JP2017110265A - On-off valve for fluid and air conditioner using the same - Google Patents

On-off valve for fluid and air conditioner using the same Download PDF

Info

Publication number
JP2017110265A
JP2017110265A JP2015245858A JP2015245858A JP2017110265A JP 2017110265 A JP2017110265 A JP 2017110265A JP 2015245858 A JP2015245858 A JP 2015245858A JP 2015245858 A JP2015245858 A JP 2015245858A JP 2017110265 A JP2017110265 A JP 2017110265A
Authority
JP
Japan
Prior art keywords
valve
refrigerant
air conditioner
fluid
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015245858A
Other languages
Japanese (ja)
Other versions
JP6868761B2 (en
Inventor
正雄 犬井
Masao Inui
正雄 犬井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=59056321&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2017110265(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2015245858A priority Critical patent/JP6868761B2/en
Priority to DE112016005810.1T priority patent/DE112016005810T5/en
Priority to CN201680007752.8A priority patent/CN107208190B/en
Priority to PCT/JP2016/005106 priority patent/WO2017104127A1/en
Priority to MYPI2017702139A priority patent/MY191315A/en
Publication of JP2017110265A publication Critical patent/JP2017110265A/en
Application granted granted Critical
Publication of JP6868761B2 publication Critical patent/JP6868761B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/02Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with screw-spindle
    • F16K1/04Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with screw-spindle with a cut-off member rigid with the spindle, e.g. main valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/02Construction of housing; Use of materials therefor of lift valves

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Valve Housings (AREA)
  • Lift Valve (AREA)
  • Temperature-Responsive Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lead-less on-off valve having no stress corrosion crack and an air conditioner using the same.SOLUTION: An air conditioner has a constitution by forming an on-off valve with a bras alloy which has content of lead of 1000 ppm or less and contains Sn of 0.8% or more and arranging the same in a refrigerant circuit. Thereby stress corrosion crack can be prevented and environmental load can be reduced even in the on-off valve which is used by installing the same to a refrigerant piping, is exposed to ambient air rich in ammonia and is easy to react with ammonia with higher temperature than ambient air.SELECTED DRAWING: Figure 1

Description

本発明は、冷凍サイクルの冷媒配管系に介装する二方弁や三方弁等の流体用開閉弁に関し、特に環境負荷を低減可能な開閉弁とそれを用いた空気調和機に関するものである。   The present invention relates to a fluid on-off valve such as a two-way valve or a three-way valve interposed in a refrigerant piping system of a refrigeration cycle, and more particularly to an on-off valve capable of reducing an environmental load and an air conditioner using the same.

一般に、冷凍サイクルを用いた機器、例えば空気調和機は、室内機と室外機を冷媒配管により接続して構成され、その冷媒回路には、配管接続後にエアーパージ及び冷媒封入するためサービスポートを有する三方弁を備えている(例えば、特許文献1参照)。   In general, a device using a refrigeration cycle, for example, an air conditioner, is configured by connecting an indoor unit and an outdoor unit by a refrigerant pipe, and the refrigerant circuit has a service port for air purge and refrigerant filling after the pipe is connected. A three-way valve is provided (see, for example, Patent Document 1).

図7は特許文献1記載の空気調和機を示し、この空気調和機は室外機100と室内機101を冷媒配管103a、103bで接続して構成してあり、その冷媒配管103a、103bの接続部に二方弁104と三方弁105を介装している。そして、上記三方弁105のサービスポート106を開閉して配管接続後のエアーパージ及び冷媒封入を行っている(特許文献1の段落0044)。   FIG. 7 shows an air conditioner described in Patent Document 1. This air conditioner is configured by connecting an outdoor unit 100 and an indoor unit 101 with refrigerant pipes 103a and 103b, and a connecting portion of the refrigerant pipes 103a and 103b. In addition, a two-way valve 104 and a three-way valve 105 are interposed. Then, the service port 106 of the three-way valve 105 is opened and closed to perform air purge and refrigerant filling after pipe connection (paragraph 0044 of Patent Document 1).

特開2009−250274号公報JP 2009-250274 A

上記従来の空気調和機は、三方弁105を利用して冷媒を漏洩させることなくエアーパージすることができ、冷媒を漏出させてしまって環境に負荷を与えるようなことなく施工性することができる利点がある。   The conventional air conditioner can perform air purge without leaking the refrigerant by using the three-way valve 105, and can be constructed without causing a load on the environment by leaking the refrigerant. There are advantages.

しかしながら、上記二方弁104や三方弁105は形状が複雑で高い精度を必要とするため、加工性の良い材料用いて構成してあり、現状では鉛を含む黄銅合金によって形成してある。この黄銅合金は、耐食性、被削性、機械的性質などの特性に優れるため複雑かつ精度の高い開閉弁には好適な材料であるが、鉛を含んでいるため開閉弁が環境負荷の大きな部品となっている。   However, since the two-way valve 104 and the three-way valve 105 are complicated in shape and require high precision, the two-way valve 104 and the three-way valve 105 are made of a material with good workability and are currently formed of a brass alloy containing lead. This brass alloy is a suitable material for complicated and highly accurate on-off valves because of its excellent properties such as corrosion resistance, machinability, and mechanical properties, but because it contains lead, the on-off valves have a large environmental impact. It has become.

そこで、上記開閉弁を、鉛含有量が1000ppm以下と実質的に鉛レスといえる黄銅合金製の開閉弁とすることが考えられる。   Therefore, it is conceivable that the on-off valve is a brass alloy on-off valve that can be said to be substantially lead-free with a lead content of 1000 ppm or less.

しかしながら、上記開閉弁を鉛レスとすると、開閉弁を構成する黄銅合金が大気中に含まれるアンモニアに反応して応力腐食割れを生じてしまう。   However, if the on-off valve is lead-free, the brass alloy constituting the on-off valve reacts with ammonia contained in the atmosphere and stress corrosion cracking occurs.

特に、冷媒配管に介装されて使用される二方弁や三方弁等の流体用開閉弁は、室外機に設けられていて、常時大気に曝露されており、この大気は犬、猫等の小動物の排泄物から発生するアンモニアに触れやすくなっているところから、前記した応力腐食割れが生じやすい。   In particular, fluid on-off valves such as two-way valves and three-way valves that are used in refrigerant piping are provided in outdoor units and are constantly exposed to the atmosphere. Since the ammonia generated from the excrement of small animals is easily touched, the above-described stress corrosion cracking is likely to occur.

