%から選択された1種以上の元素と、マンガン0.7〜
3.5重量%及びニッケル0.7〜3.5重量%から選
択された1種以上の元素とを含有し、且つ残部が亜鉛か
らなる合金組成をなすことを特徴とする無鉛快削性銅合
金。
4. 62 to 78% by weight of copper and 2.5 to 2.5% of silicon
4.5% by weight and one or more elements selected from 0.3 to 3.0% by weight of tin, 0.2 to 2.5% by weight of aluminum and 0.02 to 0.25% by weight of phosphorus; Manganese 0.7-
A lead-free free-cutting copper containing 3.5% by weight and one or more elements selected from 0.7 to 3.5% by weight of nickel, and the balance being an alloy composition consisting of zinc. alloy.
【請求項5】 ビスマス0.02〜0.4重量%、テル
ル0.02〜0.4重量%及びセレン0.02〜0.4
重量%から選択された1種以上の元素を更に含有するこ
とを特徴とする、請求項1、請求項2、請求項3又は請
求項4に記載する無鉛快削性銅合金。
5. Bismuth 0.02 to 0.4% by weight, tellurium 0.02 to 0.4% by weight and selenium 0.02 to 0.4%
The lead-free free-cutting copper alloy according to claim 1, wherein the alloy further contains at least one element selected from the weight percent.
【請求項6】 銅69〜79重量%、珪素2.0〜4.
0重量%、アルミニウム0.1〜1.5重量%及び燐
0.02〜0.25重量%を含有し、且つ残部が亜鉛か
らなる合金組成をなすことを特徴とする無鉛快削性銅合
金。
6. Copper 69-79% by weight, silicon 2.0-4.
A lead-free free-cutting copper alloy containing 0% by weight, 0.1-1.5% by weight of aluminum and 0.02-0.25% by weight of phosphorus, and the balance being zinc. .
【請求項7】 クロム0.02〜0.4重量%及びチタ
ン0.02〜0.4重量%から選択された1種以上の元
素を更に含有することを特徴とする、請求項6に記載す
る無鉛快削性銅合金。
7. The method according to claim 6, further comprising at least one element selected from 0.02 to 0.4% by weight of chromium and 0.02 to 0.4% by weight of titanium. Lead-free free-cutting copper alloy.
【請求項8】 ビスマス0.02〜0.4重量%、テル
ル0.02〜0.4重量%及びセレン0.02〜0.4
重量%から選択された1種以上の元素を更に含有するこ
とを特徴とする、請求項6又は請求項7に記載する無鉛
快削性銅合金。
8. Bismuth 0.02 to 0.4% by weight, tellurium 0.02 to 0.4% by weight and selenium 0.02 to 0.4%
The lead-free free-cutting copper alloy according to claim 6 or 7, further comprising one or more elements selected from weight%.
【請求項9】 400〜600℃で30分〜5時間熱処
理したことを特徴とする、請求項1、請求項2、請求項
3、請求項4、請求項5、請求項6、請求項7又は請求
項8に記載する無鉛快削性銅合金。
9. A heat treatment at a temperature of 400 to 600 ° C. for 30 minutes to 5 hours. Or the lead-free free-cutting copper alloy according to claim 8.
JP28859098A 1998-10-12 1998-10-12 Lead-free free-cutting copper alloy Expired - Lifetime JP3734372B2 (en)

Priority Applications (16)

