JP2000065751A - Surface inspection apparatus - Google Patents

Surface inspection apparatus

Info

Publication number
JP2000065751A
JP2000065751A JP10238170A JP23817098A JP2000065751A JP 2000065751 A JP2000065751 A JP 2000065751A JP 10238170 A JP10238170 A JP 10238170A JP 23817098 A JP23817098 A JP 23817098A JP 2000065751 A JP2000065751 A JP 2000065751A
Authority
JP
Japan
Prior art keywords
light
flaw
light receiving
signal
receiving optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10238170A
Other languages
Japanese (ja)
Other versions
JP3446008B2 (en
Inventor
Tsutomu Kawamura
努 河村
Mitsuaki Uesugi
満昭 上杉
Yuji Matoba
有治 的場
Masakazu Inomata
雅一 猪股
Seiji Yoshikawa
省二 吉川
Yoshiro Yamada
善郎 山田
Takahiko Oshige
貴彦 大重
Hiroyuki Sugiura
寛幸 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP23817098A priority Critical patent/JP3446008B2/en
Publication of JP2000065751A publication Critical patent/JP2000065751A/en
Application granted granted Critical
Publication of JP3446008B2 publication Critical patent/JP3446008B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a surface inspection apparatus by which a defect is detected with high accuracy by detecting a pattern-like scab defect having no remarkable uneven property such as a crack, a twist or a burr on a surface on a face to be inspected surely. SOLUTION: In a signal processing part 31, an output image signal from a linear array camera which is arranged so as to be at 0 deg., 45 deg. and -45 deg. is shading-corrected, it is normalized and flattened in such a way that a normal part becomes a center density in the whole gradation and that it is converted into an image signal which indicates a relative change with reference to the normal part. A flaw candidate region which indicates a change larger than a density level expressing a normal state with respect to the normal part is extracted. Feature amounts such as length, width, area, density peak value, the integrated value of density and the like are calculated on the basis of three kinds of image signals inside the extracted flaw candidate region. The kind of a flaw is judged on the basis of the relative ratio of the integrated amount of the three kinds of integrated image signals out of the calculated feature amounts. In addition, the density peak value and the integrated value are compared with a value corresponding to a predetermined grade, and the grade of the flaw is judged.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば薄鋼板表面
等の非検査面に光を照射して被検査面の表面疵を光学的
に検出する表面疵検査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface defect inspection apparatus for irradiating a non-inspection surface such as a thin steel sheet surface with light to optically detect surface defects on a surface to be inspected.

【0002】[0002]

【従来の技術】薄鋼板表面等の被検査面に光を照射して
この被検査面からの反射光を解析することによって、被
検査面に存在する表面疵を光学的に検出する表面疵検査
は従来からの種々の手法が提唱され実施されている。
2. Description of the Related Art Surface flaw inspection for optically detecting surface flaws present on a surface to be inspected by irradiating light to a surface to be inspected such as a thin steel sheet surface and analyzing reflected light from the surface to be inspected. Various conventional methods have been proposed and implemented.

【0003】例えば、被検体表面に対して光を入射し、
被検体表面からの正反射光及び拡散反射光をカメラで検
出する金属物体の表面探傷方法が特開昭58−2043
53号公報に提案されている。この表面探傷方法におい
ては、被検体表面に対し35度〜75度の角度で光を入
射し、被検体表面からの反射光を、正反射方向と入射方
向又は正反射方向から20度以内の角度方向に設置した
2台のカメラで受光する。この2台のカメラの受光信号
を比較し、例えば両者の論理和を取る。そして、2台の
カメラが同時に異常値を検出した場合のみ該当異常値を
傷とみなすことにより、ノイズに影響されない表面探傷
方法を実現している。
For example, light is incident on the surface of a subject,
Japanese Patent Application Laid-Open No. 58-2043 discloses a method of detecting a surface of a metal object by detecting specularly reflected light and diffusely reflected light from the surface of a test object with a camera.
No. 53 has been proposed. In this surface flaw detection method, light is incident on the surface of the subject at an angle of 35 to 75 degrees, and the reflected light from the surface of the subject is reflected at an angle within 20 degrees from the specular reflection direction and the incident direction or the specular reflection direction. Light is received by two cameras installed in different directions. The light receiving signals of the two cameras are compared, and, for example, the logical sum of the two is calculated. Then, only when two cameras simultaneously detect abnormal values, the abnormal values are regarded as flaws, thereby realizing a surface flaw detection method that is not affected by noise.

【0004】また、被検体からの後方散乱光を受光する
ことによる被検体表面の疵検査方法が特開昭60−22
8943号公報に提案されている。この疵検査方法にお
いては、ステンレス鋼板に対して大きな入射角で光を入
射し、入射側へ戻る反射光すなわち後方散乱光を検出す
ることにより、ステンレス鋼板表面のヘゲ疵を検出して
いる。
A method for inspecting a flaw on the surface of an object by receiving backscattered light from the object is disclosed in Japanese Patent Laid-Open No. 60-22 / 1985.
No. 8943 has proposed this. In this flaw inspection method, light is incident on the stainless steel plate at a large incident angle, and reflected light returning to the incident side, that is, backscattered light is detected, thereby detecting a barbed flaw on the surface of the stainless steel plate.

【0005】さらに、複数の後方散乱反射光を検出する
ことによる平鋼熱間探傷装置が特開平8−178867
号公報に提案されている。この平鋼熱間探傷装置は熱間
圧延された平鋼上の掻疵を検出する。この探傷装置にお
いては、掻疵の疵斜面角度は10度〜40度であり、こ
の範囲の疵斜面からの正反射光を全てカバーできるよう
に後方拡散反射方向に複数台のカメラが配設されてい
る。
Further, a flat steel hot flaw detector by detecting a plurality of backscattered reflected lights is disclosed in Japanese Patent Laid-Open No. Hei 8-17867.
No. 1993. This flat steel hot flaw detector detects a scratch on a hot-rolled flat steel. In this flaw detector, the angle of the flaw slope of the flaw is 10 degrees to 40 degrees, and a plurality of cameras are arranged in the backward diffuse reflection direction so as to cover all the specularly reflected light from the flaw slope in this range. ing.

【0006】また、偏光を利用した表面の測定装置が特
開昭57−166533号公報及び特開平9−1665
52号公報に提案されている。特開昭57−16653
3号公報に提案された測定装置においては、測定対象に
45度方向の偏向を入射し偏光カメラで反射光を受光し
ている。偏光カメラにおいては、反射光をカメラ内部の
ビームスプリッタを用いて3つに分岐し、それぞれ異な
る方位角の偏光フィルタを通して受光する。そして、偏
光カメラから3本の信号をカラーTVシステムと同様の
信号処理によりモニタに表示し、偏光状態を可視化する
技術が開示している。この技術はエリプソメトリの技術
を利用しており、光源は平行光であることが望ましく、
例えばレーザ光が用いられている。
A surface measuring apparatus utilizing polarized light is disclosed in Japanese Patent Application Laid-Open Nos. Sho 57-166533 and Hei 9-1665.
No. 52 has proposed this. JP-A-57-16653
In the measuring device proposed in Japanese Patent Publication No. 3 (1993), a 45-degree direction deflection is incident on a measurement object, and reflected light is received by a polarization camera. In a polarizing camera, the reflected light is split into three using a beam splitter inside the camera, and the reflected light is received through polarizing filters having different azimuth angles. A technique is disclosed in which three signals from a polarization camera are displayed on a monitor by signal processing similar to that of a color TV system, and the polarization state is visualized. This technology uses the technology of ellipsometry, it is desirable that the light source is parallel light,
For example, laser light is used.

【0007】また、特開平9−166552号公報に提
案された表面検査装置においては、特開昭57−166
533号公報に記載の技術と同様に、エリプソメトリを
利用して鋼板表面の疵を検査している。
In the surface inspection apparatus proposed in Japanese Patent Application Laid-Open No. 9-166552, Japanese Patent Application Laid-Open No.
Similar to the technique described in JP-A-533, an ellipsometry is used to inspect the surface of the steel sheet for flaws.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上述し
た各公開公報に提案された各測定技術は、いずれも顕著
な凹凸性を持つ疵を検出するか、又は酸化膜等異物が存
在する疵を検出することを目的としたものであり、顕著
な凹凸性を持たない模様状ヘゲ欠陥等に対しては全ての
疵を確実に捕捉することが困難であった。
However, each of the measuring techniques proposed in each of the above-mentioned publications detects a flaw having remarkable unevenness or detects a flaw having a foreign substance such as an oxide film. Therefore, it is difficult to reliably capture all flaws with respect to pattern-shaped scab defects and the like having no noticeable unevenness.

【0009】例えば、特開昭58−204353号公報
に記載の探傷方法においては、正反射光と散乱反射光を
受光する2台のカメラを有しているが、その目的は2つ
のカメラにおける検出信号の論理和によるノイズの影響
除去である。したがって、顕著な凹凸性を有する疵、す
なわち表面に割れや抉れやめくれ上がりを生じているよ
うな疵に対しては両方のカメラで疵の信号が捉えられる
ので適用可能である。しかし、いずれか一方のカメラで
しか疵の信号を捕らえられないような顕著な凹凸性を持
たない模様状ヘゲ欠陥のような疵の場合は、その疵を全
て検出することはできない。
For example, the flaw detection method described in Japanese Patent Application Laid-Open No. 58-204353 has two cameras for receiving specularly reflected light and scattered reflected light. This is to remove the influence of noise due to the logical sum of the signals. Therefore, flaws having remarkable unevenness, that is, flaws having cracks, gouging or curling up on the surface, can be applied since both flaw signals can be captured by both cameras. However, in the case of a flaw such as a pattern-shaped scab defect having no noticeable unevenness such that only one of the cameras can capture the flaw signal, it is not possible to detect all the flaws.

【0010】また、特開昭60−228943号公報の
表面状態検査方法は、表面粗さの小さいステンレス鋼板
状に顕在化した持ち上がったヘゲ疵を対象としている。
したがって、顕在化していない持ち上がった部分のない
疵や、疵の存在しない部分も入射側へ戻る光を反射する
ような表面の粗い鋼板に適用することはできない。
The surface condition inspection method disclosed in Japanese Patent Application Laid-Open No. Sho 60-228943 is directed to a raised barbed flaw that is manifested in a stainless steel sheet having a small surface roughness.
Therefore, it is not possible to apply a flaw having no raised portion that has not been exposed or a flaw-free part to a steel plate having a rough surface that reflects light returning to the incident side.

【0011】特開平8−178867号公報の平鋼熱間
探傷装置は、掻き疵を対象にしており、疵斜面での正反
射光を捉えることに基づいているため、顕著な凹凸性を
持たない模様状ヘゲのような疵の場合には後方散乱反射
光では捉えられないものも存在し、検出もれを生ずる問
題点があった。また、一度カメラを設置し、どの角度の
反射成分を受光するかが決定されると、容易にカメラ位
置を変更できない問題もあった。
The flat steel hot flaw detector disclosed in Japanese Patent Application Laid-Open No. Hei 8-17867 is intended for scratches and has no noticeable unevenness because it is based on capturing specularly reflected light on the slopes of the scratches. In the case of a flaw such as a patterned scab, there are some which cannot be caught by the backscattered reflected light, and there has been a problem that a detection leak occurs. Also, once the camera is installed and the angle of the reflected component to be received is determined, the camera position cannot be easily changed.

【0012】さらに、特開昭57−166533号公報
の測定装置や特開平9−166552号公報の表面検査
装置は、エリプソメトリの技術を用いており、薄い透明
な層の厚さ及び屈折率や物性値のむらを検出することは
できる。しかしながら、例えば表面処理鋼板のように、
もともと疵部が母材部と異なる物性値を有していたとし
ても、その上から同一の物性値を有するものに覆われた
ような対象に対しては、有効性が低下してしまう問題が
あった。
Further, the measuring device disclosed in Japanese Patent Application Laid-Open No. 57-166533 and the surface inspection device disclosed in Japanese Patent Application Laid-Open No. 9-166552 use ellipsometry technology, and the thickness and refractive index of a thin transparent layer are determined. Unevenness in physical property values can be detected. However, for example, like a surface-treated steel sheet,
Even if the flaw originally had a property value different from that of the base material, the problem that the effectiveness was reduced for an object covered by something with the same property value from above there were.

【0013】また、エリプソメトリでは同一点からの反
射光を各CCDの対応する画素で受光し、画素毎にエリ
プソパラメータを計算する必要がある。そのため特開昭
57−166533号公報においては反射光をビームス
プリッタにより3分岐して3つのCCDにより検出して
おり、光量が低下したり、CCD間の画素合わせが困難
であるという問題があった。
In the ellipsometry, it is necessary to receive reflected light from the same point at a corresponding pixel of each CCD and calculate an ellipsometric parameter for each pixel. For this reason, in JP-A-57-166533, the reflected light is divided into three by a beam splitter and detected by three CCDs, and there is a problem that the amount of light is reduced and it is difficult to align pixels between the CCDs. .

【0014】また、特開平7−28633号公報では、
3台のカメラを鋼板進行方向に並べたり、縦または横に
並べたり、3台のカメラの傾きを変えたりして、同一領
域を見るようにしている。しかし、鋼板の速度が変化し
たときの処理が複雑である問題があった。また、各カメ
ラの角度が異なるため光学条件が同一にならない。その
ため、画素合わせが困難である問題があった。
In Japanese Patent Application Laid-Open No. Hei 7-28633,
Three cameras are arranged in the traveling direction of the steel plate, arranged vertically or horizontally, and the inclination of the three cameras is changed so that the same area is viewed. However, there is a problem that processing when the speed of the steel sheet changes is complicated. Also, since the angles of the cameras are different, the optical conditions are not the same. Therefore, there is a problem that it is difficult to perform pixel alignment.

【0015】さらに、特開昭58−204353号公報
や特開平8−178867号公報では複数台のカメラの
光軸が共通ではなく出射角が異なるため、得られる2つ
の画像の対応する画素の視野サイズが異なるほか、被検
査面のバタツキや対象の厚さ変動による距離変化がある
と視野に位置ずれを生じるという問題があった。特に特
開昭58−204353号公報では2つのカメラで同じ
視野に対する論理和をとることが要求されるため問題は
大きかった。
Further, in Japanese Patent Application Laid-Open Nos. 58-204353 and 8-17867, since the optical axes of a plurality of cameras are not common but have different emission angles, the fields of view of the corresponding pixels of two obtained images are different. In addition to the difference in size, there is a problem that a positional shift occurs in the visual field when there is flapping of the surface to be inspected or a change in distance due to a change in thickness of the object. Particularly, in Japanese Patent Application Laid-Open No. 58-204353, the problem is serious because it is required that two cameras take a logical sum for the same field of view.

【0016】また、模様状ヘゲ欠陥やステイン状ヘゲ欠
陥等を有効に弁別する方法はなかった。特にステイン状
ヘゲ欠陥は疵の程度は低くても信号が大きいため課題評
価してしまうことがあった。
Further, there has been no method for effectively discriminating pattern-like and stain-like scabble defects. In particular, the problem of stain-like scabble defects is sometimes evaluated because the signal is large even though the degree of flaws is low.

【0017】製品の品質検査ラインに組み込まれる表面
検査装置においては、製造製品に対する品質保証の観点
から、疵の検出もれがないことが絶対条件である。しか
しながら、表面処理鋼板等まで検査対象とした表面疵検
査装置は実用化されていなかった。
In a surface inspection apparatus incorporated in a product quality inspection line, from the viewpoint of quality assurance of a manufactured product, it is an absolute condition that there is no omission of flaw detection. However, a surface flaw inspection apparatus for inspecting even a surface-treated steel sheet or the like has not been put to practical use.

【0018】この発明は、このような事情に鑑みてなさ
れたものであり、被検査面からの反射光に含まれる鏡面
反射成分と鏡面拡散反射成分とを区別して検出すること
によって被検査面における表面の割れや捩れやめくれ上
がりのような顕著な凹凸性を持たない模様状ヘゲ欠陥を
確実に検出でき、高い欠陥検出精度を発揮でき、製品の
品質検査ラインにも十分組み込むことができる表面検査
装置を提供することを目的とするものである。
The present invention has been made in view of such circumstances, and distinguishes and detects a specular reflection component and a specular diffuse reflection component contained in light reflected from a surface to be inspected, thereby obtaining an image on the surface to be inspected. A surface that can reliably detect pattern-like scab defects that do not have noticeable irregularities such as surface cracks, twists, or curls, can exhibit high defect detection accuracy, and can be fully incorporated into product quality inspection lines. It is an object to provide an inspection device.