また、これに加え、冷媒配管に介装されて使用される二方弁や三方弁等の流体用開閉弁は、当該開閉弁内を流れる冷媒によってその温度が60℃程度と大気よりもかなり高くなることもあってアンモニアとの反応に対する感度が高くなり、応力腐食割れが生じやすくなる、という特殊かつ過酷な使用条件下にある。   In addition, fluid on-off valves such as two-way valves and three-way valves that are used by interposing in the refrigerant pipes have a temperature of about 60 ° C. and much higher than the atmosphere due to the refrigerant flowing in the on-off valves. Therefore, the sensitivity to the reaction with ammonia is increased, and stress corrosion cracking is likely to occur.

そこで本発明はこのような点をも考慮して鉛レス化を推し進めなしたもので、応力腐食割れを実用レベルで防止した実質的鉛レスの流体用開閉弁及びそれを用いた空気調和機の提供を目的としたものである。   Accordingly, the present invention has been promoted to lead-free in consideration of these points, and a substantially lead-free fluid on-off valve that prevents stress corrosion cracking at a practical level and an air conditioner using the same. It is for the purpose of provision.

本発明は、上記目的を達成するため、鉛の含有量が1000ppm以下であって、Snを0.8%以上含む黄銅合金で流体用開閉弁を形成してある。   In the present invention, in order to achieve the above object, a fluid on-off valve is formed of a brass alloy having a lead content of 1000 ppm or less and containing 0.8% or more of Sn.

これにより、冷媒配管に介装されて使用されることにより、アンモニアの多い大気に曝露され、かつ、大気よりも温度が高くなってアンモニアとの反応が進みやすい流体用開閉弁であっても、応力腐食割れを防止することができる。   Thereby, even if it is a fluid on-off valve that is exposed to the atmosphere containing a lot of ammonia by being interposed in the refrigerant pipe, and the temperature is higher than the atmosphere and the reaction with ammonia tends to proceed, Stress corrosion cracking can be prevented.

本発明は、環境負荷を低減しつつ、流体用開閉弁の応力腐食割れを防止することができ、流体用開閉弁及びこれを用いた空気調和機の信頼性を向上させることができる。   The present invention can prevent stress corrosion cracking of a fluid on-off valve while reducing the environmental load, and can improve the reliability of a fluid on-off valve and an air conditioner using the same.

本発明の実施の形態1における空気調和機の冷媒回路図Refrigerant circuit diagram of the air conditioner in Embodiment 1 of the present invention (a)同空気調和機の室外機の外観を示す正面図、(b)同室外機の配管カバーの一部を破断して示す側面図(A) Front view showing appearance of outdoor unit of same air conditioner, (b) Side view showing part of piping cover of outdoor unit broken away 同空気調和機の三方弁を示す断面図Sectional view showing the three-way valve of the air conditioner 同空気調和機の三方弁を示す分解断面図Exploded sectional view showing the three-way valve of the air conditioner 本発明の試験品の試験状態を示す写真Photograph showing test state of test product of the present invention 本発明の実施の形態2における空気調和機の二方弁を示す断面図Sectional drawing which shows the two-way valve of the air conditioner in Embodiment 2 of this invention 従来の空気調和機の冷媒回路図Refrigerant circuit diagram of a conventional air conditioner

第1の発明は、鉛の含有量が1000ppm以下であって、Snを0.8%以上含む黄銅合金で流体用開閉弁を形成してある。   In the first invention, the fluid on-off valve is formed of a brass alloy having a lead content of 1000 ppm or less and containing Sn of 0.8% or more.

これにより、冷媒配管に介装されて使用されることにより、アンモニアの多い大気に曝露され、かつ、大気よりも温度が高くなってアンモニアと反応しやすい流体用開閉弁であっても、応力腐食割れを防止することができる。   As a result, even if it is an on-off valve for a fluid that is exposed to the atmosphere containing a lot of ammonia and is easily exposed to the atmosphere due to its temperature being higher than the atmosphere and being easily reacted with ammonia. Cracking can be prevented.

第2の発明は、第1の発明において、流体用開閉弁は更にBiを1.6%以上含む黄銅合金で形成してある。   According to a second invention, in the first invention, the fluid on-off valve is further formed of a brass alloy containing 1.6% or more of Bi.

これにより、鉛レス黄銅合金としていてもBiによって良好な加工性を維持することができる。   Thereby, even if it is a lead-less brass alloy, favorable workability can be maintained by Bi.

第3の発明は、鉛の含有量が1000ppm以下であって、Siを0.001%以上(0.001%を含まず)含む黄銅合金で流体用開閉弁を形成してある。   In a third aspect of the present invention, a fluid on-off valve is formed of a brass alloy having a lead content of 1000 ppm or less and containing Si in an amount of 0.001% or more (excluding 0.001%).

これにより、冷媒配管に介装されて使用されることにより、アンモニアの多い大気に曝露され、かつ、大気よりも温度が高くなってアンモニアと反応しやすい流体用開閉弁であっても、応力腐食割れを防止することができる。   As a result, even if it is an on-off valve for a fluid that is exposed to the atmosphere containing a lot of ammonia and is easily exposed to the atmosphere due to its temperature being higher than the atmosphere and being easily reacted with ammonia. Cracking can be prevented.

第4の発明は、前記第1〜第3のいずれかの発明の流体用開閉弁を設けた空気調和機である。   A fourth invention is an air conditioner provided with the fluid on-off valve according to any one of the first to third inventions.

これにより、流体用開閉弁の応力腐食割れを防止し、流体用開閉弁及びこれを用いた空気調和機の信頼性を低下させることなく環境負荷を低減させることができる。   Thereby, stress corrosion cracking of the fluid on-off valve can be prevented, and the environmental load can be reduced without reducing the reliability of the fluid on-off valve and the air conditioner using the fluid on-off valve.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は本発明の実施の形態1における空気調和機の冷媒回路図、図2は(a)同空気調和機の室外機の外観を示す正面図、(b)同室外機の配管カバーの一部を破断して示す側面図、図3は同空気調和機の三方弁を示す断面図、図4は同空気調和機の三方弁を示す分解断面図である。
(Embodiment 1)
FIG. 1 is a refrigerant circuit diagram of an air conditioner according to Embodiment 1 of the present invention, FIG. 2 is (a) a front view showing the appearance of the outdoor unit of the air conditioner, and (b) one of piping covers of the outdoor unit. FIG. 3 is a sectional view showing a three-way valve of the air conditioner, and FIG. 4 is an exploded sectional view showing the three-way valve of the air conditioner.