Application Number Priority Date Filing Date Title
JP28859098A JP3734372B2 (en) 1998-10-12 1998-10-12 Lead-free free-cutting copper alloy
PCT/JP1998/005157 WO2000022182A1 (en) 1998-10-12 1998-11-16 Leadless free-cutting copper alloy
EP05075421.7A EP1559802B1 (en) 1998-10-12 1998-11-16 Lead-free, free-cutting copper alloys
EP98953071A EP1045041B1 (en) 1998-10-12 1998-11-16 Leadless free-cutting copper alloy
KR1020007006434A KR100352213B1 (en) 1998-10-12 1998-11-16 Leadless free-cutting copper alloy
CA002314144A CA2314144C (en) 1998-10-12 1998-11-16 Lead-free free-cutting copper alloys
DE69840585T DE69840585D1 (en) 1998-10-12 1998-11-16 Lead-free vending copper alloy
EP05017189A EP1600515B8 (en) 1998-10-12 1998-11-16 Lead-free, free-cutting copper alloys
DE69832097T DE69832097T2 (en) 1998-10-12 1998-11-16 LEAD-FREE AUTOMATIC COPPER ALLOY
EP05017190A EP1600516B1 (en) 1998-10-12 1998-11-16 Lead-free, free-cutting copper alloys
DE69839830T DE69839830D1 (en) 1998-10-12 1998-11-16 Lead-free vending copper alloy
EP05017191A EP1600517B1 (en) 1998-10-12 1998-11-16 Lead-free, free-cutting copper alloys
AU10541/99A AU744335B2 (en) 1998-10-12 1998-11-16 Leadless free-cutting copper alloy
DE69838115T DE69838115T2 (en) 1998-10-12 1998-11-16 Lead-free vending copper alloy
TW088103879A TW421674B (en) 1998-10-12 1999-03-12 Leadless free-cutting copper alloy
US09/987,173 US6413330B1 (en) 1998-10-12 2001-11-13 Lead-free free-cutting copper alloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28859098A JP3734372B2 (en) 1998-10-12 1998-10-12 Lead-free free-cutting copper alloy

Publications (2)

Publication Number Publication Date
JP2000119775A true JP2000119775A (en) 2000-04-25
JP3734372B2 JP3734372B2 (en) 2006-01-11

Family

ID=17732235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28859098A Expired - Lifetime JP3734372B2 (en) 1998-10-12 1998-10-12 Lead-free free-cutting copper alloy

Country Status (8)

