JPH11295240A - Method and equipment for inspecting surface flaw - Google Patents
Method and equipment for inspecting surface flawInfo
- Publication number
- JPH11295240A JPH11295240A JP9912998A JP9912998A JPH11295240A JP H11295240 A JPH11295240 A JP H11295240A JP 9912998 A JP9912998 A JP 9912998A JP 9912998 A JP9912998 A JP 9912998A JP H11295240 A JPH11295240 A JP H11295240A
- Authority
- JP
- Japan
- Prior art keywords
- light
- incident
- flaw
- steel plate
- unevenness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、例えば薄鋼板表面
等の被検査面に光を照射してこの被検査面の表面疵を光
学的に検出する表面疵検査装置及び表面疵検査方法に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface flaw inspection apparatus and a surface flaw inspection method for irradiating a surface to be inspected such as a thin steel sheet surface with light to optically detect surface flaws on the surface to be inspected.
【0002】[0002]
【従来の技術】薄鋼板表面等の被検査面に光を照射して
この被検査面からの反射光を解析することによって、被
検査面に存在する表面疵を光学的に検出する表面疵検査
は従来から種々の手法が提唱され実施されている。2. Description of the Related Art Surface flaw inspection for optically detecting surface flaws present on a surface to be inspected by irradiating light to a surface to be inspected such as a thin steel sheet surface and analyzing reflected light from the surface to be inspected. Conventionally, various methods have been proposed and implemented.
【0003】例えば、被検体表面に対して光を入射し、
被検体表面からの正反射光及び拡散反射光をカメラで検
出する金属物体の表面探傷方法が特開昭58-204353 号公
報に提案されている。この表面探傷方法においては、被
検体表面に対し35°〜75°の角度で光を入射し、被
検体表面からの反射光を、正反射方向と入射方向又は正
反射方向から20°以内の角度方向に設置した2台のカ
メラで受光する。そして、2台のカメラの受光信号を比
較し、例えば両者の論理和を取る。そして、2台のカメ
ラが同時に異常値を検出した場合のみ該当異常値を傷と
みなすことにより、ノイズに影響されない表面探傷方法
を実現している。For example, light is incident on the surface of a subject,
Japanese Patent Application Laid-Open No. 58-204353 proposes a surface flaw detection method for a metal object in which specular reflected light and diffuse reflected light from the surface of an object are detected by a camera. In this surface flaw detection method, light is incident on the surface of the subject at an angle of 35 ° to 75 °, and reflected light from the surface of the subject is reflected at an angle within 20 ° from the specular reflection direction and the incident direction or the specular reflection direction. Light is received by two cameras installed in different directions. Then, the light reception signals of the two cameras are compared, and, for example, the logical sum of the two is obtained. Then, only when two cameras simultaneously detect abnormal values, the abnormal values are regarded as flaws, thereby realizing a surface flaw detection method that is not affected by noise.
【0004】また、被検体からの後方散乱光を受光する
ことによる被検体表面の疵検査方法が特開昭60-228943
号公報に提案されている。この疵検査方法においては、
ステンレス鋼板に対して大きな入射角で光を入射し、入
射側へ戻る反射光、すなわち後方散乱光を検出すること
により、ステンレス鋼板表面のヘゲ疵を検出している。A method for inspecting a flaw on the surface of an object by receiving backscattered light from the object is disclosed in Japanese Patent Laid-Open No. 60-228943.
No. 1993. In this flaw inspection method,
Light is incident on the stainless steel plate at a large angle of incidence, and reflected light returning to the incident side, that is, backscattered light is detected, thereby detecting a barbed flaw on the surface of the stainless steel plate.
【0005】さらに、複数の後方散乱反射光を検出する
ことによる平鋼熱間探傷装置が特開平8-178867号公報に
提案されている。この平鋼熱間探傷装置は熱間圧延され
た平鋼上の掻疵を検出する。そして、この探傷装置にお
いては、掻疵の疵斜面角度は10〜40°であり、この
範囲の疵斜面からの正反射光を全てカバーできるように
後方拡散反射方向に複数台のカメラが配設されている。Further, Japanese Patent Application Laid-Open No. 8-17867 proposes a flat steel hot flaw detector which detects a plurality of backscattered reflected lights. This flat steel hot flaw detector detects a scratch on a hot-rolled flat steel. In this flaw detection device, the angle of the flaw slope of the flaw is 10 to 40 °, and a plurality of cameras are arranged in the backward diffuse reflection direction so as to cover all the specularly reflected light from the flaw slope in this range. Have been.
【0006】さらに、特開昭58-204353 号公報や特開平
8-178867号公報では複数台のカメラの光軸が共通ではな
く出射角が異なるため、得られる2つの画像の対応する
画素の視野サイズが異なるほか、被検査面のバタツキや
対象の厚さ変動による距離変化があると視野に位置ズレ
を生じるという問題があった。特に特開昭58-204353号
公報では2つのカメラで同じ視野に対する論理和をとる
ことが要求されるため問題は大きかった。Further, Japanese Patent Application Laid-Open No. 58-204353 and
In Japanese Patent Application Laid-Open No. 8-178867, since the optical axes of a plurality of cameras are not common and the emission angles are different, the field of view size of the corresponding pixels of the two images obtained is different, and the fluttering of the inspected surface and the thickness variation of the object There is a problem in that if there is a distance change due to, a positional shift occurs in the visual field. Particularly, in Japanese Patent Application Laid-Open No. 58-204353, the problem is great because it is required that two cameras take a logical sum for the same field of view.
【0007】また、偏光を利用した表面の測定装置が特
開昭57-166533 号公報及び特開平9-166552号公報に提案
されている。特開昭57-166533 号公報に提案された測定
装置においては、測定対象に45°方向の偏光を入射し
偏光カメラで反射光を受光している。偏光カメラにおい
ては、反射光をカメラ内部のビームスプリッタを用いて
3つに分岐し、それぞれ異なる方位角の偏光フィルタを
通して受光する。そして、偏光カメラからの3本の信号
を、カラーTVシステムと同様の信号処理により、モニ
タに表示し、偏光状態を可視化する技術が開示されてい
る。この技術はエリプソメトリの技術を利用しており、
光源は平行光であることが望ましく、例えばレーザ光が
用いられている。A surface measuring apparatus using polarized light has been proposed in Japanese Patent Application Laid-Open Nos. 57-166533 and 9-166552. In the measuring device proposed in Japanese Patent Application Laid-Open No. 57-166533, polarized light in a direction of 45 ° is incident on a measuring object and reflected light is received by a polarizing camera. In a polarizing camera, the reflected light is split into three using a beam splitter inside the camera, and the reflected light is received through polarizing filters having different azimuth angles. A technique is disclosed in which three signals from a polarization camera are displayed on a monitor by signal processing similar to that of a color TV system, and the polarization state is visualized. This technology uses the technology of ellipsometry,
The light source is desirably parallel light, for example, laser light is used.
【0008】また、特開平9-166552号公報に提案された
表面検査装置においては、特開昭57-166533 号公報記載
技術と同様に、エリプソメトリを利用して鋼板表面の疵
を検査している。Further, in the surface inspection apparatus proposed in Japanese Patent Application Laid-Open No. Hei 9-165552, similarly to the technology described in Japanese Patent Application Laid-Open No. 57-166533, the surface of a steel sheet is inspected for defects using ellipsometry. I have.
【0009】また、表面に塗装されたニスに影響される
ことなく印刷面、塗装面の色を測定する表面検査装置が
特開昭53-23678号公報に提案されている。この表面検査
装置においては、測定物に対する入射光を入射面に平行
な電界を持つp偏光とし、かつ入射光の測定物に対する
入射角を測定物のブリュースター角に設定している。Japanese Patent Application Laid-Open No. Sho 53-23678 proposes a surface inspection apparatus for measuring the color of a printed surface or a painted surface without being affected by a varnish applied to the surface. In this surface inspection apparatus, the incident light on the object is p-polarized light having an electric field parallel to the incident surface, and the incident angle of the incident light on the object is set as the Brewster angle of the object.
【0010】入射角がブリュースター角度に設定されて
いる場合、反射光には入射面に平行する偏光成分(p偏
光)は含まれない。したがって、入射光をp偏光とした
場合、反射光はゼロとなる。よって、入射角度をニスの
ブリュースター角に設定することによって、被測定物表
面に塗られたニスの表面での光沢性の反射をなくし、ニ
スの下の塗装面や印刷面の色の違いを検査可能にするも
のである。When the incident angle is set to the Brewster angle, the reflected light does not include a polarized light component (p-polarized light) parallel to the incident surface. Therefore, when the incident light is p-polarized light, the reflected light becomes zero. Therefore, by setting the incident angle to the Brewster angle of the varnish, the glossy reflection on the surface of the varnish applied to the object to be measured is eliminated, and the difference in color between the painted surface and the printed surface under the varnish is reduced. Inspection is possible.
【0011】[0011]
【発明が解決しようとする課題】しかしながら、上述し
た各公開公報に提案された各測定技術は、いずれも顕著
な凹凸性を持つ疵を検出するか、又は酸化膜等異物が存
在する疵を検出することを目的としたものであり、顕著
な凹凸性を持たない模様状ヘゲ欠陥等に対しては全ての
疵を確実に捕捉することが困難であった。However, each of the measuring techniques proposed in each of the above-mentioned publications detects a flaw having remarkable unevenness or detects a flaw having a foreign substance such as an oxide film. Therefore, it is difficult to reliably capture all flaws with respect to pattern-shaped scab defects and the like having no noticeable unevenness.
【0012】例えば、特開昭58-204353 号公報の探傷方
法においては、正反射光と散乱反射光を受光する2台の
カメラを有しているが、その目的は2つのカメラにおけ
る検出信号の論理和によるノイズの影響除去である。し
たがつて、顕著な凹凸性を有する疵、すなわち表面に割
れ・抉れ・めくれ上がりを生じているような疵に対して
は両方のカメラで疵の信号が捉えられるので適用可能で
ある。しかし、いずれか一方のカメラでしか疵の信号を
捕らえられないような顕著な凹凸性を持たない模様状ヘ
ゲ欠陥のような疵の場合は、その疵を全て検出すること
はできない。For example, the flaw detection method disclosed in Japanese Patent Application Laid-Open No. 58-204353 has two cameras that receive specularly reflected light and scattered reflected light. The purpose of the method is to detect detection signals from the two cameras. This is to remove the influence of noise due to OR. Therefore, flaws having remarkable unevenness, that is, flaws having cracks, digging, and curling up on the surface are applicable because both cameras can detect the flaw signal. However, in the case of a flaw such as a pattern-shaped scab defect having no noticeable unevenness such that only one of the cameras can capture the flaw signal, it is not possible to detect all the flaws.
【0013】また、特開昭60-228943 号公報の表面状態
検査方法は、表面粗さの小さいステンレス鋼板上に顕在
化した持ち上がったヘゲ疵を対象としている。したがっ
て、顕在化していない持ち上がった部分のない疵や、疵
の存在しない部分も入射側へ戻る光を反射するような表
面の粗い鋼板に適用することはできない。Further, the surface condition inspection method disclosed in Japanese Patent Application Laid-Open No. 60-228943 is directed to a raised barbed flaw that has become apparent on a stainless steel plate having a small surface roughness. Therefore, it is not possible to apply a flaw having no raised portion that has not been exposed or a flaw-free part to a steel plate having a rough surface that reflects light returning to the incident side.
【0014】特開平8-178867号公報の平鋼熱間探傷装置
は、掻き疵を対象にしており、疵斜面での正反射光を捉
えることに基づいているため、顕著な凹凸性を持たない
模様状ヘゲのような疵の場合には後方散乱反射光では捉
えられないものも存在し、検出もれを生ずる問題点があ
った。The flat steel hot flaw detector disclosed in Japanese Patent Application Laid-Open No. 8-17867 is intended for scratches and does not have remarkable unevenness because it is based on catching specularly reflected light on the flaw slope. In the case of a flaw such as a patterned scab, there are some which cannot be caught by the backscattered reflected light, and there has been a problem that a detection leak occurs.
【0015】さらに、特開昭57-166533 号公報の測定装
置及び特開平9-166552号公報の表面検査装置は、エリプ
ソメトリの技術を用いており、「薄い透明な層の厚さ及
び屈折率」や「物性値のむら」を検出することはでき
る。しかしながら、例えば表面処理鋼板のように、もと
もと疵部が母材部と異なる物性値を有していたとして
も、その上から同一の物性値を有するものに覆われたよ
うな対象に対しては、有効性が低下してしまう問題があ
った。Further, the measuring device of Japanese Patent Application Laid-Open No. 57-166533 and the surface inspection device of Japanese Patent Application Laid-Open No. 9-166552 use ellipsometry technology. And "uneven physical property values" can be detected. However, even if the flaw originally has a property value different from that of the base material portion, such as a surface-treated steel sheet, for an object covered with a material having the same property value from above, However, there is a problem that the effectiveness is reduced.
【0016】また、上述した各従来技術においては、い
ずれも、表面に薄膜が付着し、その膜の有無がムラとな
って観察される検査対象に対しては、ムラを模様状ヘゲ
欠陥として誤って検出してしまう問題点があった。In each of the above-mentioned prior arts, a thin film adheres to the surface and the unevenness is regarded as a pattern-like scab defect for an inspection object in which the presence or absence of the thin film is observed as unevenness. There was a problem that it was detected by mistake.