図1において、本実施の形態における空気調和機は、冷媒を圧縮する圧縮機1、冷房暖房運転時の冷媒回路を切り替える四方弁2、冷媒と外気の熱を交換する室外熱交換器3、冷媒を減圧する減圧器4を有す室外機5と、冷媒と室内空気の熱を交換する室内熱交換器6を有す室内機7と、室内機7と室外機5を接続する液接続配管8、ガス接続配管9とで構成されている。そして、室外機5の上記ガス接続配管9への接続口と四方弁2との間の配管に第1の開閉弁10が、液接続配管8への接続口と減圧器4との間の配管に第2の開閉弁11が、それぞれ設けられている。   1, the air conditioner in the present embodiment includes a compressor 1 that compresses refrigerant, a four-way valve 2 that switches a refrigerant circuit during cooling and heating operation, an outdoor heat exchanger 3 that exchanges heat between the refrigerant and the outside air, and refrigerant. An outdoor unit 5 having a decompressor 4 for reducing the pressure, an indoor unit 7 having an indoor heat exchanger 6 for exchanging heat of refrigerant and indoor air, and a liquid connection pipe 8 for connecting the indoor unit 7 and the outdoor unit 5. And gas connection pipe 9. And the 1st on-off valve 10 is the piping between the connection port to the gas connection piping 9 of the outdoor unit 5 and the four-way valve 2, and the piping between the connection port to the liquid connection piping 8 and the decompressor 4. The second on-off valves 11 are provided respectively.

また、上記圧縮機1、四方弁2、室外熱交換器3、減圧器4、第2の開閉弁11、液接続配管8、室内熱交換器6、ガス接続配管9、第1の開閉弁10を配管で環状に接続し冷媒回路を構成している。   The compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the decompressor 4, the second on-off valve 11, the liquid connection pipe 8, the indoor heat exchanger 6, the gas connection pipe 9, and the first on-off valve 10 Are connected in an annular shape with piping to constitute a refrigerant circuit.

上記第1の開閉弁10は配管接続後のエアーパージ及び冷媒封入をおこなう三方弁で構成してあり、第2の開閉弁11は二方弁で構成してある。そして、上記いずれの開閉弁10、11も、図2に示すように室外機5の側面に露出させて設け、配管カバー5aによって覆っているが、地面等に近い位置で大気に曝露されるような形となっている。そして上記いずれの開閉弁10、11も黄銅合金を用い鍛造によって形成してある。   The first on-off valve 10 is constituted by a three-way valve that performs air purge and refrigerant filling after pipe connection, and the second on-off valve 11 is constituted by a two-way valve. As shown in FIG. 2, each of the on-off valves 10 and 11 is provided so as to be exposed on the side surface of the outdoor unit 5 and covered with the piping cover 5a, but is exposed to the atmosphere at a position close to the ground or the like. It has become a form. Each of the on-off valves 10 and 11 is formed by forging using a brass alloy.

また本実施の形態による空気調和機を構成する冷媒回路には、テトラフルオロプロペンまたはトリフルオロプロペンをベース成分とし、ジフルオロメタンまたはペンタフルオロエタンまたはテトラフルオロエタンを、地球温暖化係数が5以上、750以下となるように、望ましくは350以下、さらに望ましくは150以下となるようにそれぞれ2成分混合もしくは3成分混合した環境負荷の小さいハイドロフルオロオレフィン冷媒を使用している。具体的には、R32等のHFC系冷媒やHFO−1234yf等炭素の二重結合を持つフッ化水素系冷媒の単一冷媒またはそれらを主成分とする混合冷媒を使用している。   In the refrigerant circuit constituting the air conditioner according to the present embodiment, tetrafluoropropene or trifluoropropene is used as a base component, difluoromethane, pentafluoroethane or tetrafluoroethane is used, and the global warming potential is 5 or more and 750. A hydrofluoroolefin refrigerant with a small environmental load, which is preferably a mixture of two components or a mixture of three components so that it is preferably 350 or less, more preferably 150 or less, is used. Specifically, a single refrigerant of a HFC refrigerant such as R32, a hydrogen fluoride refrigerant having a carbon double bond such as HFO-1234yf, or a mixed refrigerant containing them as a main component is used.

冷房運転時には、四方弁2を圧縮機1の吐出側と室外熱交換器3とが連通するように切り換える。これにより、圧縮機1によって圧縮された冷媒は高温高圧の冷媒となって四方弁2を通って室外熱交換器3に送られる。そして、外気と熱交換して放熱し、高圧の液冷媒となり、減圧器4に送られる。減圧器4では減圧されて低温低圧の二相冷媒となり、第2の開閉弁11、液接続配管8を通って室内機7に送られる。室内機7では、冷媒は室内熱交換器6に入り室内空気と熱交換して吸熱し、蒸発気化して低温のガス冷媒となる。この時室内空気は冷却されて室内を冷房する。さらに冷媒はガス接続配管9を通って、室外機5に戻り、第1の開閉弁10、四方弁2を経由して圧縮機1に戻される。   During the cooling operation, the four-way valve 2 is switched so that the discharge side of the compressor 1 and the outdoor heat exchanger 3 communicate with each other. Thereby, the refrigerant | coolant compressed by the compressor 1 turns into a high temperature / high pressure refrigerant | coolant, and is sent to the outdoor heat exchanger 3 through the four-way valve 2. FIG. Then, it exchanges heat with the outside air to dissipate heat, and becomes a high-pressure liquid refrigerant, which is sent to the decompressor 4. In the decompressor 4, the pressure is reduced to form a low-temperature and low-pressure two-phase refrigerant, which is sent to the indoor unit 7 through the second on-off valve 11 and the liquid connection pipe 8. In the indoor unit 7, the refrigerant enters the indoor heat exchanger 6, exchanges heat with indoor air, absorbs heat, evaporates, and becomes a low-temperature gas refrigerant. At this time, the room air is cooled to cool the room. Further, the refrigerant returns to the outdoor unit 5 through the gas connection pipe 9, and returns to the compressor 1 through the first on-off valve 10 and the four-way valve 2.

暖房運転時には、四方弁2を圧縮機1の吐出側と第1の開閉弁10とが連通するように切り換える。これにより、圧縮機1によって圧縮された冷媒は高温高圧の冷媒となって四方弁2、第1の開閉弁10、ガス接続配管9を通り、室内機7に送られる。高温高圧の冷
媒は室内熱交換器6に入り、室内空気と熱交換して放熱し、冷却され高圧の液冷媒となる。この時、室内空気は加熱されて室内を暖房する。その後、冷媒は液接続配管8を通って、第2の開閉弁11、減圧器4に送られ、減圧器4において減圧されて低温低圧の二相冷媒となり、室外熱交換器3に送られて外気と熱交換して蒸発気化し、四方弁2を経由して圧縮機1へ戻される。
During the heating operation, the four-way valve 2 is switched so that the discharge side of the compressor 1 and the first on-off valve 10 communicate with each other. Thereby, the refrigerant compressed by the compressor 1 becomes a high-temperature and high-pressure refrigerant, passes through the four-way valve 2, the first on-off valve 10, and the gas connection pipe 9 and is sent to the indoor unit 7. The high-temperature and high-pressure refrigerant enters the indoor heat exchanger 6, exchanges heat with indoor air, dissipates heat, and is cooled to become high-pressure liquid refrigerant. At this time, the room air is heated to heat the room. Thereafter, the refrigerant passes through the liquid connection pipe 8 and is sent to the second on-off valve 11 and the decompressor 4, and is decompressed by the decompressor 4 to become a low-temperature and low-pressure two-phase refrigerant and sent to the outdoor heat exchanger 3. It exchanges heat with the outside air to evaporate and returns to the compressor 1 via the four-way valve 2.

次に図2、図3を用いて、本実施の形態の空気調和機に用いている流体用開閉弁の一つである第1の開閉弁10の構成を説明する。   Next, the configuration of the first on-off valve 10 that is one of the fluid on-off valves used in the air conditioner of the present embodiment will be described with reference to FIGS.

第1の開閉弁10は三方弁であり、その弁本体21は、室内配管側ポート22と、室外配管側ポート23と、サービスポート24と、弁棒25が螺着される弁棒受入部26が設けられている。   The first on-off valve 10 is a three-way valve, and its valve body 21 has an indoor piping side port 22, an outdoor piping side port 23, a service port 24, and a valve rod receiving portion 26 into which a valve rod 25 is screwed. Is provided.

室内配管側ポート22には、室内熱交換器6に接続されたガス接続配管9がフレアナット27を介して接続され、室外配管側ポート23には、銅管28がフラックス剤を介してロウ付け接続されて同様に室外熱交換器3側からの配管29(図1の冷媒回路図参照)に接続されるようになっている。   A gas connection pipe 9 connected to the indoor heat exchanger 6 is connected to the indoor pipe side port 22 via a flare nut 27, and a copper pipe 28 is brazed to the outdoor pipe side port 23 via a flux agent. Similarly, it is connected to a pipe 29 (see the refrigerant circuit diagram of FIG. 1) from the outdoor heat exchanger 3 side.

サービスポート24には、バルブコア30が挿入されておりサービスポートキャップ31が螺着されている。通常は密封されているが、空気調和機の設置時には、このサービスポート24から真空引きを行う。   A valve core 30 is inserted into the service port 24 and a service port cap 31 is screwed thereon. Although normally sealed, the service port 24 is evacuated when the air conditioner is installed.

弁棒受入部26には弁棒キャップ32が螺着してあり、弁棒受入部26内に外部から塵埃が侵入するのを防止している。弁棒受入部26内の弁棒25は、図4に示すように雄ネジ部25a、六角レンチ用挿入穴25b、Oリング25cを介装する溝部25dを一体に備えている。弁棒25の雄ネジ部25aは、弁棒受入部26に設けた雌ネジ部26aと螺合しており、六角レンチ用挿入穴25bに六角レンチ(図示せず)を挿入して回転操作することにより弁棒25を進退させ、室外配管側ポート弁座23aを開閉することができるようになっている。   A valve stem cap 32 is screwed onto the valve stem receiving portion 26 to prevent dust from entering the valve stem receiving portion 26 from the outside. As shown in FIG. 4, the valve rod 25 in the valve rod receiving portion 26 is integrally provided with a groove portion 25 d that interposes a male screw portion 25 a, a hexagon wrench insertion hole 25 b, and an O-ring 25 c. The male threaded portion 25a of the valve stem 25 is screwed with a female threaded portion 26a provided in the valve stem receiving portion 26, and a hexagonal wrench (not shown) is inserted into the hexagonal wrench insertion hole 25b for rotational operation. Thus, the valve stem 25 can be advanced and retracted to open and close the outdoor piping side port valve seat 23a.

上記したような構成からなる三方弁の弁本体21は既述した通り黄銅合金を用い鍛造によって形成してあり、その黄銅合金は鉛の含有量が1000ppm以下の鉛レス黄銅合金が用いてある。   The valve body 21 of the three-way valve configured as described above is formed by forging using a brass alloy as described above, and the brass alloy is a lead-less brass alloy having a lead content of 1000 ppm or less.

上記鉛の含有量が1000ppm以下とした鉛レス黄銅合金は背景技術でも述べたように大気中に含まれる開閉弁を構成する黄銅合金がアンモニアに反応して応力腐食割れを生じてしまう。   As described in the background art, the lead-free brass alloy having a lead content of 1000 ppm or less reacts with ammonia to cause stress corrosion cracking when the brass alloy constituting the on-off valve contained in the atmosphere reacts with ammonia.

そこで、この発明では、開閉弁は、鉛の含有量が1000ppm以下であって、Snを0.220%以上(0.220%を含まず)、好ましくは更にBiを1.320%以上(1.320%を含まず)含む鉛レス黄銅合金で形成してある。   Therefore, in this invention, the on-off valve has a lead content of 1000 ppm or less, Sn is 0.220% or more (excluding 0.220%), and preferably Bi is 1.320% or more (1 (Not including 320%) lead-free brass alloy.