Country Link
EP (5) EP1559802B1 (en)
JP (1) JP3734372B2 (en)
KR (1) KR100352213B1 (en)
AU (1) AU744335B2 (en)
CA (1) CA2314144C (en)
DE (4) DE69840585D1 (en)
TW (1) TW421674B (en)
WO (1) WO2000022182A1 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002060868A (en) * 2000-08-08 2002-02-28 Kyowa Bronze Kk Lead-free bronze alloy
JP2005281800A (en) * 2004-03-30 2005-10-13 Kitz Corp Copper-based alloy, and ingot and product using it
US7056396B2 (en) 1998-10-09 2006-06-06 Sambo Copper Alloy Co., Ltd. Copper/zinc alloys having low levels of lead and good machinability
WO2007013428A1 (en) * 2005-07-28 2007-02-01 San-Etsu Metals Co., Ltd. Copper alloy extruded material and method for producing same
JP2008095918A (en) * 2006-10-16 2008-04-24 Yamaha Marine Co Ltd Thermoelement and thermostat device using thermoelement thereof
JP2008516081A (en) * 2004-10-11 2008-05-15 ディール、メタル、シュティフトゥング、ウント、コンパニー、コマンディトゲゼルシャフト Copper / zinc / silicon alloys, methods of use and methods of manufacture thereof
JP2009007657A (en) * 2007-06-29 2009-01-15 Joetsu Bronz1 Corp Lead-free free-cutting copper alloy, and lead-free free-cutting copper alloy for continuous casting
JP2009509031A (en) * 2005-09-22 2009-03-05 三菱伸銅株式会社 Free-cutting copper alloy with ultra-low lead content
JP2010133006A (en) * 2008-12-02 2010-06-17 Xiamen Lota Internatl Co Ltd Lead-free free-cutting silicon brass alloy
WO2010122960A1 (en) 2009-04-24 2010-10-28 サンエツ金属株式会社 High-strength copper alloy
WO2011121799A1 (en) * 2010-03-31 2011-10-06 Jマテ.カッパープロダクツ 株式会社 Lead-free free-machining bronze casting alloy
WO2011121798A1 (en) * 2010-03-31 2011-10-06 Jマテ.カッパープロダクツ 株式会社 Lead-free free-machining brass alloy
JP4838859B2 (en) * 2005-12-14 2011-12-14 ゲブル ケンペル ゲーエムベーハー ウント コンパニィー カーゲー メタルヴェルケ Low migration copper alloy
JP2013104071A (en) * 2011-11-11 2013-05-30 Mitsubishi Shindoh Co Ltd Raw material for form rolling made of copper alloy, and form-rolled product
US8506730B2 (en) 1998-10-09 2013-08-13 Mitsubishi Shindoh Co., Ltd. Copper/zinc alloys having low levels of lead and good machinability
JP2014531516A (en) * 2011-09-30 2014-11-27 プンサン コーポレイション Free-cutting lead-free copper alloy and manufacturing method thereof
US9303300B2 (en) 2005-09-30 2016-04-05 Mitsubishi Shindoh Co., Ltd. Melt-solidified substance, copper alloy for melt-solidification and method of manufacturing the same
US9328401B2 (en) * 2004-08-10 2016-05-03 Mitsubishi Shindoh Co., Ltd. Copper alloy casting having excellent machinability, strength, wear resistance and corrosion resistance and method of casting the same
WO2017104127A1 (en) * 2015-12-17 2017-06-22 パナソニックIpマネジメント株式会社 Fluid control valve and air conditioner using same
WO2018034281A1 (en) 2016-08-15 2018-02-22 三菱伸銅株式会社 Free-cutting copper alloy, and method for producing free-cutting copper alloy
JP2018156771A (en) * 2017-03-16 2018-10-04 住友電装株式会社 Female terminal
WO2020130247A1 (en) * 2018-12-19 2020-06-25 주식회사 풍산 Free-cutting lead-free copper alloy to which lead and bismuth are not added
JP2020158809A (en) * 2019-03-25 2020-10-01 三菱マテリアル株式会社 Copper alloy round bar material
WO2020261603A1 (en) 2019-06-25 2020-12-30 三菱マテリアル株式会社 Free-cutting copper alloy and method for manufacturing free-cutting copper alloy
WO2020261666A1 (en) 2019-06-25 2020-12-30 三菱マテリアル株式会社 Free-cutting copper alloy and method for producing free-cutting copper alloy
WO2020261636A1 (en) 2019-06-25 2020-12-30 三菱マテリアル株式会社 Free-cutting copper alloy casting, and method for producing free-cutting copper alloy casting
US11155909B2 (en) 2017-08-15 2021-10-26 Mitsubishi Materials Corporation High-strength free-cutting copper alloy and method for producing high-strength free-cutting copper alloy
KR20220059528A (en) 2019-12-11 2022-05-10 미쓰비시 마테리알 가부시키가이샤 A free-machining copper alloy, and a manufacturing method of a free-machining copper alloy