【0019】[0019]

【課題を解決するための手段】この発明に係る表面検査
装置は、投光部と受光部と信号処理部とを有し、投光部
は被検査面に偏光を入射し、受光部は少なくとも3方向
の異なる角度の偏光を受光する複数の受光光学系を有
し、被検査面で反射した反射光を検出して画像信号に変
換し、信号処理部は各受光光学系から出力された画像信
号から被検査面の地肌信号が基準となるように規格化
し、基準値に対する変化量から疵候補領域を抽出し、抽
出した疵候補領域内における各受光光学系からの信号基
準値に対する信号強度の変化量を積分し、各受光光学系
間における積分された信号強度積分量の相対的な比から
表面疵の種類を判定することを特徴とする表面検査装
置。
A surface inspection apparatus according to the present invention has a light projecting section, a light receiving section, and a signal processing section, wherein the light projecting section enters polarized light on a surface to be inspected, and the light receiving section has at least a light receiving section. It has a plurality of light receiving optical systems that receive polarized light with different angles in three directions, detects reflected light reflected on the surface to be inspected, converts it into an image signal, and the signal processing unit outputs an image output from each light receiving optical system. The signal is normalized such that the background signal of the surface to be inspected becomes a reference, and a flaw candidate area is extracted from the variation with respect to the reference value, and the signal intensity of the signal reference value from each light receiving optical system in the extracted flaw candidate area is extracted. A surface inspection apparatus that integrates a change amount and determines a type of a surface flaw from a relative ratio of an integrated signal intensity integration amount between respective light receiving optical systems.

【0020】第2の発明に係る表面検査装置は、投光部
と受光部と信号処理部とを有し、投光部は被検査面に偏
光を入射し、受光部は少なくとも3方向の異なる角度の
偏光を受光する複数の受光光学系を有し、被検査面で反
射した反射光を検出して画像信号に変換し、信号処理部
は各受光光学系から出力された画像信号から被検査面の
地肌信号が基準となるように規格化し、基準値に対する
変化量から疵候補領域を抽出し、抽出した疵候補領域内
における各受光光学系からの信号基準値に対する信号強
度の変化量を積分し、各受光光学系間における信号強度
変化の積分量の相対的な比から表面疵の種類を判定し、
信号強度変化の積分量をあらかじめ定めたパターンと比
較し疵の等級を判定することを特徴とする。
A surface inspection apparatus according to a second aspect of the present invention has a light projecting unit, a light receiving unit, and a signal processing unit. It has multiple light receiving optical systems that receive polarized light of an angle, detects reflected light reflected on the surface to be inspected, converts it into image signals, and the signal processing unit performs inspection based on the image signals output from each light receiving optical system. Normalization is performed so that the background signal of the surface becomes a reference, a flaw candidate region is extracted from the amount of change with respect to the reference value, and the amount of change in signal intensity with respect to the signal reference value from each light receiving optical system in the extracted flaw candidate region is integrated. Then, determine the type of surface flaw from the relative ratio of the integration amount of the signal intensity change between each light receiving optical system,
The class of the flaw is determined by comparing the integral of the signal intensity change with a predetermined pattern.

【0021】第3の発明に係る表面検査装置は、投光部
と受光部と信号処理部を有し、投光部は偏光角が被検査
面の入射面に対して45度である偏光を被検査面に入射
し、受光部は偏光角が被検査面の入射面に対して0度,
45度,−45度である偏光を受光する3つの受光光学
系を有し、被検査面で反射した反射光を検出して画像信
号に変更し、信号処理部は各受光光学系から出力された
画像信号から被検査面の地肌信号が基準となるように規
格化し、基準値に対する変化量から疵候補領域を抽出
し、抽出した疵候補領域内における各受光光学系からの
信号強度変化量を積分し、3つの受光光学系の信号強度
変化の積分量の最大値に対する偏光角度45度の受光光
学系の信号強度積分量の比が1/4未満となる欠陥を冷
延鋼板に発生するステイン状欠陥と判定し、3つの受光
光学系の信号強度変化の積分量の最大値に対する偏光角
度45度の受光光学系の信号強度積分量の比が1/4以
上となる欠陥をヘゲ疵と判定し、判定した疵種の等級を
決定することを特徴とする冷延鋼板の表面検査装置。
A surface inspection apparatus according to a third aspect of the present invention has a light projecting unit, a light receiving unit, and a signal processing unit, and the light projecting unit emits polarized light having a polarization angle of 45 degrees with respect to the incident surface of the inspection surface. The light enters the surface to be inspected, and the light receiving portion has a polarization angle of 0 degree with respect to the incident surface of the surface to be inspected.
It has three light receiving optical systems for receiving polarized light of 45 degrees and -45 degrees, detects reflected light reflected on the surface to be inspected and changes the image signals into image signals, and a signal processing unit is output from each light receiving optical system. The background signal of the surface to be inspected is standardized from the extracted image signal so as to be a reference, a flaw candidate area is extracted from a change amount with respect to the reference value, and a signal intensity change amount from each light receiving optical system in the extracted flaw candidate area is determined. A stain that causes a defect in the cold-rolled steel sheet in which the ratio of the signal intensity integral of the light receiving optical system at a polarization angle of 45 degrees to the maximum value of the integral of the signal intensity change of the three light receiving optical systems is less than 1/4. A defect in which the ratio of the signal intensity integral of the light receiving optical system at a polarization angle of 45 ° to the maximum value of the integral of the signal intensity change of the three light receiving optical systems is 1/4 or more is regarded as a barge defect. It is characterized by judging and determining the grade of the judged flaw type Surface inspection apparatus of the cold-rolled steel sheet to be.

【0022】[0022]

【発明の実施の形態】まず、本発明の表面疵検査装置が
検査対象とする鋼板表面の光学的反射の形態を鋼板表面
のミクロな凹凸形状と関連づけて説明する。例えば、検
査対象が合金化亜鉛メッキ鋼板の場合においては、図1
(a)に示すように、下地の冷延鋼板は溶融亜鉛メッキ
されたのち合金化炉を通過する。この間に下地鋼板1の
鉄元素がメッキ層2の亜鉛中に拡散し、通常、図1
(c)に示すように合金の柱状結晶3を形成する。この
メッキされた鋼板4は次にロール5a,5bで調質圧延
される。すると、図1(d)に示すように、柱状結晶3
における特に突出した箇所がロール5a,5bで平坦に
つぶされ、それ以外の箇所は元の柱結晶3の形状を維持
したままとなる。この調質圧延のロール5a,5bにて
平坦につぶされた部分をテンパ部6と呼び、それ以外の
調質圧延のロール5a,5bが当接しない元の凹凸形状
を残した部分を非テンパ部7と称する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the form of optical reflection on the surface of a steel sheet to be inspected by the surface flaw inspection apparatus of the present invention will be described in relation to the microscopic unevenness of the steel sheet surface. For example, when the inspection target is an alloyed galvanized steel sheet, FIG.
As shown in (a), the cold rolled steel sheet of the base passes through an alloying furnace after being hot-dip galvanized. During this time, the iron element of the base steel sheet 1 diffuses into the zinc of the plating layer 2 and usually, as shown in FIG.
As shown in (c), columnar crystals 3 of the alloy are formed. The plated steel sheet 4 is then temper rolled on rolls 5a and 5b. Then, as shown in FIG.
Are particularly flattened by the rolls 5a and 5b, and the other portions maintain the original shape of the columnar crystal 3. The portions flattened by the temper rolling rolls 5a and 5b are referred to as a tempered portion 6, and the remaining portions of the other temper rolling rolls 5a and 5b which are not in contact with the original uneven shape are non-tempered. This is referred to as a unit 7.

【0023】図2は、このようなテンパ部6と非テンパ
部7とを有する鋼板4の表面でどのような光学的反射が
生じるかをモデル化した断面模式図である。鋼板4の表
面はミクロ的に見ると種々の方向を向いた無数の微小面
素13で構成されている。調質圧延のロール5a,5b
によりつぶされたテンパ部6に入射した入射光8は、鋼
板4の正反射方向に鏡面的に反射して鏡面反射光9とな
る。一方、調質圧延ロール5a,5bが当接しない元の
柱状結晶3の構造を残す非テンパ部7に入射した入射光
8は、ミクロに見れば柱状結晶3の各表面の微小面素一
つ一つにより鏡面的に反射されるが、反射の方向は鋼板
4の正反射方向とは必ずしも一致しない鏡面拡散反射光
10となる。したがって、鋼板4の表面におけるテンパ
部6及び非テンパ部7の各反射光の角度分布は、マクロ
に見ればそれぞれ図3(a),図3(b)のようにな
る。すなわち、テンパ部6では鋼板正反射方向に鋭い鏡
面性の反射が発生し、非テンパ部7では柱状結晶3の表
面の微小面素の角度分布に対応した広がりを持った反射
光となる。前述したように、テンパ部6の反射光を鏡面
反射光9と称し、非テンパ部7の反射光を鏡面拡散反射
光10と称する。そして、テンパ部6と非テンパ部7は
マクロ的には混在しているので、カメラ等の光学測定器
で観察される反射光の角度分布は、図3(c)に示すよ
うに、鏡面反射光9及び鏡面拡散反射光10の角度分布
をテンパ部6と非テンパ部7とのそれぞれの面積率に応
じて加算したものとなる。
FIG. 2 is a schematic sectional view modeling what kind of optical reflection occurs on the surface of the steel plate 4 having such a tempered portion 6 and the non-tempered portion 7. The surface of the steel plate 4 is composed of countless minute plane elements 13 oriented in various directions when viewed microscopically. Rolls 5a and 5b for temper rolling
The incident light 8 incident on the tempered portion 6 crushed by the light is specularly reflected in the regular reflection direction of the steel plate 4 to become specular reflected light 9. On the other hand, the incident light 8 that has entered the non-tempered portion 7 that leaves the original structure of the columnar crystal 3 where the temper rolling rolls 5a and 5b do not come into contact with each other is one microscopic element on each surface of the columnar crystal 3 when viewed microscopically. Although the light is reflected specularly by one, the direction of the reflection is the specular diffused reflected light 10 which does not always coincide with the regular reflection direction of the steel plate 4. Therefore, the angular distribution of each reflected light of the tempered portion 6 and the non-tempered portion 7 on the surface of the steel plate 4 is as shown in FIGS. 3 (a) and 3 (b) when viewed macroscopically. That is, a sharp specular reflection occurs in the regular reflection direction of the steel sheet in the tempered portion 6, and reflected light having a spread corresponding to the angular distribution of the microplane on the surface of the columnar crystal 3 in the non-tempered portion 7. As described above, the reflected light from the tempered portion 6 is referred to as specular reflected light 9, and the reflected light from the non-tempered portion 7 is referred to as specular diffused reflected light 10. Since the tempered portion 6 and the non-tempered portion 7 are macroscopically mixed, the angular distribution of the reflected light observed by an optical measuring instrument such as a camera has a specular reflection as shown in FIG. The angular distributions of the light 9 and the specular diffuse reflection light 10 are added according to the respective area ratios of the tempered portion 6 and the non-tempered portion 7.

【0024】以上、テンパ部6と非テンパ部7を合金化
亜鉛メッキ鋼板を例に説明したが、調質圧延により平坦
部が生じる他の鋼板にも一般に成り立つ。
As described above, the tempered portion 6 and the non-tempered portion 7 have been described using an alloyed galvanized steel plate as an example. However, the present invention is generally applicable to other steel plates in which a flat portion is formed by temper rolling.

【0025】次に、本発明の検出対象となる顕著な凹凸
性を持たない模様状ヘゲ欠陥と呼ばれる欠陥の光学反射
特性について説明する。図4に示すように、合金化溶融
亜鉛メッキ鋼板に見られるヘゲ欠陥(ヘゲ部)11は、
メッキ加工前の冷延鋼板原板にヘゲ欠陥が存在し、その
上にメッキ層2が乗り、さらに下地鋼板1の鉄元素の拡
散によりるヘゲ欠陥の合金化が進行したものである。
Next, a description will be given of the optical reflection characteristic of a defect called a pattern-shaped scab defect having no noticeable unevenness to be detected in the present invention. As shown in FIG. 4, barge defects (barge portions) 11 found in the galvannealed steel sheet are:
The barge defects exist in the cold-rolled steel sheet before plating, and the plating layer 2 rides thereon, and further, alloying of the barge defects due to the diffusion of the iron element of the base steel sheet 1 progresses.

【0026】一般に、ヘゲ部11は鋼板4の正常部分を
示す母材12と比較して、例えばメッキ厚に違いが生じ
たり、合金化の程度に違いが生じる。その結果、例え
ば、ヘゲ部11のメッキ厚が厚く母材12に対し凸の場
合には、調質圧延が印加されることによりテンパ部6の
面積が非テンパ部7に比べて多くなる。逆に、ヘゲ部1
1のメッキ厚が薄く母材12に比べ凹の場合には、ヘゲ
部11は調質圧延のロール5a,5bが当接せず、非テ
ンパ部7が大半を占める。また、ヘゲ部11の合金化が
浅い場合には微小面素の角度分布は鋼板方線方向に強
く、拡散性は小さくなる。
In general, the barbed portion 11 has a difference in plating thickness or a degree of alloying, for example, as compared with the base material 12 indicating a normal portion of the steel plate 4. As a result, for example, when the plating thickness of the barbed portion 11 is large and is convex with respect to the base material 12, the area of the tempered portion 6 becomes larger than that of the non-tempered portion 7 by applying the temper rolling. Conversely, hege part 1
In the case where the plating thickness of 1 is thinner than that of the base material 12 and is concave, the non-tempered portion 7 occupies most of the barb portion 11 because the rolls 5a and 5b of the temper rolling do not abut. Further, when the alloying of the barbed portion 11 is shallow, the angular distribution of the minute surface element is strong in the direction of the steel plate, and the diffusivity is small.

【0027】次に、このようなヘゲ部11と母材部12
の表面性状の相違により、模様状ヘゲ欠陥がどのように
見えるかを説明する。上述したモデルに基づきヘゲ部1
1と母材部12の違いについて分類すると一般に次の3
種類に分けられる。
Next, the scab 11 and the base 12
A description will be given of how the pattern-like scab defect looks due to the difference in the surface properties. Hege part 1 based on the model described above
1 and the base material 12 are generally classified as follows:
Divided into types.

【0028】(a)ヘゲ部11におけるテンパ部6の面
積率及び非テンパ部7の微小面素の角度分布が、母材部
12におけるテンパ部6の面積率及び非テンパ部7の微
小面素の角度分布と異なる(図6(a)、図5
(a))。
(A) The area ratio of the tempered portion 6 in the barbed portion 11 and the angular distribution of the micro-surface element in the non-tempered portion 7 are determined by the area ratio of the tempered portion 6 in the base material portion 12 and the minute surface of the non-tempered portion 7. It differs from the elementary angular distribution (FIG. 6A, FIG.
(A)).

【0029】(b)ヘゲ部11におけるテンパ部6の面
積率は母材部12におけるテンパ部6の面積率と異なる
が、ヘゲ部11における非テンパ部7の微小面素の角度
分布は母材部12における非テンパ部7の微小面素の角
度分布と変わらない(図6(b)、図5(b))。
(B) Although the area ratio of the tempered portion 6 in the barbed portion 11 is different from the area ratio of the tempered portion 6 in the base material portion 12, the angle distribution of the small surface element of the non-tempered portion 7 in the barbed portion 11 is It is not different from the angular distribution of the micro-surface element of the non-tempered part 7 in the base material part 12 (FIGS. 6B and 5B).

【0030】(c)ヘゲ部11における非テンパ部7の
微小面素の角度分布は母材部12の非テンパ部7の微小
面素の角度分布と異なるが、ヘゲ部11におけるテンパ
部6の面積率は母材部12におけるテンパ部6の面積率
と変わらない(図6(c)、図5(c))。
(C) The angular distribution of the micro-surface elements of the non-tempered portion 7 in the barbed portion 11 is different from the angular distribution of the micro-plane elements of the non-tempered portion 7 of the base material portion 12. 6 is the same as the area ratio of the temper portion 6 in the base material portion 12 (FIGS. 6C and 5C).