表1は当該鉛レス黄銅合金で形成した三方弁の応力腐食割れを評価するために行ったアンモニア応力腐食割れ試験の結果を示す。   Table 1 shows the results of an ammonia stress corrosion cracking test conducted to evaluate stress corrosion cracking of a three-way valve formed of the leadless brass alloy.

試験は、図5に示すように14%のアンモニア水を入れたデシケータ内のアンモニア水上方に通気板を配置し、その上に後述する試験品を置き、当該試験品をアンモニア雰囲気中に曝露させ、72時間放置した後、取り出して硝酸液で洗浄し目視にて観察した。観察の結果、ひび割れがないものが○、ひび割れがあるものは×である。なお、アンモニア水の上面と通気板との距離tは約100mmであり、試験品はアンモニア水と非接触の状態
である。
In the test, as shown in FIG. 5, a vent plate is placed above the ammonia water in a desiccator containing 14% ammonia water, and a test product to be described later is placed on the vent plate to expose the test product in an ammonia atmosphere. After leaving for 72 hours, the sample was taken out, washed with a nitric acid solution, and visually observed. As a result of observation, a sample having no cracks is indicated by ○, and a sample having cracks is indicated by ×. Note that the distance t between the upper surface of the ammonia water and the ventilation plate is about 100 mm, and the test product is not in contact with the ammonia water.

また、試験品は図2に示す三方弁で、室内配管側ポート22と、サービスポート24と、弁棒受入部26の各部寸法と締め付けトルクは表2の通りである。   The test product is a three-way valve shown in FIG. 2. The dimensions and tightening torque of each part of the indoor piping side port 22, the service port 24, and the valve rod receiving part 26 are as shown in Table 2.

Figure 2017110265
Figure 2017110265

Figure 2017110265
Figure 2017110265

なお、応力腐食割れとしては締め付けトルクが大きい室内配管側ポート22部分ならびにフレアナット27が最も過酷な条件となっているため、この室内配管側ポート22部分ならびにフレアナット27の結果で評価した。   As stress corrosion cracking, the indoor piping side port 22 portion and the flare nut 27 having a large tightening torque are the most severe conditions. Therefore, the evaluation was performed based on the results of the indoor piping side port 22 portion and the flare nut 27.

この試験結果から、鉛の含有量を1000ppm以下とした鉛レス黄銅合金であっても、Snを0.8%以上、好ましくは1.050%以上含む黄銅合金とすれば応力腐食割れを防止できることがわかる。   From this test result, even if it is a lead-less brass alloy with a lead content of 1000 ppm or less, stress corrosion cracking can be prevented by using a brass alloy containing Sn of 0.8% or more, preferably 1.050% or more. I understand.

これにより、冷媒配管に介装されて使用される二方弁や三方弁等の流体用開閉弁、すなわち、アンモニアの多い大気に曝露され、かつ、大気よりも温度が高くなってアンモニアと反応しやすい流体用開閉弁であっても、応力腐食割れを防止することができる。   As a result, it is exposed to a fluid on-off valve such as a two-way valve or a three-way valve that is used in the refrigerant piping, that is, exposed to the atmosphere rich in ammonia, and reacts with ammonia at a higher temperature than the atmosphere. Even if it is an easy on-off valve for fluid, stress corrosion cracking can be prevented.

また、この実施の形態で示したようにR32等のHFC系冷媒やHFO−1234yf等炭素の二重結合を持つフッ化水素系冷媒の単一冷媒またはそれらを主成分とする温暖化係数の低い冷媒を用いた空気調和機にあっては、圧縮機による冷媒圧縮圧が高く、従来の例えば410A冷媒を用いた空気調和機に使用している開閉弁に比べ高い圧縮応力を受けることになっても強力に応力腐食割れを防止することができる。従って、上記低温暖化係数冷媒の採用と鉛レス黄銅合金製開閉弁の使用とによって環境負荷を大きく軽減することができる。   In addition, as shown in this embodiment, a single refrigerant of an HFC refrigerant such as R32 or a hydrogen fluoride refrigerant having a carbon double bond such as HFO-1234yf or a low global warming coefficient based on them. In an air conditioner using a refrigerant, the refrigerant compression pressure by the compressor is high, so that it receives a high compressive stress compared to a conventional on-off valve used in an air conditioner using a 410A refrigerant, for example. Can also strongly prevent stress corrosion cracking. Therefore, the environmental load can be greatly reduced by adopting the low warming potential refrigerant and using the lead-less brass alloy on-off valve.

なお、Snは過剰に含有すると鋳造品内部に巣が発生し、切削加工性を低下させ、或いは伸びを低下させるので、2.5%以下、好ましくは2.0%以下にするのが良い(Sn:0.220%以上(0.220%を含まず)〜2.5%以下)。   In addition, if Sn is contained excessively, a nest is generated inside the cast product, and the machinability is lowered or the elongation is lowered. Therefore, it is preferably 2.5% or less, preferably 2.0% or less ( Sn: 0.220% or more (excluding 0.220%) to 2.5% or less).

また、Biは1.320%以上(1.320%を含まず)、好ましくは1.890%以上にすればよい。このBiは切削性を向上させる特性を持つので、これを含有させることによって鉛レス黄銅合金としたことによって生じる切削等の加工性の悪化を抑制することができ、これにより複数のポートを有していてそのポート内外周にネジを形成する開閉弁の生産性を高めることができ、好ましい。このBiは過剰に含有すると、引張強さ、伸びを低下させるので、2.120%未満にするのが好ましい(Bi:1.320%以上(1.320%を含まず)〜2.120%未満)。   Bi may be 1.320% or more (excluding 1.320%), preferably 1.890% or more. Since this Bi has the property of improving machinability, the inclusion of this Bi can suppress deterioration of workability such as cutting caused by the lead-less brass alloy, thereby having a plurality of ports. Therefore, the productivity of the on-off valve that forms a screw on the inner and outer peripheries of the port can be increased, which is preferable. If this Bi is contained excessively, the tensile strength and elongation are lowered, so it is preferable to make it less than 2.120% (Bi: 1.320% or more (not including 1.320%) to 2.120%. Less than).

なお、上記試験で用いた鉛レス黄銅合金は、表1に示すようにCuが58.300%〜61.720%で、Snが0.220%〜1.050%以下、Biが1.320%以上(1.320%を含まず)〜2.120%未満で、残部がZnと不純物からなっているが、Cuは加工性等の観点から59.500%以上(59.500%を含まず)が良く、66.00%までよいものである(Cu:59.500%以上(59.500%を含まず)〜66.00%以下)。   In addition, as shown in Table 1, the lead-less brass alloy used in the above test has Cu of 58.300% to 61.720%, Sn of 0.220% to 1.050% or less, and Bi of 1.320. % Or more (not including 1.320%) to less than 2.120%, and the balance is made of Zn and impurities, but Cu is 59.500% or more (including 59.500%) from the viewpoint of workability and the like. No.) and good up to 66.00% (Cu: 59.500% or more (excluding 59.500%) to 66.00% or less).

(実施の形態2)
本実施の形態は、鉛の含有量を1000ppm以下として応力腐食割れを抑制した鉛レス黄銅合金製開放弁の他の例を示す。
(Embodiment 2)
This embodiment shows another example of a lead-less brass alloy release valve that suppresses stress corrosion cracking with a lead content of 1000 ppm or less.

この開閉弁の鉛レス黄銅合金は、鉛の含有量が1000ppm以下であって、Siを含有する、好ましくはSiを0.001%以上、より好ましくはSiを3.060%以上含む黄銅合金で開閉弁を形成してある。   The lead-less brass alloy of this on-off valve is a brass alloy having a lead content of 1000 ppm or less and containing Si, preferably containing 0.001% or more of Si, more preferably containing 3.060% or more of Si. An on-off valve is formed.

表3は当該鉛レス黄銅合金で形成した三方弁の応力腐食割れを評価するために行ったアンモニア応力腐食割れ試験の結果を示す。   Table 3 shows the results of the ammonia stress corrosion cracking test conducted to evaluate the stress corrosion cracking of the three-way valve formed of the leadless brass alloy.

試験は、実施の形態1の場合と同様14%のアンモニア水を入れたデシケータ内に通気板を配置し、その上に後述する試験品を置き、当該試験品をアンモニア雰囲気中に曝露させ、72時間放置した後、取り出して硝酸液で洗浄し目視にて観察した。観察の結果、ひび割れがないものが○、ひび割れがあるものは×である。なお、アンモニア水の上面と中板との距離tは約100mmであり、試験品はアンモニア水と非接触の状態である。   In the test, a vent plate is placed in a desiccator containing 14% ammonia water as in the case of the first embodiment, and a test product to be described later is placed thereon to expose the test product in an ammonia atmosphere. After being left for a period of time, it was taken out, washed with a nitric acid solution, and visually observed. As a result of observation, a sample having no cracks is indicated by ○, and a sample having cracks is indicated by ×. The distance t between the upper surface of the ammonia water and the intermediate plate is about 100 mm, and the test product is in a non-contact state with the ammonia water.

また、試験品は図2に示す三方弁で、室内配管側ポート22と、サービスポート24と、弁棒受入部26各部の寸法と締め付けトルクは前記実施の形態1で説明した前記表2の通りである。   The test product is a three-way valve shown in FIG. 2, and the dimensions and tightening torque of each part of the indoor piping side port 22, the service port 24, and the valve rod receiving part 26 are as shown in Table 2 described in the first embodiment. It is.

Figure 2017110265
Figure 2017110265

なお、この実施の形態においても、応力腐食割れとしては締め付けトルクが大きい室内配管側ポート22部分ならびにフレアナット27が最も過酷な条件となっているため、この室内配管側ポート22部分ならびにフレアナット27の結果で評価した。   In this embodiment as well, the indoor piping side port 22 portion and the flare nut 27 having a large tightening torque are the most severe conditions for stress corrosion cracking. It evaluated with the result of.

この試験結果から、鉛の含有量を1000ppm以下とした鉛レス黄銅合金であっても、Siを0.001%以上、より好ましくはSiを3.060%以上含む黄銅合金とすれば、Siが耐応力腐蝕割れ性を改善するので応力腐食割れを防止できる。なお、上記Siは耐応力腐蝕割れ性を改善するとともに被削性も改善するのであるが、4.0%以上になるとそれに見合う被削性改善効果が得られなくなるので、4.0%未満までとするのが好ましい(Si:0.001%以上〜4.0%未満)。   From this test result, even if it is a lead-less brass alloy having a lead content of 1000 ppm or less, Si is 0.001% or more, and more preferably Si is 3.060% or more. Since stress corrosion cracking resistance is improved, stress corrosion cracking can be prevented. The Si improves the stress corrosion cracking resistance and also improves the machinability. However, if it exceeds 4.0%, the machinability improvement effect corresponding to that cannot be obtained, so it is less than 4.0%. (Si: 0.001% or more and less than 4.0%) is preferable.

これにより、前記実施の形態1と同様、冷媒配管に介装されて使用される流体用開閉弁、すなわち、アンモニアの多い大気に曝露され、かつ、大気よりも温度が高くなってアンモニアと反応しやすい流体用開閉弁であっても、応力腐食割れを防止することができる。   Thus, as in the first embodiment, the fluid on-off valve used by being interposed in the refrigerant pipe, that is, exposed to the atmosphere rich in ammonia, and reacts with ammonia at a higher temperature than the atmosphere. Even if it is an easy on-off valve for fluid, stress corrosion cracking can be prevented.

なお、上記試験で用いた鉛レス黄銅合金は、表3から明らかなようにCuが59.060%〜75.170%、Siが0.001%以上(換言すると少なくともSiを含有している)〜3.060%以上で、残部がZnと不純物からなっており、Siが3.060%以上であればCuの含有量は79%までよく、好ましくは75.170%までがよい(Cu:59.060%以上(59.060%を含まず)〜79%以下)。   In addition, the lead-less brass alloy used in the above test has a Cu content of 59.060% to 75.170% and a Si content of 0.001% or more as shown in Table 3 (in other words, at least Si is contained). If it is ˜3.060% or more and the balance is made of Zn and impurities and Si is 3.060% or more, the Cu content may be up to 79%, preferably up to 75.170% (Cu: 59.060% or more (excluding 59.060%) to 79% or less).

(実施の形態3)
図6は実施の形態3における流体用開閉弁を示し、この流体用開閉弁は二方弁である。この二方弁は室内配管側ポート22と、室外配管側ポート23と、弁棒25が螺着される弁棒受入部26を備えている。
(Embodiment 3)
FIG. 6 shows a fluid on-off valve in Embodiment 3, which is a two-way valve. This two-way valve includes an indoor piping side port 22, an outdoor piping side port 23, and a valve rod receiving portion 26 into which a valve rod 25 is screwed.

室内配管側ポート22には、室内熱交換器6に接続された液接続配管8がフレアナット27を介して接続され、室外配管側ポート23には、銅管28がフラックス剤を介してロウ付け接続されて同様に室外熱交換器3側からの配管29a(図1の冷媒回路図参照)に接続される。   A liquid connection pipe 8 connected to the indoor heat exchanger 6 is connected to the indoor pipe side port 22 via a flare nut 27, and a copper pipe 28 is brazed to the outdoor pipe side port 23 via a flux agent. Similarly, it is connected to the pipe 29a (see the refrigerant circuit diagram of FIG. 1) from the outdoor heat exchanger 3 side.

この二方弁もこれを構成する黄銅合金は実施の形態1で説明した鉛レス黄銅合金、或いは実施の形態2で説明した鉛レス黄銅合金で形成してある。   The brass alloy constituting this two-way valve is formed of the leadless brass alloy described in the first embodiment or the leadless brass alloy described in the second embodiment.

したがって、前記実施の形態1あるいは実施の形態2と同様の作用効果を奏することになる。   Therefore, the same operational effects as those of the first embodiment or the second embodiment are obtained.

以上、本発明に係る流体用開閉弁及びこれを用いた空気調和機について、上記実施の形態を用いて説明してきたが、本発明は、これに限定されるものではない。すなわち、今回
開示された実施の形態は一例であって制限的なものではないと考えられるべきである。つまり、本発明の範囲は上記した説明ではなく特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
As described above, the fluid on-off valve and the air conditioner using the fluid on-off valve according to the present invention have been described using the above embodiment, but the present invention is not limited to this. That is, the embodiment disclosed this time should be considered as an example and not restrictive. That is, the scope of the present invention is shown not by the above description but by the scope of the claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of the claims.

なお、上記空気調和機とは、冷凍サイクルを搭載した機器を指すものであり、一般的なエアコンはもとより、除湿機、ヒートポンプ給湯機等の機器も含むことは言うまでもない。   In addition, the said air conditioner points out the apparatus carrying a refrigerating cycle, and it cannot be overemphasized that apparatuses, such as a dehumidifier and a heat pump water heater, are included in addition to a general air conditioner.

本発明は、上記説明から明らかなように、鉛レス黄銅合金であっても応力腐食割れのない流体用開閉弁とこれを用いた空気調和機を提供することができ、流体用開閉弁や空気調和機を含む、冷凍サイクルを搭載した機器の信頼性を低下させることなく環境負荷を低減させることができる。   As is apparent from the above description, the present invention can provide a fluid on-off valve free from stress corrosion cracking even with a lead-less brass alloy, and an air conditioner using the same. The environmental load can be reduced without lowering the reliability of the equipment including the conditioner and equipped with the refrigeration cycle.

1 圧縮機
2 四方弁
3 室外熱交換器
4 減圧器
5 室外機
6 室内熱交換器
7 室内機
8 液接続配管
9 ガス接続配管
10 第1の開閉弁(流体用開閉弁)
11 第2の開閉弁(流体用開閉弁)
21 弁本体
22 室内配管側ポート
23 室外配管側ポート
24 サービスポート
25 弁棒
26 弁棒受入部
27 フレアナット
28 銅管
29、29a 配管
30 バルブコア
31 サービスポートキャップ
32 弁棒キャップ
DESCRIPTION OF SYMBOLS 1 Compressor 2 Four-way valve 3 Outdoor heat exchanger 4 Pressure reducer 5 Outdoor unit 6 Indoor heat exchanger 7 Indoor unit 8 Liquid connection piping 9 Gas connection piping 10 1st on-off valve (fluid on-off valve)
11 Second on-off valve (fluid on-off valve)
21 Valve body 22 Indoor piping side port 23 Outdoor piping side port 24 Service port 25 Valve rod 26 Valve rod receiving part 27 Flare nut 28 Copper tube 29, 29a Piping 30 Valve core 31 Service port cap 32 Valve rod cap

Claims (4)

鉛の含有量が1000ppm以下であって、Snを0.8%以上含む黄銅合金で形成した流体用開閉弁。 A fluid on-off valve formed of a brass alloy having a lead content of 1000 ppm or less and containing Sn of 0.8% or more. 開閉弁は更にBiを1.6%以上含有する黄銅合金で形成した請求項1記載の流体用開閉弁。 The on-off valve for fluid according to claim 1, wherein the on-off valve is further formed of a brass alloy containing 1.6% or more of Bi. 鉛の含有量が1000ppm以下であって、Siを含む黄銅合金で開閉弁を形成した流体用開閉弁。 A fluid on-off valve having a lead content of 1000 ppm or less and formed of a brass alloy containing Si. 冷媒回路に請求項の1〜3のいずれか1項に記載の開閉弁を設けた空気調和機。 The air conditioner which provided the on-off valve of any one of Claims 1-3 in a refrigerant circuit.
JP2015245858A 2015-12-17 2015-12-17 On-off valve for fluid and air conditioner using it Active JP6868761B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015245858A JP6868761B2 (en) 2015-12-17 2015-12-17 On-off valve for fluid and air conditioner using it
DE112016005810.1T DE112016005810T5 (en) 2015-12-17 2016-12-12 FLUID OPEN / CLOSE VALVE AND AIR CONDITIONER FOR USE
CN201680007752.8A CN107208190B (en) 2015-12-17 2016-12-12 Fluid open and close valve and the air conditioner for using it
PCT/JP2016/005106 WO2017104127A1 (en) 2015-12-17 2016-12-12 Fluid control valve and air conditioner using same
MYPI2017702139A MY191315A (en) 2015-12-17 2016-12-12 Fluid on-off valve and air conditioner using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015245858A JP6868761B2 (en) 2015-12-17 2015-12-17 On-off valve for fluid and air conditioner using it

Publications (2)