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4496662B2 (en) 2001-04-20 2010-07-07 株式会社豊田自動織機 Swash plate in swash plate compressor
JP3961529B2 (en) * 2002-09-09 2007-08-22 三宝伸銅工業株式会社 High strength copper alloy
KR100631041B1 (en) 2005-03-04 2006-10-04 주식회사 풍산 free cutting brass alloy having an improved of machinability and workability
DE502005001747D1 (en) 2005-07-28 2007-11-29 Kemper Gebr Gmbh & Co Kg Process for the preparation of water-bearing copper castings with annealing-reduced migration tendency
PL1801250T3 (en) 2005-12-22 2018-02-28 Viega Technology Gmbh & Co. Kg Parts made from copper alloy with low migration for conduits conveying fluids or drinking water
EP2014964B1 (en) 2007-06-05 2011-11-23 R. Nussbaum AG Valve
JP5320638B2 (en) * 2008-01-08 2013-10-23 株式会社Shカッパープロダクツ Rolled copper foil and method for producing the same
CN101235448B (en) * 2008-02-22 2010-10-13 中南大学 Leadless free-cutting slicon graphite brass
DE102009015186A1 (en) * 2009-03-31 2010-10-14 Viega Gmbh & Co. Kg Fitting for connection of a pipe
EP2290114A1 (en) 2009-08-04 2011-03-02 Gebr. Kemper GmbH + Co. KG Metallwerke Water-guiding component
TWI398532B (en) 2010-01-22 2013-06-11 Modern Islands Co Ltd Lead-free brass alloy
CN101787461B (en) * 2010-03-02 2014-11-19 路达(厦门)工业有限公司 Environment-friendly manganese brass alloy and manufacturing method thereof
WO2012032155A2 (en) * 2010-09-10 2012-03-15 Raufoss Water & Gas As Improved brass alloy and a method of manufacturing thereof
CN102321827B (en) * 2011-09-25 2013-01-09 宁波市鄞州锡青铜带制品有限公司 Preparation method for high-conductivity and low-tin bronze strip
DE102012013817A1 (en) 2012-07-12 2014-01-16 Wieland-Werke Ag Molded parts made of corrosion-resistant copper alloys
US8991787B2 (en) 2012-10-02 2015-03-31 Nibco Inc. Lead-free high temperature/pressure piping components and methods of use
CN110923500A (en) 2012-10-31 2020-03-27 株式会社开滋 Brass alloy, machined part and water contact part
JP5778736B2 (en) 2013-10-04 2015-09-16 ファナック株式会社 Cooling pipe joint for cooling motor, and motor cooling device provided with cooling pipe joint
EP2960350B1 (en) 2014-06-27 2017-11-29 Gebr. Kemper GmbH + Co. KG Metallwerke Copper casting alloy
TWI598452B (en) * 2016-01-21 2017-09-11 慶堂工業股份有限公司 Unleaded, free-cutting brass alloys with excellent castability, method for producing the same, and application thereof
CN109930025A (en) * 2019-03-22 2019-06-25 广东出入境检验检疫局检验检疫技术中心 A kind of leadless environment-friendly free-cutting brass material
DE102020127317A1 (en) 2020-10-16 2022-04-21 Diehl Metall Stiftung & Co. Kg Lead-free copper alloy and use of lead-free copper alloy
GB2614752A (en) 2022-01-18 2023-07-19 Conex Ipr Ltd Components for drinking water pipes, and method for manufacturing same

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB352639A (en) * 1930-02-13 1931-07-16 Hirsch Kupfer & Messingwerke Improvements in and relating to copper-silicon-zinc alloys
US1954003A (en) * 1930-03-31 1934-04-10 Vaders Eugen Copper alloy for chill and die casting
CH148824A (en) * 1930-03-31 1931-08-15 Hirsch Kupfer & Messingwerke Process for the production of chill moldings and injection molded parts.
GB354966A (en) * 1930-05-24 1931-08-20 Hirsch Kupfer & Messingwerke The method of manufacturing bells
US2237774A (en) * 1940-07-23 1941-04-08 Chase Brass & Copper Co Treating silicon copper-base alloys
FR1031211A (en) * 1951-01-19 1953-06-22 Alloy usable in dentistry
DE1558470A1 (en) * 1967-02-02 1970-03-19 Dies Dr Ing Kurt Extruded part
US3736131A (en) * 1970-12-23 1973-05-29 Armco Steel Corp Ferritic-austenitic stainless steel
US3900349A (en) * 1974-01-18 1975-08-19 Anaconda Co Silicon brass resistant to parting corrosion
GB1443090A (en) * 1974-03-25 1976-07-21 Anaconda Co Silicon brass resistant to partin corrosion-
JPS5696040A (en) * 1979-12-28 1981-08-03 Seiko Epson Corp Exterior decorative part material for casting
JPS61133357A (en) * 1984-12-03 1986-06-20 Showa Alum Ind Kk Cu base alloy for bearing superior in workability and seizure resistance
JPS62297429A (en) * 1986-06-17 1987-12-24 Nippon Mining Co Ltd Copper alloy having excellent corrosion resistance
JPH0368731A (en) * 1989-08-08 1991-03-25 Nippon Mining Co Ltd Manufacture of copper alloy and copper alloy material for radiator plate
JPH09143598A (en) * 1995-11-22 1997-06-03 Chuetsu Gokin Chuko Kk Brass alloy material for heating device
JP3956322B2 (en) * 1996-05-30 2007-08-08 中越合金鋳工株式会社 One-way clutch end bearings and other sliding parts
FR2765243B1 (en) * 1997-06-30 1999-07-30 Usinor AUSTENOFERRITIC STAINLESS STEEL WITH VERY LOW NICKEL AND HAVING A STRONG ELONGATION IN TRACTION