【0031】図7に示すように、入射光8が当接する微
小面素13の法線方向の鋼板4の鋼板法線方向に対する
傾斜角度を微小面素13の法線角度ξとし、この法線角
度ξとテンパ部6の面積率S(ξ)との関係を、上述し
た(a),(b),(c)の3つの場合について、図6
(a),(b),(c)に示す。
As shown in FIG. 7, the inclination angle of the normal direction of the small surface element 13 with which the incident light 8 comes into contact with the steel plate normal direction of the steel plate 4 is defined as the normal angle ξ of the small surface element 13. FIG. 6 shows the relationship between the angle 率 and the area ratio S (テ ン) of the temper portion 6 in the three cases (a), (b), and (c) described above.
(A), (b) and (c) show.

【0032】このテンパ部6の面積率S(ξ)及び微小
面素13の角度分布の違いが、図5(a),(b),
(c)に示すような反射光量の角度分布の違いとして観
察される。図中実線で示す角度分布がヘゲ部11に対応
するヘゲ部角度分布11aであり、点線で示す角度分布
が母材部12に対応する母材部角度分布12aである。
The difference between the area ratio S (ξ) of the temper portion 6 and the angular distribution of the micro-surface element 13 is shown in FIGS.
This is observed as a difference in the angular distribution of the reflected light amount as shown in FIG. In the drawing, the angle distribution indicated by the solid line is the barb portion angle distribution 11a corresponding to the barge portion 11, and the angle distribution indicated by the dotted line is the base metal portion angle distribution 12a corresponding to the base material portion 12.

【0033】すなわち、図5(a)はヘゲ部角度分布1
1aと母材部角度分布12aとの間において、鏡面反射
成分と鏡面拡散反射成分とが共に差が存在する場合を示
し、図5(b)は鏡面反射成分のみに差が存在する場合
を示し、図5(c)は鏡面拡散反射成分のみに差が存在
する場合を示す。そして、ヘゲ部角度分布11aと母材
部角度分布12aとでテンパ部6の面積率S(ξ)に相
違がある場合には、図5(a),(b)に示すように、
その差は正反射方向から観察される。具体的には、正反
射方向からヘゲ部11の反射光を測定した場合と母材部
12の反射光を測定した場合に、ヘゲ部11のテンパ部
6の面積率S(ξ)が母材部12のテンパ部6の面積率
S(ξ)より大きい場合にはヘゲ部11は母材部12に
比較して相対的に明るく見える。逆に、ヘゲ部11のテ
ンパ率6が母材部12より小さいときにはヘゲ部11は
母材部12に比較して相対的に暗く観察される。
That is, FIG.
FIG. 5B shows a case where there is a difference between the specular reflection component and the specular diffuse reflection component between 1a and the base material part angle distribution 12a, and FIG. 5B shows a case where there is a difference only in the specular reflection component. FIG. 5C shows a case where there is a difference only in the specular diffuse reflection component. If there is a difference in the area ratio S (パ) of the tempered portion 6 between the barge angle distribution 11a and the base metal angle distribution 12a, as shown in FIGS. 5 (a) and 5 (b),
The difference is observed from the regular reflection direction. Specifically, the area ratio S (ξ) of the tempered portion 6 of the barbed portion 11 is determined when the reflected light of the barbed portion 11 is measured from the regular reflection direction and when the reflected light of the base material portion 12 is measured. When the area ratio S (ξ) of the tempered portion 6 of the base material portion 12 is larger than that of the base material portion 12, the barb portion 11 looks relatively bright. Conversely, when the tempering ratio 6 of the barb portion 11 is smaller than the base material portion 12, the barge portion 11 is observed to be relatively darker than the base material portion 12.

【0034】ヘゲ部角度分布11aと母材部角度分布1
2aとではテンパ部6の面積率S(ξ)に違いがない場
合には図5(c)に示すように、正反射方向からの単な
る受光強度の差を観察するのみではヘゲ部11の存在を
観察できない。しかし、鏡面拡散反射成分の拡散性(角
度分布)に違いがあるときには図5(c)に示すように
正反射方向以外の拡散方向から欠陥が観察される。
Heavy part angle distribution 11a and base metal part angle distribution 1
In the case where there is no difference in the area ratio S (パ) of the temper portion 6 from that in the case of 2a, as shown in FIG. I cannot observe its existence. However, when there is a difference in the diffusivity (angle distribution) of the specular diffuse reflection component, a defect is observed from a diffusion direction other than the regular reflection direction as shown in FIG.

【0035】ヘゲ部11の鏡面拡散反射成分の拡散性
(角度分布)が小さいときには、一般に正反射方向に比
較的近い拡散方向からはヘゲ部11は明るく観察され、
正反射方向から離れるに従い明るさは小さくなり、ある
角度で観察不能となる。さらに正反射方向から遠ざかる
と今度はヘゲ部11は暗く観察される。
When the diffusivity (angular distribution) of the specular diffuse reflection component of the barb portion 11 is small, the barb portion 11 is generally observed brightly from a diffusion direction relatively close to the regular reflection direction,
The brightness decreases as the distance from the specular reflection direction increases, and observation becomes impossible at a certain angle. As the distance from the specular reflection direction further increases, the barbed portion 11 is observed darker.

【0036】このようなヘゲ部11を母材部12と確実
に区別して検出するためには、図6において、どういう
角度(法線角度ξ)の微小面素13からの反射光を抽出
するのかを検討することが必要である。例えば、図5
(a),(b)の例のように、正反射方向でヘゲ部11
と母材部12の違いを検出するということは、図6で示
される微小面素13の角度分布のうち微小面素13の法
線角度ξ=0について抽出し、ヘゲ部11と母材部12
との違いを検出していることになる。
In order to reliably detect such a stub 11 in distinction from the base material 12, the reflected light from the microscopic element 13 at any angle (normal angle ξ) is extracted in FIG. It is necessary to consider whether or not. For example, FIG.
As shown in the examples of FIGS.
And detecting the difference between the base material 12 and the base material 12 means extracting the normal angle ξ = 0 of the micro surface element 13 from the angle distribution of the micro surface element 13 shown in FIG. Part 12
That is, the difference from the above is detected.

【0037】ここで、微小面素13の法線角度ξ=0の
反射光を抽出するということを数学的に表現すると、図
6の特性(面積率S(ξ))それぞれに、図8(a)に
示すデルタ関数δ(ξ)で表される抽出特性を示す関数
(以後この関数を重み関数Ι(ξ)と呼ぶ)を乗じて積
分することに相当する。
Here, extracting the reflected light at a normal angle ξ = 0 of the microscopic element 13 is mathematically expressed as follows. Each of the characteristics (area ratio S (ξ)) shown in FIG. This corresponds to integration by multiplying by a function indicating an extraction characteristic represented by a delta function δ (ξ) shown in a) (hereinafter, this function is referred to as a weight function Ι (ξ)).

【0038】また、例えば、入射角60度において、正
反射方向から20度ずれた40度の角度位置で反射光を
測定することは、図8(b)のようなデルタ関数δ(ξ
+10)なる重み関数Ι(ξ)を用いて計算することに
相当する。
For example, measuring the reflected light at an angle position of 40 degrees shifted from the regular reflection direction by 20 degrees at an incident angle of 60 degrees requires a delta function δ (ξ) as shown in FIG.
+10) is equivalent to the calculation using the weight function Ι (Ι).

【0039】なお、図7に示すように、反射角度θ度と
微小面素13の法線角度ξと入射光8の入射角度θとの
関係は簡単な幾何学的考察によって(1)式で求まる。 θ度=−θ+2ξ (1) すなわち、どういう角度(法線角度ξ)の微小面素13
からの反射光を抽出するかということは、どのような重
み関数Ι(ξ)を設計するかということに相当すること
が理解できる。
As shown in FIG. 7, the relationship between the reflection angle θ degrees, the normal angle ξ of the microscopic element 13 and the incident angle θ of the incident light 8 is expressed by Equation (1) by simple geometric considerations. I get it. θ degree = −θ + 2ξ (1) In other words, what angle (normal angle ξ) is the small plane element 13
It can be understood that extraction of the reflected light from is equivalent to what kind of weighting function Ι (ξ) is designed.

【0040】このような観点から、図6(a),
(b),(c)で表されるような各ヘゲ部11を母材部
12と弁別して検出するための重み関数Ι(ξ)を考え
ると、図8(a),(b)に示すデルタ関数δ(ξ),
δ(ξ+10)も有効な重み関数I(ξ)の一つであ
る。なお、重み関数Ι(ξ)は、必ずしも図8に示した
特定の法線角度のみを抽出する幅が無限小のデルタ関数
δ(ξ)である必要はなく、ある程度の信号幅を有する
ことも可能である。
From this point of view, FIG.
Considering the weight function 重 み (ξ) for discriminating and detecting each of the barbed portions 11 represented by (b) and (c) from the base material portion 12, FIG. Delta function δ (ξ),
δ (ξ + 10) is also one of the effective weight functions I (ξ). Note that the weight function Ι (必 ず し も) does not necessarily have to be an infinitesimal delta function δ (が) in which only the specific normal angle shown in FIG. 8 is extracted, and may have a certain signal width. It is possible.

【0041】しかしながら、このような弁別手法におい
ては、2つの光学系の視野を同一にすることはできな
い。また、拡散反射光を測定するために一旦カメラを設
置すると、その重み関数Ι(ξ)を変更することは、カ
メラの設置位置を変更することが必要であるから容易で
はない。
However, in such a discrimination method, the two optical systems cannot have the same field of view. Further, once a camera is installed for measuring diffuse reflection light, it is not easy to change the weight function Ι (ξ) since it is necessary to change the installation position of the camera.

【0042】前者の課題に対しては同一光軸上の測定が
必要ある。すなわち、拡散反射光を捉えるのでなく、鋼
板4の正反射方向からの測定のみで鏡面反射成分と鏡面
拡散反射成分との両成分を捉えることが望ましい。そし
て、後者の課題に対しては、重み関数Ι(ξ)をある程
度自由度を持って設定できることが望ましい。
For the former problem, measurement on the same optical axis is required. That is, it is desirable to capture both the specular reflection component and the specular diffuse reflection component only by measuring from the specular reflection direction of the steel plate 4 instead of capturing the diffuse reflection light. For the latter problem, it is desirable that the weighting function Ι (ξ) can be set with a certain degree of freedom.

【0043】そこで、本発明においては、まず光源とし
て、レーザのような平行光源ではなく拡散特性を持つ線
状の光源、すなわち線状拡散光源を用いている。また、
鋼板4の正反射方向から鏡面反射成分と鏡面拡散反射成
分とを分離して抽出する必要があるので偏光を用いてい
る。この線状拡散光源の効果を説明するために、図9
(a),(b)に示すように、線状拡散光源14を鋼板
4の表面に平行に配置し、光源に垂直な面内にあり、入
射角が出射角と一致する方向である鋼板正反射方向から
鋼板4上の一点を観察したときの反射特性を考える。
Therefore, in the present invention, a linear light source having a diffusion characteristic, that is, a linear diffusion light source, is used as a light source instead of a parallel light source such as a laser. Also,
Since it is necessary to separate and extract the specular reflection component and the specular diffuse reflection component from the specular reflection direction of the steel plate 4, polarized light is used. To explain the effect of this linear diffused light source, FIG.
As shown in (a) and (b), the linear diffused light source 14 is arranged in parallel to the surface of the steel plate 4, and is located in a plane perpendicular to the light source and whose incident angle is the direction coincident with the outgoing angle. Consider a reflection characteristic when one point on the steel plate 4 is observed from the reflection direction.

【0044】図9(a)に示すように、線状拡散光源1
4の中央部から照射された入射光8の場合、テンパ部6
に入射した入射光8は鏡面的に反射され、鋼板正反射方
向で全て捉えられる。一方、非テンパ部7に入射した光
は鏡面拡散的に反射され、たまたま鋼板法線方向と同一
方向を向いている微小面素13により反射された分のみ
が捉えられる。このような方向を向いている微小面素1
3は非常に少ないので、鋼板正反射方向に配設された受
光カメラで捉えられる反射光のうちではテンパ部6から
の鏡面反射光が支配的である。
As shown in FIG. 9A, the linear diffused light source 1
In the case of incident light 8 emitted from the center of
Is reflected specularly, and is all captured in the steel plate regular reflection direction. On the other hand, the light incident on the non-tempered portion 7 is specularly reflected, and only the light reflected by the minute surface element 13 that happens to be oriented in the same direction as the normal direction of the steel sheet is captured. Micro-plane element 1 facing in such a direction
Since the number 3 is very small, the specular reflection light from the tempering portion 6 is dominant among the reflection light captured by the light receiving camera disposed in the steel plate regular reflection direction.

【0045】これに対し、図9(b)に示すように、線
状拡散光源14の中央部位外の位置から照射された入射
光8の場合には、テンパ部6に入射した光は鏡面反射し
て鋼板正反射方向とは異なる方向へ反射する。そのた
め、鏡面反射した光は鋼板正反射方向では捉えることが
できない。一方、非テンパ部7に入射した光は鏡面拡散
的に反射され、そのうち鋼板正反射方向に反射された分
が受光カメラで捉えられる。したがって、鋼板正反射方
向に配設された受光カメラで捉えられる反射光は全て非
テンパ部7で反射した鏡面拡散反射光である。
On the other hand, as shown in FIG. 9B, in the case of the incident light 8 radiated from a position outside the central portion of the linear diffused light source 14, the light incident on the tempering portion 6 is specularly reflected. Then, the light is reflected in a direction different from the regular reflection direction of the steel sheet. Therefore, the specularly reflected light cannot be captured in the steel plate regular reflection direction. On the other hand, the light incident on the non-tempered portion 7 is specularly diffusely reflected, of which the light reflected in the steel plate regular reflection direction is captured by the light receiving camera. Therefore, all the reflected light captured by the light receiving camera disposed in the steel plate regular reflection direction is the specular diffuse reflection light reflected by the non-tempered portion 7.

【0046】以上2つの場合を併せると、線上拡散光源
14の長尺方向全体から照射される全ての入射光8のう
ち鋼板正反射方向からの観察で捉えられるのは、テンパ
部6からの鏡面反射光と非テンパ部7からの鏡面拡散反
射光との和である。
When the above two cases are combined, the observation from the regular reflection direction of the steel plate out of all the incident light 8 emitted from the entire longitudinal direction of the linear diffusion light source 14 is the mirror surface from the tempering portion 6. This is the sum of the reflected light and the specularly diffused reflected light from the non-tempered portion 7.

【0047】次に、鋼板4の正反射方向から線状拡散光
源14を使用して観察した場合に、偏光特性がどう変化
するかについて説明する。一般に、鏡面状の金属表面で
の反射においては、電界の方向が入射面に平行な光(p
偏光)あるいは入射面に直角な光(s偏光)において
は、反射によっても偏光特性は保存される。すなわち、
p偏光のまま又はs偏光のまま出射する。また、p偏光
成分とs偏光成分とを同時に持つ任意の偏光角を有した
直線偏光が反射されると、p、s偏光の反射率非tan
Ψ及び位相差△に応じた楕円偏光となって出射する。
Next, how the polarization characteristics change when observed using the linear diffused light source 14 from the regular reflection direction of the steel plate 4 will be described. Generally, in reflection from a mirror-like metal surface, the direction of the electric field is parallel to the incident surface (p
In the case of (polarized light) or light perpendicular to the plane of incidence (s-polarized light), the polarization characteristics are preserved even by reflection. That is,
The light is emitted as p-polarized light or s-polarized light. When linearly polarized light having an arbitrary polarization angle having both p-polarized light component and s-polarized light component at the same time is reflected, the reflectance of p and s-polarized light is not tan.
The light is emitted as elliptically polarized light according to Ψ and the phase difference △.

【0048】合金化亜鉛メッキ鋼板に線状拡散光源14
から光が照射される場合を図10(a),(b)を用い
て説明する。図10(a)に示すように、線状拡散光源
14の中央部から出射した光は鋼板4のテンパ部6で鏡
面反射して鋼板正反射方向で観察される。これに関して
は上記一般の鏡面状の金属表面での反射がそのまま成立
する。
A linear diffusion light source 14 is applied to an alloyed galvanized steel sheet.
The case in which light is irradiated from FIG. 10 will be described with reference to FIGS. As shown in FIG. 10A, the light emitted from the central portion of the linear diffused light source 14 is specularly reflected by the tempering portion 6 of the steel plate 4 and is observed in the regular reflection direction of the steel plate. In this regard, reflection on the above-mentioned general mirror-like metal surface is established as it is.