【0017】表面のムラの存在が外見上重要でなく、か
つムラの程度も小さい場合は、ムラの存在が鋼板性能に
何ら支障を与えることがないので、ムラ自体は無害であ
る。しかし、表面疵検査装置にとっては上述した模様状
ヘゲ欠陥と誤認識するため過検出になる。When the presence of surface unevenness is not significant in appearance and the degree of unevenness is small, the presence of unevenness does not affect the performance of the steel sheet at all, and the unevenness itself is harmless. However, the surface flaw inspection apparatus is erroneously recognized as the above-mentioned pattern-shaped scab defect, and is overdetected.
【0018】特に、表面塗装が不完全で被検査面の全面
に亘って微細なムラが発生している場合には、ムラの発
生個数も非常に多いため、表面疵検査装置における信号
処理部の処理能力がムラの検出速度に追従できない問題
がある。In particular, when the surface coating is incomplete and minute unevenness is generated over the entire surface to be inspected, the number of unevennesses generated is very large. There is a problem that the processing capability cannot follow the unevenness detection speed.
【0019】前述した特開昭53-23678号公報の表面検査
装置においては、表面に膜が付着したものを対象として
いるが、反射光を正反射方向の一方向からのみ受光して
いる。したがって、この表面検査装置を、例えば鋼板上
の模様状ヘゲ欠陥のような、顕著な凹凸を持たず、色具
合にほとんど違いがない欠陥の検出に用いた場合におい
ては、全ての欠陥を捉えることはできない。The above-described surface inspection apparatus disclosed in Japanese Patent Application Laid-Open No. 53-23678 is directed to an apparatus having a film adhered to the surface, but receives reflected light only in one direction of the regular reflection direction. Therefore, when this surface inspection apparatus is used to detect a defect having no noticeable unevenness such as a patterned barbed defect on a steel plate and having almost no difference in color, all the defects are captured. It is not possible.
【0020】製品の品質検査ラインに組込まれる表面検
査装置においては、製造製品に対する品質保証の観点か
ら、疵の検出もれがないことが絶対条件である。しかし
ながら、表面処理鋼板等まで検査対象とした表面疵検査
装置は実用化されていなかった。In a surface inspection apparatus to be incorporated in a product quality inspection line, it is an absolute condition that there is no omission of flaw detection from the viewpoint of quality assurance of a manufactured product. However, a surface flaw inspection apparatus for inspecting even a surface-treated steel sheet or the like has not been put to practical use.
【0021】本発明は、このような事情に鑑みてなされ
たものであり、p偏光された照明光の入射角と正反射光
の受光角とをブリュースター角を用いて設定することに
よって、被検査面からの正反射光に含まれる鏡面反射成
分と鏡面拡散反射成分とを精度よく検出でき、被検査面
における表面の割れ・抉れ・めくれ上がりのような顕著
な凹凸性を持たない模様状ヘゲ欠陥を、欠陥とはいえな
い表面のムラと区別して、確実に検出でき、高い欠陥検
出精度を発揮でき、製品の品質検査ラインにも十分組込
むことができる表面疵検査装置及び表面疵検査方法を提
供することを目的とする。The present invention has been made in view of such circumstances, and by setting the incident angle of the p-polarized illumination light and the light reception angle of the specularly reflected light using the Brewster angle, the object of the present invention is improved. A pattern that can accurately detect the specular reflection component and the specular diffuse reflection component contained in the specular reflection light from the inspection surface, and has no noticeable unevenness such as surface cracks, gouges, or curling up on the surface to be inspected. Surface flaw inspection equipment and surface flaw inspection that can reliably detect barge defects and distinguish them from surface irregularities that can not be regarded as defects, can demonstrate high defect detection accuracy, and can be fully incorporated into product quality inspection lines The aim is to provide a method.
【0022】[0022]
【課題を解決するための手段】上記課題を解消するため
に請求項1の表面疵検査装置においては、表面にムラを
有する被検査面をこの被検査面に対する入射面に平行な
方向に直線偏光された照明光で照射する光源と、被検査
面からの受光角が、ムラの要因物質のブリュースター角
に設定され、照明光の正反射光における照明光の偏光方
向と同一方向の偏光成分を受光する第1の受光手段と、
被検査面からの受光角が、ムラの要因物質のブリュース
ター角に設定され、照明光の正反射光における照明光の
偏光方向と直交する方向の偏光成分を受光する第2の受
光手段と、第1及び第2の受光手段で受光された同一方
向及び直交方向の各偏光成分に基づいて被検査面の表面
疵の有無を判定する判定処理部とを備えている。According to a first aspect of the present invention, there is provided a surface flaw inspection apparatus for linearly polarizing a surface to be inspected having an uneven surface in a direction parallel to an incident surface with respect to the surface to be inspected. The light source irradiating with the illuminated light and the light reception angle from the surface to be inspected are set to the Brewster angle of the unevenness factor substance, and the polarization component of the specular reflection light of the illuminating light in the same direction as the polarization direction of the illuminating light is set. First light receiving means for receiving light,
A light receiving angle from the surface to be inspected is set to a Brewster angle of a substance causing unevenness, and a second light receiving unit that receives a polarization component in a direction orthogonal to a polarization direction of the illumination light in the regular reflection light of the illumination light, A determination processing unit that determines the presence or absence of a surface flaw on the surface to be inspected based on the polarization components in the same direction and the orthogonal direction received by the first and second light receiving units.
【0023】また、請求項2は、上述した発明の表面疵
検査装置における光源を線状拡散光源で形成している。
さらに、請求項3の表面疵検査方法においては、表面に
ムラを有する被検査面をこの被検査面に対する入射面に
平行な方向に直線偏光された照明光で照射し、ムラの要
因物質のブリュースター角に設定された受光方向から、
照明光の正反射光における照明光の偏光方向と同一方向
の偏光成分を受光し、ムラの要因物質のブリュースター
角に設定された受光方向から、照明光の正反射光におけ
る照明光の偏光方向と直交する方向の偏光成分を受光
し、受光された同一方向及び直交方向の各偏光成分に基
づいて被検査面の表面疵の有無を判定するようにしてい
る。According to a second aspect of the present invention, the light source in the surface flaw inspection apparatus of the invention is formed of a linear diffused light source.
Further, in the surface flaw inspection method according to the third aspect, the surface to be inspected having unevenness is illuminated with illumination light linearly polarized in a direction parallel to the incident surface with respect to the surface to be inspected. From the light receiving direction set at the star angle,
The polarization direction of the illumination light in the specular reflection light of the illumination light is received from the light receiving direction set at the Brewster angle of the substance causing unevenness, receiving the polarization component in the same direction as the polarization direction of the illumination light in the reflection light of the illumination light. Then, the presence or absence of a surface flaw on the surface to be inspected is determined based on the received polarization components in the same direction and the orthogonal direction.
【0024】次に、上述した発明の表面疵検査装置及び
表面疵検査方法の動作原理を図面を用いて説明する。ま
ず、本発明の表面疵検査装置が検査対象とする鋼板表面
の光学的反射の形態を鋼板表面のミクロな凹凸形状と関
連づけて説明する。Next, the principle of operation of the above-described surface flaw inspection apparatus and surface flaw inspection method of the present invention will be described with reference to the drawings. First, the form of optical reflection on the steel sheet surface to be inspected by the surface flaw inspection apparatus of the present invention will be described in relation to the microscopic unevenness on the steel sheet surface.
【0025】例えば、検査対象が合金化亜鉛メッキ鋼板
の場合においては、図6(a)に示すように、下地の冷
延鋼板は溶融亜鉛メッキされたのち合金化炉を通過す
る。この間に下地鋼板1の鉄元素がメッキ層2の亜鉛中
に拡散し、通常、図6(c)に示すように合金の柱状結
晶3を形成する。このメッキされた鋼板4は次にロール
5a,5bで調質圧延される。すると、図6(d)に示
すように、柱状結晶3における特に突出した箇所がロー
ル5a,5bで平坦につぶされ、それ以外の箇所は元の
柱状結晶3の形状を維持したままとなる。For example, when the inspection target is an alloyed galvanized steel sheet, as shown in FIG. 6A, the cold rolled steel sheet as the base passes through the alloying furnace after being hot-dip galvanized. During this time, the iron element of the base steel sheet 1 diffuses into the zinc of the plating layer 2, and usually forms columnar crystals 3 of the alloy as shown in FIG. The plated steel sheet 4 is then temper rolled on rolls 5a and 5b. Then, as shown in FIG. 6D, particularly protruding portions of the columnar crystal 3 are flattened by the rolls 5a and 5b, and the other portions maintain the original shape of the columnar crystal 3.
【0026】そして、この調質圧延のロール5a,5b
にて平坦につぶされた部分をテンパ部6と呼び、それ以
外の調質圧延のロール5a,5bが当接しない元の凹凸
形状を残した部分を非テンバ部7と称する。Then, the rolls 5a, 5b of the temper rolling are
The portion flattened by is referred to as a temper portion 6, and the remaining portion of the temper rolls 5 a and 5 b which does not contact the original uneven shape is referred to as a non-tempered portion 7.
【0027】図7は、このようなテンパ部6と非テンバ
部7とを有する鋼板4の表面でどのような光学的反射が
生じるかをモデル化した断面模式図である。この鋼板4
の表面(被検査面)はミクロ的に見ると種々の方向を向
いた無数の微小面素13で構成されている。FIG. 7 is a schematic cross-sectional view modeling what kind of optical reflection occurs on the surface of the steel plate 4 having such a tempered portion 6 and the non-tempered portion 7. This steel plate 4
The surface (the surface to be inspected) is composed of countless minute surface elements 13 oriented in various directions when viewed microscopically.
【0028】調質圧延のロール5a,5bによりつぶさ
れたテンパ部6に入射した入射光8は、テンパ部6の各
微小面素13で鋼板4の正反射方向に鏡面的に反射して
鏡面反射光9となる。一方、調質圧延のロール5a,5
bが当接しない元の柱状結晶3の構造を残す非テンパ部
7に入射した入射光8は、ミクロに見れば柱状結晶3の
各表面の微小面素13一つーつにより鏡面的に反射され
るが、反射の方向は鋼板4の正反射方向とは必ずしも一
致しない鏡面拡散反射光10となる。The incident light 8 incident on the temper portion 6 crushed by the temper rolling rolls 5a and 5b is reflected specularly in the regular reflection direction of the steel plate 4 by each of the micro-surface elements 13 of the temper portion 6 so as to have a mirror surface. It becomes reflected light 9. On the other hand, the rolls 5a, 5
The incident light 8 incident on the non-tempered part 7 which leaves the structure of the columnar crystal 3 where the b does not come into contact with the non-tempered part 7 is mirror-reflected by one microplane element 13 on each surface of the columnar crystal 3 when viewed microscopically. However, the direction of reflection is specular diffuse reflection light 10 which does not necessarily match the direction of regular reflection of the steel plate 4.
【0029】したがって、鋼板4の表面におけるテンパ
部6及び非テンパ部7の各反射光の角度分布は、マクロ
に見ればそれぞれ図8(a)、図8(b)のようにな
る。すなわち、テンパ部6では鋼板4の正反射方向に鋭
い鏡面性の反射が発生し、非テンパ部7では柱状結晶3
の表面の微小面素13の角度分布に対応した広がりを持
った反射光となる。前述したように、テンパ部6の反射
光を鏡面反射光9と称し、非テンパ部7の反射光を鏡面
拡散反射光10と称する。Therefore, the angular distribution of each reflected light of the tempered portion 6 and the non-tempered portion 7 on the surface of the steel plate 4 is as shown in FIGS. 8 (a) and 8 (b) when viewed macroscopically. That is, sharp specular reflection occurs in the regular reflection direction of the steel plate 4 in the tempered portion 6, and the columnar crystal 3 is generated in the non-tempered portion 7.
The reflected light has a spread corresponding to the angular distribution of the micro-surface element 13 on the surface of the light-emitting device. As described above, the reflected light from the tempered portion 6 is referred to as specular reflected light 9, and the reflected light from the non-tempered portion 7 is referred to as specular diffused reflected light 10.
【0030】そして、実際には、テンパ部6と非テンパ
部7はマクロ的には混在しているので、カメラ等の光学
測定器で観察される反射光の角度分布は、図8(c)に
示すように、鏡面反射光9及び鏡面拡散反射光10の角
度分布はテンパ部6と非テンパ部7とのそれぞれの面積
率に応じて加算したものとなる。In fact, since the tempered portion 6 and the non-tempered portion 7 are macroscopically mixed, the angular distribution of the reflected light observed by an optical measuring instrument such as a camera is shown in FIG. As shown in (1), the angular distribution of the specular reflected light 9 and the specular diffuse reflected light 10 is obtained by adding the angular distributions of the tempered portion 6 and the non-tempered portion 7 in accordance with the respective area ratios.
【0031】以上、テンパ部6と非テンパ部7とを合金
化亜鉛メッキ鋼板を例に説明したが、調質圧延により平
坦部が生じる他の鋼板にも一般に成立つ。次に、本発明
の検出対象となる顕著な凹凸性を持たない模様状ヘゲ欠
陥と呼ばれる欠陥の光学反射特性について説明する。As described above, the tempered portion 6 and the non-tempered portion 7 have been described using an alloyed galvanized steel plate as an example. However, the present invention is generally applicable to other steel plates in which a flat portion is formed by temper rolling. Next, a description will be given of the optical reflection characteristic of a defect called a pattern-shaped scab defect having no noticeable unevenness to be detected in the present invention.