Cited By (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7056396B2 (en) 1998-10-09 2006-06-06 Sambo Copper Alloy Co., Ltd. Copper/zinc alloys having low levels of lead and good machinability
US8506730B2 (en) 1998-10-09 2013-08-13 Mitsubishi Shindoh Co., Ltd. Copper/zinc alloys having low levels of lead and good machinability
JP2002060868A (en) * 2000-08-08 2002-02-28 Kyowa Bronze Kk Lead-free bronze alloy
JP4522736B2 (en) * 2004-03-30 2010-08-11 株式会社キッツ Copper-base alloy for die casting and ingots and products using this alloy
JP2005281800A (en) * 2004-03-30 2005-10-13 Kitz Corp Copper-based alloy, and ingot and product using it
US9328401B2 (en) * 2004-08-10 2016-05-03 Mitsubishi Shindoh Co., Ltd. Copper alloy casting having excellent machinability, strength, wear resistance and corrosion resistance and method of casting the same
US10570483B2 (en) 2004-08-10 2020-02-25 Mitsubishi Shindoh Co., Ltd. Copper-based alloy casting in which grains are refined
US10017841B2 (en) 2004-08-10 2018-07-10 Mitsubishi Shindoh Co., Ltd. Copper alloy casting and method of casting the same
JP2008516081A (en) * 2004-10-11 2008-05-15 ディール、メタル、シュティフトゥング、ウント、コンパニー、コマンディトゲゼルシャフト Copper / zinc / silicon alloys, methods of use and methods of manufacture thereof
JPWO2007013428A1 (en) * 2005-07-28 2009-02-05 サンエツ金属株式会社 Lead-free free-cutting copper alloy extruded material
CN101233250B (en) * 2005-07-28 2010-11-24 三越金属株式会社 Copper alloy extruded material and method for producing same
WO2007013428A1 (en) * 2005-07-28 2007-02-01 San-Etsu Metals Co., Ltd. Copper alloy extruded material and method for producing same
JP2009509031A (en) * 2005-09-22 2009-03-05 三菱伸銅株式会社 Free-cutting copper alloy with ultra-low lead content
KR101211206B1 (en) 2005-09-22 2012-12-11 미쓰비시 신도 가부시키가이샤 Free-cutting copper alloy containing very low lead
US7883589B2 (en) 2005-09-22 2011-02-08 Mitsubishi Shindoh Co., Ltd. Free-cutting copper alloy containing very low lead
US9303300B2 (en) 2005-09-30 2016-04-05 Mitsubishi Shindoh Co., Ltd. Melt-solidified substance, copper alloy for melt-solidification and method of manufacturing the same
JP4838859B2 (en) * 2005-12-14 2011-12-14 ゲブル ケンペル ゲーエムベーハー ウント コンパニィー カーゲー メタルヴェルケ Low migration copper alloy
JP2008095918A (en) * 2006-10-16 2008-04-24 Yamaha Marine Co Ltd Thermoelement and thermostat device using thermoelement thereof
JP2009007657A (en) * 2007-06-29 2009-01-15 Joetsu Bronz1 Corp Lead-free free-cutting copper alloy, and lead-free free-cutting copper alloy for continuous casting
JP2010133006A (en) * 2008-12-02 2010-06-17 Xiamen Lota Internatl Co Ltd Lead-free free-cutting silicon brass alloy
WO2010122960A1 (en) 2009-04-24 2010-10-28 サンエツ金属株式会社 High-strength copper alloy
WO2011121798A1 (en) * 2010-03-31 2011-10-06 Jマテ.カッパープロダクツ 株式会社 Lead-free free-machining brass alloy
WO2011121799A1 (en) * 2010-03-31 2011-10-06 Jマテ.カッパープロダクツ 株式会社 Lead-free free-machining bronze casting alloy
JP2014531516A (en) * 2011-09-30 2014-11-27 プンサン コーポレイション Free-cutting lead-free copper alloy and manufacturing method thereof
US9840758B2 (en) 2011-09-30 2017-12-12 Poongsan Corporation Leadless free-cutting copper alloy and method for producing the same
JP2013104071A (en) * 2011-11-11 2013-05-30 Mitsubishi Shindoh Co Ltd Raw material for form rolling made of copper alloy, and form-rolled product