【0049】一方、図10(b)に示すように、線状拡
散光源14の中央部位外の位置から出射した光は、鋼板
4の非テンパ部7の結晶表面の傾いた微小面素13で鏡
面反射して鋼板正反射方向で観察される。この場合、鋼
板4の入射面に平行なp偏光の光を入射したとしても実
際に反射する傾いた微小面素13に対して考えた場合に
は入射面は微小面素13に対して平行ではなく、p,s
両偏光成分を持つ直線偏光であるため、楕円偏光となっ
て出射する。線状拡散光源14からs偏光を入射した場
合も同様である。
On the other hand, as shown in FIG. 10B, the light emitted from a position outside the central portion of the linear diffused light source 14 is generated by the inclined minute surface element 13 on the crystal surface of the non-tempered portion 7 of the steel plate 4. Specularly reflected and observed in the direction of regular reflection of the steel sheet. In this case, even if the p-polarized light parallel to the incident surface of the steel plate 4 is incident, the incident surface is not parallel to the minute surface element 13 in consideration of the tilted minute surface element 13 that actually reflects. No, p, s
Since it is linearly polarized light having both polarization components, it is emitted as elliptically polarized light. The same applies to the case where s-polarized light is incident from the linear diffusion light source 14.

【0050】また、線状拡散光源14からp,s両偏光
成分を持つ任意の偏光角αの直線偏光が鋼板4に入射し
た場合、線状拡散光源14の中央部以外の位置から傾い
た微小面素13に入射した光は偏光角αが傾いて作用す
るため、鋼板正反射方向に出射する楕円偏光の形状は、
線上拡散光源14の中央部から入射してテンパ部6で鏡
面反射した光とは異なる。
When linearly polarized light having an arbitrary polarization angle α having both p and s polarization components is incident on the steel plate 4 from the linear diffused light source 14, minute linear light inclined from a position other than the center of the linear diffused light source 14. Since the light incident on the surface element 13 acts with the polarization angle α inclined, the shape of the elliptically polarized light emitted in the steel plate regular reflection direction is
This is different from the light that enters from the central part of the linear diffusion light source 14 and is specularly reflected by the tempering unit 6.

【0051】以下、p,s両性分を持つ直線偏光を線状
拡散光源14から鋼板4に入射する場合について詳細に
検証する。まず、図11に示すように、線状拡散光源1
4からの入射光8を方位角(偏光角)αを有する偏光板
15で直線偏光にした後、水平に配置された鋼板4に入
射させ、その正反射光を受光カメラ16で受光する、前
述したように、線状拡散光源14上のC点から出射され
た入射光8については、鋼板4におけるテンパ部6によ
り鏡面反射された成分、及び、非テンパ部7におけるた
またま法線が鋼板4の鉛直方向を向いた法線角度ξ=0
の微小面素13から鏡面拡散反射された成分が鋼板4上
の0点から受光カメラ16方向へ反射する光に寄与して
いる。
Hereinafter, the case where linearly polarized light having p and s amphoteric components is incident on the steel plate 4 from the linear diffusion light source 14 will be described in detail. First, as shown in FIG.
After the incident light 8 from 4 is linearly polarized by a polarizing plate 15 having an azimuth angle (polarization angle) α, the light is made incident on a horizontally disposed steel plate 4, and the specularly reflected light is received by a light receiving camera 16. As described above, with respect to the incident light 8 emitted from the point C on the linear diffused light source 14, the component specularly reflected by the tempered portion 6 in the steel plate 4 and the normal of the non-tempered portion 7 Normal angle ξ = 0 facing the vertical direction
The component which is specularly diffusely reflected from the microscopic surface element 13 contributes to light reflected from the zero point on the steel plate 4 toward the light receiving camera 16.

【0052】一方、図12に示すように、線状拡散光源
14上の鋼板4のO点から見て角度φだけずれた点Aか
らの入射光8については、鏡面反射成分は受光カメラ1
6方向とは異なる方向に反射されるため、前述した法線
角度ξの微小面素13による鏡面拡散反射成分のみが寄
与する。
On the other hand, as shown in FIG. 12, for the incident light 8 from the point A which is shifted from the point O of the steel plate 4 on the linear diffused light source 14 by an angle φ, the specular reflection component is
Since the light is reflected in directions different from the six directions, only the specular diffuse reflection component by the micro-plane element 13 having the normal angle ξ contributes.

【0053】ここで、入射光8の入射方向を示す角度φ
と微小面素13の法線角度ξとの関係は、入射光8の鋼
板4に対する入射角度θを用いて、間簡単な幾何学的考
察により、(2)式で与えられる。
Here, the angle φ indicating the incident direction of the incident light 8
And the normal angle ξ of the microscopic element 13 is given by Expression (2) by simple geometrical consideration using the incident angle θ of the incident light 8 with respect to the steel plate 4.

【0054】[0054]

【数1】 (Equation 1)

【0055】次に、このようにして反射された光の偏光
状態について考える。C点から出射された入射光8が、
方位角(偏光角)αの偏光板15を通り、鋼板4上のO
点にて鏡面反射された後の偏光状態Ecは、偏光光学で
一般に用いられるジョーンズ行列を用いて、 Ec=T・Ein (3) と表される。但し、Einは偏光板15の方位角(偏光
角)αの直角偏光ベクトルを示し、Tは鋼板4の反射特
性行列を示す。そして直線偏光ベクトルEin及び反射
特性行列Tは、p,s偏光の振幅反射率比をtanΨ、
p,s偏光の反射率の位相差を△、s偏光の振幅反射率
をrsとすると、それぞれ(4),(5)式で与えられ
る。
Next, the polarization state of the light reflected as described above will be considered. The incident light 8 emitted from the point C is
O passing through the polarizing plate 15 having the azimuth angle (polarization angle) α
The polarization state Ec after specular reflection at a point is expressed as Ec = T · Ein (3) using a Jones matrix generally used in polarization optics. Here, Ein indicates the orthogonal polarization vector of the azimuthal angle (polarization angle) α of the polarizing plate 15, and T indicates the reflection characteristic matrix of the steel plate 4. Then, the linear polarization vector Ein and the reflection characteristic matrix T express the amplitude reflectance ratio of p and s polarizations as tanΨ,
Assuming that the phase difference between the reflectances of the p- and s-polarized light is △ and the amplitude reflectance of the s-polarized light is rs, they are given by equations (4) and (5), respectively.

【0056】[0056]

【数2】 (Equation 2)

【0057】同様に、線状拡散光源14上のA点から出
射した入射光8が、法線角度ξの微小画素13で受光器
16方向に反射された光の偏光状態Eaは、入射面が偏
光板15及び受光カメラ16の検光子と直交していると
すると(6)式で与えられる。(6)式においてRは回
転行列であり、(7)式で与えられる。
Similarly, the polarization state Ea of the incident light 8 emitted from the point A on the linear diffused light source 14 and reflected by the minute pixels 13 having the normal angle に in the direction of the light receiver 16 is represented by Assuming that it is orthogonal to the polarizer 15 and the analyzer of the light receiving camera 16, it is given by equation (6). In the equation (6), R is a rotation matrix, which is given by the equation (7).

【0058】[0058]

【数3】 (Equation 3)

【0059】(3)式は、(6)式において微小面素1
3の法線角度ξ=0とした特別の場合であり、鏡面反射
成分についても鏡面拡散反射成分についても(6)式を
用いて統一的に考えることができる。(6)式を計算
し、法線角度ξの微小面素13からの反射光の楕円偏光
状態を図示すると、図13に示すようになる。ここで入
射偏光の方位角(偏光角)αは45度、入射角θは60
度、鋼板4の反射特性としてp,s偏光の振幅反射率比
の逆正接Ψ=28度、p,s偏光の反射率の位相差△=
120度とした、図13より、法線角度ξ=0すなわち
鏡面反射の場合の楕円に対して法線角度ξの値が変化す
るに従って、楕円が傾いていくのが理解できる。したが
って、例えば受光カメラ16の前に検光子17を挿入
し、その検光角βを設定することによって、どの法線角
度ξの微小面素13からの反射光をより多く抽出するか
を選択することができる。
Equation (3) is obtained by adding small area element 1 in equation (6).
This is a special case where the normal angle ξ of 3 is = 0, and both the specular reflection component and the specular diffuse reflection component can be considered in unified manner using equation (6). (6) is calculated, and the elliptically polarized state of the reflected light from the microscopic surface element 13 at the normal angle ξ is illustrated in FIG. Here, the azimuth angle (polarization angle) α of the incident polarized light is 45 degrees, and the incident angle θ is 60.
And the reflection characteristic of the steel plate 4 as the inverse tangent of the amplitude reflectance ratio of the p and s polarized light Ψ = 28 degrees, and the phase difference of the reflectance of the p and s polarized light △ =
It can be understood from FIG. 13 that the ellipse is inclined as the normal angle ξ = 0, that is, the value of the normal angle に 対 し て changes with respect to the ellipse in the case of specular reflection. Therefore, for example, by inserting the analyzer 17 in front of the light-receiving camera 16 and setting the analysis angle β, it is possible to select which normal angle す る to extract more reflected light from the microscopic element 13. be able to.

【0060】このことを定量化するために、図12に示
すように、(3)式で表される偏光状態Eaの反射光に
対して検光角βの検光子17を挿入した後における偏光
状態Eoを求めると(8)式となる。
In order to quantify this, as shown in FIG. 12, the polarization after the insertion of the analyzer 17 having the analysis angle β with respect to the reflected light having the polarization state Ea represented by the equation (3) is shown. When the state Eo is obtained, the equation (8) is obtained.

【0061】[0061]

【数4】 (Equation 4)

【0062】(8)式においてAは検光子17を表す行
列であり、(9)式で表される。
In the equation (8), A is a matrix representing the analyzer 17 and is represented by the equation (9).

【0063】[0063]

【数5】 (Equation 5)

【0064】次に、この(8)式から受光カメラ16で
検出する法線角度ξの微小面素13からの反射光の光強
度を求める。前述したように、該当微小面素13の面積
率をS(ξ)とすると、下記(10)式が成立する。
Next, from this equation (8), the light intensity of the reflected light from the microscopic element 13 at the normal angle ξ detected by the light receiving camera 16 is obtained. As described above, when the area ratio of the microscopic element 13 is S (ξ), the following equation (10) is satisfied.

【0065】[0065]

【数6】 (Equation 6)

【0066】上式におけるΙ(ξ,β)は、前述したよ
うに、法線角度ξの微小面素13からの反射光をどの程
度抽出できるかを示す重み関数であり、光学系及び被検
体の偏光特性に依存する。そして、それに鋼板4の反射
率rs2 と入射光光量Ep2と面積率S(ξ)を乗じた
ものが検出される光強度になる。
Ι (式, β) in the above equation is a weighting function indicating how much the reflected light from the microscopic surface element 13 having the normal angle ξ can be extracted, as described above. Depends on the polarization characteristics of Then, the product of the reflectance rs 2 of the steel plate 4, the amount of incident light Ep 2, and the area ratio S (ξ) is the detected light intensity.

【0067】表面処理鋼板などのように、鋼板表面の材
質が均一な対象を考える場合は反射率rs2 の値は一定
と考えられる。また、入射光光量Ep2 は入射光量が光
源の位置によらず均一ならば同じく一定の値としてよ
い。したがって、受光カメラ16が検出する光強度を求
めるには、法線角度ξの微小面素13の面積率S(ξ)
と重み関数Ι(ξ,β)とを考えればよい。
When considering a target having a uniform surface material such as a surface-treated steel sheet, the value of the reflectance rs 2 is considered to be constant. Further, the incident light quantity Ep 2 good as well constant value if uniform regardless of the position of the incident light amount is a light source. Therefore, in order to obtain the light intensity detected by the light receiving camera 16, the area ratio S (ξ) of the small plane element 13 having the normal angle ξ is obtained.
And the weighting function Ι (ξ, β).

【0068】ここで、重み関数Ι(ξ,β)について考
える。法線角度ξの微小面素13からの寄与が最も大き
くなるような検光子17の検光角βoを選定しようとし
た場合、その候補は次の(11)式をβについて解くこ
とによって与えられる。
Now, consider the weight function Ι (ξ, β). If an attempt is made to select an analysis angle βo of the analyzer 17 that maximizes the contribution of the normal angle ξ from the microscopic surface element 13, the candidate is given by solving the following equation (11) for β. .

【0069】[0069]

【数7】 (Equation 7)

【0070】(11)式により、法線角度ξ=0、すな
わち鏡面反射成分の寄与が最も大きくなるような検光角
βを求めると、検光角βは約−45度である。但し、こ
こでも、鋼板4の反射特性として前述した反射率比の逆
正接Ψ=28度、位相差△=120度を採用し、線状拡
散光源14からの入射光8に対する偏光板15の方位角
(偏光角)α=45度を採用した。
When the normal angle ξ = 0, that is, the analysis angle β that maximizes the contribution of the specular reflection component is obtained from the equation (11), the analysis angle β is about −45 degrees. However, also in this case, the reflection tangent Ψ = 28 degrees and the phase difference △ = 120 degrees of the reflectance ratio described above are adopted as the reflection characteristics of the steel plate 4, and the azimuth of the polarizing plate 15 with respect to the incident light 8 from the linear diffusion light source 14. Angle (polarization angle) α = 45 degrees was adopted.

【0071】図14に、検光子17の検光角βが−45
度の場合における微小面素13の法線角度ξと重み関数
Ι(ξ,−45)との関係を示す。但し、見やすさのた
めに重み関数Ι(ξ,−45)の最大値を[1]に規格
化してある。図14の特性から、法線角度ξ=0度、す
なわち鏡面反射成分が最も支配的で、逆に法線角度ξ=
±35度付近の微小面素13からの鏡面拡散反射光が最
も抽出されないことが理解できる。
FIG. 14 shows that the detection angle β of the analyzer 17 is -45.
The relationship between the normal angle ξ of the small plane element 13 and the weighting function Ι (ξ, −45) in the case of degrees is shown. However, the maximum value of the weight function Ι (Ι, -45) is normalized to [1] for easy viewing. From the characteristics of FIG. 14, the normal angle ξ = 0 degrees, that is, the specular reflection component is the most dominant, and conversely, the normal angle ξ =
It can be understood that the specular diffuse reflection light from the micro-plane element 13 near ± 35 degrees is least extracted.

【0072】また、逆に法線角度ξ=±35°の反射光
を最もよく抽出するような検光子17の検光角βを(1
0)式及び(11)式より求めると、およそβ=45度
である。。検光子17の検光角β=45度に対する微小
面素13の法線角度ξと重み関数Ι(ξ,45)の関係
を図15に示す。ここで、図15の重み関数I(ξ,
β)の特性が左右対称でないのは、入射面(微小面素1
3に対する入射光8と反射光により張られる平面)を基
準に考えると、微小面素13の法線角度ξが正の場合、
見かけ上入射光8の偏光の方位角(偏光角)αが小さく
なる(p偏光に近づく)ことと、鋼板4のp偏光反射率
がs偏光反射率より小さいことによる。
On the other hand, the analysis angle β of the analyzer 17 that best extracts the reflected light having the normal angle ξ = ± 35 ° is set to (1
According to the equations (0) and (11), β = 45 degrees. . FIG. 15 shows the relationship between the normal angle ξ of the microscopic element 13 and the weighting function Ι (ξ, 45) with respect to the analysis angle β of the analyzer 17 = 45 degrees. Here, the weight function I (ξ,
β) is not bilaterally symmetric because the entrance surface (small surface element 1)
Considering the plane defined by the incident light 8 and the reflected light with respect to 3), when the normal angle ξ of the microscopic element 13 is positive,
This is because apparently the azimuth angle (polarization angle) α of the polarized light of the incident light 8 is reduced (approaching to p-polarized light) and the p-polarized light reflectance of the steel plate 4 is smaller than the s-polarized light reflectance.