【0032】図9に示すように、合金化溶融亜鉛メッキ
鋼板に見られるヘゲ欠陥(ヘゲ部11)は、メッキ加工
前の冷延鋼板原板にヘゲ欠陥(ヘゲ部11)が存在し、
その上にメッキ層2が乗り、さらに下地鋼板1の鉄元素
の拡散によるヘゲ欠陥の合金化が進行したものである。As shown in FIG. 9, the barge defect (barge portion 11) found in the galvannealed steel sheet is the same as that of the cold-rolled steel sheet before plating. And
The plating layer 2 is laid thereon, and alloying of barge defects due to the diffusion of the iron element of the base steel sheet 1 has progressed.
【0033】一般に、ヘゲ部11は鋼板4の正常部分を
示す母材12と比較して、例えばメッキ厚に違いが生じ
たり、合金化の程度に違いが生じる。その結果、例え
ば、ヘゲ部11のメッキ厚が厚く母材12に対し凸の場
合には、調質圧延が印加されることによりテンパ部6の
面積が非テンパ部7に比べて多くなる。逆に、ヘゲ部1
1のメッキ厚が薄く母材12に比べ凹の場合には、ヘゲ
部11は調質圧延のロール5a,5bが当接せず、非テ
ンパ部7が大半を占める。また、ヘゲ部11の合金化が
浅い場合には微小面素13の角度分布は鋼板法線方向に
強く、拡散性は小さくなる。In general, the barbed portion 11 has a difference in plating thickness or a degree of alloying, for example, as compared with the base material 12 indicating a normal portion of the steel plate 4. As a result, for example, when the plating thickness of the barbed portion 11 is large and is convex with respect to the base material 12, the area of the tempered portion 6 becomes larger than that of the non-tempered portion 7 by applying the temper rolling. Conversely, hege part 1
In the case where the plating thickness of 1 is thinner than that of the base material 12 and is concave, the non-tempered portion 7 occupies most of the barb portion 11 because the rolls 5a and 5b of the temper rolling do not abut. When the alloy of the barbed portion 11 is shallow, the angular distribution of the microscopic surface element 13 is strong in the normal direction of the steel sheet, and the diffusivity is small.
【0034】次に、このようなヘゲ部11と母材部12
の表面性状の相違により、模様状ヘゲ欠陥がどのように
見えるかを説明する。上述したモデルに基づきヘゲ部1
1と母材部12の違いについて分類すると一般的に次の
3種類に分けられる。Next, the scab 11 and the base material 12
A description will be given of how the pattern-like scab defect looks due to the difference in the surface properties. Hege part 1 based on the model described above
1 and the base material 12 are generally classified into the following three types.
【0035】(a) ヘゲ部11におけるテンパ部6の面
積率及び非テンパ部7の微小面素13の角度分布が、母
材部12におけるテンパ部6の面積率及び非テンパ部7
の微小面素13の角度分布と異なる。(A) The area ratio of the tempered portion 6 in the barbed portion 11 and the angular distribution of the micro-surface elements 13 in the non-tempered portion 7 are determined by the area ratio of the tempered portion 6 in the base material portion 12 and the non-tempered portion 7.
Is different from the angular distribution of the minute surface element 13 of FIG.
【0036】(b) ヘゲ部11におけるテンパ部6の面
積率は母材部12におけるテンパ部6の面積率と異なる
が、ヘゲ部11における非テンパ部7の微小面素13の
角度分布は母材部12における非テンパ部7の微小面素
13の角度分布と変わらない。(B) Although the area ratio of the tempered portion 6 in the barbed portion 11 is different from the area ratio of the tempered portion 6 in the base material portion 12, the angular distribution of the minute surface element 13 of the non-tempered portion 7 in the barbed portion 11 is Is not different from the angular distribution of the micro-plane element 13 of the non-tempered part 7 in the base material part 12.
【0037】(c) ヘゲ部11における非テンパ部7の
微小面素13の角度分布は母材部12における非テンパ
部7の微小面素13の角度分布と異なるが、ヘゲ部11
におけるテンパ部6の面積率は母材部12におけるテン
パ部6の面積率と変わらない。(C) The angular distribution of the micro-surface elements 13 of the non-tempered portion 7 in the barbed portion 11 is different from the angular distribution of the micro-surface elements 13 of the non-tempered portion 7 in the base material portion 12.
Is the same as the area ratio of the tempered portion 6 in the base material portion 12.
【0038】すなわち、図10(a)はヘゲ部11に対
応するヘゲ部角度分布11aと母材部12に対応する母
材部角度分布12aとの間において、鏡面反射成分と鏡
面拡散反射成分とが共に差が存在する場合を示し、図1
0(b)は鏡面反射成分のみに差が存在する場合を示
し、図10(c)は鏡面拡散反射成分のみに差が存在す
る場合を示す。That is, FIG. 10 (a) shows the specular reflection component and the specular diffuse reflection between the barge portion angle distribution 11a corresponding to the barge portion 11 and the base material portion angle distribution 12a corresponding to the base material portion 12. FIG. 1 shows a case where there is a difference between both components.
0 (b) shows the case where there is a difference only in the specular reflection component, and FIG. 10 (c) shows the case where there is a difference only in the specular diffuse reflection component.
【0039】そして、ヘゲ部角度分布11aと母材部角
度分布12aとでテンパ部6の面積率に相違がある場合
には、図10(a)(b)に示すように、その差は正反
射方向から観察される。具体的には、正反射方向からヘ
ゲ部11の反射光を測定した場合と母材部12の反射光
を測定した場合に、ヘゲ部11のテンパ部6の面積率が
母材部12のテンパ部6の面積率より大きい場合にはヘ
ゲ部11は母材部12に比較して相対的に明るく見え
る。逆に、ヘゲ部11のテンパ部6が母材部12より小
さいときにはヘゲ部11は母材部12に比較して相対的
に暗く観察される。If there is a difference in the area ratio of the tempered portion 6 between the barge angle distribution 11a and the base metal angle distribution 12a, the difference is as shown in FIGS. 10 (a) and 10 (b). Observed from the specular direction. More specifically, the area ratio of the tempered portion 6 of the barbed portion 11 is reduced when the reflected light of the barbed portion 11 is measured from the specular reflection direction and when the reflected light of the base material portion 12 is measured. When the area ratio of the tempering portion 6 is larger than that of the base portion 12, the barbed portion 11 looks relatively brighter than the base material portion 12. Conversely, when the tempered portion 6 of the barb portion 11 is smaller than the base material portion 12, the barge portion 11 is observed relatively darker than the base material portion 12.
【0040】ヘゲ部角度分布11aと母材部角度分布1
2aとでテンパ部6の面積率に違いがない場合には図1
0(c)に示すように、正反射方向からの単なる受光強
度の差を観察するのみではヘゲ部11の存在を観察でき
ない。しかし、鏡面拡散反射成分の拡散性(角度分布)
に違いがあるときには図10(c)に示すように正反射
方向以外の拡散方向から欠陥が観察される。Severe part angle distribution 11a and base material part angle distribution 1
FIG. 1 shows the case where there is no difference in the area ratio of
As shown in FIG. 0 (c), the presence of the stub 11 cannot be observed simply by observing the difference in the received light intensity from the specular reflection direction. However, the diffusivity (angular distribution) of the specular diffuse reflection component
When there is a difference, the defect is observed from a diffusion direction other than the regular reflection direction as shown in FIG.
【0041】例えば、ヘゲ部11の鏡面拡散反射成分の
拡散性(角度分布)が小さい時には、一般に正反射方向
に比較的近い拡散方向からはヘゲ部11は明るく観察さ
れ、正反射方向から離れるに従い明るさは小さくなり、
ある角度で観察不能となる。さらに正反射方向から遠ざ
かると今度はヘゲ部11は暗く観察される。For example, when the diffusivity (angular distribution) of the specular diffuse reflection component of the barb portion 11 is small, the barb portion 11 is generally observed brightly from a diffusion direction relatively close to the specular reflection direction, and is observed from the specular reflection direction. The brightness decreases as you move away,
It becomes unobservable at a certain angle. As the distance from the specular reflection direction further increases, the barbed portion 11 is observed darker.
【0042】この図10(a)(b)(c)で表される
ような各ヘゲ部11を母材部12と区別して確実に検出
するために、反射光のテンパ部6に対応する鏡面反射成
分の光強度のみを検出したのでは、図10(c)で示さ
れるヘゲ部11を母材部12と区別して検出できない。In order to detect each barbed portion 11 as shown in FIGS. 10 (a), 10 (b) and 10 (c) from the base material portion 12 and to surely detect it, the reflected light temper portion 6 is used. If only the light intensity of the specular reflection component is detected, the scab 11 shown in FIG. 10C cannot be detected separately from the base material 12.
【0043】このような模様状ヘゲ欠陥を未検出なく検
出するためには、鏡面反射に対応した光量と、鏡面拡散
反射に対応した光量とを独立に得ることが必要である。
ここで、表面ムラの発生過程を説明する。例えば、電気
メッキされる鋼板4においては強酸性のメッキ浴槽を通
過した後、ウェッティングを経て強アルカリの中和浴槽
を通過し、湯洗されることによつて、電気メッキ処理が
終了する。このメッキ処理過程において、鋼板上にメッ
キ液又は中和液を残さないための絞りロールの絞り不
良、湯洗の際の洗浄ムラなどにより、メッキ液又は中和
液の残存があると、その痕が製品の表面にムラとなって
観察される。なお、たとえ電気メッキをしない鋼板4で
も上述の洗浄浴槽を通過する場合、上述したムラが発生
する。In order to detect such a pattern-shaped scab defect without detecting it, it is necessary to independently obtain a light amount corresponding to specular reflection and a light amount corresponding to specular diffuse reflection.
Here, a process of generating surface unevenness will be described. For example, the steel plate 4 to be electroplated passes through a strongly acidic plating bath, passes through a strong alkali neutralization bath through wetting, and is washed with hot water, thereby completing the electroplating process. During the plating process, if there is a residual plating solution or neutralizing solution due to poor drawing of a squeezing roll for preventing the plating solution or neutralizing solution from remaining on the steel sheet, uneven cleaning during hot water washing, etc. Are observed as irregularities on the surface of the product. In addition, even if the steel plate 4 that is not electroplated passes through the above-described cleaning bath, the above-described unevenness occurs.
【0044】鋼板母材の材質は1種類でなく多数の種類
があり、また、表面ムラは、薬液の残存膜、母材と薬液
による反応生成膜、母材の酸化膜など各種の膜状に起因
して発生している。そして、表面ムラの形状も帯状、線
状、水玉状など多様である。これら各種のムラの存在が
模様状ヘゲ欠陥を検出する受光器で検出されないことが
必要である。The material of the base material of the steel sheet is not limited to one type, but there are many types. The surface unevenness is caused by various films such as a residual film of the chemical solution, a film formed by the reaction between the base material and the chemical solution, and an oxide film of the base material. Has occurred due to The shape of the surface unevenness is also various such as a band shape, a line shape, and a polka dot shape. It is necessary that the presence of these various types of unevenness is not detected by a photodetector that detects a pattern-shaped scab defect.
【0045】そのため、本発明においては、光源として
入射面に平行な偏光成分のみを含むp偏光を採用し、光
源から被検査面に照射され、この被検査面で反射された
反射光のうちの正反射光を被検査面の表面ムラの要因物
質である例えば膜のブリュースター角で受光する。For this reason, in the present invention, a p-polarized light including only a polarized light component parallel to the incident surface is employed as a light source, and the light source irradiates the surface to be inspected, and the reflected light reflected from the surface to be inspected. The specularly reflected light is received at a Brewster angle of a film, for example, which is a substance causing the surface unevenness of the surface to be inspected.
【0046】次に、鋼板表面に薄い膜が存在する場合の
光学的な反射特性について説明する。図11(a)は鋼
板4の表面に透明の膜14が存在する場合における、テ
ンパ部6と非テンパ部7が形成された場合に、鋼板4の
表面でどのような光学的反射が生じるかをモデル化した
断面模式図である。Next, the optical reflection characteristics when a thin film is present on the steel sheet surface will be described. FIG. 11A shows what optical reflection occurs on the surface of the steel plate 4 when the tempered portion 6 and the non-tempered portion 7 are formed when the transparent film 14 exists on the surface of the steel plate 4. FIG. 3 is a schematic cross-sectional view in which is modeled.
【0047】例えば、合金化亜鉛鍍金鋼板の表面に薄い
膜14が生成された場合を考える。膜14の厚さは10
nm程度と凹凸形状と比較して十分に薄いため、図11
(a)に示すように、調質圧延ロール5a,5bで平坦
化されたテンパ部6と、調質圧延ロール5a,5bが当
接せずに結晶構造が残る非テンパ部7のどちらにも均一
に膜14が生成していると考えられる。For example, consider a case where a thin film 14 is formed on the surface of an alloyed galvanized steel sheet. The thickness of the film 14 is 10
11 nm, which is sufficiently thin compared to the uneven shape.
As shown in (a), both the tempered portion 6 flattened by the temper rolling rolls 5a and 5b and the non-tempered portion 7 where the temper rolling rolls 5a and 5b do not abut and the crystal structure remains. It is considered that the film 14 was formed uniformly.