WO2017104127A1 (en) * 2015-12-17 2017-06-22 パナソニックIpマネジメント株式会社 Fluid control valve and air conditioner using same
JP2017110265A (en) * 2015-12-17 2017-06-22 パナソニックIpマネジメント株式会社 On-off valve for fluid and air conditioner using the same
KR20190018534A (en) 2016-08-15 2019-02-22 미쓰비시 신도 가부시키가이샤 Manufacturing method of free-cutting copper alloy and free-cutting copper alloy
US10538827B2 (en) 2016-08-15 2020-01-21 Mitsubishi Shindoh Co., Ltd. Free-cutting copper alloy casting, and method for producing free-cutting copper alloy casting
US11131009B2 (en) 2016-08-15 2021-09-28 Mitsubishi Materials Corporation High-strength free-cutting copper alloy and method for producing high-strength free-cutting copper alloy
WO2019035225A1 (en) 2016-08-15 2019-02-21 三菱伸銅株式会社 High-strength free-cutting copper alloy and method for producing high-strength free-cutting copper alloy
KR20190018539A (en) 2016-08-15 2019-02-22 미쓰비시 신도 가부시키가이샤 Manufacturing method of free-cutting cast copper alloy and free-cutting cast copper alloy casting
KR20190018537A (en) 2016-08-15 2019-02-22 미쓰비시 신도 가부시키가이샤 Manufacturing method of free-cutting copper alloy castings and free-cutting cast copper alloy castings
KR20190018538A (en) 2016-08-15 2019-02-22 미쓰비시 신도 가부시키가이샤 Preparation method of free-cutting copper alloy and free-cutting copper alloy
KR20190018540A (en) 2016-08-15 2019-02-22 미쓰비시 신도 가부시키가이샤 Preparation method of free-cutting copper alloy and free-cutting copper alloy
WO2018034282A1 (en) 2016-08-15 2018-02-22 三菱伸銅株式会社 Free-cutting copper alloy casting, and method for producing free-cutting copper alloy casting
KR20190095520A (en) 2016-08-15 2019-08-14 미쓰비시 신도 가부시키가이샤 Free cutting copper alloy and manufacturing method of free cutting copper alloy
KR20190095508A (en) 2016-08-15 2019-08-14 미쓰비시 신도 가부시키가이샤 Free cutting copper alloy and manufacturing method of free cutting copper alloy
KR20190100418A (en) 2016-08-15 2019-08-28 미쓰비시 신도 가부시키가이샤 High strength free cutting copper alloy, and manufacturing method of high strength free cutting copper alloy
US10538828B2 (en) 2016-08-15 2020-01-21 Mitsubishi Shindoh Co., Ltd. Free-cutting copper alloy, and method for producing free-cutting copper alloy
US11136648B2 (en) 2016-08-15 2021-10-05 Mitsubishi Materials Corporation Free-cutting copper alloy, and method for producing free-cutting copper alloy
US10557185B2 (en) 2016-08-15 2020-02-11 Mitsubishi Shindoh Co., Ltd. Free-cutting copper alloy, and method for producing free-cutting copper alloy
WO2018034281A1 (en) 2016-08-15 2018-02-22 三菱伸銅株式会社 Free-cutting copper alloy, and method for producing free-cutting copper alloy
US11313013B2 (en) 2016-08-15 2022-04-26 Mitsubishi Materials Corporation Free-cutting copper alloy and method for producing free-cutting copper alloy
US11421301B2 (en) 2016-08-15 2022-08-23 Mitsubishi Materials Corporation Free-cutting copper alloy casting and method for producing free-cutting copper alloy casting
US11421302B2 (en) 2016-08-15 2022-08-23 Mitsubishi Materials Corporation Free-cutting copper alloy and method for producing free-cutting copper alloy
WO2018034280A1 (en) 2016-08-15 2018-02-22 三菱伸銅株式会社 Free-cutting copper alloy and method for producing free-cutting copper alloy