【0073】また、検光子17の検光角β=−45度と
45度の中間の特性となるβ=0度及び90度について
も計算した重み関数Ι(ξ,0),Ι(ξ,β)も図1
5に示した。Ι(ξ,0)は−50度付近にピークがあ
るが、測定対象の面積率によりξ=15度付近の影響が
最も大きい場合が多い。(10)式で示したように、法
線角度ξの微小面素13からの反射光強度は、重み関数
I(ξ,β)と面積率S(ξ)の積で与えられるから、
最終的に受光カメラ16で受光する光強度は[S(ξ)
・Ι(ξ,β)]を法線角度ξについて積分したものに
なる。例えば、図16に示すような反射特性を有する鋼
板4からの反射光を、検光角βが−45度の検光子17
を通して受光した場合、図16で示される面積率S
(ξ)を図14に示す重み関数Ι(ξ,β)で示される
重みをつけて積分したものが実際に受光した光強度とな
る。
The weighting functions Ι (ξ, 0), Ι (ξ, β) calculated also for β = 0 ° and 90 °, which are characteristics intermediate between the detection angle β = −45 degrees and 45 degrees of the analyzer 17. β) is also Fig. 1.
5 is shown. Although Ι (ξ, 0) has a peak near −50 degrees, the influence near ξ = 15 degrees is often the largest depending on the area ratio of the measurement target. As shown in the equation (10), the intensity of the reflected light from the microscopic surface element 13 at the normal angle ξ is given by the product of the weight function I (ξ, β) and the area ratio S (ξ).
The light intensity finally received by the light receiving camera 16 is [S (ξ)
[Ι (ξ, β)] is integrated with respect to the normal angle ξ. For example, the reflected light from the steel plate 4 having the reflection characteristics as shown in FIG.
, The area ratio S shown in FIG.
The value obtained by integrating (ξ) with a weight represented by a weight function Ι (ξ, β) shown in FIG. 14 is the actually received light intensity.

【0074】そこで、鋼板4の表面に、図5(a),
(b),(c)に示されるような特性のヘゲ部11が存
在した場合を考える。その場合の各面積率S(ξ)は、
それぞれ図6(a),(b),(c)のようになってい
る。
Therefore, the surface of the steel plate 4 is provided on the surface of FIG.
Let us consider a case where there is a barbed portion 11 having characteristics as shown in FIGS. In that case, each area ratio S (ξ) is
6 (a), 6 (b) and 6 (c) respectively.

【0075】まず、図5(b),図6(b)のように鏡
面反射成分のみに違いがある場合を考える。このような
疵を検光角β=−45度の検光子17を通して受光した
ときの光強度は、図6(b)に示す面積率S(ξ)に対
して図14で表される重み関数Ι(ξ,β)をかけて積
分したものに相当するから、母材部12とヘゲ部11と
の反射光量の違いを検出することができる。
First, consider the case where there is a difference only in the specular reflection component as shown in FIGS. 5 (b) and 6 (b). The light intensity when such a flaw is received through the analyzer 17 having the analysis angle β = −45 degrees is expressed by a weighting function expressed in FIG. 14 with respect to the area ratio S (ξ) shown in FIG. Since it corresponds to the value obtained by multiplying by Ι (ξ, β), it is possible to detect the difference in the amount of reflected light between the base material portion 12 and the stub 11.

【0076】また、同一疵を検光角β=45度の検光子
17を通して受光したときの光強度については、図6
(b)に示すように、鏡面拡散反射成分に違いがないた
め、図15の検光角β=45度の重み関数Ι(ξ,β)
をかけて積分することを考えると、母材部12とヘゲ部
11との違いを検出することができない。
FIG. 6 shows the light intensity when the same flaw is received through the analyzer 17 having the analysis angle β = 45 degrees.
As shown in (b), since there is no difference in the specular diffuse reflection component, the weight function Ι (ξ, β) of the analysis angle β = 45 degrees in FIG.
When considering the integration by multiplying, the difference between the base material portion 12 and the barb portion 11 cannot be detected.

【0077】また、図5(c),図6(c)のように鏡
面拡散反射成分のみに違いがある場合には、逆に、検光
角β=−45度の検光子17を通したのでは検出でき
ず、検光角β=45度の度検光子17を通したときに検
出できる。ただし、母材部12とヘゲ部11の鏡面拡散
反射成分の違いがなくなっている法線角度ξは、図6
(c)では法線角度ξ=±20度付近であったが、も
し、その角度がたまたま±30数度付近となる疵がある
と、検光角β=45度の検光子17を通しても検出でき
なくなる。その場合は、別の重み関数例えばΙ(ξ,9
0)となるような検光角β(例えば90°)の検光子1
7をもう一つ別に用意し、3番目の受光カメラ16で受
光するようにすればよい。
When there is a difference only in the specular diffuse reflection component as shown in FIGS. 5 (c) and 6 (c), on the contrary, the light passes through the analyzer 17 having an analysis angle β = −45 degrees. In this case, the light cannot be detected, and can be detected when the light passes through a degree analyzer 17 having an analysis angle β = 45 degrees. However, the normal angle ξ at which the difference between the specular diffuse reflection component of the base material portion 12 and the specular diffuse reflection component of the barge portion 11 disappears is as shown in FIG.
In (c), the normal angle ξ is around ± 20 degrees, but if there is a flaw whose angle happens to be around ± 30 degrees, it is also detected through the analyzer 17 with the analysis angle β = 45 degrees. become unable. In that case, another weighting function such as Ι (ξ, 9
0), the analyzer 1 having an analysis angle β (eg, 90 °)
7 may be prepared separately, and the third light receiving camera 16 may receive light.

【0078】一般に、鋼板4の表面の母材部12とヘゲ
部11の反射特性は、図5(a),(b),(c)のい
ずれかであるので、ヘゲ部11の見落としをなくするた
めには3つの異なる検光角βの検光子17を用い、対応
する3つの法線角度ξの微小面素13からの反射光を抽
出して受光するようにすることが必要である。また、図
5(a),図6(a)のように鏡面反射成分、鏡面拡散
反射成分ともの違いがある場合には、基本的には、例え
ば−45度と+45度のいずれの検光子17を通した反
射光でも母材部12とヘゲ部11との違いを検出でき
る。したがって、本発明では線状拡散光源14を用い、
第1の受光手段で被検査面からの正反射光に含まれる鏡
面反射成分と鏡面拡散反射成分のうち、鏡面拡散反射成
分に比較して鏡面反射成分をより多く抽出し受光し、第
2の受光手段で被検査面からの正反射光に含まれる鏡面
反射成分と鏡面拡散反射成分のうち、鏡面反射成分に比
較して鏡面拡散反射成分をより多く抽出している。
Generally, the reflection characteristics of the base material portion 12 and the barge portion 11 on the surface of the steel plate 4 are any of FIGS. 5A, 5B, and 5C. In order to eliminate the problem, it is necessary to use three analyzers 17 having different analysis angles β to extract and receive the reflected light from the micro surface element 13 having the corresponding three normal angles ξ. is there. When there is a difference between the specular reflection component and the specular diffuse reflection component as shown in FIGS. 5A and 6A, basically, for example, any one of -45 degrees and +45 degrees is used. The difference between the base material portion 12 and the stub 11 can be detected even by the reflected light passing through the portion 17. Therefore, in the present invention, the linear diffusion light source 14 is used,
The first light receiving unit extracts and receives more specular reflection components than the specular diffuse reflection components among the specular reflection components and the specular diffuse reflection components included in the specular reflection light from the surface to be inspected, and receives the second light. The light receiving means extracts more of the specular reflection component and the specular reflection component included in the specular reflection light from the surface to be inspected, as compared with the specular reflection component.

【0079】そこで、例えば被検査面からの正反射光の
みを受光する第1、第2の受光手段にてでも、図5
(a),(b),(c)に示す鋼板4の表面の各反射特
性におけるヘゲ部11の存在を母材部12との比較にお
いて確実に検出できる。
Therefore, for example, even with the first and second light receiving means for receiving only the specularly reflected light from the surface to be inspected, FIG.
In each of the reflection characteristics of the surface of the steel plate 4 shown in (a), (b), and (c), the presence of the barbed portion 11 can be reliably detected by comparison with the base material portion 12.

【0080】このような光学系により正反射方向からの
共通な光軸での測定であるため、鋼板距離変動や速度変
化に影響されることなく、鏡面反射・鏡面拡散反射それ
ぞれに対応した2つの信号を得ることが可能になり、顕
著な凹凸性を持たない模様状ヘゲ疵を検出もれを生じる
ことなく検出可能な表面疵検査装置を実現できる。
Since the measurement is performed on the common optical axis from the specular reflection direction by such an optical system, there are two types of specular reflection and specular diffuse reflection which are not affected by the fluctuation of the steel plate distance and the speed. A signal can be obtained, and a surface flaw inspection apparatus capable of detecting a pattern-shaped barbed flaw having no remarkable unevenness without causing leakage can be realized.

【0081】また、各偏光角度ごとに抽出特性を表す重
み関数が異なるため、面積率の法線角度分布の異なる欠
陥どうしを弁別することができる。特にステイン状欠陥
は、何らかの物質が法線角度の小さい微小面素に付着し
ており、法線角度が大きい微小面素の面積率は正常部と
比べて違いがほとんどないと考えられるから、45度の
偏光を受光した場合、欠陥部と正常部の違いが小さくな
る傾向がある。したがって、この偏光角度に注目するこ
とによりステイン状欠陥を弁別することが可能である。
Further, since the weighting function representing the extraction characteristic is different for each polarization angle, it is possible to discriminate defects having different normal angle distributions of the area ratio. Particularly, in the case of the stain-like defect, it is considered that some substance adheres to the small surface element having a small normal angle, and the area ratio of the small surface element having a large normal angle is almost the same as that of a normal portion. When polarized light of a certain degree is received, the difference between the defective part and the normal part tends to be small. Therefore, it is possible to discriminate stain-like defects by paying attention to this polarization angle.

【0082】そこで、この発明においては、被検査面に
対して一定入射角で被検査面の幅方向全体に偏光を入射
するように投光部を配置し、被検査面からの反射光を受
光する受光部を所定の位置に配置する。受光部は入射し
た光を例えば3本のビームに分離するビームスプリッタ
と、分離した3本のビームを別々に入射して画像信号を
出力する例えばCCDセンサを有する3組のリニアアレ
イセンサと、ビームスプリッタと各リニアアレイセンサ
の間に設けられ被検査面からの反射光を異なる振動面の
偏光にする検光子とが設けられている。3個の検光子は
それぞれ異なる方位角、すなわち透過軸が被検査面の入
射面となす角が、例えば0度,45度,−45度になる
ように配置されている。
Therefore, in the present invention, the light projecting portion is arranged so that polarized light is incident on the whole surface of the surface to be inspected at a constant angle of incidence with respect to the surface to be inspected, and light reflected from the surface to be inspected is received. The light receiving unit to be used is arranged at a predetermined position. The light receiving unit includes a beam splitter that separates the incident light into, for example, three beams, three linear array sensors including, for example, a CCD sensor that separately enters the three separated beams and outputs an image signal, and a beam. An analyzer is provided between the splitter and each of the linear array sensors to convert reflected light from the surface to be inspected into polarized light having different vibration planes. The three analyzers are arranged so that different azimuth angles, that is, angles formed by the transmission axis and the incident surface of the surface to be inspected are, for example, 0 degree, 45 degrees, and -45 degrees.

【0083】信号処理部は各リニアアレイセンサからの
出力画像信号をシェーディング補正して正常部が全階調
の中心濃度になるように正規化して平坦化し、正常部に
対する相対的な変化を示す画像信号に変換する。この正
常部に対して正常状態を表す濃度レベルより大きな変化
を示す疵候補領域を抽出し、抽出した疵候補領域内にお
いて3種類の画像信号から長さと幅と面積と濃度ピーク
値や濃度の積分値等の特徴量を算出する。算出された特
徴量のうち積分した3種類の画像信号積分量の相対的な
比から疵の種類を判定する。また、濃度ピーク値や積分
値をあらかじめ定められた等級に対応する値と比較して
疵の等級を判定する。
The signal processing section performs shading correction on the output image signal from each linear array sensor, normalizes the normal section so that the normal section has the central density of all gradations, flattens the image, and shows an image indicating a change relative to the normal section. Convert to a signal. A flaw candidate area showing a change larger than the density level representing a normal state is extracted from the normal part, and the length, width, area, density peak value and density are integrated from three types of image signals in the extracted flaw candidate area. Calculate feature values such as values. The type of flaw is determined from the relative ratio of the three integrated image signal amounts among the calculated characteristic amounts. Further, the grade of the flaw is determined by comparing the concentration peak value or the integral value with a value corresponding to a predetermined grade.

【0084】[0084]

【実施例】図17はこの発明の一実施例の光学系を示す
配置図である。図に示すように、光学系21は投光部2
2と3板式偏光リニアアレイカメラ23を有する。投光
部22は被検査体、例えば鋼板4の表面に一定の入射角
で偏光を入射するものであり、光源24と光源24の前
面に設けられた偏光子25とを有する。光源24は鋼板
4の幅方向に伸びた棒状発光光源及びシリンドリカルレ
ンズからなり、鋼板4の幅方向全体に一様な強度分布を
有する光を照射する。偏光子25は例えば偏光板又は偏
光フィルタからなり、図18の配置説明図に示すよう
に、透過軸Pが鋼板4の入射面となす角αが45度にな
るように配置されている。3板式偏光リニアアレイカメ
ラ23は、図18の構成図に示すように、ビームスプリ
ッタ26と3個の検光子27a,27b,27cと3個
のリニアアレイセンサ28a,28b,28cとを有す
る。ビームスプリッタ26は3個のプリズムからなり、
入射面に誘電体多層膜を蒸着した半透過性を有する反射
面が2面設けられ、鋼板4からの反射光を入射する第1
の反射面26aは透過率と反射率が約2対1の割合にな
っており、第1の反射面26aを透過した光を入射する
第2の反射面26bは透過率と反射率が1対1の割合に
なっており、鋼板4からの反射光を同じ光量の3本のビ
ームに分離する。また、ビームスプリッタ26の入射面
から分離した3本のビームの出射面までの光路長は同じ
にしてある。検光子25aは第2の反射面26bの透過
光の光路に設けられ、図18に示すように、方位角すな
わち透過軸が鋼板4の入射面となす角βが0度になるよ
うに配置され、検光子27bは第2の反射面26bの反
射光の光路に設けられ、方位角βが45度になるように
配置され、検光子27cは第1の反射面26aの反射光
の光路に設けられ、方位角βが−45度になるように配
置されている。リニアアレイセンサ28a,28b,2
8cは例えばCCDセンサからなり、それぞれ検光子2
7a,27b,27cの後段に配置されている。また、
ビームスプリッタ26と検光子27a,27b,27c
の間にはビームスプリッタ26内の多重反射光や不必要
な散乱光をカットするスリット29a,29b,29c
が設けられ、ビームスプリッタ26の前段にはレンズ群
30が設けられている。また、リニアアレイセンサ28
a,28b,28cは同じ光強度の光が入射したときに
同じ信号を出力するように利得が調整してある。
FIG. 17 is an arrangement diagram showing an optical system according to an embodiment of the present invention. As shown in the figure, the optical system 21 is
It has a two- and three-plate polarization linear array camera 23. The light projecting unit 22 emits polarized light at a predetermined incident angle on the surface of the inspection object, for example, the steel plate 4, and includes a light source 24 and a polarizer 25 provided on the front surface of the light source 24. The light source 24 is composed of a rod-shaped light emitting light source and a cylindrical lens extending in the width direction of the steel plate 4 and irradiates light having a uniform intensity distribution over the entire width direction of the steel plate 4. The polarizer 25 is made of, for example, a polarizing plate or a polarizing filter, and is arranged such that the angle α between the transmission axis P and the incident surface of the steel plate 4 is 45 degrees, as shown in the layout explanatory diagram of FIG. The three-plate polarization linear array camera 23 includes a beam splitter 26, three analyzers 27a, 27b, 27c, and three linear array sensors 28a, 28b, 28c, as shown in the configuration diagram of FIG. The beam splitter 26 includes three prisms,
Two semi-transmissive reflecting surfaces on which a dielectric multilayer film is deposited are provided on the incident surface, and a first reflecting surface from which the reflected light from the steel plate 4 is incident.
The reflection surface 26a has a transmittance and a reflection ratio of about 2: 1, and the second reflection surface 26b on which light transmitted through the first reflection surface 26a has a transmission and a reflection ratio of 1: 1. The ratio is 1, and the light reflected from the steel plate 4 is separated into three beams of the same light amount. Further, the optical path lengths from the entrance surface of the beam splitter 26 to the exit surfaces of the three separated beams are the same. The analyzer 25a is provided in the optical path of the transmitted light of the second reflection surface 26b, and is arranged such that the azimuth angle, that is, the angle β formed between the transmission axis and the incident surface of the steel plate 4 is 0 degrees, as shown in FIG. , The analyzer 27b is provided on the optical path of the reflected light from the second reflecting surface 26b, and is disposed so that the azimuth angle β becomes 45 degrees, and the analyzer 27c is provided on the optical path of the reflected light from the first reflecting surface 26a. And the azimuth angle β is -45 degrees. Linear array sensors 28a, 28b, 2
8c is composed of, for example, a CCD sensor,
7a, 27b, and 27c are arranged at the subsequent stage. Also,
Beam splitter 26 and analyzers 27a, 27b, 27c
The slits 29a, 29b, and 29c for cutting multiple reflected light and unnecessary scattered light in the beam splitter 26 therebetween.
Is provided, and a lens group 30 is provided in front of the beam splitter 26. In addition, the linear array sensor 28
The gains of a, 28b, and 28c are adjusted so that the same signal is output when light having the same light intensity enters.