【0048】したがって、鋼板4の正反射方向からの観
察ではテンパ部6で、また、それ以外の方向からの観察
では非テンパ部7のたまたま正反射方向が観察方向と一
致した微小面素13で、図11(b)の拡大図に示すよ
うに、空気/膜14の界面と膜14/鋼板4の界面との
多重反射が生じる。Therefore, when the steel plate 4 is observed from the regular reflection direction, the tempered portion 6 is observed, and when the steel plate 4 is observed from other directions, the non-tempered portion 7 happens to be the minute surface element 13 whose regular reflection direction coincides with the observation direction. As shown in the enlarged view of FIG. 11B, multiple reflection occurs at the air / film 14 interface and the film 14 / steel plate 4 interface.
【0049】次に、膜14による多重反射の偏光特性に
ついて説明する。入射光8を鋼板4へ入射した場合にお
ける反射光の正反射方向への反射率rの入射角φに対す
る依存性を図12(a)(b)に示す。但し、鋼板4は
合金化亜鉛鍍金鋼板を用いて測定した。図12(b)に
示すように、入射光8をs偏光とした場合には反射率r
は入射角φに対して単調増加関係を有するので、膜14
なしと、10nmの膜14が生成した場合とを比較する
と、膜14なしの方が全体に反射率rが増加する。Next, the polarization characteristic of multiple reflection by the film 14 will be described. FIGS. 12A and 12B show the dependence of the reflectance r in the regular reflection direction of the reflected light on the incident angle φ when the incident light 8 is incident on the steel plate 4. However, the steel sheet 4 was measured using an alloyed galvanized steel sheet. As shown in FIG. 12B, when the incident light 8 is s-polarized light, the reflectance r
Has a monotonically increasing relationship with respect to the incident angle φ.
Comparing the case without the film 14 and the case where the film 14 with a thickness of 10 nm is formed, the reflectance r as a whole increases without the film 14.
【0050】これに対して、図12(a)に示すよう
に、入射光8をp偏光とした場合には、膜14なしの場
合、入射角φ=0から入射角φ=75゜近傍までの角度
範囲においては、増加に伴って低下する。そして、入射
角φ=75゜を越えると、反射率rは急激に増加する。On the other hand, as shown in FIG. 12A, when the incident light 8 is p-polarized light, when the film 14 is not provided, the incident angle φ = 0 to the incident angle φ = near 75 °. In the angle range described above, it decreases with an increase. When the incident angle φ exceeds 75 °, the reflectance r sharply increases.
【0051】また、膜14ありの場合、入射角φ=0か
ら入射角φ=75゜近傍までの角度範囲においては、反
射率rは入射角φにあまり依存しなくて、ほぼ一定値を
維持する。そして、入射角φ=75゜を越えると、反射
率rは増加する。そして、膜14なしの反射率特性と膜
14ありの反射率特性は入射角φ=50°〜60°近傍
で交差する。In the case where the film 14 is provided, in the angle range from the incident angle φ = 0 to the vicinity of the incident angle φ = 75 °, the reflectance r does not depend much on the incident angle φ and maintains a substantially constant value. I do. When the incident angle φ exceeds 75 °, the reflectance r increases. Then, the reflectance characteristic without the film 14 and the reflectance characteristic with the film 14 intersect at an incident angle φ of about 50 ° to 60 °.
【0052】すなわち、図11(a)に示すように、鋼
板4上に膜14が生成され、図11(b)に示すよう
に、多重反射が生じると、入射角φが小さい(法線方向
に近い)ときは反射率rが膜在りの方が膜なしより低く
なり、入射角φが大きいときには反射率rは高くなる。
そして、入射角φ=50°〜60°で、膜14ありの場
合と膜14なしの場合との反射率rが一致する。したが
って、入射角φをこの角度に設定すれば、膜14の存在
に起因する表面のムラは観察不能となり、膜14の影響
を受けずに正反射光の光強度を測定可能となる。That is, as shown in FIG. 11A, when the film 14 is formed on the steel plate 4 and multiple reflection occurs as shown in FIG. 11B, the incident angle φ is small (in the normal direction). When the incident angle φ is large, the reflectivity r becomes higher when the film is present.
Then, when the incident angle φ is 50 ° to 60 °, the reflectance r between the case with the film 14 and the case without the film 14 is the same. Therefore, if the incident angle φ is set to this angle, the surface unevenness due to the presence of the film 14 cannot be observed, and the light intensity of the specularly reflected light can be measured without being affected by the film 14.
【0053】この角度が膜14のブリュースター角と一
致することは以下のように示される。p偏光入射の反射
率は下記のフレネルの反射の式で表される。 r01P =(n1 cosφ0 − cosφ1 )/(n1 cosφ0 + cosφ1 ) r12P =(n2 cosφ1 −n1 cosφ2 )/(n2 cosφ1 +n1 cosφ2 ) …(1) ここで、r01P 、r12P はそれぞれ空気/膜の界面およ
び膜/鋼板の界面でのフレネル反射係数、n1 、n2 は
膜14及び鋼板4の福素屈折率、φ0 は入射角である。
また、φ1 、φ2 は以下のスネルの屈折式を満たす角度
である。The fact that this angle matches the Brewster angle of the film 14 is shown as follows. The reflectance at the incidence of p-polarized light is represented by the following Fresnel reflection formula. r 01P = (n 1 cos φ 0 −cos φ 1 ) / (n 1 cos φ 0 + cos φ 1 ) r 12P = (n 2 cos φ 1 −n 1 cos φ 2 ) / (n 2 cos φ 1 + n 1 cos φ 2 ) (1) Here, r 01P and r 12P are Fresnel reflection coefficients at an air / film interface and a film / steel interface, respectively, n 1 and n 2 are fluorine refractive indexes of the film 14 and the steel plate 4, and φ 0 is an incident angle. It is.
Φ 1 and φ 2 are angles satisfying the following Snell's refraction equation.
【0054】 sinφ0 =n1 sinφ1 =n2 sinφ2 …(2) ここで、膜14が透明膜であると想定し、前述したよう
に、入射角φ0 がこの膜14に対するブリュースター角
であるとき、以下の関係が知られている。Sinφ 0 = n 1 sinφ 1 = n 2 sinφ 2 (2) Here, assuming that the film 14 is a transparent film, the incident angle φ 0 is the Brewster angle with respect to this film 14 as described above. , The following relationship is known.
【0055】 sinφ1 = cosφ0 …(3) したがつて、下式も導かれる。 sinφ0 = cosφ1 …(4) (2)(3)(4) 式より (5)式が得られる。Sin φ 1 = cos φ 0 (3) Accordingly, the following equation is derived. sinφ 0 = cosφ 1 (4) Expression (5) is obtained from Expressions (2), (3), and (4).
【0056】 cosφ1 =n1 cosφ0 …(5) (5) 式を(1) 式に代入すると、次の関係が成立する。 r01P =0 …(6) r12P =(n2 cosφ0 − cosφ2 )/(n2 cosφ0 + cosφ2 ) …(7) すなわち、(6) 式は、入射光8にp偏光を採用し、入射
角をブリュースター角に設定すると、空気/膜14の界
面での反射は存在しないという公知の性質を表す。Cosφ 1 = n 1 cosφ 0 (5) When the expression (5) is substituted into the expression (1), the following relationship is established. r 01P = 0 (6) r 12P = (n 2 cos φ 0 −cos φ 2 ) / (n 2 cos φ 0 + cos φ 2 ) (7) That is, the equation (6) employs p-polarized light as the incident light 8. However, when the incident angle is set to the Brewster angle, there is a known property that there is no reflection at the air / film 14 interface.
【0057】また、(7) 式は、膜14が存在しない場合
における空気/鋼板4の界面での反射のフレネル反射係
数を表している。すなわち、入射光8にp偏光を採用
し、入射角をブリュースター角に設定すると、膜14/
鋼板4の界面での反射が膜14がないときの空気/鋼板
4の界面での反射と一致することを表している。この二
つの関係から、総合的な反射も膜14がないときに一致
することが言える。Equation (7) represents the Fresnel reflection coefficient of the reflection at the air / steel plate 4 interface when the film 14 does not exist. That is, when the p-polarized light is adopted as the incident light 8 and the incident angle is set to the Brewster angle, the film 14 /
This indicates that the reflection at the interface of the steel plate 4 coincides with the reflection at the air / steel plate 4 interface when the film 14 is not provided. From these two relations, it can be said that the total reflection also matches when there is no film 14.
【0058】したがって、膜14の下側に位置する鋼板
4の複素屈折率によらず、入射光8にp偏光を採用し、
入射角をブリュースター角に設定すると、膜4の存在の
有無が全く判断できないことが理解できる。Therefore, regardless of the complex refractive index of the steel plate 4 located below the film 14, p-polarized light is adopted for the incident light 8,
It can be understood that if the incident angle is set to the Brewster angle, the presence or absence of the film 4 cannot be determined at all.
【0059】なお、特開昭53-23678号公報に開示された
従来技術は(6) 式で示される膜14の表面での強い反射
光をなくすことにのみ着目したものであり、(7) 式で表
される関係は利用しておらず、また、必要ともしていな
い。The prior art disclosed in Japanese Patent Application Laid-Open No. 53-23678 focuses only on eliminating strong reflected light on the surface of the film 14 represented by the formula (6). We do not use or need the relationships represented by the formulas.
【0060】次に、以上の知見を基に被検査面からの正
反射光の鏡面反射成分と鏡面拡散反射成分とを捉え、か
つ、表面ムラを検出しない本発明の方法を説明する。本
発明においては、まず光源として、レーザのような平行
光源ではなく拡散特性をもつ線状の光源、すなわち線状
拡散光源を用いている。また、鋼板4の正反射方向から
鏡面反射成分と鏡面拡散反射成分とを分離して抽出する
必要があるので偏光を用いている。Next, a description will be given of a method of the present invention in which the specular reflection component and the specular diffuse reflection component of the specularly reflected light from the surface to be inspected are captured based on the above findings and the surface unevenness is not detected. In the present invention, a linear light source having a diffusion characteristic, that is, a linear diffusion light source, is used as a light source instead of a parallel light source such as a laser. Since it is necessary to separate and extract the specular reflection component and the specular diffuse reflection component from the specular reflection direction of the steel plate 4, polarized light is used.
【0061】この線状拡散光源の効果を説明するため
に、図13(a)(b)に示すように、線状拡散光源1
4を鋼板4の表面に平行に配置し、光源に垂直な面内に
あり、入射角が出射角と一致する方向である鋼板正反射
方向から鋼板4上の一点を観察したときの反射特性を考
える。In order to explain the effect of the linear diffusion light source, as shown in FIGS.
4 is arranged in parallel with the surface of the steel plate 4, and the reflection characteristic when observing one point on the steel plate 4 from the steel plate regular reflection direction, which is in a plane perpendicular to the light source and in which the incident angle coincides with the emission angle, is shown. Think.
【0062】図13(a)に示すように、線状拡散光源
14の中央部から照射された入射光8の場合、テンパ部
6に入射した入射光8は鏡面的に反射され、鋼板の正反
射方向で全て捉えられる。一方、非テンパ部7に入射し
た光は鏡面拡散的に反射され、たまたま鋼板法線方向と
同一方向を向いている微小面素13により反射された分
のみが捉えられる。このような方向を向いている微小面
素13は非常に少ないので、鋼板の正反射方向に配設さ
れた受光カメラで捉えられる反射光のうちではテンパ部
6からの鏡面反射光が支配的である。As shown in FIG. 13A, in the case of the incident light 8 emitted from the center of the linear diffused light source 14, the incident light 8 incident on the tempering portion 6 is reflected specularly, and All are captured in the reflection direction. On the other hand, the light incident on the non-tempered portion 7 is specularly reflected, and only the light reflected by the minute surface element 13 that happens to be oriented in the same direction as the normal direction of the steel sheet is captured. Since the number of micro-plane elements 13 oriented in such a direction is extremely small, the mirror-reflected light from the tempering unit 6 is dominant among the reflected light captured by the light-receiving camera arranged in the regular reflection direction of the steel sheet. is there.
【0063】これに対し、図13(b)に示すように、
線状拡散光源14の中央部以外の位置から照射された入
射光8の場合には、テンパ部6に入射した光は鏡面反射
して鋼板の正反射方向とは異なる方向へ反射する。その
ため、鏡面反射した光は鋼板の正反射方向では捉えるこ
とができない。一方、非テンパ部7に入射した光は鏡面
拡散的に反射され、そのうち鋼板の正反射方向に反射さ
れた分が受光カメラで捉えられる。したがって、鋼板の
正反射方向に配設された受光カメラで捉えられる反射光
は全て非テンパ部7で反射した鏡面拡散反射光である。On the other hand, as shown in FIG.
In the case of the incident light 8 emitted from a position other than the center of the linear diffusion light source 14, the light incident on the tempering portion 6 is specularly reflected and reflected in a direction different from the regular reflection direction of the steel plate. Therefore, the specularly reflected light cannot be captured in the regular reflection direction of the steel plate. On the other hand, the light incident on the non-tempered portion 7 is specularly reflected, and the light reflected by the steel plate in the regular reflection direction is captured by the light receiving camera. Therefore, all the reflected light captured by the light receiving camera arranged in the regular reflection direction of the steel plate is the specular diffuse reflection light reflected by the non-tempered portion 7.