US11434548B2 (en) 2016-08-15 2022-09-06 Mitsubishi Materials Corporation Free-cutting copper alloy and method for producing free-cutting copper alloy
JP2018156771A (en) * 2017-03-16 2018-10-04 住友電装株式会社 Female terminal
US11155909B2 (en) 2017-08-15 2021-10-26 Mitsubishi Materials Corporation High-strength free-cutting copper alloy and method for producing high-strength free-cutting copper alloy
US11692243B2 (en) 2018-12-19 2023-07-04 Poongsan Corporation Free-cutting leadless copper alloy with no lead and bismuth
WO2020130247A1 (en) * 2018-12-19 2020-06-25 주식회사 풍산 Free-cutting lead-free copper alloy to which lead and bismuth are not added
JP7180488B2 (en) 2019-03-25 2022-11-30 三菱マテリアル株式会社 Copper alloy round bar
JP2020158809A (en) * 2019-03-25 2020-10-01 三菱マテリアル株式会社 Copper alloy round bar material
WO2020261666A1 (en) 2019-06-25 2020-12-30 三菱マテリアル株式会社 Free-cutting copper alloy and method for producing free-cutting copper alloy
WO2020261611A1 (en) 2019-06-25 2020-12-30 三菱マテリアル株式会社 Free-cutting copper alloy, and manufacturing method of free-cutting copper alloy
KR20210142165A (en) 2019-06-25 2021-11-24 미쓰비시 마테리알 가부시키가이샤 A free-machining copper alloy, and a manufacturing method of a free-machining copper alloy
KR20210148347A (en) 2019-06-25 2021-12-07 미쓰비시 마테리알 가부시키가이샤 Free-machining copper alloy castings, and methods of manufacturing free-machining copper alloy castings
KR20210152562A (en) 2019-06-25 2021-12-15 미쓰비시 마테리알 가부시키가이샤 A free-machining copper alloy, and a manufacturing method of a free-machining copper alloy
KR20210080590A (en) 2019-06-25 2021-06-30 미쓰비시 마테리알 가부시키가이샤 A free-machining copper alloy, and a manufacturing method of a free-machining copper alloy
KR20230174286A (en) 2019-06-25 2023-12-27 미쓰비시 마테리알 가부시키가이샤 Free-cutting copper alloy, and manufacturing method of free-cutting copper alloy
WO2021117528A1 (en) 2019-06-25 2021-06-17 三菱マテリアル株式会社 Free-cutting copper alloy and method for manufacturing free-cutting copper alloy
WO2020261636A1 (en) 2019-06-25 2020-12-30 三菱マテリアル株式会社 Free-cutting copper alloy casting, and method for producing free-cutting copper alloy casting
KR20210083364A (en) 2019-06-25 2021-07-06 미쓰비시 마테리알 가부시키가이샤 A free-machining copper alloy, and a manufacturing method of a free-machining copper alloy
US11479834B2 (en) 2019-06-25 2022-10-25 Mitsubishi Materials Corporation Free-cutting copper alloy and method for manufacturing free-cutting copper alloy
US11512370B2 (en) 2019-06-25 2022-11-29 Mitsubishi Materials Corporation Free-cutting copper alloy and method for producing free-cutting copper alloy
WO2020261604A1 (en) 2019-06-25 2020-12-30 三菱マテリアル株式会社 Free-cutting copper alloy and method for producing free-cutting copper alloy
WO2020261603A1 (en) 2019-06-25 2020-12-30 三菱マテリアル株式会社 Free-cutting copper alloy and method for manufacturing free-cutting copper alloy
US11788173B2 (en) 2019-06-25 2023-10-17 Mitsubishi Materials Corporation Free-cutting copper alloy, and manufacturing method of free-cutting copper alloy
US11814712B2 (en) 2019-06-25 2023-11-14 Mitsubishi Materials Corporation Free-cutting copper alloy and method for producing free-cutting copper alloy
KR20220059528A (en) 2019-12-11 2022-05-10 미쓰비시 마테리알 가부시키가이샤 A free-machining copper alloy, and a manufacturing method of a free-machining copper alloy