【0085】このように入射した光を分離した3本のビ
ームの光路に検光子27a〜27cとリニアアレイセン
サ28a〜28cが一体化して設けられているから、リ
ニアアレイセンサ28a〜28c等を鋼板4の搬送路近
傍に配置して鋼板4からの反射光を検出するときに、リ
ニアアレイセンサ28a〜28c等の位置調整を必要と
しないとともに鋼板4の同じ位置からの反射光を同じタ
イミングで検出することができる。また、3板式偏光リ
ニアアレイカメラ23内に3組のリニアアレイセンサ2
8a〜28cがまとまって収納されて小型化しているか
ら、3板式偏光リニアアレイカメラ23を鋼板4の反射
光の光路に簡単に配置することができるとともに配置位
置を任意に選択することができ、光学系1の配置の自由
度を向上することができる。
Since the analyzers 27a to 27c and the linear array sensors 28a to 28c are integrally provided on the optical paths of the three beams obtained by separating the incident light, the linear array sensors 28a to 28c are When detecting the reflected light from the steel plate 4 by arranging it near the conveyance path of No. 4, the position adjustment of the linear array sensors 28a to 28c is not required, and the reflected light from the same position of the steel plate 4 is detected at the same timing. can do. Also, three sets of linear array sensors 2 are provided in a three-plate polarization linear array camera 23.
Since 8a to 28c are collectively stored and miniaturized, the three-plate polarization linear array camera 23 can be easily arranged on the optical path of the reflected light of the steel plate 4, and the arrangement position can be arbitrarily selected. The degree of freedom of arrangement of the optical system 1 can be improved.

【0086】3板式偏光リニアアレイカメラ23のリニ
アアレイセンサ28a〜28cは、図20のブロック図
に示すように信号処理部31に接続されている。信号処
理部31は信号前処理部32a,32b,32cとエッ
ジ検出部33と輝度むら補正部34とフレームメモリ3
5a,35b,35cと2値化処理部36と2値メモリ
37a,37b,37cとオア処理部38と2値メモリ
39と疵候補領域抽出部40と特徴量演算部41及び疵
判定部42を有する。信号前処理部32a〜32cはリ
ニアアレイセンサ28a〜28cから出力された反射光
の光強度I1,I2,I3を示す画像信号を加算平均す
ると共に鋼板4のラインの移動量を検出し、鋼板4が信
号処理における1ラインの長さだけ移動したら加算平均
した信号を1ラインのデータとしてエッジ検出部33に
送り、ライン速度が変わっても信号処理における1ライ
ンの長さを一定とする。エッジ検出部33はI1画像と
I2画像とI3画像における鋼板4のエッジ部を検出す
る。輝度むら補正部34は光源24の強度むらや鋼板反
射率むらによるI1画像,I2画像,I3画像の幅方向
の強度むらとそれに伴う感度むらを補正してフレームメ
モリ35a〜35cに格納する。フレームメモリ35a
〜35cは、例えば横1024画素×縦200ラインで
構成され、1024画素の1ラインデータをフレームメ
モリ35a〜35c間で同一タイミングでサンプリング
して、200ラインに達するまで順次格納して2次元の
I1,I2,I3偏光画像を形成する。2値化処理部3
6はフレームメモリ35a〜35cに格納されたI1,
I2,I3偏光画像を2値化して2値メモリ37a〜3
7cに格納する。オア処理部38は2値メモリ37a〜
37cに格納されたI1,I2,I3の2値画像をオア
処理して2値メモリ39に格納する。疵候補領域抽出部
40は2値メモリ39に格納された2値画像の各画素の
濃度から疵候補領域の位置を特定する。特徴量演算部4
1は抽出された疵候補領域内において光強度I1,I
2,I3の正常部からの変化量を積分して濃度積算値I
S1,IS2,IS3を演算し特徴量を明らかにする。
疵判定部42は疵候補領域における光強度I1,I2,
I3の濃度積算値IS1,IS2,IS3の相対的な比
から疵の種類を判定する。また、疵判定部42は濃度積
算値IS1,IS2,IS3のの最大値を求め、あらか
じめ定めたパターンと比較し疵の等級を判定し、判定し
た疵種と疵の等級を不図示の表示装置や記録装置に出力
する。
The linear array sensors 28a to 28c of the three-plate polarization linear array camera 23 are connected to a signal processing unit 31 as shown in the block diagram of FIG. The signal processing unit 31 includes a signal pre-processing unit 32a, 32b, 32c, an edge detection unit 33, a brightness unevenness correction unit 34, and a frame memory 3
5a, 35b, 35c, a binarization processing unit 36, a binary memory 37a, 37b, 37c, an OR processing unit 38, a binary memory 39, a flaw candidate area extraction unit 40, a feature amount calculation unit 41, and a flaw determination unit 42 Have. The signal preprocessors 32a to 32c average and average the image signals indicating the light intensities I1, I2, and I3 of the reflected lights output from the linear array sensors 28a to 28c, detect the movement amount of the line of the steel plate 4, and Is moved by the length of one line in the signal processing, an averaged signal is sent to the edge detection unit 33 as one-line data, and the length of one line in the signal processing is kept constant even when the line speed changes. The edge detection unit 33 detects an edge portion of the steel plate 4 in the I1, I2, and I3 images. The brightness unevenness correction unit 34 corrects the unevenness in intensity in the width direction of the I1, I2, and I3 images due to the unevenness in the intensity of the light source 24 and the unevenness in the reflectivity of the steel plate, and the unevenness in the sensitivity, and stores them in the frame memories 35a to 35c. Frame memory 35a
35c is constituted by, for example, 1024 horizontal pixels × 200 vertical lines. One line data of 1024 pixels is sampled at the same timing between the frame memories 35a to 35c, and is sequentially stored until reaching 200 lines to obtain a two-dimensional I1. , I2, I3 polarization images are formed. Binarization processing unit 3
6, I1, stored in the frame memories 35a to 35c.
Binarize the I2 and I3 polarized images and store them in binary memories 37a-3
7c. The OR processing unit 38 includes a binary memory 37a-
The binary image of I1, I2 and I3 stored in 37c is OR-processed and stored in the binary memory 39. The flaw candidate area extraction unit 40 specifies the position of the flaw candidate area from the density of each pixel of the binary image stored in the binary memory 39. Feature value calculation unit 4
1 is the light intensity I1, I in the extracted flaw candidate area.
2 and I3 are integrated from the normal part to obtain a concentration integrated value I.
S1, IS2, and IS3 are calculated to clarify the feature values.
The flaw determination unit 42 determines the light intensity I1, I2,
The type of the flaw is determined from the relative ratio of the concentration integrated values IS1, IS2 and IS3 of I3. Further, the flaw determining unit 42 obtains the maximum value of the integrated density values IS1, IS2, and IS3, compares it with a predetermined pattern, determines the flaw grade, and displays the determined flaw type and flaw grade on a display device (not shown). Or to a recording device.

【0087】次に上記のように構成された表面検査装置
で鋼板4の表面を検査する時の動作を説明する。投光部
22から出射されて一定速度で移動している鋼板4の表
面で反射した偏光を3板式偏光リニアアレイカメラ23
で受光する。3板式偏光リニアアレイカメラ23に入射
した鋼板4の反射光はビームスプリッタ26で分離され
検光子27a,27b,27cを通ってリニアアレイセ
ンサ28a〜28cに入射する。このリニアアレイセン
サ28a〜28cで反射光の光強度を検出するときに、
リニアアレイセンサ28a〜28cの前面に異なる方位
角の検光子27a〜27cが設けられているから、リニ
アアレイセンサ28a〜28cは異なる偏光の光強度I
1,I2,I3を検出し信号処理部31に送る。
Next, the operation when the surface of the steel plate 4 is inspected by the surface inspection apparatus configured as described above will be described. The three-plate polarization linear array camera 23 converts the polarized light emitted from the light projecting unit 22 and reflected on the surface of the steel plate 4 moving at a constant speed.
To receive light. The reflected light of the steel plate 4 that has entered the three-plate polarization linear array camera 23 is split by the beam splitter 26 and passes through the analyzers 27a, 27b, 27c and enters the linear array sensors 28a to 28c. When detecting the light intensity of the reflected light with the linear array sensors 28a to 28c,
Since the analyzers 27a to 27c having different azimuth angles are provided on the front surfaces of the linear array sensors 28a to 28c, the linear array sensors 28a to 28c have different light intensities I of different polarizations.
1, I2 and I3 are detected and sent to the signal processing unit 31.

【0088】信号処理部31に送られた各偏光の画像信
号I1,I2,I3は、それぞれ信号前処理部32a〜
32cで鋼板の移動速度が変化しても信号処理における
1ライン長さを一定としてエッジ検出部33に送られ
る。エッジ検出部33に送られた画像信号I1,I2,
I3は、図21に示すように、鋼板4の領域では信号レ
ベルが高く、鋼板4ではない背景領域では信号レベルが
小さくなることから、信号レベルが急激に変わっている
点を鋼板4のエッジ部として特定して信号処理領域を定
める。この信号処理領域におけるI1,I2,I3の1
ラインの信号強度は、例えば図21(a)に示すように
幅方向に大きなむらがある。そこで輝度むら補正部34
は1ラインの信号を幅方向に基準点を中心に左右の数1
0点で移動平均して、図21(b)に示すように、移動
平均した信号I1m,I2m,I3mを作成する。そし
て、図21(c)に示すように、移動平均前の信号I
1,I2,I3と移動平均した信号I1m,I2m,I
3m及び地肌である正常部52を示す基準レベルCから
(12)式により各画素毎の補正信号I1c,I2c,
I3cを算出し、フレームメモリ35a〜35cに格納
する。なお、(12)式においてはAは定数である。
The image signals I1, I2, and I3 of the respective polarized lights sent to the signal processing section 31 are respectively processed by the signal preprocessing sections 32a to 32a.
Even if the moving speed of the steel sheet changes at 32c, the length of one line in the signal processing is sent to the edge detecting unit 33 with the line length being fixed. The image signals I1, I2, sent to the edge detection unit 33
I3, as shown in FIG. 21, is that the signal level is high in the region of the steel plate 4 and the signal level is low in the background region other than the steel plate 4. And the signal processing area is determined. 1 of I1, I2 and I3 in this signal processing area
The signal intensity of the line has large unevenness in the width direction, for example, as shown in FIG. Therefore, the brightness unevenness correction unit 34
Is the number 1 on the left and right around the reference point in the width direction
Moving average is performed at the zero point to create moving averaged signals I1m, I2m, and I3m as shown in FIG. 21B. Then, as shown in FIG. 21C, the signal I before the moving average is calculated.
1, I2, I3 and the signals I1m, I2m, I
The correction signal I1c, I2c,
I3c is calculated and stored in the frame memories 35a to 35c. In the expression (12), A is a constant.

【0089】[0089]

【数8】 (Equation 8)

【0090】この輝度むら補正した信号I1c,I2
c,I3cにおいて、図22(c)に示すように、鋼板
4の地肌である正常部に対して明るく見える疵51aの
信号レベルは正常部52の基準レベルCより高く、正常
部に対して暗く見える疵51bの信号レベルは基準レベ
ルにCより低くなる。この補正された信号I1c,I2
c,I3cを2値化処理部36で2値化してI1c,I
2c,I3cの2値化画像をそれぞれ2値メモリ37a
〜37cに格納する。この2値化するときの2値化レベ
ルは鋼板4の表面粗さや表面の塗油状態に応じて定めら
れているが、測定したデータのピーク値やバラツキ等か
ら自動的に求めてノイズレベルに設定しても良い。また
疵は種類によって正常部52のレベルに対して高いレベ
ルになる場合と低いレベルになる場合あるため、図23
に示すように正常レベルに対して、プラス、マイナス両
方の2値化レベル53a,53bを設定して2値化し、
信号レベルがプラスの2値化レベル53aとマイナスの
2値化レベル53b以外の範囲を「1」、2値化レベル
53a,53bの範囲を「0」として正常部とする。
The signals I1c and I2 corrected for the luminance unevenness
At c and I3c, as shown in FIG. 22C, the signal level of the flaw 51a that looks bright with respect to the normal part which is the background of the steel plate 4 is higher than the reference level C of the normal part 52 and darker than the normal part. The signal level of the visible flaw 51b is lower than the reference level C. The corrected signals I1c and I2
c and I3c are binarized by the binarization processing unit 36 to obtain I1c and I3c.
The binary images of 2c and I3c are respectively stored in a binary memory 37a.
To 37c. The binarization level at the time of binarization is determined according to the surface roughness of the steel plate 4 and the state of oiling of the surface. However, the binarization level is automatically obtained from the peak value or variation of the measured data to obtain a noise level. May be set. Also, the flaw may be higher or lower than the level of the normal part 52 depending on the type,
As shown in the figure, both the plus and minus binarization levels 53a and 53b are set for the normal level, and the binarization is performed.
The range other than the positive binarization level 53a and the negative binarization level 53b is “1”, and the range of the binarization levels 53a and 53b is “0”, which is a normal part.

【0091】2値化画像はI1c,I2c,I3cの3
画像があり、例えば図24(a)に示すように、疵51
a,51bが3画像に共通して異常値として検出される
とは限らない。そこでオア処理部38は2値メモリ37
a〜37cに格納されたI1c,I2c,I3cの2値
画像を、図24(b)に示すように、各画素毎にオア処
理して、オア処理画像54を2値メモリ39に格納す
る。疵候補領域抽出部40は2値メモリ39に格納され
たオア処理画像54の疵部51a,51bに示す値
「1」の白い部分の位置を求め、図24(c)に示すよ
うに、白い部分に外接する長方形の領域を疵候補領域5
5a,55bとして抽出し、抽出した疵候補領域55
a,55bの2点例えば右上のP1,P3点と左下のP
2,P4点の座標から疵候補領域55a,55bを特定
して特徴量演算部41に送る。特徴量演算部41は、疵
候補領域55a,55bにおける各画素毎の補正信号I
1c,I2c,I3cを積分し、(13)式より濃度積
算値IS1,IS2,IS3を求める。
The binarized image is composed of I3c, I2c and I3c.
There is an image, for example, as shown in FIG.
a and 51b are not necessarily detected as abnormal values in common for the three images. Therefore, the OR processing unit 38 uses the binary memory 37
As shown in FIG. 24B, the binary images I1c, I2c, and I3c stored in a to 37c are OR-processed for each pixel, and the OR-processed image 54 is stored in the binary memory 39. The flaw candidate area extraction unit 40 finds the position of the white portion of the value “1” shown in the flaw parts 51 a and 51 b of the OR processing image 54 stored in the binary memory 39, and as shown in FIG. The rectangular area circumscribing the part is the flaw candidate area 5
5a and 55b, and the extracted flaw candidate area 55
a and 55b, for example, P1 and P3 at the upper right and P at the lower left
The flaw candidate areas 55a and 55b are specified from the coordinates of the points P2 and P4, and are sent to the feature value calculation unit 41. The feature amount calculation unit 41 calculates the correction signal I for each pixel in the flaw candidate areas 55a and 55b.
1c, I2c and I3c are integrated, and the integrated density values IS1, IS2 and IS3 are obtained from the equation (13).