【0064】以上2つの場合を併せると、線状拡散光源
14の長尺方向全体から照射される全ての入射光8のう
ち鋼板の正反射方向からの観察で捉えられるのは、テン
パ部6からの鏡面反射光と非テンパ部7からの鏡面拡散
反射光との和である。When the above two cases are combined, the observation from the regular reflection direction of the steel plate out of all the incident light 8 emitted from the entire lengthwise direction of the linear diffused light source 14 shows that Is the sum of the specular reflected light from the non-tempered part 7 and the specular reflected light from the non-tempered portion 7.
【0065】次に、鋼板4の正反射方向から線状拡散光
源14を使用して観察した場合に、偏光特性がどう変化
するかについて説明する。一般に、鏡面状の金属表面で
の反射においては、電界の方向が入射面に平行な光(p
偏光)あるいは入射面に直角な光(s偏光)において
は、反射によっても偏光特性は保存される。すなわち、
p偏光のまま又はs偏光のまま出射する。また、p偏光
成分とs偏光成分とを同時に持つ任意の偏光角を有した
直線偏光が反射されると、p、s偏光の反射率比及び位
相差に応じた楕円偏光となって出射する。Next, how the polarization characteristics change when observed using the linear diffused light source 14 from the regular reflection direction of the steel plate 4 will be described. Generally, in reflection from a mirror-like metal surface, the direction of the electric field is parallel to the incident surface (p
In the case of (polarized light) or light perpendicular to the plane of incidence (s-polarized light), the polarization characteristics are preserved even by reflection. That is,
The light is emitted as p-polarized light or s-polarized light. Further, when linearly polarized light having an arbitrary polarization angle having both p-polarized component and s-polarized component is reflected, it is emitted as elliptically polarized light according to the reflectance ratio of p and s polarized light and the phase difference.
【0066】合金化亜鉛メッキ鋼板に線状拡散光源14
から光が照射される場合を図14(a)(b)を用いて
説明する。図14(a)に示すように、線状拡散光源1
4の中央部から出射した光は鋼板4のテンパ部6で鏡面
反射して鋼板正反射方向で観察される。これに関しては
上記一般の鏡面状の金属表面での反射がそのまま成立す
る。A linear diffusion light source 14 is applied to an alloyed galvanized steel sheet.
14 (a) and 14 (b) will be described. As shown in FIG. 14A, the linear diffused light source 1
The light emitted from the central part of the steel sheet 4 is specularly reflected by the tempering part 6 of the steel sheet 4 and is observed in the steel sheet regular reflection direction. In this regard, reflection on the above-mentioned general mirror-like metal surface is established as it is.
【0067】一方、図14(b)に示すように、線状拡
散光源14の中央部以外の位置から出射した光は、鋼板
4の非テンパ部7の結晶表面の傾いた微小面素13で鏡
面反射して鋼板の正反射方向で観察される。この場合、
鋼板4の入射面に平行なp偏光の光を入射したとしても
実際に反射する傾いた微小面素13に対して考えた場合
には入射面は微小面素13に対して平行ではなく、p、
s両偏光成分を持つ直線偏光であるため、楕円偏光とな
って出射する。線状拡散光源14からs偏光を入射した
場合も同様である。On the other hand, as shown in FIG. 14B, light emitted from a position other than the central portion of the linear diffused light source 14 is generated by the inclined minute surface element 13 of the crystal surface of the non-tempered portion 7 of the steel plate 4. Specular reflection is observed in the specular direction of the steel plate. in this case,
Even if p-polarized light parallel to the incident surface of the steel plate 4 is incident, the incident surface is not parallel to the minute surface element 13 when it is considered with respect to the tilted minute surface element 13 that actually reflects the light. ,
Since the light is linearly polarized light having s-polarized light components, it is emitted as elliptically polarized light. The same applies to the case where s-polarized light is incident from the linear diffusion light source 14.
【0068】本発明では、線状拡散光源14からの入射
光8を例えば入射面に平行(p偏光)とする。さらに、
鋼板の正反射方向からこのp偏光された入射光8の反射
光をそれぞれ2台の受光カメラで受光する。この2台の
受光カメラはそれぞれ入射面に平行(p偏光)成分、及
び入射面に直交(s偏光)成分を取込む。In the present invention, the incident light 8 from the linear diffusion light source 14 is, for example, parallel (p-polarized) to the incident surface. further,
The reflected light of the p-polarized incident light 8 from the regular reflection direction of the steel plate is received by two light receiving cameras. Each of the two light receiving cameras captures a parallel (p-polarized) component on the incident surface and a perpendicular (s-polarized) component on the incident surface.
【0069】今、鋼板4のテンパ部6で反射して鋼板の
正反射方向で捉えられる反射光はほとんどが線状拡散光
源14の中央部から出射した光であり、反射により偏光
は保存されるのため、p偏光で入射した光はp偏光のま
ま反射され、p偏光成分を取込む一方の受光カメラで捉
えられる。他方、s偏光成分を取込む他方の受光カメラ
は、線状拡散光源14の中央部から出射したp偏光され
た光を捉えることはできない。Now, most of the reflected light reflected by the tempering portion 6 of the steel plate 4 and captured in the regular reflection direction of the steel plate is emitted from the central portion of the linear diffused light source 14, and the polarization is preserved by the reflection. Therefore, the light incident with p-polarized light is reflected as p-polarized light, and is captured by one of the light-receiving cameras that takes in the p-polarized component. On the other hand, the other light receiving camera that captures the s-polarized light component cannot capture the p-polarized light emitted from the central portion of the linear diffused light source 14.
【0070】これに対して、鋼板4の非テンパ部7で反
射して鋼板の正反射方向で捉えられる反射光は線状拡散
光源14のあらゆる箇所からの出射光の和であり、線状
拡散光源14の中央部以外からの出射光が多く含まれ、
偏光は保存されないため、s偏光を取込む受光カメラに
よって取込まれる光が生じる。また、p偏光を取込む受
光カメラでも一部の光を取込むが、線状拡散光源14の
中央部から出射した光に比べれば非常に小さい。On the other hand, the reflected light reflected by the non-tempered part 7 of the steel plate 4 and captured in the regular reflection direction of the steel plate is the sum of the light emitted from all the points of the linear diffused light source 14, A large amount of light emitted from other than the central portion of the light source 14 is included,
Since polarization is not preserved, light is captured by the receiving camera that captures s-polarization. Although a part of the light is captured by a light-receiving camera that captures p-polarized light, it is much smaller than the light emitted from the center of the linear diffused light source 14.
【0071】線状拡散光源14からの出射位置が中央部
より離れれば離れるほど、s偏光を取込む一方の受光カ
メラの受光量が高くなるため特に拡散性が強い鏡面拡散
反射に関してs偏光の受光光量は大きくなる。The farther the emission position from the linear diffuse light source 14 is from the center, the higher the amount of light received by one of the light-receiving cameras that takes in s-polarized light. The amount of light increases.
【0072】以上より、テンパ部6での反射と非テンパ
部7での反射を併せて考えると、p偏光成分を取込む一
方の受光カメラは鏡面反射光を抽出し、s偏光成分を取
込む他方の受光カメラは鏡面拡散反射を抽出する。From the above, considering both the reflection at the tempered portion 6 and the reflection at the non-tempered portion 7, one of the light-receiving cameras that captures the p-polarized component extracts the specular reflected light and captures the s-polarized component. The other receiving camera extracts the specular diffuse reflection.
【0073】そこで、鋼板4の表面に模様状ヘゲ欠陥が
あったとする。この時、ヘゲ部11と母材部12とでテ
ンパ部6の面積率に差があり、ヘゲ部11のテンパ部面
積率が母材部12に比較して大きかったとすると、それ
はp偏光成分を受光する一方の受光カメラで捉えられ、
ヘゲ部11が明るく観察される。Then, it is assumed that there is a pattern-like barbed defect on the surface of the steel plate 4. At this time, if there is a difference in the area ratio of the tempered portion 6 between the barge portion 11 and the base material portion 12, and if the area ratio of the tempered portion of the barge portion 11 is larger than that of the base material portion 12, it is p-polarized light. Is captured by one of the light-receiving cameras that receives the component,
The scab 11 is observed brightly.
【0074】また、ヘゲ部11と母材部12とでテンパ
面6の面積率に差がなかった場合には、p偏光成分を受
光する一方の受光カメラではそのへゲ欠陥を捉えること
はできない。しかし、鏡面拡散反射成分の拡散性に違い
があり、例えばヘゲ部11で拡散性が小さかったとすれ
ば、s偏光成分を受光する他方の受光カメラにおいて、
ヘゲ部11が母材部12より暗く観察される。その結
果、このヘゲ欠陥の検出が可能となる。If there is no difference in the area ratio of the tempered surface 6 between the barge portion 11 and the base material portion 12, it is difficult for one of the light receiving cameras that receives the p-polarized light component to detect the hair defect. Can not. However, there is a difference in the diffusivity of the specular diffuse reflection component. For example, if the diffusivity is small in the barb portion 11, in the other light-receiving camera that receives the s-polarized component,
The barb portion 11 is observed darker than the base material portion 12. As a result, it becomes possible to detect this scab defect.
【0075】また、線状拡散光源14及び偏光を使用す
ることにより、各受光手段として、リニアアレイカメラ
やその他の走査型の光検出器を使用したとしても、被検
査面からの正反射光に含まれる鏡面反射成分及び鏡面拡
散反射成分を確実に検出できる。Further, by using the linear diffused light source 14 and the polarized light, even if a linear array camera or other scanning type photodetector is used as each light receiving means, the light is reflected to the specularly reflected light from the surface to be inspected. The specular reflection component and the specular diffuse reflection component contained can be reliably detected.
【0076】このような光学系により、正反射方向から
の共通な光軸での測定であるため、鋼板距離変動や速度
変化に影響されることなく、顕著な凹凸性を持たない模
様状ヘゲ欠陥を未検出を生じることなく検出可能な表面
疵検査装置が実現する。With such an optical system, since the measurement is performed on the common optical axis from the specular reflection direction, it is not affected by the change in the steel sheet distance or the change in speed, and the pattern-shaped hair has no remarkable unevenness. A surface flaw inspection device capable of detecting a defect without causing undetection is realized.
【0077】以上説明したように、光源からp偏光され
た照射光の被検査面の正反射光のp偏光成分を受光し、
かつ光源からp偏光された照射光の被検査面の正反射光
のs偏光成分を受光することによつて、顕著な凹凸性を
持たない模様状ヘゲ欠陥を未検出を生じることなく検出
可能である。さらに、光源の入射角度及び正反射光のp
偏光成分及びs偏光成分の受光角度を表面ムラの要因物
質のブリュースター角に設定しているので、測定された
p偏光成分及びs偏光成分に表面ムラに起因する誤差要
因は入らない。よつて、模様状ヘゲ欠陥の測定精度がさ
らに向上する。As described above, the light source receives the p-polarized component of the specularly reflected light of the surface to be inspected of the p-polarized irradiation light,
In addition, by receiving the s-polarized component of the specularly reflected light of the surface to be inspected with the p-polarized irradiation light from the light source, it is possible to detect a pattern-shaped barge defect having no noticeable unevenness without causing undetection. It is. Furthermore, the angle of incidence of the light source and the p
Since the light receiving angles of the polarized light component and the s-polarized light component are set to the Brewster angle of the substance causing the surface unevenness, the measured p-polarized light component and the s-polarized light component do not include an error factor due to the surface unevenness. Therefore, the measurement accuracy of the pattern-shaped scab defect is further improved.
【0078】[0078]
【発明の実施の形態】以下本発明の各実施形態を図面を
用いて説明する。 (第1実施形態)図1(a)は本発明の第1実施形態の
表面疵検査方法が採用された表面疵検査装置の側面図で
あり、図1(b)は同表面疵検査装置の上面図である。Embodiments of the present invention will be described below with reference to the drawings. (First Embodiment) FIG. 1A is a side view of a surface flaw inspection apparatus employing a surface flaw inspection method according to a first embodiment of the present invention, and FIG. It is a top view.
【0079】この第1実施形態の表面疵検査装置は製鉄
工場における合金化亜鉛メッキ鋼板の品質検査ラインに
設置されている。図中矢印方向に搬送状態の鋼板21の
搬送路の上方位置に、この帯状の鋼板21の幅方向に線
状拡散光源22が配設されている。この線状拡散光源2
2は、一部に拡散反射塗料を塗布した透明導光棒の両端
から内部へメタルハライド光源の光を投光することによ
って、幅方向に一様の出射光を得る。The surface flaw inspection apparatus according to the first embodiment is installed in a quality inspection line of an alloyed galvanized steel sheet in an iron making factory. A linear diffused light source 22 is arranged in the width direction of the strip-shaped steel plate 21 at a position above the transfer path of the steel plate 21 in the transfer state in the arrow direction in the drawing. This linear diffusion light source 2
2 is to emit uniform light in the width direction by projecting light from a metal halide light source into the inside from both ends of the transparent light guide bar, which is partially coated with a diffuse reflection paint.