Publication Number Publication Date
JP2017110265A true JP2017110265A (en) 2017-06-22
JP6868761B2 JP6868761B2 (en) 2021-05-12

Family

ID=59056321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015245858A Active JP6868761B2 (en) 2015-12-17 2015-12-17 On-off valve for fluid and air conditioner using it

Country Status (5)

Country Link
JP (1) JP6868761B2 (en)
CN (1) CN107208190B (en)
DE (1) DE112016005810T5 (en)
MY (1) MY191315A (en)
WO (1) WO2017104127A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2018329314B2 (en) 2017-09-05 2021-07-01 Daikin Industries, Ltd. Air-Conditioning System or Refrigerant Branch Unit
JP6536641B2 (en) * 2017-09-05 2019-07-03 ダイキン工業株式会社 Refrigerant branch unit
WO2019049746A1 (en) * 2017-09-05 2019-03-14 ダイキン工業株式会社 Air conditioning system and refrigerant branching unit
JP2019045129A (en) * 2017-09-05 2019-03-22 ダイキン工業株式会社 Air conditioning system
DE102021103063A1 (en) 2021-02-10 2022-08-11 Viessmann Climate Solutions Se heat pump

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119775A (en) * 1998-10-12 2000-04-25 Sanbo Copper Alloy Co Ltd Lead-free free cutting copper alloy
JP2004346947A (en) * 2003-05-19 2004-12-09 Maezawa Ind Inc Gate valve for tap water and its valve components
JP2005281800A (en) * 2004-03-30 2005-10-13 Kitz Corp Copper-based alloy, and ingot and product using it
WO2008081947A1 (en) * 2006-12-28 2008-07-10 Kitz Corporation Lead-free brass alloy with excellent resistance to stress corrosion cracking
JP2010255966A (en) * 2009-04-28 2010-11-11 Hitachi Appliances Inc Air conditioner
JP2011202722A (en) * 2010-03-25 2011-10-13 Panasonic Corp Three-way valve for air conditioner
WO2012057055A1 (en) * 2010-10-25 2012-05-03 三菱伸銅株式会社 Pressure-resistant and corrosion-resistant copper alloy, brazed structure, and method for producing brazed structure
JP2013015194A (en) * 2011-07-05 2013-01-24 Fuji Koki Corp Three-way valve with check valve
JP2013124801A (en) * 2011-12-14 2013-06-24 Panasonic Corp Refrigerating cycle device
WO2014069020A1 (en) * 2012-10-31 2014-05-08 株式会社キッツ Brass alloy exhibiting excellent recyclability and corrosion resistance

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101012521A (en) * 2007-02-12 2007-08-08 罗凡 Environment-friendly type selenium-bismuth-brass alloy material
CN102859200B (en) * 2010-04-28 2016-03-09 松下知识产权经营株式会社 Rotary compressor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119775A (en) * 1998-10-12 2000-04-25 Sanbo Copper Alloy Co Ltd Lead-free free cutting copper alloy
JP2004346947A (en) * 2003-05-19 2004-12-09 Maezawa Ind Inc Gate valve for tap water and its valve components
JP2005281800A (en) * 2004-03-30 2005-10-13 Kitz Corp Copper-based alloy, and ingot and product using it
WO2008081947A1 (en) * 2006-12-28 2008-07-10 Kitz Corporation Lead-free brass alloy with excellent resistance to stress corrosion cracking
JP2010255966A (en) * 2009-04-28 2010-11-11 Hitachi Appliances Inc Air conditioner
JP2011202722A (en) * 2010-03-25 2011-10-13 Panasonic Corp Three-way valve for air conditioner
WO2012057055A1 (en) * 2010-10-25 2012-05-03 三菱伸銅株式会社 Pressure-resistant and corrosion-resistant copper alloy, brazed structure, and method for producing brazed structure
JP2013015194A (en) * 2011-07-05 2013-01-24 Fuji Koki Corp Three-way valve with check valve
JP2013124801A (en) * 2011-12-14 2013-06-24 Panasonic Corp Refrigerating cycle device
WO2014069020A1 (en) * 2012-10-31 2014-05-08 株式会社キッツ Brass alloy exhibiting excellent recyclability and corrosion resistance

Also Published As

Publication number Publication date
CN107208190A (en) 2017-09-26
DE112016005810T5 (en) 2018-09-13
WO2017104127A1 (en) 2017-06-22
MY191315A (en) 2022-06-15
CN107208190B (en) 2019-03-29
JP6868761B2 (en) 2021-05-12

Similar Documents

Publication Publication Date Title
WO2017104127A1 (en) Fluid control valve and air conditioner using same
KR101740444B1 (en) Structure for connecting refrigerant tube in air conditioner
US20140373569A1 (en) Refrigerating Cycle Device
JP5775238B2 (en) High corrosion resistance copper tube
MY149729A (en) Compositions comprising iodotrifluoromethane and uses thereof
JP6041014B1 (en) Method for manufacturing evaporator of refrigeration equipment
EP3572734A1 (en) Indoor unit
US9217521B2 (en) Lead-free high temperature/pressure piping components and methods of use
JP6777177B2 (en) Units for joint members and air conditioners
US11112154B2 (en) Air conditioner
EP3376138B1 (en) Air conditioner
KR20170073726A (en) Copper alloys and heat exchanger tubes
JP2011047556A (en) Method of manufacturing air conditioner
MX2018004511A (en) High strength and corrosion resistant alloy for use in hvac&r systems.
KR101349359B1 (en) manufacturing method for condenser tube increased tensile strength
JP4032094B2 (en) Soluble stopper alloy and fusible stopper
JP6865809B2 (en) Air conditioner
WO2015143700A1 (en) Refrigeration valve component, refrigeration valve and manufacturing method therefor
JPWO2006112015A1 (en) Soluble stopper alloy and fusible stopper
JP2020003104A (en) Air conditioner
WO2023053549A1 (en) Indoor heat exchanger, indoor unit, air conditioner, and method for manufacturing indoor heat exchanger
JP2021042872A (en) Refrigeration cycle device
JP2011027280A (en) Heat transfer pipe for hot water supply
CN103469018A (en) Aluminum alloy rivet
JP2006234027A (en) Three-way valve of air-conditioning device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160525

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181011

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210309

R151 Written notification of patent or utility model registration

Ref document number: 6868761

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151