Also Published As

Publication number Publication date
EP1600516A2 (en) 2005-11-30
AU744335B2 (en) 2002-02-21
EP1600515B8 (en) 2008-10-15
TW421674B (en) 2001-02-11
EP1045041B1 (en) 2005-10-26
EP1600517B1 (en) 2009-02-18
EP1600517A3 (en) 2005-12-14
WO2000022182A1 (en) 2000-04-20
EP1600515A3 (en) 2005-12-14
JP3734372B2 (en) 2006-01-11
EP1600515A2 (en) 2005-11-30
DE69838115T2 (en) 2008-04-10
DE69832097D1 (en) 2005-12-01
EP1559802B1 (en) 2014-01-15
KR20010033073A (en) 2001-04-25
EP1600515B1 (en) 2008-07-30
DE69838115D1 (en) 2007-08-30
EP1600516B1 (en) 2007-07-18
EP1045041A4 (en) 2003-05-07
CA2314144C (en) 2006-08-22
CA2314144A1 (en) 2000-04-20
EP1559802A1 (en) 2005-08-03
EP1600517A2 (en) 2005-11-30
KR100352213B1 (en) 2002-09-12
DE69832097T2 (en) 2006-07-06
DE69839830D1 (en) 2008-09-11
DE69840585D1 (en) 2009-04-02
EP1600516A3 (en) 2005-12-14
EP1045041A1 (en) 2000-10-18
AU1054199A (en) 2000-05-01

Similar Documents

Publication Publication Date Title
JP3734372B2 (en) Lead-free free-cutting copper alloy
JP3917304B2 (en) Free-cutting copper alloy
US6413330B1 (en) Lead-free free-cutting copper alloys
JP3335002B2 (en) Lead-free free-cutting brass alloy with excellent hot workability
JP4951623B2 (en) Free-cutting copper alloy with ultra-low lead content
JP3903297B2 (en) Dezincing resistant copper base alloy
US20150044089A1 (en) Copper/zinc alloys having low levels of lead and good machinability
US7056396B2 (en) Copper/zinc alloys having low levels of lead and good machinability
TWI700380B (en) Free-cutting leadless copper alloy with no lead and bismuth
JP3693994B2 (en) Lead reduced free-cutting copper alloy
JP2003277855A (en) Lead-free, free-cutting brass alloy material and production method thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081028

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131028

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term