【0080】線状拡散光源22の各位置から出射された
鋼板21に対する照射光としての入射光23は、シリン
ドリカルレンズ24と偏光板25を介して走行状態の鋼
板21の全幅に対して入射角θで照射する。偏光板25
の方位角(偏光角)αは、この入射光23の鋼板21に
対する入射面に対して平行する方向に設定されている。
すなわち、線状拡散光源22から鋼板21に照射される
入射光23はp偏光状態である。The incident light 23 emitted from each position of the linear diffusion light source 22 to the steel plate 21 as the irradiation light is transmitted through the cylindrical lens 24 and the polarizing plate 25 to the entire width of the running steel plate 21 at an incident angle θ. Irradiation. Polarizing plate 25
Is set in a direction parallel to the plane of incidence of the incident light 23 on the steel plate 21.
That is, the incident light 23 emitted from the linear diffusion light source 22 to the steel plate 21 is in a p-polarized state.
【0081】鋼板21の表面には電気メッキ工程におけ
る薬液の残像膜、反応生成膜、酸化膜等にムラが発生し
ている。そして、このムラの原因物質である膜のブリュ
ースター角は予め測定されている。この実施形態におけ
る膜のブリュースター角の測定値は60°である。The surface of the steel plate 21 has irregularities in the afterimage film of the chemical solution, the reaction product film, the oxide film and the like in the electroplating process. The Brewster angle of the film that is the cause of the unevenness is measured in advance. The measured value of the Brewster angle of the film in this embodiment is 60 °.
【0082】鋼板21で反射された正反射光26の一部
は鋼板の正反射方向、すなわち鋼板21の法線方向に対
して入射角θと等しい受光角γ方向に配置されたビーム
スプリッタ27を透過して例えばリニアアレイカメラで
構成された第1の受光カメラ28に入射する。また、正
反射光26の一部は前記ビームスプリッタ27で反射さ
れて同じくリニアアレイカメラで構成された第2の受光
カメラ29に入射する。A part of the specularly reflected light 26 reflected by the steel plate 21 forms a beam splitter 27 disposed in a specular reflection direction of the steel plate, that is, in a light receiving angle γ direction equal to the incident angle θ with respect to the normal direction of the steel plate 21. The light passes through and enters the first light receiving camera 28 constituted by, for example, a linear array camera. A part of the specularly reflected light 26 is reflected by the beam splitter 27 and is incident on a second light receiving camera 29 also formed of a linear array camera.
【0083】ここで、入射光23の入射角θ及びこの入
射角θと等しい受光角γは、鋼板21の表面ムラの要因
物質である膜のブリュースター角である60°に設定さ
れている(θ=γ=60°)。Here, the incident angle θ of the incident light 23 and the light receiving angle γ which is equal to the incident angle θ are set to 60 °, which is the Brewster angle of the film which is a factor of the surface unevenness of the steel sheet 21 ( θ = γ = 60 °).
【0084】第1、第2の受光カメラ28,29のレン
ズの前面にはそれぞれ検光子30a,30bが取付けら
れている。第1の受光カメラ28のレンズの前面の検光
子30aは、偏光方向が線状拡散光源22の偏光板25
と同一方向に設定されている。すなわち、第1の受光カ
メラ28には正反射光26のp偏光成分のみを受光す
る。前述したように、第1の受光カメラ28の検光子3
0aの偏光方向は線状拡散光源22の偏光板25の偏光
方向(p偏光)に一致しているので、第1の受光カメラ
28は、鋼板21における正反射光26の鏡面反射成分
を受光する。Analyzers 30a and 30b are mounted on the front surfaces of the lenses of the first and second light receiving cameras 28 and 29, respectively. The analyzer 30a on the front surface of the lens of the first light receiving camera 28 has the polarizing direction of the polarizing plate 25 of the linear diffused light source 22.
Is set in the same direction as. That is, the first light receiving camera 28 receives only the p-polarized light component of the regular reflection light 26. As described above, the analyzer 3 of the first light receiving camera 28
Since the polarization direction of Oa coincides with the polarization direction (p-polarized light) of the polarizing plate 25 of the linear diffused light source 22, the first light receiving camera 28 receives the specular reflection component of the specularly reflected light 26 on the steel plate 21. .
【0085】また、第2の受光カメラ29のレンズの前
面の検光子30bは、偏光方向が線状拡散光源22の偏
光板25と直交方向に設定されている。すなわち、第2
の受光カメラ29には正反射光26のs偏光成分のみを
受光する。前述したように、第2の受光カメラ29の検
光子30bの偏光方向は線状拡散光源22の偏光板25
の偏光方向(p偏光)と直交する方向(s偏光)である
ので、第2の受光カメラ28は、鋼板21における正反
射光26の鏡面拡散反射成分を受光する。The polarization direction of the analyzer 30 b on the front surface of the lens of the second light receiving camera 29 is set to be orthogonal to the polarizing plate 25 of the linear diffusion light source 22. That is, the second
Receive only the s-polarized component of the specularly reflected light 26. As described above, the polarization direction of the analyzer 30 b of the second light receiving camera 29 is the same as the polarization plate 25 of the linear diffused light source 22.
The second light receiving camera 28 receives the specular diffuse reflection component of the specularly reflected light 26 on the steel plate 21 because the direction (s-polarized light) is orthogonal to the polarization direction (p-polarized light).
【0086】また、入射角θ及び受光角γは表面ムラの
ブリュースター角に設定されているので、各受光カメラ
28,29の入射光に表面ムラの存在に起因する変動は
含まれない。Further, since the incident angle θ and the light receiving angle γ are set to the Brewster angle of the surface unevenness, the incident light of each of the light receiving cameras 28 and 29 does not include the fluctuation due to the presence of the surface unevenness.
【0087】ここで、各受光カメラ28,29として、
リニアアレイカメラの代りに2次元CCDカメラを使用
することもできる。さらに、単一光検出素子とガルヴァ
ノミラーやポリゴンミラーを組合わせた走査型の光検出
器を使用することも可能である。Here, as each of the light receiving cameras 28 and 29,
A two-dimensional CCD camera can be used instead of a linear array camera. Furthermore, it is also possible to use a scanning photodetector in which a single photodetector is combined with a galvanometer mirror or a polygon mirror.
【0088】また、線状拡散光源22として、蛍光灯を
使用することもできる。また、バンドルファイバの出射
端を直線上に整列させたファイバ光源を使用することも
できる。各ファイバからの出射光は、ファイバのN/A
に対応して充分な広がり角を持つため、これを整列させ
たファイバ光源は実質的に線状拡散光源となるためであ
る。Further, a fluorescent lamp can be used as the linear diffusion light source 22. Further, a fiber light source in which the output ends of the bundle fiber are aligned in a straight line can be used. The light emitted from each fiber is the N / A of the fiber.
This is because the fiber light source having a sufficient divergence angle corresponds to a linear diffusion light source.
【0089】各受光カメラ28,29で受光された正反
射光26におけるp偏光成分(鏡面反射成分)及びs偏
光成分(鏡面拡散反射成分)の鋼板21の幅方向の1ラ
イン分の各画素毎の光強度はそれぞれ光強度信号a,b
に変換されて判定処理部としての信号処理部31へ送信
される。Each pixel of one line in the width direction of the steel plate 21 of the p-polarized component (specular reflection component) and the s-polarized component (specular diffuse reflection component) in the specularly reflected light 26 received by each of the light receiving cameras 28 and 29. Are the light intensity signals a and b, respectively.
And transmitted to the signal processing unit 31 as a determination processing unit.
【0090】図2は信号処理部31の概略構成を示すブ
ロック図である。鋼板21で反射された正反射光26に
おけるp偏光成分(鏡面反射成分)を受光する第1の受
光カメラ28、正反射光26におけるs偏光成分(鏡面
拡散反射成分)を受光する第2の受光カメラ29から出
力された各光強度信号a,bはそれぞれ平均値間引き部
32a,32bへ入力される。FIG. 2 is a block diagram showing a schematic configuration of the signal processing section 31. A first light receiving camera 28 that receives a p-polarized component (specular reflection component) of the specularly reflected light 26 reflected by the steel plate 21, and a second light reception that receives an s polarized component (specular diffuse reflection component) of the specularly reflected light 26 The light intensity signals a and b output from the camera 29 are input to the average value thinning units 32a and 32b, respectively.
【0091】各平均値間引き部32a,32bは、各受
光カメラ28,29のスキャン周期毎に各受光カメラ2
8,29から入力される各光強度信号a,bを平均し、
鋼板21が信号処理における長手方向分解能に相当する
距離を移動した場合に、1ライン分の信号を出力する。Each of the average value thinning sections 32a and 32b is provided for each of the light receiving cameras 28 and 29 for each scanning cycle.
The respective light intensity signals a and b input from 8, 29 are averaged,
When the steel plate 21 moves a distance corresponding to the longitudinal resolution in the signal processing, a signal for one line is output.
【0092】このような間引き処理を行うことにより、
鋼板21の搬送速度が変化しても信号処理における1ラ
インの鋼板移動方向の分解能を一定にすることができ
る。また、スキャン周期毎の各光強度信号a,bを平均
しているので、信号処理における1ラインの鋼板移動方
向の分解能が受光カメラ28,29の鋼板移動方向の視
野サイズよりも十分大きい場合にも、間を細かく測定し
た平均値を用いることができるので、見落としをなくす
ことができる。By performing such thinning processing,
Even if the conveying speed of the steel plate 21 changes, the resolution of one line in the moving direction of the steel plate in the signal processing can be kept constant. Also, since the light intensity signals a and b for each scan cycle are averaged, if the resolution of one line in the moving direction of the steel plate in the signal processing is sufficiently larger than the visual field size of the light receiving cameras 28 and 29 in the moving direction of the steel plate. Also, since an average value obtained by measuring the interval can be used, oversight can be eliminated.
【0093】各平均値間引き部32a,32bで信号処
理された各光強度信号a,bは次の各前処理部33a,
33bへ入力される。各前処理部33a,33bは、1
ラインの信号の輝度ムラを補正する。ここでいう輝度ム
ラには、光学系に起因するムラも鋼板21の反射率に起
因するムラも含まれる。また、各前処理部33a,33
bは、鋼板21の両側のエッジ位置も検出し、エッジに
おける急激な光強度信号a,bの変化を疵と誤認識する
ことを防ぐ処理も実施する。各前処理部33a,33b
で信号処理された各光強度信号a,bは次の各2値化処
理部34a,34bへ入力される。Each of the light intensity signals a and b subjected to signal processing in each of the average value thinning sections 32a and 32b is converted into the following preprocessing sections 33a and 32b.
33b. Each pre-processing unit 33a, 33b
Corrects the luminance unevenness of the line signal. The luminance unevenness here includes unevenness caused by the optical system and unevenness caused by the reflectance of the steel plate 21. Further, each of the pre-processing units 33a, 33
b also detects the edge positions on both sides of the steel plate 21 and also executes processing for preventing a sudden change in the light intensity signals a and b at the edge from being erroneously recognized as a flaw. Each pre-processing unit 33a, 33b
The light intensity signals a and b that have been subjected to the signal processing are input to the following respective binarization processing units 34a and 34b.
【0094】各2値化処理部34a,34bは、各光強
度信号a,bに含まれる各画素のデータを予め決められ
たしきい値と比較し、疵候補点を抽出して、次の特徴量
算出部35a,35bへ送出する。Each of the binarization processing sections 34a and 34b compares the data of each pixel contained in each of the light intensity signals a and b with a predetermined threshold value, extracts flaw candidate points, and It is sent to the feature amount calculation units 35a and 35b.
【0095】特徴量抽出部35a,35bは、一続きと
なっている疵候補点をーつの疵候補領域と判定し、例え
ばスタートアドレス、エンドアドレスなどの位置特徴量
や、ピーク値などの濃度特徴量などを算出する。The characteristic amount extraction units 35a and 35b determine continuous flaw candidate points as one flaw candidate area, and for example, position characteristic amounts such as a start address and an end address and density characteristics such as a peak value. Calculate the amount etc.
【0096】鏡面性疵判定部36及び鏡面拡散性疵判定
部37では、各受光カメラ28,29に対応する各特徴
量抽出部35a,35bにより算出された特徴量に基づ
いて、疵の種類、程度を判定する。The specular flaw judging section 36 and the specular diffusible flaw judging section 37 determine the type of the flaw based on the characteristic amounts calculated by the characteristic amount extracting sections 35a and 35b corresponding to the respective light receiving cameras 28 and 29. Determine the degree.
【0097】そして、疵総合判定部38では、鏡面性疵
判定部36及び鏡面拡散性疵判定部37での判定結果及
び特徴量により、検査対象としての鋼板21に対する最
終的な疵種及びその程度を判定する。The flaw comprehensive judgment section 38 determines the final flaw type and degree of the steel sheet 21 to be inspected based on the judgment results and the characteristic amounts of the specular flaw judgment section 36 and the specular diffuse flaw judgment section 37. Is determined.
【0098】[0098]
【実施例】図1に示す第1実施形態の表面疵検査装置を
用いた合金化亜鉛鍍金鋼板の表面疵の測定結果を図3に
示す。測定した各疵は、図10(a)に示すテンパ部6
の面積率がヘゲ部11で母材部12より大きく、かつ非
テンパ部7の拡散性がヘゲ部11で母材部12より大き
い疵と、図10(b)に示すテンパ部6の面積率がヘゲ
部11で母材部12より大きいが、非テンパ部7の拡散
性は変わらない疵と、図10(c)に示すテンパ部6の
面積率はヘゲ部11と母材部12間に大きな差はない
が、拡散性に差がある疵との合計3種類の疵である。FIG. 3 shows the results of measuring the surface flaws of an alloyed galvanized steel sheet using the surface flaw inspection apparatus of the first embodiment shown in FIG. Each of the measured flaws is the temper portion 6 shown in FIG.
The area ratio of the non-tempered portion 7 is larger than that of the base material portion 12 at the barb portion 11 and the diffusivity of the non-tempered portion 7 is larger than that of the base material portion 12 at the barge portion 11 and the tempered portion 6 shown in FIG. Although the area ratio of the barbed portion 11 is larger than that of the base material 12 but the diffusibility of the non-tempered portion 7 does not change, the area ratio of the tempered portion 6 shown in FIG. There are no significant differences between the portions 12, but there are a total of three types of flaws including flaws having a difference in diffusivity.
【0099】また、この被検査面としての合金化亜鉛鍍
金鋼板の表面は電気メッキ工程における反応生成膜、酸
化膜等の表面ムラが発生している。そして、鋼板21の
幅方向の中央部に図10(a)に示すタイプの疵が発生
し、かつ前述した表面ムラが幅方向の端近傍に発生した
場合において、鏡面反射成分を受光する第1の受光カメ
ラ27及び鏡面拡散反射成分を受光する第2の受光カメ
ラ28を鋼板21の幅方向に1ライン分走査して得られ
た鋼材21の1幅分の光強度信号a,bの変化を図3
(a)(b)に示す。The surface of the alloyed galvanized steel sheet as the surface to be inspected has surface irregularities such as a reaction product film and an oxide film in the electroplating process. Then, when a flaw of the type shown in FIG. 10A is generated at the center in the width direction of the steel plate 21 and the above-described surface unevenness is generated near the end in the width direction, a first surface for receiving a specular reflection component is received. The change of the light intensity signals a and b for one width of the steel material 21 obtained by scanning the light receiving camera 27 of the above and the second light receiving camera 28 for receiving the specular diffuse reflection component by one line in the width direction of the steel plate 21 is shown. FIG.
(A) and (b).
【0100】図示するように、第1の受光カメラ28の
光強度信号aに疵(ヘゲ部11)に対応する正方向(明
方向)のピーク波形40が発生する。また、第2の受光
カメラ29の光強度信号bに疵(ヘゲ部11)に対応す
るピーク波形40が発生する。As shown in the drawing, a peak waveform 40 in the positive direction (bright direction) corresponding to the flaw (the stub 11) is generated in the light intensity signal a of the first light receiving camera 28. Further, a peak waveform 40 corresponding to the flaw (the scab 11) is generated in the light intensity signal b of the second light receiving camera 29.
【0101】また、鋼板21の幅方向の中央部に図10
(b)示すタイプの疵が発生、かつ前述した表面ムラが
幅方向の端近傍に発生した場合において、鏡面反射成分
を受光する第1の受光カメラ28及び鏡面拡散反射成分
を受光する第2の受光カメラ29を鋼板21の幅方向に
1ライン分走査して得られた鋼材21の1幅分の光強度
信号a,bの変化を図3(c)(d)に示す。FIG. 10 shows a central portion of the steel plate 21 in the width direction.
(B) When a flaw of the type shown in the figure occurs and the aforementioned surface unevenness occurs near the end in the width direction, a first light receiving camera 28 for receiving a specular reflection component and a second light receiving camera for receiving a specular diffuse reflection component. FIGS. 3C and 3D show changes in light intensity signals a and b for one width of the steel material 21 obtained by scanning the light receiving camera 29 for one line in the width direction of the steel plate 21.
【0102】図示するように、第1の受光カメラ28の
光強度信号aに疵(ヘゲ部11)に対応する正方向(明
方向)のピーク波形40が発生する。しかし、第2の受
光カメラ28の光強度信号bに疵(ヘゲ部11)に対応
するピーク波形は発生しない。As shown in the figure, a peak waveform 40 in the positive direction (bright direction) corresponding to the flaw (heavy portion 11) is generated in the light intensity signal a of the first light receiving camera 28. However, a peak waveform corresponding to the flaw (the scab 11) does not occur in the light intensity signal b of the second light receiving camera 28.
【0103】さらに、鋼板21の幅方向の中央部に図1
0(c)示すタイプの疵が発生し、端近傍に表面ムラが
発生した場合において、鏡面反射成分を受光する第1の
受光カメラ28及び鏡面拡散反射成分を受光する第2の
受光カメラ29を鋼板21の幅方向に1ライン分走査し
て得られた鋼材21の1幅分の光強度信号a,bの変化
を図3(e)(f)に示す。Further, FIG. 1 is attached to the center of the steel plate 21 in the width direction.
When a flaw of the type shown in FIG. 0 (c) occurs and surface unevenness occurs near the end, a first light receiving camera 28 for receiving the specular reflection component and a second light receiving camera 29 for receiving the specular diffuse reflection component are provided. FIGS. 3E and 3F show changes in the light intensity signals a and b for one width of the steel material 21 obtained by scanning one line in the width direction of the steel plate 21.
【0104】図示するように、第1の受光カメラ28の
光強度信号aには疵(ヘゲ部11)に対応する正方向
(明方向)のピーク波形は発生しない。しかし、第2の
受光カメラ29の光強度信号bに疵(ヘゲ部11)に対
応するピーク波形40が発生する。As shown in the figure, the light intensity signal a of the first light receiving camera 28 does not have a peak waveform in the positive direction (bright direction) corresponding to the flaw (the scab 11). However, a peak waveform 40 corresponding to the flaw (severed portion 11) is generated in the light intensity signal b of the second light receiving camera 29.
【0105】このように、図10(a)(b)(c)に
示す代表的な3種類の模様状ヘゲ欠陥のうちいずれの種
類の模様状ヘゲ欠陥が発生したとしても、この模様状ヘ
ゲ欠陥を確実に検出できる。さらに、図3(a)〜
(f)に示すように、3種類の模様状ヘゲ欠陥の種別も
判別できる。As described above, even if any of the typical three types of pattern-shaped barge defects shown in FIGS. 10 (a), (b) and (c) occurs, It is possible to reliably detect a scab defect. Furthermore, FIG.
As shown in (f), the types of the three types of pattern-like barbed defects can also be determined.
【0106】そして、図3(a)〜(f)に示すよう
に、模様状ヘゲ欠陥のみが検出され、表面ムラに起因す
る波形は検出されない。発明者等は、この第1実施形態
装置の優れた検出機能を確認するために、図10(a)
(b)(c)で示す疵及び表面ムラを従来の表面疵検査
装置で測定した。Then, as shown in FIGS. 3A to 3F, only the pattern-shaped scab defect is detected, and the waveform due to the surface unevenness is not detected. In order to confirm the excellent detection function of the device of the first embodiment, the inventors et al.
(B) The flaws and surface unevenness shown in (c) were measured by a conventional surface flaw inspection device.
【0107】なお、この従来装置においては、鋼板21
の幅方向に配設された線状光源から鋼板21に入射角6
0°で入射した無偏光の入射光の正反射方向に配設され
た第1の受光カメラで鏡面反射光を受光する。したがっ
て、この第1の受光カメラの受光角は第1実施形態装置
の第1のカメラ28の受光角と同じである。一方、入射
光の正反射方向とは異なる例えば鋼板21の法線方向に
対して40°の方向に配設された第2の受光カメラで鏡
面拡散反射光を受光する。In the conventional apparatus, the steel plate 21
From the linear light source arranged in the width direction of the
Specularly reflected light is received by a first light receiving camera disposed in the regular reflection direction of non-polarized incident light incident at 0 °. Therefore, the light receiving angle of the first light receiving camera is the same as the light receiving angle of the first camera 28 of the first embodiment. On the other hand, the second light-receiving camera disposed at a direction different from the specular reflection direction of the incident light, for example, at 40 ° with respect to the normal direction of the steel plate 21, receives the specular diffuse reflection light.
【0108】測定結果を図4(a)(b)(c)(d)
(e)(f)に示す。図示するように、図10(a)
(b)に示すタイプの模様状ヘゲ欠陥を検出することが
可能である。しかし、図示するように、疵(ヘゲ部1
1)に対応する正方向のピーク波形40の他に、表面ム
ラに起因する波形41が発生する。一般的に波形を観察
するのみでは、疵(ヘゲ部11)に対応するピーク波形
40と表面ムラに起因する波形41とは区別できないの
で、表面ムラに起因する波形41を疵(ヘゲ部11)に
対応するピーク波形40と誤認識する懸念がある。FIGS. 4A, 4B, 4C, and 4D show the measurement results.
(E) and (f). As shown in FIG.
It is possible to detect a pattern-like scab defect of the type shown in FIG. However, as shown in FIG.
In addition to the positive peak waveform 40 corresponding to 1), a waveform 41 due to surface unevenness is generated. In general, only by observing the waveform, it is not possible to distinguish the peak waveform 40 corresponding to the flaw (severed portion 11) from the waveform 41 due to the surface unevenness. There is a concern that the peak waveform 40 corresponding to 11) is erroneously recognized.
【0109】また、図4(e)(f)に示すように、図
10(c)に示すタイプの模様状ヘゲ欠陥を検出するこ
とができない。この場合、模様状ヘゲ欠陥を検出できな
いのみならず、表面ムラに起因する波形41が発生す
る。Further, as shown in FIGS. 4E and 4F, it is not possible to detect a pattern-shaped scab defect of the type shown in FIG. 10C. In this case, not only the pattern-shaped barge defect cannot be detected, but also a waveform 41 due to surface unevenness is generated.
【0110】この場合は、実際に図10(c)に示す模
様状ヘゲ欠陥が存在するのに、この模様状ヘゲ欠陥を検
出できずに、検出が不必要な表面ムラが検出される不都
合が生じる。In this case, although the pattern-shaped scab defect actually exists as shown in FIG. 10C, the pattern-shaped scab defect cannot be detected, and the surface unevenness which does not need to be detected is detected. Inconvenience occurs.
【0111】このように、第1実施形態の表面疵検査装
置においては、従来装置では検出できなかったタイプの
模様状ヘゲ欠陥を、表面ムラの存在を排除した状態で、
確実に検出でき、結果として、顕著な凹凸性を持たない
模様状ヘゲ疵を検出もれすることなく確実にかつ高い精
度で検出することが可能になった。As described above, in the surface flaw inspection apparatus according to the first embodiment, a pattern-shaped scab defect, which could not be detected by the conventional apparatus, is removed while eliminating the presence of surface unevenness.
As a result, it is possible to reliably detect the pattern-shaped barbed flaw having no remarkable unevenness without fail and with high accuracy.
【0112】(第2実施形態)図5は本発明の第2実施
形態の表面疵検査装置の上面図である。図1に示す第1
実施形態の表面疵検査装置と同一部分には同一符号が付
してある。したがって、重複する部分の詳細説明は省略
する。(Second Embodiment) FIG. 5 is a top view of a surface flaw inspection apparatus according to a second embodiment of the present invention. The first shown in FIG.
The same parts as those of the surface flaw inspection apparatus of the embodiment are denoted by the same reference numerals. Therefore, the detailed description of the overlapping part will be omitted.
【0113】この第2実施形態の表面疵検査装置におい
ては、正反射光26のうちの入射光23の鋼板21に対
する入射面と平行するp偏光成分を受光する第1の受光
カメラ28aと、正反射光26のうちの入射光23の鋼
板21に対する入射面と直交するs偏光成分を受光する
第2の受光カメラ29aとが鋼板21の幅方向、すなわ
ち、線状拡散光源22に対して微小間隔を開けて平行に
配列されている。In the surface flaw inspection apparatus of the second embodiment, the first light receiving camera 28a for receiving the p-polarized light component of the specularly reflected light 26 which is parallel to the incident surface of the incident light 23 with respect to the steel plate 21; The second light-receiving camera 29a that receives an s-polarized light component of the reflected light 26 that is orthogonal to the plane of incidence of the incident light 23 with respect to the steel plate 21 and the second light-receiving camera 29a in the width direction of the steel plate 21, that is, at a minute interval Open and arranged in parallel.
【0114】また、入射光23の入射角θと正反射光2
6の受光角γは共に、表面ムラの要因物質のブリュース
ター角である60°に設定されている。このような構成
であっても、第1,第2の受光カメラ28a,29aは
それぞれ独立して正反射光26のうちのp偏光成分及び
s偏光成分を受光して、各光強度に対応する各光強度信
号a,bを出力するので、図1に示す第1実施形態の表
面疵検査装置とほぼ同様の作用効果が得られる。The incident angle θ of the incident light 23 and the specular reflection light 2
6 is set to 60 °, which is the Brewster angle of the substance causing the surface unevenness. Even with such a configuration, the first and second light receiving cameras 28a and 29a independently receive the p-polarized component and the s-polarized component of the specularly reflected light 26, and correspond to each light intensity. Since the light intensity signals a and b are output, substantially the same operation and effect as those of the surface flaw inspection apparatus of the first embodiment shown in FIG. 1 can be obtained.
【0115】なお、第1,第2の受光カメラ28a,2
9aはそれぞれの光軸は一致していないので、第1,第
2の受光カメラ28a,29aにおける視野ずれの補正
を行う必要がある。この視野ずれの補正は信号処理部3
1内の総合判定部38で簡単に実施することが可能であ
る。Incidentally, the first and second light receiving cameras 28a, 28
Since the optical axes of 9a do not coincide, it is necessary to correct the field of view in the first and second light receiving cameras 28a and 29a. The correction of the visual field shift is performed by the signal processor 3
1 can be easily implemented by the overall determination unit 38.
【0116】[0116]
【発明の効果】以上説明したように、本発明の表面疵検
査装置及び表面疵検査方法においては、p偏光である照
明光の入射角と正反射光の受光角とをブリュースター角
に設定し、この正反射光のp偏光成分とs偏光成分とを
受光することによって、受光される各反射光に、被検査
表面におけるムラに起因する要因が入ることを未然に防
止している。As described above, in the surface flaw inspection apparatus and the surface flaw inspection method of the present invention, the incident angle of the illumination light, which is p-polarized light, and the reception angle of the specular reflection light are set to the Brewster angle. By receiving the p-polarized light component and the s-polarized light component of the specularly reflected light, it is possible to prevent a factor due to unevenness on the surface to be inspected from being included in each of the received reflected lights.
【0117】したがって、被検査面からの反射光に含ま
れる鏡面反射成分と鏡面拡散反射成分とを精度よく検出
でき、被検査面における表面の割れ・抉れ・めくれ上が
りのような顕著な凹凸性を持たない模様状ヘゲ欠陥を、
欠陥とは言えない表面のムラと区別して、確実に検出で
き、高い欠陥検出精度を発揮でき、製品の品質検査ライ
ンにも十分組込むことができる。Therefore, the specular reflection component and the specular diffuse reflection component contained in the reflected light from the surface to be inspected can be detected with high accuracy, and the surface of the surface to be inspected has remarkable irregularities such as cracks, gouges, and curling up. Pattern-like balding defects without
It can be reliably detected in distinction from surface irregularities that cannot be regarded as defects, can exhibit high defect detection accuracy, and can be sufficiently incorporated into a product quality inspection line.
【図1】 本発明の第1実施形態の表面疵検査装置の概
略構成を示す側面図及び上面図FIG. 1 is a side view and a top view showing a schematic configuration of a surface flaw inspection apparatus according to a first embodiment of the present invention.
【図2】 同表面疵検査装置の信号処理部の概略構成を
示すブロック図FIG. 2 is a block diagram showing a schematic configuration of a signal processing unit of the surface flaw inspection apparatus.
【図3】 同表面疵検査装置で測定された光強度信号波
形図FIG. 3 is a waveform diagram of a light intensity signal measured by the surface flaw inspection apparatus.
【図4】 従来の表面疵検査装置で測定された光強度信
号波形図FIG. 4 is a waveform diagram of a light intensity signal measured by a conventional surface flaw inspection device.
【図5】 本発明の第2実施形態の表面疵検査装置の概
略構成を示す上面図FIG. 5 is a top view showing a schematic configuration of a surface flaw inspection apparatus according to a second embodiment of the present invention.
【図6】 表面疵検査装置の検査対象となる合金亜鉛メ
ッキ鋼板の製造方法及び詳細断面構造を示す図FIG. 6 is a view showing a manufacturing method and a detailed cross-sectional structure of an alloy galvanized steel sheet to be inspected by a surface flaw inspection apparatus.
【図7】 検査対象の鋼板におけるテンパ部と非テンパ
部における入射光と反射光との関係を示す断面模式図FIG. 7 is a schematic cross-sectional view showing a relationship between incident light and reflected light in a tempered portion and a non-tempered portion of a steel plate to be inspected.
【図8】 同テンパ部と非テンパ部とにおける反射光の
角度分布図FIG. 8 is an angle distribution diagram of reflected light between the tempered portion and the non-tempered portion.
【図9】 鋼板に存在するヘゲ部の生成過程を説明する
ための図FIG. 9 is a view for explaining a generation process of a barbed portion existing in a steel sheet.
【図10】 ヘゲ部における鏡面反射成分及び鏡面拡散
反射成分と、母材部における鏡面反射成分及び鏡面拡散
反射成分との関係を示す図FIG. 10 is a diagram showing a relationship between a specular reflection component and a specular diffuse reflection component in a stub, and a specular reflection component and a specular diffuse reflection component in a base material portion.
【図11】 表面に膜が存在する場合の検査対象の鋼板
におけるテンパ部と非テンパ部における入射光と反射光
との関係を示す断面模式図FIG. 11 is a schematic cross-sectional view showing a relationship between incident light and reflected light in a tempered portion and a non-tempered portion of a steel plate to be inspected when a film is present on the surface.
【図12】 被検査面に対する入射光の入射角と反射率
との関係を示す図FIG. 12 is a diagram illustrating a relationship between an incident angle of incident light on a surface to be inspected and a reflectance;
【図13】 線状拡散光源の各位置からの各入射光と鋼
板上の入射位置との関係を示す図FIG. 13 is a diagram showing a relationship between each incident light from each position of the linear diffused light source and the incident position on the steel plate.
【図14】 線状拡散光源の各入射光が偏光されていた
場合における反射光の偏光状態を示す図FIG. 14 is a diagram illustrating a polarization state of reflected light when each incident light of the linear diffusion light source is polarized.
【符号の説明】 4,21…鋼板 6…テンパ部 7…非テンパ部 8,23…入射光 9…鏡面反射光 10…鏡面拡散反射光 11…ヘゲ部 12…母財部 13…微小面素 22…線状拡散光源 25…偏光板 26…正反射光 27…ビームスプリッタ 28…第1の受光カメラ 29…第2の受光カメラ 30a,30b…検光子 31…信号処理部 40…ピーク波形 41…波形[Description of Signs] 4,21 ... Steel plate 6 ... Tempered part 7 ... Non-tempered part 8,23 ... Incident light 9 ... Specular reflection light 10 ... Specular diffuse reflection light 11 ... Heavy part 12 ... Base part 13 ... Micro plane element Reference numeral 22: linear diffusion light source 25: polarizing plate 26: specularly reflected light 27: beam splitter 28: first light receiving camera 29: second light receiving camera 30a, 30b: analyzer 31: signal processing unit 40: peak waveform 41 Waveform
フロントページの続き (72)発明者 的場 有治 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 猪股 雅一 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 吉川 省二 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 河村 努 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 杉浦 寛幸 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内Continued on the front page (72) Inventor Yuji Matoba 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Masakazu Inomata 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Sun Inside the Kokan Co., Ltd. (72) Shoji Yoshikawa, 1-2-1, Marunouchi, Chiyoda-ku, Tokyo, Japan Inside Nihon Kokan Co., Ltd. (72) Tsutomu Kawamura 1-2-1, Marunouchi, Chiyoda-ku, Tokyo, Japan Inside Steel Tube Co., Ltd. (72) Inventor Hiroyuki Sugiura 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Japan Steel Tube Co., Ltd.
Claims (3)
査面に対する入射面に平行な方向に直線偏光された照明
光で照射する光源と、 前記被検査面からの受光角が、前記ムラの要因物質のブ
リュースター角に設定され、前記照明光の正反射光にお
ける前記照明光の偏光方向と同一方向の偏光成分を受光
する第1の受光手段と、 前記被検査面からの受光角が、前記ムラの要因物質のブ
リュースター角に設定され、前記照明光の正反射光にお
ける前記照明光の偏光方向と直交する方向の偏光成分を
受光する第2の受光手段と、 前記第1及び第2の受光手段で受光された同一方向及び
直交方向の各偏光成分に基づいて前記被検査面の表面疵
の有無を判定する判定処理部とを備えた表面疵検査装
置。A light source for irradiating a surface to be inspected having unevenness with illumination light linearly polarized in a direction parallel to an incident surface with respect to the surface to be inspected; A first light receiving unit that receives a polarization component of the specular reflection light of the illumination light in the same direction as the polarization direction of the illumination light, and a light reception angle from the surface to be inspected is A second light receiving unit that is set to a Brewster angle of the unevenness factor substance and receives a polarization component of specular reflection light of the illumination light in a direction orthogonal to a polarization direction of the illumination light; 2. A surface flaw inspection apparatus comprising: a determination processing unit that determines presence / absence of a surface flaw on the surface to be inspected based on each polarization component in the same direction and the orthogonal direction received by the light receiving unit.
徴とする請求項1記載の表面疵検査装置。2. The surface flaw inspection apparatus according to claim 1, wherein the light source is a linear diffusion light source.
査面に対する入射面に平行な方向に直線偏光された照明
光で照射し、 前記ムラの要因物質のブリュースター角に設定された受
光方向から、前記照明光の正反射光における前記照明光
の偏光方向と同一方向の偏光成分を受光し、 前記ムラの要因物質のブリュースター角に設定された受
光方向から、前記照明光の正反射光における前記照明光
の偏光方向と直交する方向の偏光成分を受光し、 前記受光された同一方向及び直交方向の各偏光成分に基
づいて前記被検査面の表面疵の有無を判定することを特
徴とする表面疵検査方法。3. A surface to be inspected having an uneven surface is illuminated with illumination light linearly polarized in a direction parallel to an incident surface with respect to the surface to be inspected. Direction, the polarization component of the illumination light in the specular reflection light of the illumination light is received in the same direction as the polarization direction of the illumination light. Receiving a polarization component of the light in a direction orthogonal to the polarization direction of the illumination light, and determining the presence or absence of a surface flaw on the surface to be inspected based on the received polarization components in the same direction and the orthogonal direction. Surface flaw inspection method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9912998A JPH11295240A (en) | 1998-04-10 | 1998-04-10 | Method and equipment for inspecting surface flaw |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9912998A JPH11295240A (en) | 1998-04-10 | 1998-04-10 | Method and equipment for inspecting surface flaw |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11295240A true JPH11295240A (en) | 1999-10-29 |
Family
ID=14239151
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9912998A Pending JPH11295240A (en) | 1998-04-10 | 1998-04-10 | Method and equipment for inspecting surface flaw |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11295240A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001066262A (en) * | 1999-06-25 | 2001-03-16 | Nkk Corp | Surface scratch marking device, and metal belt with marking and its manufacturing method |
JP2008026060A (en) * | 2006-07-19 | 2008-02-07 | Nippon Steel Corp | Flaw inspection device of insulating film covered belt-like body |
WO2010071209A1 (en) * | 2008-12-19 | 2010-06-24 | 富士フイルム株式会社 | Inspection device |
JP2013228329A (en) * | 2012-04-26 | 2013-11-07 | Jfe Steel Corp | Surface inspection device and defect measurement method |
JP2015197340A (en) * | 2014-03-31 | 2015-11-09 | 国立大学法人 東京大学 | inspection system and inspection method |
CN107727661A (en) * | 2017-11-02 | 2018-02-23 | 中国科学院光电研究院 | The apparatus and method for determining transparent material surface flaw/spot position |
-
1998
- 1998-04-10 JP JP9912998A patent/JPH11295240A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001066262A (en) * | 1999-06-25 | 2001-03-16 | Nkk Corp | Surface scratch marking device, and metal belt with marking and its manufacturing method |
JP2008026060A (en) * | 2006-07-19 | 2008-02-07 | Nippon Steel Corp | Flaw inspection device of insulating film covered belt-like body |
WO2010071209A1 (en) * | 2008-12-19 | 2010-06-24 | 富士フイルム株式会社 | Inspection device |
JP2013228329A (en) * | 2012-04-26 | 2013-11-07 | Jfe Steel Corp | Surface inspection device and defect measurement method |
JP2015197340A (en) * | 2014-03-31 | 2015-11-09 | 国立大学法人 東京大学 | inspection system and inspection method |
CN107727661A (en) * | 2017-11-02 | 2018-02-23 | 中国科学院光电研究院 | The apparatus and method for determining transparent material surface flaw/spot position |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5104004B2 (en) | Surface defect inspection apparatus and surface defect inspection method | |
US20090002686A1 (en) | Sheet Metal Oxide Detector | |
JP3882302B2 (en) | Surface flaw inspection apparatus and method | |
JP3275811B2 (en) | Surface defect inspection apparatus and method | |
JP3591160B2 (en) | Surface inspection equipment | |
JPH11295240A (en) | Method and equipment for inspecting surface flaw | |
JPH11295241A (en) | Method and equipment for inspecting surface flaw | |
JP3446008B2 (en) | Surface inspection equipment | |
JP2000065755A (en) | Surface inspection apparatus | |
JPH11183396A (en) | Surface flaw inspecting device and method | |
JP2002221495A (en) | Inspecting equipment for surface flaw and its method | |
JP5104443B2 (en) | Surface inspection apparatus and method | |
JP3826578B2 (en) | Surface inspection device | |
JPH11295239A (en) | Method and equipment for inspecting surface flaw | |
JP3531002B2 (en) | Surface inspection device | |
JPH09178666A (en) | Surface inspection device | |
JP3508589B2 (en) | Surface flaw inspection equipment | |
JPH11183400A (en) | Surface flaw inspecting device and method | |
JPH11295238A (en) | Method and equipment for inspecting surface flaw | |
JP3687441B2 (en) | Surface flaw marking device and method of manufacturing metal band with marking | |
JP2005221391A (en) | Surface flaw inspection device | |
JP3716650B2 (en) | Surface flaw inspection device | |
JP2002243648A (en) | Inspection device for treated surface of band-shaped metal | |
JPH11183399A (en) | Surface flaw inspecting device and surface observing method | |
JP6028828B2 (en) | Surface flaw inspection apparatus and surface flaw inspection method |