【0092】[0092]

【数9】 (Equation 9)

【0093】また特徴量演算部41は2次特徴量として
濃度積算値IS1,IS2,IS3の相対的な比IS2
/IS1,IS2/IS3と、濃度積算値IS1,IS
2,IS3のなかの最大値である最大濃度積算値IS及
び最大濃度積算値ISに対する濃度積算値IS1,IS
2,IS3の比IS1/IS,IS2/IS,IS3/
ISを求め、さらに、疵候補領域抽出部40で特定した
疵候補領域55a,55bの座標から疵の長さと幅と面
積及び信号ピーク値も求め、疵判定部42に送る。
The feature value calculating section 41 calculates a relative ratio IS2 of the integrated density values IS1, IS2, IS3 as a secondary feature value.
/ IS1, IS2 / IS3 and integrated concentration values IS1, IS
2, IS3, which is the maximum value among IS3, and the integrated values IS1, IS for the maximum integrated value IS.
2, ratio of IS3 IS1 / IS, IS2 / IS, IS3 /
The IS is obtained, and the length, width, area, and signal peak value of the flaw are also obtained from the coordinates of the flaw candidate areas 55a and 55b specified by the flaw candidate area extraction unit 40, and are sent to the flaw determination unit 42.

【0094】疵判定部42は、送られた疵候補領域55
a,55bの疵特徴量IS1,IS2,IS3,ISの
相対的な比率の数値パターンと複数の疵種についてあら
かじめ実験により求められた疵特徴量の数値パターンと
を比較し、一致するものを選択して疵の種類を決定す
る。例えば、冷延鋼板で軽度の欠陥部に付着した水がさ
びて長手方向にのび、重大欠陥であるヘゲ疵に似た外観
をしたステイン状欠陥が発生することがある。ステイン
状欠陥は人が見るとヘゲ疵と同様に地肌に対して暗く見
え、濃度も濃く検出しやすいが、凹凸がほとんどないた
め、ヘゲ疵に比べ有害度は低い。したがって、ヘゲ疵と
認識して等級判定をすると、過大評価になるため、ヘゲ
疵と弁別する必要がある。そこで、ステイン状欠陥とヘ
ゲ疵について、濃度積算値IS1,IS2,IS3の相
対的な比IS2/IS1とIS2/IS3との関係と、
最大濃度積算値ISに対する濃度積算値IS2の比IS
2/ISについて100点以上の疵を収集して測定したと
ころ、それぞれ図25,図26に示すように結果であっ
た。図25は比IS2/IS1とIS2/IS3の関係
を示し、(a)はヘゲ疵の場合、(b)はステイン状欠
陥の場合を示す。また、図26は比IS2/ISの分布
特性を示し、(a)はヘゲ疵の場合、(b)はステイン
状欠陥の場合を示す。図に示すように、表面がさびて膜
状となっているステイン状欠陥は濃度積算値IS2が濃
度積算値IS1,IS3に比べて小さい特性を示し、比
IS2/ISも1/4以下になる。これに対してヘゲ疵
の場合は濃度積算値IS2が濃度積算値IS1,IS3
に対して大きく変化し、比IS2/ISも大きくなる。
したがって、疵判定部42では最大濃度積算値ISに対
する濃度積算値IS2の比IS2/ISが1/4の疵候
補領域をステイン状欠陥と判定し、それ以上をヘゲ疵と
判定する。このようにしてヘゲ疵とステイン状欠陥を弁
別することができる。また、ステイン状欠陥以外にも鋼
板4表面に膜状となっている油のシミのような汚れと呼
ばれる欠陥も同様にしてIS1,IS2,IS3の比を
使ってヘゲ疵と弁別することができる。
The flaw determining section 42 sends the flaw candidate area 55
The numerical pattern of the relative ratio of the flaw features IS1, IS2, IS3, and IS of a and 55b is compared with the numerical pattern of the flaw features previously obtained by experiments for a plurality of flaw types, and a match is selected. To determine the type of flaw. For example, water adhering to a minor defect portion of a cold-rolled steel sheet may rust and extend in the longitudinal direction, and a stain defect having an appearance similar to a scab defect which is a serious defect may occur. The stain-like defect looks dark to the ground like a barbed flaw when viewed by a human and has a high density and is easy to detect. However, since there are almost no irregularities, the harmfulness is lower than that of the barbed flaw. Therefore, if a grade is determined by recognizing a barbed flaw, it is overestimated, and it is necessary to discriminate it from a barbed flaw. Therefore, the relation between the relative ratios IS2 / IS1 and IS2 / IS3 of the concentration integrated values IS1, IS2, and IS3 for the stain-like defects and the bark defects,
Ratio IS of concentration integrated value IS2 to maximum concentration integrated value IS
When 100 or more flaws were collected and measured for 2 / IS, the results were as shown in FIGS. 25 and 26, respectively. FIG. 25 shows the relationship between the ratios IS2 / IS1 and IS2 / IS3, where (a) shows the case of a barbed flaw and (b) shows the case of a stain-like defect. FIG. 26 shows the distribution characteristics of the ratio IS2 / IS, where (a) shows the case of a barbed flaw and (b) shows the case of a stain defect. As shown in the figure, a stain-like defect whose surface is rusted and in the form of a film has a characteristic that the integrated value IS2 is smaller than the integrated values IS1 and IS3, and the ratio IS2 / IS is 1/4 or less. . On the other hand, in the case of a barbed flaw, the integrated density value IS2 is equal to the integrated density values IS1 and IS3.
And the ratio IS2 / IS also increases.
Therefore, the flaw determination unit 42 determines a flaw candidate area where the ratio IS2 / IS of the integrated density value IS2 to the maximum integrated density value IS is 1/4 to be a stain-like defect, and determines a flawed area above that. In this way, it is possible to discriminate between the scab defect and the stain defect. In addition to stain-like defects, defects called stains such as oil stains that have formed on the surface of the steel plate 4 in the form of a film can be similarly discriminated from scab defects using the ratio of IS1, IS2, and IS3. it can.

【0095】疵判定部42は疵の種類を判定したのち疵
の等級を判定する。疵の等級は最大濃度積算値ISや信
号ピーク値等の特徴量が、あらかじめ疵種別に定められ
た等級に対応する値となっているかを判断して決定す
る。例えばヘゲ疵とステイン状欠陥の目視等級と最大濃
度積算値ISとの関係を調べた結果、図27に示す分布
を示した。図27において(a)はヘゲ疵の場合、
(b)はステイン状欠陥の場合を示し、等級Bより等級
Dが重欠陥である。図に示すように、同じ等級ではステ
イン状欠陥の方が最大濃度積算値ISが大きくなってい
る。例えば、等級判定を最大濃度積算値lSで決定する
場合、ステイン状欠陥をヘゲ疵と弁別できなければステ
イン状欠陥の等級判定は過大評価となってしまうが、ヘ
ゲ疵とステイン状欠陥を確実に弁別できるので、等級判
定の閾値レベルをヘゲ疵とステイン状欠陥で異なるよう
に設定値できるので、過大評価を減らすことができる。
図28には目視検査の等級と、ステイン状欠陥をヘゲ疵
と弁別しない場合と、比IS2/IS<1/4でステイ
ン状欠陥とヘゲ疵を弁別した場合の等級判定疵数の結果
の具体例を示す。図28において(a)はステイン状欠
陥をヘゲ疵と弁別しない場合、(b)は比IS2/IS
<1/4でステイン状欠陥とヘゲ疵を弁別した場合の等
級判定結果を示す。図に示すように、比IS2/IS<
1/4でステイン状欠陥とヘゲ疵を弁別してから疵の等
級を判定した場合には目視検査の場合と同等の等級判定
結果を得ることができた。
The flaw determining section 42 determines the grade of the flaw after determining the type of the flaw. The grade of the flaw is determined by judging whether the characteristic amount such as the maximum concentration integrated value IS or the signal peak value is a value corresponding to the grade determined in advance for the flaw type. For example, as a result of examining the relationship between the visual rating of the barbed flaw and the stain-like defect and the maximum concentration integrated value IS, the distribution shown in FIG. 27 was shown. In FIG. 27, (a) is a case of a scab,
(B) shows the case of a stain-like defect, in which grade D is a heavy defect than grade B. As shown in the figure, in the same grade, the stain-like defect has a larger maximum density integrated value IS. For example, when the grade determination is determined by the maximum concentration integrated value ls, if the stain-like defect cannot be discriminated from the barbed flaw, the grade determination of the stain-like defect will be overestimated. Since the discrimination can be made surely, the threshold level of the grade judgment can be set to be different between the barbed flaw and the stain-like defect, so that overestimation can be reduced.
FIG. 28 shows the results of the visual inspection grade, the case where the stain-like defect is not discriminated from the barbed flaw, and the number of the grade judgment flaws when the stain-like defect and the barbed flaw are discriminated at the ratio IS2 / IS <1/4. The following shows a specific example. In FIG. 28, (a) shows the case where the stain-like defect is not discriminated from the barb defect, and (b) shows the ratio IS2 / IS.
<1/4> shows the results of the grade determination in the case of discriminating between the stain-like defect and the scab defect. As shown in the figure, the ratio IS2 / IS <
When the grade of the flaw was determined after discriminating the stain-like defect from the barb flaw in 1/4, the same grade determination result as that in the case of the visual inspection could be obtained.

【0096】また、図29(a)の側面図と(b)の上
面図に示す光学系1aを使用しても良い。この光学系1
aの受光部61は、レンズの前に検光角βがそれぞれ−
45度,45度,0度に設定された検光子62a,62
b,62cを有する3台のリニアアレイカメラ63a,
63b,63cから構成されている。そして各リニアア
レイカメラ63a〜63cの各光軸は互いに平行に維持
されている。また、各リニアアレイカメラ63a〜63
cの視野のずれは信号処理部31で補正している。信号
処理部31は、各リニアアレイカメラ63a〜63cか
らの信号毎に2値化,疵候補領域抽出,特徴量演算まで
を行い、各疵候補領域の代表座標を比較することによ
り、各リニアアレイカメラ63a〜63cの疵候補領域
の対応付けを行っている。
The optical system 1a shown in the side view of FIG. 29A and the top view of FIG. 29B may be used. This optical system 1
The light receiving portion 61 of FIG.
Analyzers 62a and 62 set at 45 degrees, 45 degrees, and 0 degrees
b, 62c, three linear array cameras 63a,
63b and 63c. The optical axes of the linear array cameras 63a to 63c are maintained parallel to each other. In addition, each linear array camera 63a-63
The shift in the visual field of c is corrected by the signal processing unit 31. The signal processing unit 31 performs binarization, flaw candidate area extraction, and feature value calculation for each signal from each of the linear array cameras 63a to 63c, and compares the representative coordinates of each flaw candidate area to thereby obtain a linear array. The flaw candidate areas of the cameras 63a to 63c are associated with each other.

【0097】この実施例においても、前記実施例と同様
な結果を得ることができる。また、このように各リニア
アレイカメラ63a〜63cの光軸が互いに平行に維持
されていると、3台のリニアアレイカメラ63a〜63
cの光学条件は全く同一となり、各画素も同一サイズと
なる。また、3台のリニアアレイカメラ63a〜63c
を配置しているので、ビームスプリッタを用いるのに比
べて光量の損失がなくなり、より効率良く測定すること
ができる。また、このような信号処理を行うことによ
り、各CCD間の画素毎の位置合わせを省略することも
可能である。
In this embodiment, the same result as in the above embodiment can be obtained. When the optical axes of the linear array cameras 63a to 63c are maintained parallel to each other, the three linear array cameras 63a to 63c
The optical conditions of c are exactly the same, and each pixel has the same size. In addition, three linear array cameras 63a to 63c
Are arranged, the loss of the light amount is reduced as compared with the case where the beam splitter is used, and the measurement can be performed more efficiently. Further, by performing such signal processing, it is also possible to omit the position alignment for each pixel between the CCDs.

【0098】[0098]

【発明の効果】この発明は以上説明したように、被検査
面に一定入射角で偏光を入射し、その反射光の異なる複
数の偏光の光強度分布を検出し、複数の偏光の光強度分
布から疵候補領域を抽出し、疵候補領域における正常部
に対する疵部の異なる複数の偏光の光強度信号の積分量
を算出し、算出した積分量の比を示す特徴量から疵の種
類を判定するようにしたから、散乱光や回折では弁別で
きなかった表面疵を弁別することができる。また、疵の
種類を判定してから疵の等級を判定するから、疵の検出
精度を高めることができる。
As described above, according to the present invention, a polarized light is incident on a surface to be inspected at a constant incident angle, the light intensity distribution of a plurality of polarized lights having different reflected lights is detected, and the light intensity distribution of a plurality of polarized lights is detected. , A flaw candidate area is extracted from the flaw candidate area, an integral amount of light intensity signals of a plurality of polarizations having different flaw parts with respect to a normal part in the flaw candidate area is calculated, and a type of the flaw is determined from a feature amount indicating a ratio of the calculated integral amounts Thus, surface flaws that could not be discriminated by scattered light or diffraction can be discriminated. In addition, since the grade of the flaw is determined after the type of the flaw is determined, the detection accuracy of the flaw can be improved.

【0099】また、疵の等級を判定するときに、各受光
光学系から出力された画像信号から目視相当の光量変化
を演算し、演算した光量変化とあらかじめ定めたパター
ンと比較し疵の等級を判定するから、疵の等級を精度良
く判定することができる。
When determining the grade of a flaw, a change in the amount of light equivalent to visual observation is calculated from the image signal output from each light receiving optical system, and the calculated change in the amount of light is compared with a predetermined pattern to determine the grade of the flaw. From the determination, the grade of the flaw can be determined with high accuracy.

【0100】さらに、冷延鋼板に発生するステイン状欠
陥とヘゲ疵を判別するときに、3つの受光光学系の信号
強度積分量の最大値に対する偏光角度45度の受光光学
系の信号強度積分量の比が1/4未満となる欠陥をステ
イン状欠陥と判定し、3つの受光光学系の信号強度積分
量の最大値に対する偏光角度45度の受光光学系の信号
強度積分量の比が1/4以上となる欠陥をヘゲ疵と判定
するから、判別しにくいしステイン状欠陥とヘゲ疵を正
確に判別することができる。したがって疵の等級を目視
検査の場合と同等に判定することができる。
Further, when discriminating a stain-like defect and a scab defect generated in a cold-rolled steel sheet, the signal intensity integral of the light receiving optical system at a polarization angle of 45 degrees with respect to the maximum value of the signal intensity integral of the three light receiving optical systems. A defect having a ratio of less than 1/4 is determined as a stain defect, and the ratio of the signal intensity integral of the light receiving optical system at a polarization angle of 45 degrees to the maximum value of the signal intensity integral of the three light receiving optical systems is 1 Since a defect of / 4 or more is determined as a barbed flaw, it is difficult to determine the defect and a stain-like defect and a barbed flaw can be accurately determined. Therefore, the grade of the flaw can be determined in the same manner as in the case of the visual inspection.

【図面の簡単な説明】[Brief description of the drawings]

【図1】鋼板表面のミクロな凹凸形状を示す説明図であ
る。
FIG. 1 is an explanatory view showing a micro uneven shape on the surface of a steel sheet.

【図2】鋼板表面の光学的反射を示す断面模式図であ
る。
FIG. 2 is a schematic sectional view showing optical reflection on the surface of a steel plate.

【図3】鋼板表面の反射光の角度分布を示す説明図であ
る。
FIG. 3 is an explanatory diagram showing an angular distribution of reflected light on a steel plate surface.

【図4】ヘゲ欠陥を示す説明図である。FIG. 4 is an explanatory view showing a scab defect.

【図5】鋼板表面の反射光量の角度分布の違いを示す説
明図である。
FIG. 5 is an explanatory diagram showing a difference in an angular distribution of a reflected light amount on a steel plate surface.

【図6】法線角度をテンパ部の面積率との関係を示す説
明図である。
FIG. 6 is an explanatory diagram showing a relationship between a normal angle and an area ratio of a temper portion.

【図7】微小面素の法線角度を示す説明図である。FIG. 7 is an explanatory diagram showing a normal angle of a micro surface element.

【図8】重み関数を示す説明図である。FIG. 8 is an explanatory diagram showing a weight function.

【図9】線状拡散光源からの光の鋼板表面における反射
特性を示す説明図である。
FIG. 9 is an explanatory diagram showing reflection characteristics of light from a linear diffusion light source on a steel sheet surface.

【図10】線状拡散光源からの光の鋼板表面における反
射を示す説明図である。
FIG. 10 is an explanatory diagram showing reflection of light from a linear diffusion light source on a steel plate surface.

【図11】直線偏光を鋼板表面に入射したときの反射光
を示す説明図である。
FIG. 11 is an explanatory diagram showing reflected light when linearly polarized light is incident on the surface of a steel sheet.

【図12】直線偏光を鋼板表面に入射したときの反射光
を示す他の説明図である。
FIG. 12 is another explanatory diagram showing reflected light when linearly polarized light is incident on the surface of a steel sheet.

【図13】微小面素からの反射光の楕円偏光状態を示す
説明図である。
FIG. 13 is an explanatory diagram showing an elliptically polarized light state of reflected light from a minute surface element.

【図14】微小面素の法線角度と重み関数の関係を示す
説明図である。
FIG. 14 is an explanatory diagram showing a relationship between a normal line angle of a small surface element and a weighting function.

【図15】微小面素の法線角度と重み関数の関係を示す
他の説明図である。
FIG. 15 is another explanatory diagram illustrating a relationship between a normal angle of a microscopic element and a weight function.

【図16】鋼板の反射特性を示す説明図である。FIG. 16 is an explanatory diagram showing reflection characteristics of a steel plate.

【図17】この発明の実施例の光学系を示す配置図であ
る。
FIG. 17 is an arrangement diagram showing an optical system according to an embodiment of the present invention.

【図18】光学系の動作を示す配置説明図である。FIG. 18 is an explanatory view of the arrangement showing the operation of the optical system.

【図19】3板式偏光リニアアレイカメラの構成図であ
る。
FIG. 19 is a configuration diagram of a three-plate polarization linear array camera.

【図20】信号処理部の構成を示すブロック図である。FIG. 20 is a block diagram illustrating a configuration of a signal processing unit.

【図21】エッジ検出動作を示す信号強度分布図であ
る。
FIG. 21 is a signal intensity distribution diagram showing an edge detection operation.

【図22】輝度むら補正動作を示す説明図である。FIG. 22 is an explanatory diagram showing a luminance unevenness correction operation.

【図23】2値化レベルを示す濃度特性図である。FIG. 23 is a density characteristic diagram showing a binarization level.

【図24】疵候補領域の検出動作を示す画像図である。FIG. 24 is an image diagram showing an operation of detecting a flaw candidate region.

【図25】疵の比IS2/IS1とIS2/IS3の関
係を示す分布特性図である。
FIG. 25 is a distribution characteristic diagram showing a relationship between flaw ratios IS2 / IS1 and IS2 / IS3.

【図26】疵の比IS2/ISに対する分布特性図であ
る。
FIG. 26 is a distribution characteristic diagram with respect to the flaw ratio IS2 / IS.

【図27】ヘゲ疵とステイン状欠陥の目視等級と最大濃
度積算値ISとの関係を示す分布図である。
FIG. 27 is a distribution diagram showing a relationship between a visual rating of a barbed flaw and a stain-like defect and a maximum density integrated value IS.

【図28】疵の等級の判定結果の具体例を示す説明図で
ある。
FIG. 28 is an explanatory diagram showing a specific example of a result of determining the grade of a flaw.

【図29】他の実施例の光学系を示し、(a)は側面
図、(b)は上面図である。
FIGS. 29A and 29B show an optical system according to another embodiment, in which FIG. 29A is a side view and FIG. 29B is a top view.

【符号の説明】[Explanation of symbols]

4 鋼板 21 光学系 22 投光部 23 3板式偏光リニアアレイカメラ 24 光源 25 偏光子 26 ビームスプリッタ 27 検光子 28 リニアアレイセンサ 31 信号処理部 32 前処理部 33 エッジ検出部 34 輝度むら補正部 35 フレームメモリ 36 2値化処理部 37 2値メモリ 38 オア処理部 39 2値メモリ 40 疵候補領域抽出部 41 特徴量演算部 42 疵判定部 Reference Signs List 4 steel plate 21 optical system 22 light projecting unit 23 three-plate polarizing linear array camera 24 light source 25 polarizer 26 beam splitter 27 analyzer 28 linear array sensor 31 signal processing unit 32 preprocessing unit 33 edge detection unit 34 brightness unevenness correction unit 35 frame Memory 36 Binarization processing unit 37 Binary memory 38 OR processing unit 39 Binary memory 40 Flaw candidate area extraction unit 41 Feature amount calculation unit 42 Flaw determination unit

フロントページの続き (72)発明者 的場 有治 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 猪股 雅一 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 吉川 省二 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 山田 善郎 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 大重 貴彦 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 杉浦 寛幸 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 2G051 AA37 AB02 AB07 BA11 CA03 CA07 CB01 EA09 EA11 EB01 EC01 Continued on the front page (72) Inventor Yuji Matoba 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Masakazu Inomata 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Sun (72) Inventor Shoji Yoshikawa 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Japan In-tube (72) Inventor Yoshiro Yamada 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Japan Within Kokan Co., Ltd. (72) Inventor Takahiko Oshige 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Inventor Hiroyuki Sugiura 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan F term in the company (reference) 2G051 AA37 AB02 AB07 BA11 CA03 CA07 CB01 EA09 EA11 EB01 EC01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 投光部と受光部と信号処理部とを有し、
投光部は被検査面に偏光を入射し、受光部は少なくとも
3方向の異なる角度の偏光を受光する複数の受光光学系
を有し、被検査面で反射した反射光を検出して画像信号
に変換し、信号処理部は各受光光学系から出力された画
像信号から被検査面の地肌信号が基準となるように規格
化し、基準値に対する変化量から疵候補領域を抽出し、
抽出した疵候補領域内における各受光光学系からの信号
基準値に対する信号強度の変化量を積分し、各受光光学
系間における積分された信号強度積分量の相対的な比か
ら表面疵の種類を判定することを特徴とする表面検査装
置。
A light-emitting unit, a light-receiving unit, and a signal processing unit;
The light projecting unit receives polarized light on the surface to be inspected, and the light receiving unit has a plurality of light receiving optical systems for receiving polarized light at different angles in at least three directions. The signal processing unit normalizes the background signal of the surface to be inspected from the image signal output from each light receiving optical system so as to be a reference, and extracts a flaw candidate area from the variation with respect to the reference value,
Integrate the amount of change in signal intensity with respect to the signal reference value from each light receiving optical system in the extracted flaw candidate region, and determine the type of surface flaw from the relative ratio of the integrated signal intensity integral between each light receiving optical system. A surface inspection device characterized by determining.
【請求項2】 投光部と受光部と信号処理部とを有し、
投光部は被検査面に偏光を入射し、受光部は少なくとも
3方向の異なる角度の偏光を受光する複数の受光光学系
を有し、被検査面で反射した反射光を検出して画像信号
に変換し、信号処理部は各受光光学系から出力された画
像信号から被検査面の地肌信号が基準となるように規格
化し、基準値に対する変化量から疵候補領域を抽出し、
抽出した疵候補領域内における各受光光学系からの信号
基準値に対する信号強度の変化量を積分し、各受光光学
系間における信号強度変化の積分量の相対的な比から表
面疵の種類を判定し、信号強度変化の積分量をあらかじ
め定めたパターンと比較し疵の等級を判定することを特
徴とする表面検査装置。
2. A light-emitting device comprising: a light projecting unit, a light receiving unit, and a signal processing unit;
The light projecting unit receives polarized light on the surface to be inspected, and the light receiving unit has a plurality of light receiving optical systems for receiving polarized light at different angles in at least three directions. The signal processing unit normalizes the background signal of the surface to be inspected from the image signal output from each light receiving optical system so as to be a reference, and extracts a flaw candidate area from the variation with respect to the reference value,
Integrate the amount of change in signal intensity with respect to the signal reference value from each light receiving optical system in the extracted flaw candidate region, and determine the type of surface flaw from the relative ratio of the amount of integration of the signal intensity change between each light receiving optical system A surface inspection device for comparing the integral of the signal intensity change with a predetermined pattern to determine the grade of the flaw.
【請求項3】 投光部と受光部と信号処理部とを有し、
投光部は偏光角が被検査面の入射面に対して45度であ
る偏光を被検査面に入射し、受光部は偏光角が被検査面
の入射面に対して0度,45度,−45度である偏光を
受光する3つの受光光学系を有し、被検査面で反射した
反射光を検出して画像信号に変更し、信号処理部は各受
光光学系から出力された画像信号から被検査面の地肌信
号が基準となるように規格化し、基準値に対する変化量
から疵候補領域を抽出し、抽出した疵候補領域内におけ
る各受光光学系からの信号強度変化量を積分し、3つの
受光光学系の信号強度変化の積分量の最大値に対する偏
光角度45度の受光光学系の信号強度積分量の比が1/
4未満となる欠陥を冷延鋼板に発生するステイン状欠陥
と判定し、3つの受光光学系の信号強度変化の積分量の
最大値に対する偏光角度45度の受光光学系の信号強度
積分量の比が1/4以上となる欠陥をヘゲ疵と判定し、
判定した疵種の等級を決定することを特徴とする冷延鋼
板の表面検査装置。
3. It has a light emitting unit, a light receiving unit, and a signal processing unit,
The light projecting unit enters a polarized light having a polarization angle of 45 degrees with respect to the incident surface of the surface to be inspected, and the light receiving unit has a polarization angle of 0 degrees, 45 degrees, with respect to the incident surface of the surface to be inspected. It has three light receiving optical systems for receiving polarized light of -45 degrees, detects reflected light reflected on the surface to be inspected, changes it into an image signal, and the signal processing unit outputs the image signal output from each light receiving optical system. Normalized so that the background signal of the surface to be inspected becomes a reference, a flaw candidate area is extracted from the variation with respect to the reference value, and the signal intensity variation from each light receiving optical system in the extracted flaw candidate area is integrated, The ratio of the signal intensity integral of the light receiving optical system at the polarization angle of 45 degrees to the maximum value of the integral of the signal intensity change of the three light receiving optical systems is 1 /
Defects less than 4 are determined as stain-like defects generated in the cold-rolled steel sheet, and the ratio of the signal intensity integral of the light receiving optical system at a polarization angle of 45 degrees to the maximum value of the integral of the signal intensity change of the three light receiving optical systems. Is determined to be a dent, and
A surface inspection device for a cold-rolled steel sheet, wherein a grade of the determined flaw type is determined.
JP23817098A 1998-08-25 1998-08-25 Surface inspection equipment Expired - Fee Related JP3446008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23817098A JP3446008B2 (en) 1998-08-25 1998-08-25 Surface inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23817098A JP3446008B2 (en) 1998-08-25 1998-08-25 Surface inspection equipment

Publications (2)

Publication Number Publication Date
JP2000065751A true JP2000065751A (en) 2000-03-03
JP3446008B2 JP3446008B2 (en) 2003-09-16

Family

ID=17026228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23817098A Expired - Fee Related JP3446008B2 (en) 1998-08-25 1998-08-25 Surface inspection equipment

Country Status (1)

Country Link
JP (1) JP3446008B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001066262A (en) * 1999-06-25 2001-03-16 Nkk Corp Surface scratch marking device, and metal belt with marking and its manufacturing method
JP2001201456A (en) * 1999-06-25 2001-07-27 Nkk Corp Manufacturing method for metal belt with marking
JP2009078289A (en) * 2007-09-26 2009-04-16 Jfe Steel Kk Method of detecting defect of hot-rolled metallic strip using near infrared camera in hot rolling and method of manufacturing hot-rolled metallic strip using it
KR101328266B1 (en) 2011-12-26 2013-11-14 주식회사 포스코 Apparatus for detecting surface crack of hot slab
KR101360653B1 (en) 2012-06-26 2014-02-10 주식회사 포스코 Apparatus for detecting seem crack of rolled steel
JP2018149582A (en) * 2017-03-14 2018-09-27 Jfeスチール株式会社 Edge detection method and edge detection apparatus of high strength cold-rolled steel plate
CN111630367A (en) * 2018-01-18 2020-09-04 杰富意钢铁株式会社 Spectrum analysis device, spectrum analysis method, steel strip manufacturing method, and steel strip quality assurance method
CN113544495A (en) * 2019-03-08 2021-10-22 杰富意钢铁株式会社 Chemical conversion coating inspection method, chemical conversion coating inspection device, surface-treated steel sheet manufacturing method, quality control method, and manufacturing facility
CN116973367A (en) * 2023-07-05 2023-10-31 广东汇发塑业科技有限公司 Method for inspecting degradation defect position of biodegradable film

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001066262A (en) * 1999-06-25 2001-03-16 Nkk Corp Surface scratch marking device, and metal belt with marking and its manufacturing method
JP2001201456A (en) * 1999-06-25 2001-07-27 Nkk Corp Manufacturing method for metal belt with marking
JP2009078289A (en) * 2007-09-26 2009-04-16 Jfe Steel Kk Method of detecting defect of hot-rolled metallic strip using near infrared camera in hot rolling and method of manufacturing hot-rolled metallic strip using it
KR101328266B1 (en) 2011-12-26 2013-11-14 주식회사 포스코 Apparatus for detecting surface crack of hot slab
KR101360653B1 (en) 2012-06-26 2014-02-10 주식회사 포스코 Apparatus for detecting seem crack of rolled steel
JP2018149582A (en) * 2017-03-14 2018-09-27 Jfeスチール株式会社 Edge detection method and edge detection apparatus of high strength cold-rolled steel plate
CN111630367A (en) * 2018-01-18 2020-09-04 杰富意钢铁株式会社 Spectrum analysis device, spectrum analysis method, steel strip manufacturing method, and steel strip quality assurance method
CN111630367B (en) * 2018-01-18 2023-03-14 杰富意钢铁株式会社 Spectrum analysis device, spectrum analysis method, steel strip manufacturing method, and steel strip quality assurance method
CN113544495A (en) * 2019-03-08 2021-10-22 杰富意钢铁株式会社 Chemical conversion coating inspection method, chemical conversion coating inspection device, surface-treated steel sheet manufacturing method, quality control method, and manufacturing facility
CN116973367A (en) * 2023-07-05 2023-10-31 广东汇发塑业科技有限公司 Method for inspecting degradation defect position of biodegradable film
CN116973367B (en) * 2023-07-05 2024-01-30 广东汇发塑业科技有限公司 Method for inspecting degradation defect position of biodegradable film

Also Published As

Publication number Publication date
JP3446008B2 (en) 2003-09-16

Similar Documents

Publication Publication Date Title
JP5104004B2 (en) Surface defect inspection apparatus and surface defect inspection method
JP3882302B2 (en) Surface flaw inspection apparatus and method
JPH09127012A (en) Method and device for detecting surface scratch
JP2000065751A (en) Surface inspection apparatus
JPH07218451A (en) Device for optically inspecting steel plate for surface flaw
JP3275811B2 (en) Surface defect inspection apparatus and method
JP2000065755A (en) Surface inspection apparatus
JP3826578B2 (en) Surface inspection device
JPH09166552A (en) Surface inspection device
JP5104443B2 (en) Surface inspection apparatus and method
JP2002221495A (en) Inspecting equipment for surface flaw and its method
JPH09178666A (en) Surface inspection device
JP3531002B2 (en) Surface inspection device
JP3508589B2 (en) Surface flaw inspection equipment
JPH11183400A (en) Surface flaw inspecting device and method
JPH11183396A (en) Surface flaw inspecting device and method
JP3716650B2 (en) Surface flaw inspection device
JPH09178667A (en) Inspection apparatus for surface
JPH11295240A (en) Method and equipment for inspecting surface flaw
JPH11183399A (en) Surface flaw inspecting device and surface observing method
JP2005221391A (en) Surface flaw inspection device
JPH11295241A (en) Method and equipment for inspecting surface flaw
JP3687441B2 (en) Surface flaw marking device and method of manufacturing metal band with marking
JP6028828B2 (en) Surface flaw inspection apparatus and surface flaw inspection method
JPH11295238A (en) Method and equipment for inspecting surface flaw

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100704

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100704

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees