JPH11295238A - Method and equipment for inspecting surface flaw - Google Patents

Method and equipment for inspecting surface flaw

Info

Publication number
JPH11295238A
JPH11295238A JP9912798A JP9912798A JPH11295238A JP H11295238 A JPH11295238 A JP H11295238A JP 9912798 A JP9912798 A JP 9912798A JP 9912798 A JP9912798 A JP 9912798A JP H11295238 A JPH11295238 A JP H11295238A
Authority
JP
Japan
Prior art keywords
light
flaw
inspected
polarized
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9912798A
Other languages
Japanese (ja)
Inventor
Yoshiro Yamada
善郎 山田
Takahiko Oshige
貴彦 大重
Mitsuaki Uesugi
満昭 上杉
Yuji Matoba
有治 的場
Masakazu Inomata
雅一 猪股
Seiji Yoshikawa
省二 吉川
Tsutomu Kawamura
努 河村
Hiroyuki Sugiura
寛幸 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP9912798A priority Critical patent/JPH11295238A/en
Publication of JPH11295238A publication Critical patent/JPH11295238A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To detect a pattern-like scab defect having no conspicuous irregularities surely. SOLUTION: The surface flaw inspection equipment comprises a linear diffusion light source 22 for irradiating a plane 21 to be inspected with an illumination light polarized linearly in the direction parallel with or normal to the plane 21, a first light receiving means 28 receiving the polarized light component in same direction as the polarizing direction of the illumination light contained in regular reflected light from the plane 21, a second light receiving means 29 receiving the polarized light component orthogonal to the polarizing direction of the illumination light contained in regular reflected light from the plane 21, and a section 31 for making a decision whether a flaw is present or not on the plane 21 based on both polarized light components received by first and second light receiving means. The mirror face reflection component contained in the reflected light from the plane 21 is discriminated from the mirror face diffusion reflection component and a defect unobservable from mirror face reflection component can be detected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば薄鋼板表面
等の被検査面に光を照射してこの被検査面の表面疵を光
学的に検出する表面疵検査装置及び表面疵検査方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface flaw inspection apparatus and a surface flaw inspection method for irradiating a surface to be inspected such as a thin steel sheet surface with light to optically detect surface flaws on the surface to be inspected.

【0002】[0002]

【従来の技術】薄鋼板表面等の被検査面に光を照射して
この被検査面からの反射光を解析することによって、被
検査面に存在する表面疵を光学的に検出する表面疵検査
は従来から種々の手法が提唱され実施されている。
2. Description of the Related Art Surface flaw inspection for optically detecting surface flaws present on a surface to be inspected by irradiating light to a surface to be inspected such as a thin steel sheet surface and analyzing reflected light from the surface to be inspected. Conventionally, various methods have been proposed and implemented.

【0003】例えば、被検体表面に対して光を入射し、
被検体表面からの正反射光及び拡散反射光をカメラで検
出する金属物体の表面探傷方法が特開昭58-204353 号公
報に提案されている。この表面探傷方法においては、被
検体表面に対し35°〜75°の角度で光を入射し、被
検体表面からの反射光を、正反射方向と入射方向又は正
反射方向から20°以内の角度方向に設置した2台のカ
メラで受光する。そして、2台のカメラの受光信号を比
較し、例えば両者の論理和を取る。そして、2台のカメ
ラが同時に異常値を検出した場合のみ該当異常値を傷と
みなすことにより、ノイズに影響されない表面探傷方法
を実現している。
For example, light is incident on the surface of a subject,
Japanese Patent Application Laid-Open No. 58-204353 proposes a surface flaw detection method for a metal object in which specular reflected light and diffuse reflected light from the surface of an object are detected by a camera. In this surface flaw detection method, light is incident on the surface of the subject at an angle of 35 ° to 75 °, and reflected light from the surface of the subject is reflected at an angle within 20 ° from the specular reflection direction and the incident direction or the specular reflection direction. Light is received by two cameras installed in different directions. Then, the light reception signals of the two cameras are compared, and, for example, the logical sum of the two is obtained. Then, only when two cameras simultaneously detect abnormal values, the abnormal values are regarded as flaws, thereby realizing a surface flaw detection method that is not affected by noise.

【0004】また、被検体からの後方散乱光を受光する
ことによる被検体表面の疵検査方法が特開昭60-228943
号公報に提案されている。この疵検査方法においては、
ステンレス鋼板に対して大きな入射角で光を入射し、入
射側へ戻る反射光、すなわち後方散乱光を検出すること
により、ステンレス鋼板表面のヘゲ疵を検出している。
A method for inspecting a flaw on the surface of an object by receiving backscattered light from the object is disclosed in Japanese Patent Laid-Open No. 60-228943.
No. 1993. In this flaw inspection method,
Light is incident on the stainless steel plate at a large angle of incidence, and reflected light returning to the incident side, that is, backscattered light is detected, thereby detecting a barbed flaw on the surface of the stainless steel plate.

【0005】さらに、複数の後方散乱反射光を検出する
ことによる平鋼熱間探傷装置が特開平8-178867号公報に
提案されている。この平鋼熱間探傷装置は熱間圧延され
た平鋼上の掻疵を検出する。そして、この探傷装置にお
いては、掻疵の疵斜面角度は10〜40°であり、この
範囲の疵斜面からの正反射光を全てカバーできるように
後方拡散反射方向に複数台のカメラが配設されている。
Further, Japanese Patent Application Laid-Open No. 8-17867 proposes a flat steel hot flaw detector which detects a plurality of backscattered reflected lights. This flat steel hot flaw detector detects a scratch on a hot-rolled flat steel. In this flaw detection device, the angle of the flaw slope of the flaw is 10 to 40 °, and a plurality of cameras are arranged in the backward diffuse reflection direction so as to cover all the specularly reflected light from the flaw slope in this range. Have been.

【0006】さらに、特開昭58-204353 号公報や特開平
8-178867号公報では複数台のカメラの光軸が共通ではな
く出射角が異なるため、得られる2つの画像の対応する
画素の視野サイズが異なるほか、被検査面のバタツキや
対象の厚さ変動による距離変化があると視野に位置ズレ
を生じるという問題があった。特に特開昭58-204353号
公報では2つのカメラで同じ視野に対する論理和をとる
ことが要求されるため問題は大きかった。
Further, Japanese Patent Application Laid-Open No. 58-204353 and
In Japanese Patent Application Laid-Open No. 8-178867, since the optical axes of a plurality of cameras are not common and the emission angles are different, the field of view size of the corresponding pixels of the two images obtained is different, and the fluttering of the inspected surface and the thickness variation of the object There is a problem in that if there is a distance change due to, a positional shift occurs in the visual field. Particularly, in Japanese Patent Application Laid-Open No. 58-204353, the problem is great because it is required that two cameras take a logical sum for the same field of view.

【0007】また、偏光を利用した表面の測定装置が特
開昭57-166533 号公報及び特開平9-166552号公報に提案
されている。特開昭57-166533 号公報に提案された測定
装置においては、測定対象に45°方向の偏光を入射し
偏光カメラで反射光を受光している。偏光カメラにおい
ては、反射光をカメラ内部のビームスプリッタを用いて
3つに分岐し、それぞれ異なる方位角の偏光フィルタを
通して受光する。そして、偏光カメラからの3本の信号
を、カラーTVシステムと同様の信号処理により、モニ
タに表示し、偏光状態を可視化する技術が開示されてい
る.この技術はエリプソメトリの技術を利用しており、
光源は平行光であることが望ましく、例えばレーザ光が
用いられている。
A surface measuring apparatus using polarized light has been proposed in Japanese Patent Application Laid-Open Nos. 57-166533 and 9-166552. In the measuring device proposed in Japanese Patent Application Laid-Open No. 57-166533, polarized light in a direction of 45 ° is incident on a measuring object and reflected light is received by a polarizing camera. In a polarizing camera, the reflected light is split into three using a beam splitter inside the camera, and the reflected light is received through polarizing filters having different azimuth angles. A technique is disclosed in which three signals from a polarization camera are displayed on a monitor by signal processing similar to that of a color TV system, and the polarization state is visualized. This technology uses the technology of ellipsometry,
The light source is desirably parallel light, for example, laser light is used.

【0008】また、特開平9-166552号公報に提案された
表面検査装置においては、特開昭57-166533 号公報記載
技術と同様に、エリプソメトリを利用して鋼板表面の疵
を検査している。
Further, in the surface inspection apparatus proposed in Japanese Patent Application Laid-Open No. Hei 9-165552, similarly to the technology described in Japanese Patent Application Laid-Open No. 57-166533, the surface of a steel sheet is inspected for defects using ellipsometry. I have.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上述し
た各公開公報に提案された各測定技術は、いずれも顕著
な凹凸性を持つ疵を検出するか、又は酸化膜等異物が存
在する疵を検出することを目的としたものであり、顕著
な凹凸性を持たない模様状ヘゲ欠陥等に対しては全ての
疵を確実に捕捉することが困難であった。
However, each of the measuring techniques proposed in each of the above-mentioned publications detects a flaw having remarkable unevenness or detects a flaw having a foreign substance such as an oxide film. Therefore, it is difficult to reliably capture all flaws with respect to pattern-shaped scab defects and the like having no noticeable unevenness.

【0010】例えば、特開昭58-204353 号公報の探傷方
法においては、正反射光と散乱反射光を受光する2台の
カメラを有しているが、その目的は2つのカメラにおけ
る検出信号の論理和によるノイズの影響除去である。し
たがつて、顕著な凹凸性を有する疵、すなわち表面に割
れ・抉れ・めくれ上がりを生じているような疵に対して
は両方のカメラで疵の信号が捉えられるので適用可能で
ある。しかし、いずれか一方のカメラでしか疵の信号を
捕らえられないような顕著な凹凸性を持たない模様状ヘ
ゲ欠陥のような疵の場合は、その疵を全て検出すること
はできない。
For example, the flaw detection method disclosed in Japanese Patent Application Laid-Open No. 58-204353 has two cameras that receive specularly reflected light and scattered reflected light. The purpose of the method is to detect detection signals of the two cameras. This is to remove the influence of noise due to OR. Therefore, flaws having remarkable unevenness, that is, flaws having cracks, digging, and curling up on the surface are applicable because both cameras can detect the flaw signal. However, in the case of a flaw such as a pattern-shaped scab defect having no noticeable unevenness such that only one of the cameras can capture the flaw signal, it is not possible to detect all the flaws.

【0011】また、特開昭60-228943 号公報の表面状態
検査方法は、表面粗さの小さいステンレス鋼板上に顕在
化した持ち上がったヘゲ疵を対象としている。したがっ
て、顕在化していない持ち上がった部分のない疵や、疵
の存在しない部分も入射側へ戻る光を反射するような表
面の粗い鋼板に適用することはできない。
The surface condition inspection method disclosed in Japanese Patent Application Laid-Open No. 60-228943 is directed to a raised bark defect that has become apparent on a stainless steel plate having a small surface roughness. Therefore, it is not possible to apply a flaw having no raised portion that has not been exposed or a flaw-free part to a steel plate having a rough surface that reflects light returning to the incident side.

【0012】特開平8-178867号公報の平鋼熱間探傷装置
は、掻き疵を対象にしており、疵斜面での正反射光を捉
えることに基づいているため、顕著な凹凸性を持たない
模様状ヘゲのような疵の場合には後方散乱反射光では捉
えられないものも存在し、検出もれを生ずる問題点があ
った。
The flat steel hot flaw detector disclosed in Japanese Patent Application Laid-Open No. 8-17867 is intended for scratches and is based on capturing specularly reflected light on the slopes of the flaws. In the case of a flaw such as a patterned scab, there are some which cannot be caught by the backscattered reflected light, and there has been a problem that a detection leak occurs.

【0013】さらに、特開昭57-166533 号公報の測定装
置及び特開平9-166552号公報の表面検査装置は、エリプ
ソメトリの技術を用いており、「薄い透明な層の厚さ及
び屈折率」や「物性値のむら」を検出することはでき
る。しかしながら、例えば表面処理鋼板のように、もと
もと疵部が母材部と異なる物性値を有していたとして
も、その上から同一の物性値を有するものに覆われたよ
うな対象に対しては、有効性が低下してしまう問題があ
った。
Further, the measuring device disclosed in Japanese Patent Application Laid-Open No. 57-166533 and the surface inspection device disclosed in Japanese Patent Application Laid-Open No. Hei 9-166552 use ellipsometry technology. And "uneven physical property values" can be detected. However, even if the flaw originally has a property value different from that of the base material portion, such as a surface-treated steel sheet, for an object covered with a material having the same property value from above, However, there is a problem that the effectiveness is reduced.

【0014】製品の品質検査ラインに組込まれる表面検
査装置においては、製造製品に対する品質保証の観点か
ら、疵の検出もれがないことが絶対条件である。しかし
ながら、表面処理鋼板等まで検査対象とした表面疵検査
装置は実用化されていなかった。
In a surface inspection apparatus to be incorporated in a product quality inspection line, it is an absolute condition that no defect is detected from the viewpoint of quality assurance of a manufactured product. However, a surface flaw inspection apparatus for inspecting even a surface-treated steel sheet or the like has not been put to practical use.

【0015】本発明は、このような事情に鑑みてなされ
たものであり、被検査面からの反射光に含まれる鏡面反
射成分と鏡面拡散反射成分とを区別して検出することよ
って、被検査面における表面の割れ・抉れ・めくれ上が
りのような顕著な凹凸性を持たない模様状ヘゲ欠陥を確
実に検出でき、高い欠陥検出精度を発揮でき、製品の品
質検査ラインにも十分組込ことができる表面疵検査装置
及び表面疵検査方法を提供することを目的とする。
The present invention has been made in view of such circumstances, and distinguishes between a specular reflection component and a specular diffuse reflection component contained in light reflected from a surface to be inspected to thereby detect the surface to be inspected. It can reliably detect pattern-like barbed defects that do not have noticeable unevenness such as surface cracks, gouges, and curling up, exhibit high defect detection accuracy, and be fully incorporated into product quality inspection lines. It is an object of the present invention to provide a surface flaw inspection device and a surface flaw inspection method that can perform the inspection.

【0016】[0016]

【課題を解決するための手段】上記課題を解消するため
に請求項1の表面疵検査装置は、被検査面に対してこの
被検査面に対する入射面に平行もしくは垂直な方向に直
線偏光された照明光を入射する線状拡散光源と、被検査
面からの正反射光に含まれる照明光の偏光方向と同一方
向の偏光成分を受光する第1の受光手段と、被検査面か
らの正反射光に含まれる照明光の偏光方向と直交方向の
偏光成分を受光する第2の受光手段と、第1及び第2の
受光手段で受光された同一方向及び直交方向の各偏光成
分に基づいて被検査面の表面疵の有無を判定する判定処
理部とを備えたものである。
According to a first aspect of the present invention, there is provided a surface flaw inspection apparatus which is linearly polarized with respect to a surface to be inspected in a direction parallel or perpendicular to a plane of incidence with respect to the surface to be inspected. A linear diffused light source that receives illumination light, a first light receiving unit that receives a polarization component in the same direction as the polarization direction of the illumination light included in the specular reflection light from the inspection surface, and a regular reflection from the inspection surface A second light receiving means for receiving a polarized light component in a direction orthogonal to the polarization direction of the illumination light included in the light, and a light receiving means based on the polarized light components in the same direction and the orthogonal direction received by the first and second light receiving means. A judgment processing unit for judging the presence or absence of surface flaws on the inspection surface.

【0017】また、請求項2の発明においては、上記発
明の表面疵検査装置に対して、さらに、被検査面からの
正反射光を第1及び第2の受光手段に分岐する光分岐手
段を備えている。
According to the second aspect of the present invention, in addition to the surface flaw inspection apparatus of the present invention, a light branching means for branching regular reflection light from the surface to be inspected into first and second light receiving means is further provided. Have.

【0018】請求項3の発明は、上記発明の表面疵検査
装置における第1及び第2の受光手段を線状拡散光源と
平行する方向に配列している。さらに、請求項4の表面
疵検査方法においては、線状拡散光源から被検査面に対
してこの被検査面に対する入射面に平行もしくは垂直な
方向に直線偏光された照明光を入射し、被検査面からの
正反射光に含まれる照明光の偏光方向と同一方向の偏光
成分を受光し、被検査面からの正反射光に含まれる照明
光の偏光方向と直交方向の偏光成分を受光し、受光され
た同一方向及び直交方向の各偏光成分に基づいて被検査
面の表面疵の有無を判定するようにしている。
According to a third aspect of the present invention, the first and second light receiving means in the surface flaw inspection apparatus of the present invention are arranged in a direction parallel to the linear diffusion light source. Further, in the surface defect inspection method according to the fourth aspect, the linearly diffused light source irradiates linearly polarized illumination light to the surface to be inspected in a direction parallel or perpendicular to an incident surface with respect to the surface to be inspected, and Receiving a polarization component in the same direction as the polarization direction of the illumination light included in the specular reflection light from the surface, and receiving a polarization component in the direction orthogonal to the polarization direction of the illumination light included in the specular reflection light from the surface to be inspected; The presence or absence of a surface flaw on the surface to be inspected is determined based on the received polarization components in the same direction and the orthogonal direction.

【0019】次に、上述した発明の動作原理を図面を用
いて説明する。まず、本発明の表面疵検査装置が検査対
象とする鋼板表面の光学的反射の形態を鋼板表面のミク
ロな凹凸形状と関連づけて説明する。
Next, the principle of operation of the above-described invention will be described with reference to the drawings. First, the form of optical reflection on the steel sheet surface to be inspected by the surface flaw inspection apparatus of the present invention will be described in relation to the microscopic unevenness on the steel sheet surface.

【0020】例えば、検査対象が合金化亜鉛メッキ鋼板
の場合においては、図7(a)に示すように、下地の冷
延鋼板は溶融亜鉛メッキされたのち合金化炉を通過す
る。この間に下地鋼板1の鉄元素がメッキ層2の亜鉛中
に拡散し、通常、図7(c)に示すように合金の柱状結
晶3を形成する。このメッキされた鋼板4は次にロール
5a,5bで調質圧延される。すると、図7(d)に示
すように、柱状結晶3における特に突出した箇所がロー
ル5a,5bで平坦につぶされ、それ以外の箇所は元の
柱状結晶3の形状を維持したままとなる。
For example, when the inspection target is an alloyed galvanized steel sheet, as shown in FIG. 7A, the cold-rolled steel sheet as the base passes through the alloying furnace after being hot-dip galvanized. During this time, the iron element of the base steel sheet 1 diffuses into the zinc of the plating layer 2, and usually forms columnar crystals 3 of the alloy as shown in FIG. 7 (c). The plated steel sheet 4 is then temper rolled on rolls 5a and 5b. Then, as shown in FIG. 7D, particularly protruding portions of the columnar crystal 3 are flattened by the rolls 5a and 5b, and the other portions maintain the original shape of the columnar crystal 3.

【0021】そして、この調質圧延のロール5a,5b
にて平坦につぶされた部分をテンパ部6と呼び、それ以
外の調質圧延のロール5a,5bが当接しない元の凹凸
形状を残した部分を非テンバ部7と称する。
Then, the rolls 5a, 5b of the temper rolling are
The portion flattened by is referred to as a temper portion 6, and the remaining portion of the temper rolls 5 a and 5 b which does not contact the original uneven shape is referred to as a non-tempered portion 7.

【0022】図8は、このようなテンパ部6と非テンバ
部7とを有する鋼板4の表面でどのような光学的反射が
生じるかをモデル化した断面模式図である。この鋼板4
の表面(被検査面)はミクロ的に見ると種々の方向を向
いた無数の微小面素13で構成されている。
FIG. 8 is a schematic cross-sectional view modeling what kind of optical reflection occurs on the surface of the steel plate 4 having such a tempered portion 6 and the non-tempered portion 7. This steel plate 4
The surface (the surface to be inspected) is composed of countless minute surface elements 13 oriented in various directions when viewed microscopically.

【0023】調質圧延のロール5a,5bによりつぶさ
れたテンパ部6に入射した入射光8は、テンパ部6の各
微小面素13で鋼板4の正反射方向に鏡面的に反射して
鏡面反射光9となる。一方、調質圧延のロール5a,5
bが当接しない元の柱状結晶3の構造を残す非テンパ部
7に入射した入射光8は、ミクロに見れば柱状結晶3の
各表面の微小面素13一つーつにより鏡面的に反射され
るが、反射の方向は鋼板4の正反射方向とは必ずしも一
致しない鏡面拡散反射光10となる。
The incident light 8 incident on the temper portion 6 crushed by the temper rolling rolls 5a and 5b is reflected specularly in the regular reflection direction of the steel plate 4 by each of the micro-surface elements 13 of the temper portion 6 so as to have a mirror surface. It becomes reflected light 9. On the other hand, the rolls 5a, 5
The incident light 8 incident on the non-tempered part 7 which leaves the structure of the columnar crystal 3 where the b does not come into contact with the non-tempered part 7 is mirror-reflected by one microplane element 13 on each surface of the columnar crystal 3 when viewed microscopically. However, the direction of reflection is specular diffuse reflection light 10 which does not necessarily match the direction of regular reflection of the steel plate 4.

【0024】したがって、鋼板4の表面におけるテンパ
部6及び非テンパ部7の各反射光の角度分布は、マクロ
に見ればそれぞれ図9(a)、図9(b)のようにな
る。すなわち、テンパ部6では鋼板正反射方向に鋭い鏡
面性の反射が発生し、非テンパ部7では柱状結晶3の表
面の微小面素13の角度分布に対応した広がりを持った
反射光となる。前述したように、テンパ部6の反射光を
鏡面反射光9と称し、非テンパ部7の反射光を鏡面拡散
反射光10と称する。
Therefore, the angular distributions of the reflected light of the tempered portion 6 and the non-tempered portion 7 on the surface of the steel plate 4 are macroscopically shown in FIGS. 9A and 9B, respectively. That is, a sharp specular reflection occurs in the regular reflection direction of the steel sheet in the tempered portion 6, and reflected light having a spread corresponding to the angular distribution of the minute surface element 13 on the surface of the columnar crystal 3 in the non-tempered portion 7. As described above, the reflected light from the tempered portion 6 is referred to as specular reflected light 9, and the reflected light from the non-tempered portion 7 is referred to as specular diffused reflected light 10.

【0025】そして、実際には、テンパ部6と非テンパ
部7はマクロ的には混在しているので、カメラ等の光学
測定器で観察される反射光の角度分布は、図9(c)に
示すように、鏡面反射光9及び鏡面拡散反射光10の角
度分布はテンパ部6と非テンパ部7とのそれぞれの面積
率に応じて加算したものとなる。
Actually, since the tempered portion 6 and the non-tempered portion 7 are mixed macroscopically, the angular distribution of the reflected light observed by an optical measuring instrument such as a camera is shown in FIG. As shown in (1), the angular distribution of the specular reflected light 9 and the specular diffuse reflected light 10 is obtained by adding the angular distributions of the tempered portion 6 and the non-tempered portion 7 in accordance with the respective area ratios.

【0026】以上、テンパ部6と非テンパ部7とを合金
化亜鉛メッキ鋼板を例に説明したが、調質圧延により平
坦部が生じる他の鋼板にも一般に成立つ。次に、本発明
の検出対象となる顕著な凹凸性を持たない模様状ヘゲ欠
陥と呼ばれる欠陥の光学反射特性について説明する。
As described above, the tempered portion 6 and the non-tempered portion 7 have been described as an example of a galvanized steel sheet. However, the invention can be generally applied to other steel sheets in which a flat portion is formed by temper rolling. Next, a description will be given of the optical reflection characteristic of a defect called a pattern-shaped scab defect having no noticeable unevenness to be detected in the present invention.

【0027】図10に示すように、合金化溶融亜鉛メッ
キ鋼板に見られるヘゲ欠陥(ヘゲ部11)は、メッキ加
工前の冷延鋼板原板にヘゲ欠陥(ヘゲ部11)が存在
し、その上にメッキ層2が乗り、さらに下地鋼板1の鉄
元素の拡散によるヘゲ欠陥の合金化が進行したものであ
る。
As shown in FIG. 10, the barge defects (barge portions 11) found in the galvannealed steel sheet are the same as those in the cold-rolled steel sheet before plating. Then, the plating layer 2 is placed thereon, and further, alloying of barge defects due to diffusion of the iron element of the base steel sheet 1 progresses.

【0028】一般に、ヘゲ部11は鋼板4の正常部分を
示す母材12と比較して、例えばメッキ厚に違いが生じ
たり、合金化の程度に違いが生じる。その結果、例え
ば、ヘゲ部11のメッキ厚が厚く母材12に対し凸の場
合には、調質圧延が印加されることによりテンパ部6の
面積が非テンパ部7に比べて多くなる。逆に、ヘゲ部1
1のメッキ厚が薄く母材12に比べ凹の場合には、ヘゲ
部11は調質圧延のロール5a,5bが当接せず、非テ
ンパ部7が大半を占める。また、ヘゲ部11の合金化が
浅い場合には微小面素13の角度分布は鋼板法線方向に
強く、拡散性は小さくなる。
In general, the barbed portion 11 has a difference in plating thickness or a degree of alloying, for example, as compared with the base material 12 indicating a normal portion of the steel plate 4. As a result, for example, when the plating thickness of the barbed portion 11 is large and is convex with respect to the base material 12, the area of the tempered portion 6 becomes larger than that of the non-tempered portion 7 by applying the temper rolling. Conversely, hege part 1
In the case where the plating thickness of 1 is thinner than that of the base material 12 and is concave, the non-tempered portion 7 occupies most of the barb portion 11 because the rolls 5a and 5b of the temper rolling do not abut. When the alloy of the barbed portion 11 is shallow, the angular distribution of the microscopic surface element 13 is strong in the normal direction of the steel sheet, and the diffusivity is small.

【0029】次に、このようなヘゲ部11と母材部12
の表面性状の相違により、模様状ヘゲ欠陥がどのように
見えるかを説明する。上述したモデルに基づきヘゲ部1
1と母材部12の違いについて分類すると一般的に次の
3種類に分けられる。
Next, the scab 11 and the base 12
A description will be given of how the pattern-like scab defect looks due to the difference in the surface properties. Hege part 1 based on the model described above
1 and the base material 12 are generally classified into the following three types.

【0030】(a) ヘゲ部11におけるテンパ部6の面
積率及び非テンパ部7の微小面素13の角度分布が、母
材部12におけるテンパ部6の面積率及び非テンパ部7
の微小面素13の角度分布と異なる。
(A) The area ratio of the tempered portion 6 in the barbed portion 11 and the angular distribution of the small area element 13 in the non-tempered portion 7 are determined by the area ratio of the tempered portion 6 in the base material portion 12 and the non-tempered portion 7.
Is different from the angular distribution of the minute surface element 13 of FIG.

【0031】(b) ヘゲ部11におけるテンパ部6の面
積率は母材部12におけるテンパ部6の面積率と異なる
が、ヘゲ部11における非テンパ部7の微小面素13の
角度分布は母材部12における非テンパ部7の微小面素
13の角度分布と変わらない。
(B) Although the area ratio of the tempered portion 6 in the barbed portion 11 is different from the area ratio of the tempered portion 6 in the base material portion 12, the angular distribution of the small surface element 13 of the non-tempered portion 7 in the barbed portion 11 is obtained. Is not different from the angular distribution of the micro-plane element 13 of the non-tempered part 7 in the base material part 12.

【0032】(c) ヘゲ部11における非テンパ部7の
微小面素13の角度分布は母材部12における非テンパ
部7の微小面素13の角度分布と異なるが、ヘゲ部11
におけるテンパ部6の面積率は母材部12におけるテン
パ部6の面積率と変わらない。
(C) Although the angular distribution of the small surface elements 13 of the non-tempered portion 7 in the barbed portion 11 is different from the angular distribution of the small surface elements 13 of the non-tempered portion 7 in the base material portion 12,
Is the same as the area ratio of the tempered portion 6 in the base material portion 12.

【0033】すなわち、図11(a)はヘゲ部11に対
応するヘゲ部角度分布11aと母材部12に対応する母
材部角度分布12aとの間において、鏡面反射成分と鏡
面拡散反射成分とが共に差が存在する場合を示し、図1
1(b)は鏡面反射成分のみに差が存在する場合を示
し、図11(c)は鏡面拡散反射成分のみに差が存在す
る場合を示す。
That is, FIG. 11 (a) shows the specular reflection component and the specular diffuse reflection between the barge angle distribution 11a corresponding to the barge 11 and the base metal angle distribution 12a corresponding to the base material 12. FIG. 1 shows a case where there is a difference between both components.
1 (b) shows the case where there is a difference only in the specular reflection component, and FIG. 11 (c) shows the case where there is a difference only in the specular diffuse reflection component.

【0034】そして、ヘゲ部角度分布11aと母材部角
度分布12aとでテンパ部6の面積率に相違がある場合
には、図11(a)(b)に示すように、その差は正反
射方向から観察される。具体的には、正反射方向からヘ
ゲ部11の反射光を測定した場合と母材部12の反射光
を測定した場合に、ヘゲ部11のテンパ部6の面積率が
母材部12のテンパ部6の面積率より大きい場合にはヘ
ゲ部11は母材部12に比較して相対的に明るく見え
る。逆に、ヘゲ部11のテンパ部6が母材部12より小
さいときにはヘゲ部11は母材部12に比較して相対的
に暗く観察される。
When there is a difference in the area ratio of the tempered portion 6 between the barge angle distribution 11a and the base material angle distribution 12a, the difference is as shown in FIGS. 11 (a) and 11 (b). Observed from the specular direction. More specifically, the area ratio of the tempered portion 6 of the barbed portion 11 is reduced when the reflected light of the barbed portion 11 is measured from the specular reflection direction and when the reflected light of the base material portion 12 is measured. When the area ratio of the tempering portion 6 is larger than that of the base portion 12, the barbed portion 11 looks relatively brighter than the base material portion 12. Conversely, when the tempered portion 6 of the barb portion 11 is smaller than the base material portion 12, the barge portion 11 is observed relatively darker than the base material portion 12.

【0035】ヘゲ部角度分布11aと母材部角度分布1
2aとでテンパ部6の面積率に違いがない場合には図1
1(c)に示すように、正反射方向からの単なる受光強
度の差を観察するのみではヘゲ部11の存在を観察でき
ない。しかし、鏡面拡散反射成分の拡散性(角度分布)
に違いがあるときには図11(c)に示すように正反射
方向以外の拡散方向から欠陥が観察される。
Severe part angle distribution 11a and base material part angle distribution 1
FIG. 1 shows the case where there is no difference in the area ratio of
As shown in FIG. 1C, it is not possible to observe the presence of the scab 11 only by observing the difference in the received light intensity from the regular reflection direction. However, the diffusivity (angular distribution) of the specular diffuse reflection component
When there is a difference, the defect is observed from a diffusion direction other than the regular reflection direction as shown in FIG.

【0036】例えば、ヘゲ部11の鏡面拡散反射成分の
拡散性(角度分布)が小さい時には、一般に正反射方向
に比較的近い拡散方向からはヘゲ部11は明るく観察さ
れ、正反射方向から離れるに従い明るさは小さくなり、
ある角度で観察不能となる。さらに正反射方向から遠ざ
かると今度はヘゲ部11は暗く観察される。
For example, when the diffusivity (angular distribution) of the specular diffuse reflection component of the barb portion 11 is small, the barge portion 11 is generally observed brightly from a diffusion direction relatively close to the specular reflection direction, and from the specular reflection direction. The brightness decreases as you move away,
It becomes unobservable at a certain angle. As the distance from the specular reflection direction further increases, the barbed portion 11 is observed darker.

【0037】この図11(a)(b)(c)で表される
ような各ヘゲ部11を母材部12と区別して確実に検出
するために、反射光のテンパ部6に対応する鏡面反射成
分の光強度のみを検出したのでは、図11(c)で示さ
れるヘゲ部11を母材部12と区別して検出できない。
In order to detect each barbed portion 11 as shown in FIGS. 11 (a), 11 (b) and 11 (c) from the base material portion 12 and to surely detect the same, the reflected light temper portion 6 is used. If only the light intensity of the specular reflection component is detected, the scab 11 shown in FIG. 11C cannot be detected separately from the base material 12.

【0038】このような模様状ヘゲ欠陥を未検出なく検
出するためには、鏡面反射に対応した光量と、鏡面拡散
反射に対応した光量とを独立に得ることが必要である。
ここで、各光量を検出する2つの光学系の視野を同一に
するためには同一光軸上での光量測定が必要である。よ
って、正反射方向以外の方向から拡散反射光を捉えるの
でなく、正反射方向からの測定で両成分が捉えられるこ
とが望ましい。
In order to detect such a pattern-shaped scab defect without any detection, it is necessary to independently obtain a light amount corresponding to specular reflection and a light amount corresponding to specular diffuse reflection.
Here, in order to make the fields of view of the two optical systems for detecting each light quantity the same, it is necessary to measure the light quantity on the same optical axis. Therefore, it is desirable that both components can be captured by measurement from the specular reflection direction instead of capturing the diffuse reflection light from a direction other than the specular reflection direction.

【0039】そこて、本願発明においては、まず光源と
して、レーザのような平行光源ではなく拡散特性をもつ
線状の光源、すなわち線状拡散光源を用いている。ま
た、鋼板4の正反射方向から鏡面反射成分と鏡面拡散反
射成分とを分離して抽出する必要があるので偏光を用い
ている。
In the present invention, a linear light source having a diffusion characteristic, that is, a linear diffusion light source, is used as a light source instead of a parallel light source such as a laser. Since it is necessary to separate and extract the specular reflection component and the specular diffuse reflection component from the specular reflection direction of the steel plate 4, polarized light is used.

【0040】この線状拡散光源の効果を説明するため
に、図12(a)(b)に示すように、線状拡散光源1
4を鋼板4の表面に平行に配置し、光源に垂直な面内に
あり、入射角が出射角と一致する方向である鋼板正反射
方向から鋼板4上の一点を観察したときの反射特性を考
える。
In order to explain the effect of this linear diffused light source, as shown in FIGS.
4 is arranged in parallel with the surface of the steel plate 4, and the reflection characteristic when observing one point on the steel plate 4 from the steel plate regular reflection direction, which is in a plane perpendicular to the light source and in which the incident angle coincides with the emission angle, is shown. Think.

【0041】図12(a)に示すように、線状拡散光源
14の中央部から照射された入射光8の場合、テンパ部
6に入射した入射光8は鏡面的に反射され、鋼板の正反
射方向で全て捉えられる。一方、非テンパ部7に入射し
た光は鏡面拡散的に反射され、たまたま鋼板法線方向と
同一方向を向いている微小面素13により反射された分
のみが捉えられる。このような方向を向いている微小面
素13は非常に少ないので、鋼板の正反射方向に配設さ
れた受光カメラで捉えられる反射光のうちではテンパ部
6からの鏡面反射光が支配的である。
As shown in FIG. 12A, in the case of the incident light 8 emitted from the center of the linear diffused light source 14, the incident light 8 incident on the tempering portion 6 is reflected specularly, and All are captured in the reflection direction. On the other hand, the light incident on the non-tempered portion 7 is specularly reflected, and only the light reflected by the minute surface element 13 that happens to be oriented in the same direction as the normal direction of the steel sheet is captured. Since the number of micro-plane elements 13 oriented in such a direction is extremely small, the mirror-reflected light from the tempering unit 6 is dominant among the reflected light captured by the light-receiving camera arranged in the regular reflection direction of the steel sheet. is there.

【0042】これに対し、図12(b)に示すように、
線状拡散光源14の中央部以外の位置から照射された入
射光8の場合には、テンパ部6に入射した光は鏡面反射
して鋼板の正反射方向とは異なる方向へ反射する。その
ため、鏡面反射した光は鋼板の正反射方向では捉えるこ
とができない。一方、非テンパ部7に入射した光は鏡面
拡散的に反射され、そのうち鋼板の正反射方向に反射さ
れた分が受光カメラで捉えられる。したがって、鋼板の
正反射方向に配設された受光カメラで捉えられる反射光
は全て非テンパ部7で反射した鏡面拡散反射光である。
On the other hand, as shown in FIG.
In the case of the incident light 8 emitted from a position other than the center of the linear diffusion light source 14, the light incident on the tempering portion 6 is specularly reflected and reflected in a direction different from the regular reflection direction of the steel plate. Therefore, the specularly reflected light cannot be captured in the regular reflection direction of the steel plate. On the other hand, the light incident on the non-tempered portion 7 is specularly reflected, and the light reflected by the steel plate in the regular reflection direction is captured by the light receiving camera. Therefore, all the reflected light captured by the light receiving camera arranged in the regular reflection direction of the steel plate is the specular diffuse reflection light reflected by the non-tempered portion 7.

【0043】以上2つの場合を併せると、線状拡散光源
14の長尺方向全体から照射される全ての入射光8のう
ち鋼板の正反射方向からの観察で捉えられるのは、テン
パ部6からの鏡面反射光と非テンパ部7からの鏡面拡散
反射光との和である。
When the above two cases are combined, the observation from the regular reflection direction of the steel plate out of all the incident light 8 radiated from the entire longitudinal direction of the linear diffused light source 14 shows that Is the sum of the specular reflected light from the non-tempered part 7 and the specular reflected light from the non-tempered portion 7.

【0044】次に、鋼板4の正反射方向から線状拡散光
源14を使用して観察した場合に、偏光特性がどう変化
するかについて説明する。一般に、鏡面状の金属表面で
の反射においては、電界の方向が入射面に平行な光(p
偏光)あるいは入射面に直角な光(s偏光)において
は、反射によっても偏光特性は保存される。すなわち、
p偏光のまま又はs偏光のまま出射する。また、p偏光
成分とs偏光成分とを同時に持つ任意の偏光角を有した
直線偏光が反射されると、p、s偏光の反射率比及び位
相差に応じた楕円偏光となって出射する。
Next, how the polarization characteristics change when observed using the linear diffused light source 14 from the regular reflection direction of the steel plate 4 will be described. Generally, in reflection from a mirror-like metal surface, the direction of the electric field is parallel to the incident surface (p
In the case of (polarized light) or light perpendicular to the plane of incidence (s-polarized light), the polarization characteristics are preserved even by reflection. That is,
The light is emitted as p-polarized light or s-polarized light. Further, when linearly polarized light having an arbitrary polarization angle having both p-polarized component and s-polarized component is reflected, it is emitted as elliptically polarized light according to the reflectance ratio of p and s polarized light and the phase difference.

【0045】合金化亜鉛メッキ鋼板に線状拡散光源14
から光が照射される場合を図13(a)(b)を用いて
説明する。図13(a)に示すように、線状拡散光源1
4の中央部から出射した光は鋼板4のテンパ部6で鏡面
反射して鋼板正反射方向で観察される。これに関しては
上記一般の鏡面状の金属表面での反射がそのまま成立す
る。
A linear diffusion light source 14 is applied to an alloyed galvanized steel sheet.
13 (a) and 13 (b) will be described with reference to FIGS. As shown in FIG. 13A, the linear diffused light source 1
The light emitted from the central part of the steel sheet 4 is specularly reflected by the tempering part 6 of the steel sheet 4 and is observed in the steel sheet regular reflection direction. In this regard, reflection on the above-mentioned general mirror-like metal surface is established as it is.

【0046】一方、図13(b)に示すように、線状拡
散光源14の中央部以外の位置から出射した光は、鋼板
4の非テンパ部7の結晶表面の傾いた微小面素13で鏡
面反射して鋼板の正反射方向で観察される。この場合、
鋼板4の入射面に平行なp偏光の光を入射したとしても
実際に反射する傾いた微小面素13に対して考えた場合
には入射面は微小面素13に対して平行ではなく、p、
s両偏光成分を持つ直線偏光であるため、楕円偏光とな
って出射する。線状拡散光源14からs偏光を入射した
場合も同様である。
On the other hand, as shown in FIG. 13B, light emitted from a position other than the central portion of the linear diffused light source 14 is generated by the inclined minute surface element 13 of the crystal surface of the non-tempered portion 7 of the steel plate 4. Specular reflection is observed in the specular direction of the steel plate. in this case,
Even if p-polarized light parallel to the incident surface of the steel plate 4 is incident, the incident surface is not parallel to the minute surface element 13 when it is considered with respect to the tilted minute surface element 13 that actually reflects the light. ,
Since the light is linearly polarized light having s-polarized light components, it is emitted as elliptically polarized light. The same applies to the case where s-polarized light is incident from the linear diffusion light source 14.

【0047】本発明では、線状拡散光源14からの入射
光8を例えば入射面に平行(p偏光)とする。さらに、
鋼板の正反射方向からこのp偏光された入射光8の反射
光をそれぞれ2台の受光カメラで受光する。この2台の
受光カメラはそれぞれ入射面に平行(p偏光)成分、及
び入射面に直交(s偏光)成分を取込む。
In the present invention, the incident light 8 from the linear diffusion light source 14 is, for example, parallel (p-polarized) to the incident surface. further,
The reflected light of the p-polarized incident light 8 from the regular reflection direction of the steel plate is received by two light receiving cameras. Each of the two light receiving cameras captures a parallel (p-polarized) component on the incident surface and a perpendicular (s-polarized) component on the incident surface.

【0048】今、鋼板4のテンパ部6で反射して鋼板の
正反射方向で捉えられる反射光はほとんどが線状拡散光
源14の中央部から出射した光であり、反射により偏光
は保存されるのため、p偏光で入射した光はp偏光のま
ま反射され、p偏光成分を取込む一方の受光カメラで捉
えられる。他方、s偏光成分を取込む他方の受光カメラ
は、線状拡散光源14の中央部から出射したp偏光され
た光を捉えることはできない。
Now, most of the reflected light reflected by the tempering portion 6 of the steel plate 4 and captured in the regular reflection direction of the steel plate is light emitted from the central portion of the linear diffused light source 14, and polarization is preserved by reflection. Therefore, the light incident with p-polarized light is reflected as p-polarized light, and is captured by one of the light-receiving cameras that takes in the p-polarized component. On the other hand, the other light receiving camera that captures the s-polarized light component cannot capture the p-polarized light emitted from the central portion of the linear diffused light source 14.

【0049】これに対して、鋼板4の非テンパ部7で反
射して鋼板の正反射方向で捉えられる反射光は線状拡散
光源14のあらゆる箇所からの出射光の和であり、線状
拡散光源14の中央部以外からの出射光が多く含まれ、
偏光は保存されないため、s偏光を取込む受光カメラに
よって取込まれる光が生じる。また、p偏光を取込む受
光カメラでも一部の光を取込むが、線状拡散光源14の
中央部から出射した光に比べれば非常に小さい。
On the other hand, the reflected light reflected by the non-tempered portion 7 of the steel plate 4 and captured in the regular reflection direction of the steel plate is the sum of the light emitted from all the points of the linear diffused light source 14, A large amount of light emitted from other than the central portion of the light source 14 is included,
Since polarization is not preserved, light is captured by the receiving camera that captures s-polarization. Although a part of the light is captured by a light-receiving camera that captures p-polarized light, it is much smaller than the light emitted from the center of the linear diffused light source 14.

【0050】線状拡散光源14からの出射位置が中央部
より離れれば離れるほど、s偏光を取込む一方の受光カ
メラの受光量が高くなるため特に拡散性が強い鏡面拡散
反射に関してs偏光の受光光量は大きくなる。
The farther the emission position from the linear diffused light source 14 is from the center, the higher the amount of light received by one of the light-receiving cameras that takes in s-polarized light. The amount of light increases.

【0051】以上より、テンパ部6での反射と非テンパ
部7での反射を併せて考えると、p偏光成分を取込む一
方の受光カメラは鏡面反射光を抽出し、s偏光成分を取
込む他方の受光カメラは鏡面拡散反射を抽出する。
From the above, considering both the reflection at the tempered portion 6 and the reflection at the non-tempered portion 7, one of the light receiving cameras that takes in the p-polarized component extracts the specular reflected light and takes in the s-polarized component. The other receiving camera extracts the specular diffuse reflection.

【0052】そこで、鋼板4の表面に模様状ヘゲ欠陥が
あったとする。この時、ヘゲ部11と母材部12とでテ
ンパ部6の面積率に差があり、ヘゲ部11のテンパ部面
積率が母材部12に比較して大きかったとすると、それ
はp偏光成分を受光する一方の受光カメラで捉えられ、
ヘゲ部11が明るく観察される。
Then, it is assumed that there is a pattern-like barbed defect on the surface of the steel plate 4. At this time, if there is a difference in the area ratio of the tempered portion 6 between the barge portion 11 and the base material portion 12, and if the area ratio of the tempered portion of the barge portion 11 is larger than that of the base material portion 12, it is p-polarized light. Is captured by one of the light-receiving cameras that receives the component,
The scab 11 is observed brightly.

【0053】また、ヘゲ部11と母材部12とでテンパ
面6の面積率に差がなかった場合には、p偏光成分を受
光する一方の受光カメラではそのへゲ欠陥を捉えること
はできない。しかし、鏡面拡散反射成分の拡散性に違い
があり、例えばヘゲ部11で拡散性が小さかったとすれ
ば、s偏光成分を受光する他方の受光カメラにおいて、
ヘゲ部11が母材部12より暗く観察される。その結
果、このヘゲ欠陥の検出が可能となる。
When there is no difference in the area ratio of the tempered surface 6 between the barge portion 11 and the base material portion 12, one of the light-receiving cameras that receives the p-polarized light component cannot catch the hair defect. Can not. However, there is a difference in the diffusivity of the specular diffuse reflection component. For example, if the diffusivity is small in the barb portion 11, in the other light-receiving camera that receives the s-polarized component,
The barb portion 11 is observed darker than the base material portion 12. As a result, it becomes possible to detect this scab defect.

【0054】以上説明した動作原理は、線状拡散光源1
4からの鋼板4に対する入射光8が入射面に垂直(s偏
光)であった場合についても、s偏光成分を受光する他
方の受光カメラが鏡面反射成分を捉え、また、p偏光成
分を受光する一方の受光カメラが鏡面拡散反射成分を捉
えるので、同様に成立する。
The operating principle described above is based on the linear diffused light source 1
In the case where the incident light 8 from 4 to the steel plate 4 is perpendicular to the incident surface (s-polarized light), the other light-receiving camera that receives the s-polarized component captures the specular reflection component and receives the p-polarized component. Since one of the light receiving cameras captures the specular diffuse reflection component, the same holds true.

【0055】また、線状拡散光源14及び偏光を使用す
ることにより、各受光手段として、リニアアレイカメラ
やその他の走査型の光検出器を使用したとしても、被検
査面からの正反射光に含まれる鏡面反射成分及び鏡面拡
散反射成分を確実に検出できる。
Further, by using the linear diffused light source 14 and the polarized light, even if a linear array camera or other scanning type photodetector is used as each light receiving means, the light is reflected to the specularly reflected light from the surface to be inspected. The specular reflection component and the specular diffuse reflection component contained can be reliably detected.

【0056】このような光学系により、正反射方向から
の共通な光軸での測定であるため、鋼板距離変動や速度
変化に影響されることなく、顕著な凹凸性を持たない模
様状ヘゲ欠陥を未検出を生じることなく検出可能な表面
疵検査装置が実現する。
With such an optical system, since the measurement is performed on the common optical axis from the specular reflection direction, it is not affected by the fluctuation of the steel plate distance or the change of the speed, and the pattern-shaped hair has no remarkable unevenness. A surface flaw inspection device capable of detecting a defect without causing undetection is realized.

【0057】[0057]

【発明の実施の形態】以下本発明の各実施形態を図面を
用いて説明する。 (第1実施形態)図1(a)は本発明の第1実施形態の
表面疵検査方法が採用された表面疵検査装置の側面図で
あり、図1(b)は同表面疵検査装置の上面図である。
Embodiments of the present invention will be described below with reference to the drawings. (First Embodiment) FIG. 1A is a side view of a surface flaw inspection apparatus employing a surface flaw inspection method according to a first embodiment of the present invention, and FIG. It is a top view.

【0058】この第1実施形態の表面疵検査装置は製鉄
工場における合金化亜鉛メッキ鋼板の品質検査ラインに
設置されている。図中矢印方向に搬送状態の鋼板21の
搬送路の上方位置に、この帯状の鋼板21の幅方向に線
状拡散光源22が配設されている。この線状拡散光源2
2は、一部に拡散反射塗料を塗布した透明導光棒の両端
から内部へメタルハライド光源の光を投光することによ
って、幅方向に一様の出射光を得る。
The surface flaw inspection apparatus according to the first embodiment is installed in a quality inspection line of an alloyed galvanized steel sheet in an iron making factory. A linear diffused light source 22 is arranged in the width direction of the strip-shaped steel plate 21 at a position above the transfer path of the steel plate 21 in the transfer state in the arrow direction in the drawing. This linear diffusion light source 2
2 is to emit uniform light in the width direction by projecting light from a metal halide light source into the inside from both ends of the transparent light guide bar, which is partially coated with a diffuse reflection paint.

【0059】線状拡散光源22の各位置から出射された
鋼板21に対する照射光としての入射光23は、シリン
ドリカルレンズ24と偏光板25を介して走行状態の鋼
板21の全幅に対して例えば60°の入射角θで照射す
る。偏光板25の方位角(偏光角)αは、この入射光2
3の鋼板21に対する入射面に対して平行する方向に設
定されている。すなわち、線状拡散光源22から鋼板2
1に照射される入射光23はp偏光状態である。
The incident light 23 irradiating the steel plate 21 from each position of the linear diffused light source 22 as the irradiation light through the cylindrical lens 24 and the polarizing plate 25 is, for example, 60 ° with respect to the entire width of the running steel plate 21. At an incident angle θ. The azimuth angle (polarization angle) α of the polarizing plate 25 is
3 is set in a direction parallel to the incident surface with respect to the steel plate 21. That is, the linear diffused light source 22 outputs
The incident light 23 irradiated to 1 is in a p-polarized state.

【0060】鋼板21で反射された正反射光26の一部
は鋼板の正反射方向、すなわち鋼板21の法線方向に対
して入射角θと等しい受光角γ=60°方向に配置され
た光分岐手段としてのビームスプリッタ27を透過して
例えばリニアアレイカメラで構成された第1の受光カメ
ラ28に入射する。また、正反射光26の一部は前記ビ
ームスプリッタ27で反射されて同じくリニアアレイカ
メラで構成された第2の受光カメラ29に入射する。
A part of the specularly reflected light 26 reflected by the steel plate 21 is a light arranged in a specular reflection direction of the steel plate, ie, a light receiving angle γ = 60 ° direction equal to the incident angle θ with respect to the normal direction of the steel plate 21. The light passes through a beam splitter 27 as a branching means and enters a first light receiving camera 28 constituted by, for example, a linear array camera. A part of the specularly reflected light 26 is reflected by the beam splitter 27 and is incident on a second light receiving camera 29 also formed of a linear array camera.

【0061】第1、第2の受光カメラ28,29のレン
ズの前面にはそれぞれ検光子30a,30bが取付けら
れている。第1の受光カメラ28のレンズの前面の検光
子30aは、偏光方向が線状拡散光源22の偏光板25
と同一方向に設定されている。すなわち、第1の受光カ
メラ28には正反射光26のp偏光成分のみを受光す
る。前述したように、第1の受光カメラ28の検光子3
0aの偏光方向は線状拡散光源22の偏光板25の偏光
方向(p偏光)に一致しているので、第1の受光カメラ
28は、鋼板21における正反射光26の鏡面反射成分
を受光する。
Analyzers 30a and 30b are mounted on the front surfaces of the lenses of the first and second light receiving cameras 28 and 29, respectively. The analyzer 30a on the front surface of the lens of the first light receiving camera 28 has the polarizing direction of the polarizing plate 25 of the linear diffused light source 22.
Is set in the same direction as. That is, the first light receiving camera 28 receives only the p-polarized light component of the regular reflection light 26. As described above, the analyzer 3 of the first light receiving camera 28
Since the polarization direction of Oa coincides with the polarization direction (p-polarized light) of the polarizing plate 25 of the linear diffused light source 22, the first light receiving camera 28 receives the specular reflection component of the specularly reflected light 26 on the steel plate 21. .

【0062】また、第2の受光カメラ29のレンズの前
面の検光子30bは、偏光方向が線状拡散光源22の偏
光板25と直交方向に設定されている。すなわち、第2
の受光カメラ29には正反射光26のs偏光成分のみを
受光する。前述したように、第2の受光カメラ29の検
光子30bの偏光方向は線状拡散光源22の偏光板25
の偏光方向(p偏光)と直交する方向(s偏光)である
ので、第2の受光カメラ28は、鋼板21における正反
射光26の鏡面拡散反射成分を受光する。
The polarization direction of the analyzer 30 b on the front surface of the lens of the second light-receiving camera 29 is set to be orthogonal to the polarization plate 25 of the linear diffusion light source 22. That is, the second
Receive only the s-polarized component of the specularly reflected light 26. As described above, the polarization direction of the analyzer 30 b of the second light receiving camera 29 is the same as the polarization plate 25 of the linear diffused light source 22.
The second light receiving camera 28 receives the specular diffuse reflection component of the specularly reflected light 26 on the steel plate 21 because the direction (s-polarized light) is orthogonal to the polarization direction (p-polarized light).

【0063】ここで、各受光カメラ28,29として、
リニアアレイカメラの代りに2次元CCDカメラを使用
することもできる。さらに、単一光検出素子とガルヴァ
ノミラーやポリゴンミラーを組合わせた走査型の光検出
器を使用することも可能である。
Here, as each of the light receiving cameras 28 and 29,
A two-dimensional CCD camera can be used instead of a linear array camera. Furthermore, it is also possible to use a scanning photodetector in which a single photodetector is combined with a galvanometer mirror or a polygon mirror.

【0064】また、線状拡散光源22として、蛍光灯を
使用することもできる。また、バンドルファイバの出射
端を直線上に整列させたファイバ光源を使用することも
できる。各ファイバからの出射光は、ファイバのN/A
に対応して充分な広がり角を持つため、これを整列させ
たファイバ光源は実質的に線状拡散光源となるためであ
る。
As the linear diffusion light source 22, a fluorescent lamp can be used. Further, a fiber light source in which the output ends of the bundle fiber are aligned in a straight line can be used. The light emitted from each fiber is the N / A of the fiber.
This is because the fiber light source having a sufficient divergence angle corresponds to a linear diffusion light source.

【0065】各受光カメラ28,29で受光された正反
射光26におけるp偏光成分(鏡面反射成分)及びs偏
光成分(鏡面拡散反射成分)の鋼板21の幅方向の1ラ
イン分の各画素毎の光強度はそれぞれ光強度信号a,b
に変換されて判定処理部としての信号処理部31へ送信
される。
Each pixel of one line in the width direction of the steel plate 21 of the p-polarized component (specular reflection component) and the s-polarized component (specular diffuse reflection component) in the specularly reflected light 26 received by each of the light receiving cameras 28 and 29. Are the light intensity signals a and b, respectively.
And transmitted to the signal processing unit 31 as a determination processing unit.

【0066】図2は信号処理部31の概略構成を示すブ
ロック図である。鋼板21で反射された正反射光26に
おけるp偏光成分(鏡面反射成分)を受光する第1の受
光カメラ28、正反射光26におけるs偏光成分(鏡面
拡散反射成分)を受光する第2の受光カメラ29から出
力された各光強度信号a,bはそれぞれ平均値間引き部
32a,32bへ入力される。
FIG. 2 is a block diagram showing a schematic configuration of the signal processing section 31. A first light receiving camera 28 that receives a p-polarized component (specular reflection component) of the specularly reflected light 26 reflected by the steel plate 21, and a second light reception that receives an s polarized component (specular diffuse reflection component) of the specularly reflected light 26 The light intensity signals a and b output from the camera 29 are input to the average value thinning units 32a and 32b, respectively.

【0067】各平均値間引き部32a,32bは、各受
光カメラ28,29のスキャン周期毎に各受光カメラ2
8,29から入力される各光強度信号a,bを平均し、
鋼板21が信号処理における長手方向分解能に相当する
距離を移動した場合に、1ライン分の信号を出力する。
Each of the average value thinning sections 32 a and 32 b is provided for each of the light receiving cameras 28 and 29 in each scan cycle.
The respective light intensity signals a and b input from 8, 29 are averaged,
When the steel plate 21 moves a distance corresponding to the longitudinal resolution in the signal processing, a signal for one line is output.

【0068】このような間引き処理を行うことにより、
鋼板21の搬送速度が変化しても信号処理における1ラ
インの鋼板移動方向の分解能を一定にすることができ
る。また、スキャン周期毎の各光強度信号a,bを平均
しているので、信号処理における1ラインの鋼板移動方
向の分解能が受光カメラ28,29の鋼板移動方向の視
野サイズよりも十分大きい場合にも、間を細かく測定し
た平均値を用いることができるので、見落としをなくす
ことができる。
By performing such a thinning process,
Even if the conveying speed of the steel plate 21 changes, the resolution of one line in the moving direction of the steel plate in the signal processing can be kept constant. Also, since the light intensity signals a and b for each scan cycle are averaged, if the resolution of one line in the moving direction of the steel plate in the signal processing is sufficiently larger than the visual field size of the light receiving cameras 28 and 29 in the moving direction of the steel plate. Also, since an average value obtained by measuring the interval can be used, oversight can be eliminated.

【0069】各平均値間引き部32a,32bで信号処
理された各光強度信号a,bは次の各前処理部33a,
33bへ入力される。各前処理部33a,33bは、1
ラインの信号の輝度ムラを補正する。ここでいう輝度ム
ラには、光学系に起因するムラも鋼板21の反射率に起
因するムラも含まれる。また、各前処理部33a,33
bは、鋼板21の両側のエッジ位置も検出し、エッジに
おける急激な光強度信号a,bの変化を疵と誤認識する
ことを防ぐ処理も実施する。各前処理部33a,33b
で信号処理された各光強度信号a,bは次の各2値化処
理部34a,34bへ入力される。
The light intensity signals a and b processed by the average value thinning sections 32a and 32b are processed by the following preprocessing sections 33a and 33b, respectively.
33b. Each pre-processing unit 33a, 33b
Corrects the luminance unevenness of the line signal. The luminance unevenness here includes unevenness caused by the optical system and unevenness caused by the reflectance of the steel plate 21. Further, each of the pre-processing units 33a, 33
b also detects the edge positions on both sides of the steel plate 21 and also executes processing for preventing a sudden change in the light intensity signals a and b at the edge from being erroneously recognized as a flaw. Each pre-processing unit 33a, 33b
The light intensity signals a and b that have been subjected to the signal processing are input to the following respective binarization processing units 34a and 34b.

【0070】各2値化処理部34a,34bは、各光強
度信号a,bに含まれる各画素のデータを予め決められ
たしきい値と比較し、疵候補点を抽出して、次の特徴量
算出部35a,35bへ送出する。
Each of the binarization processing sections 34a and 34b compares the data of each pixel contained in each of the light intensity signals a and b with a predetermined threshold value, extracts flaw candidate points, and It is sent to the feature amount calculation units 35a and 35b.

【0071】特徴量抽出部35a,35bは、一続きと
なっている疵候補点をーつの疵候補領域と判定し、例え
ばスタートアドレス、エンドアドレスなどの位置特徴量
や、ピーク値などの濃度特徴量などを算出する。
The characteristic amount extraction units 35a and 35b determine continuous flaw candidate points as one flaw candidate area, and for example, position characteristic amounts such as a start address and an end address, and density characteristics such as a peak value. Calculate the amount etc.

【0072】鏡面性疵判定部36及び鏡面拡散性疵判定
部37では、各受光カメラ28,29に対応する各特徴
量抽出部35a,35bにより算出された特徴量に基づ
いて、疵の種類、程度を判定する。
The specular flaw judging section 36 and the specular diffusible flaw judging section 37 determine the type of the flaw, based on the characteristic amounts calculated by the characteristic amount extracting sections 35a and 35b corresponding to the respective light receiving cameras 28 and 29. Determine the degree.

【0073】そして、疵総合判定部38では、鏡面性疵
判定部36及び鏡面拡散性疵判定部37での判定結果及
び特徴量により、検査対象としての鋼板21に対する最
終的な疵種及びその程度を判定する。
In the flaw comprehensive judgment section 38, the final flaw type and degree of the steel sheet 21 to be inspected are determined based on the judgment results and the characteristic amounts of the specular flaw judgment section 36 and the specular diffuse flaw judgment section 37. Is determined.

【0074】[0074]

【実施例】図1に示す実施形態の表面疵検査装置を用い
た合金化亜鉛鍍金鋼板の表面疵の測定結果を図3に示
す。測定した各疵は、図11(a)に示すテンパ部6の
面積率がヘゲ部11で母材部12より大きく、かつ非テ
ンパ部7の拡散性がヘゲ部11で母材部12より大きい
疵と、図11(b)に示すテンパ部6の面積率がヘゲ部
11で母材部12より大きいが、非テンパ部7の拡散性
は変わらない疵と、図11(c)に示すテンパ部6の面
積率はヘゲ部11と母材部12間に大きな差はないが、
拡散性に差がある疵との合計3種類の疵である。
FIG. 3 shows the results of measuring the surface flaws of an alloyed galvanized steel sheet using the surface flaw inspection apparatus of the embodiment shown in FIG. In each of the measured flaws, the area ratio of the tempered portion 6 shown in FIG. 11A is larger at the barb portion 11 than at the base material portion 12, and the diffusivity of the non-tempered portion 7 is at the barge portion 11 at the base material portion 12. FIG. 11C shows a larger flaw and a flaw in which the area ratio of the tempered portion 6 shown in FIG. 11B is larger than that of the base material portion 12 in the barb portion 11, but the diffusivity of the non-tempered portion 7 does not change. Although the area ratio of the tempering portion 6 shown in FIG.
These are a total of three types of flaws, including flaws having a difference in diffusivity.

【0075】そして、鋼板21の幅方向の中央部に図1
1(a)に示すタイプの疵が発生した場合において、p
偏光成分(鏡面反射成分)を受光する第1の受光カメラ
28及びs偏光成分(鏡面拡散反射成分)を受光する第
2の受光カメラ29を鋼板21の幅方向に1ライン分走
査して得られた鋼材21の1幅分の光強度信号a,bの
変化を図3(a)(b)に示す。
FIG. 1 shows a central portion of the steel plate 21 in the width direction.
When a flaw of the type shown in FIG.
It is obtained by scanning one line of light in the width direction of the steel plate 21 with the first light receiving camera 28 for receiving the polarized light component (specular reflection component) and the second light receiving camera 29 for receiving the s-polarized light component (specular diffuse reflection component). 3 (a) and 3 (b) show changes in the light intensity signals a and b for one width of the steel material 21.

【0076】図示するように、第1の受光カメラ28の
光強度信号aに疵(ヘゲ部11)に対応する正方向(明
方向)のピーク波形が発生する。また、第2の受光カメ
ラ29の光強度信号bに疵(ヘゲ部11)に対応するピ
ーク波形が発生する。
As shown in the figure, a peak waveform in the positive direction (bright direction) corresponding to the flaw (severed portion 11) is generated in the light intensity signal a of the first light receiving camera 28. In addition, a peak waveform corresponding to the flaw (the scab 11) is generated in the light intensity signal b of the second light receiving camera 29.

【0077】また、鋼板21の幅方向の中央部に図11
(b)示すタイプの疵が発生した場合において、p偏光
成分(鏡面反射成分)を受光する第1の受光カメラ28
及びs偏光成分(鏡面拡散反射成分)を受光する第2の
受光カメラ29を鋼板21の幅方向に1ライン分走査し
て得られた鋼材21の1幅分の光強度信号a,bの変化
を図3(c)(d)に示す。
FIG. 11 shows a central portion of the steel plate 21 in the width direction.
(B) The first light-receiving camera 28 that receives a p-polarized component (specular reflection component) when a flaw of the type shown occurs.
And the change of the light intensity signals a and b for one width of the steel material 21 obtained by scanning the second light receiving camera 29 for receiving one line in the width direction of the steel plate 21 for receiving the s-polarized component (specular diffuse reflection component). Are shown in FIGS. 3 (c) and 3 (d).

【0078】図示するように、第1の受光カメラ28の
光強度信号aに疵(ヘゲ部11)に対応する正方向(明
方向)のピーク波形が発生する。しかし、第2の受光カ
メラ29の光強度信号bに疵(ヘゲ部11)に対応する
ピーク波形は発生しない。
As shown in the figure, a peak waveform in the positive direction (bright direction) corresponding to the flaw (the scab 11) is generated in the light intensity signal a of the first light receiving camera 28. However, a peak waveform corresponding to the flaw (severed portion 11) does not occur in the light intensity signal b of the second light receiving camera 29.

【0079】さらに、鋼板21の幅方向の中央部に図1
1(c)示すタイプの疵が発生した場合において、p偏
光成分(鏡面反射成分)を受光する第1の受光カメラ2
8及びs偏光成分(鏡面拡散反射成分)を受光する第2
の受光カメラ29を鋼板21の幅方向に1ライン分走査
して得られた鋼材21の1幅分の光強度信号a,bの変
化を図3(e)(f)に示す。
Further, FIG. 1 is attached to the center of the steel plate 21 in the width direction.
First light receiving camera 2 for receiving a p-polarized component (specular reflection component) when a flaw of the type shown in FIG.
Second to receive 8 and s polarized light components (specular diffuse reflection components)
3 (e) and 3 (f) show changes in the light intensity signals a and b for one width of the steel material 21 obtained by scanning the light receiving camera 29 for one line in the width direction of the steel plate 21.

【0080】図示するように、第1の受光カメラ28の
光強度信号aには疵(ヘゲ部11)に対応する正方向
(明方向)のピーク波形は発生しない。しかし、第2の
受光カメラ29の光強度信号bに疵(ヘゲ部11)に対
応するピーク波形が発生する。
As shown in the figure, the light intensity signal a of the first light receiving camera 28 does not have a peak waveform in the positive direction (bright direction) corresponding to the flaw (the scab 11). However, a peak waveform corresponding to the flaw (severed portion 11) is generated in the light intensity signal b of the second light receiving camera 29.

【0081】このように、図11(a)(b)(c)に
示す代表的な3種類の模様状ヘゲ欠陥のうちいずれの種
類の模様状ヘゲ欠陥が発生したとしても、この模様状ヘ
ゲ欠陥を確実に検出できる。さらに、図3(a)〜
(f)に示すように、3種類の模様状ヘゲ欠陥の種別も
判別できる。
As described above, even if any of the typical three types of pattern-shaped barge defects shown in FIGS. 11 (a), (b) and (c) occurs, It is possible to reliably detect a scab defect. Furthermore, FIG.
As shown in (f), the types of the three types of pattern-like barbed defects can also be determined.

【0082】発明者等は、実施形態装置の優れた検出機
能を示すために、図11(a)(b)(c)で示す疵を
従来の表面疵検査装置で測定した。なお、この従来装置
においては、鋼板21の幅方向に配設された線状光源か
ら鋼板21に入射角60°で入射した無偏光の入射光の
正反射方向に配設された第1の受光カメラで鏡面反射光
を受光する。一方、入射光の正反射方向とは異なる例え
ば鋼板21の法線方向に対して40°の方向に配設され
た第2の受光カメラで鏡面拡散反射光を受光する。
The inventors measured the flaws shown in FIGS. 11A, 11B and 11C with a conventional surface flaw inspection apparatus in order to show the excellent detection function of the embodiment apparatus. In this conventional device, the first light receiving portion arranged in the regular reflection direction of the unpolarized incident light incident on the steel plate 21 at an incident angle of 60 ° from the linear light source disposed in the width direction of the steel plate 21 is used. The camera receives the specularly reflected light. On the other hand, the second light-receiving camera disposed at a direction different from the specular reflection direction of the incident light, for example, at 40 ° with respect to the normal direction of the steel plate 21, receives the specular diffuse reflection light.

【0083】測定結果を図4(a)(b)(c)(d)
(e)(f)に示す。図示するように、図11(a)
(b)に示すタイプの模様状ヘゲ欠陥を検出することが
可能である。しかし、図11(c)に示すタイプの模様
状ヘゲ欠陥を検出することができない。また、図11
(a)(b)に示すタイプの模様状ヘゲ欠陥の種別を区
別できない。
FIGS. 4A, 4B, 4C, and 4D show the measurement results.
(E) and (f). As shown in FIG.
It is possible to detect a pattern-like scab defect of the type shown in FIG. However, it is not possible to detect a pattern-like barbed defect of the type shown in FIG. FIG.
(A) It is not possible to distinguish the types of pattern-shaped barbed defects of the types shown in (b).

【0084】このように、実施形態の表面疵検査装置に
おいては、従来装置では検出できなかったタイプの模様
状ヘゲ欠陥も確実に検出でき、結果として、顕著な凹凸
性を持たない模様状ヘゲ疵を検出もれすることなく確実
に検出することが可能になった。
As described above, the surface flaw inspection apparatus according to the embodiment can reliably detect a pattern-shaped scab defect of a type that could not be detected by the conventional apparatus. It has become possible to reliably detect spot flaws without leakage.

【0085】(第2実施形態)図5は本発明の第2実施
形態の表面疵検査装置の上面図である。図1に示す第1
実施形態の表面疵検査装置と同一部分には同一符号が付
してある。したがって、重複する部分の詳細説明は省略
する。
(Second Embodiment) FIG. 5 is a top view of a surface flaw inspection apparatus according to a second embodiment of the present invention. The first shown in FIG.
The same parts as those of the surface flaw inspection apparatus of the embodiment are denoted by the same reference numerals. Therefore, the detailed description of the overlapping part will be omitted.

【0086】この第2実施形態の表面疵検査装置におい
ては、正反射光26のうちの入射光23の鋼板21に対
する入射面と平行するp偏光成分を受光する第1の受光
カメラ28aと、正反射光26のうちの入射光23の鋼
板21に対する入射面と直交するs偏光成分を受光する
第2の受光カメラ29aとが鋼板21の幅方向、すなわ
ち、線状拡散光源22に対して微小間隔を開けて平行に
配列されている。
In the surface flaw inspection apparatus of the second embodiment, a first light receiving camera 28a for receiving a p-polarized light component of the regular reflected light 26 parallel to the incident surface of the incident light 23 with respect to the steel plate 21; The second light-receiving camera 29a that receives an s-polarized light component of the reflected light 26 that is orthogonal to the plane of incidence of the incident light 23 with respect to the steel plate 21 and the second light-receiving camera 29a in the width direction of the steel plate 21, that is, at a minute interval Open and arranged in parallel.

【0087】このような構成であっても、第1,第2の
受光カメラ28a,29aはそれぞれ独立して正反射光
26のうちのp偏光成分及びs偏光成分を受光して、各
光強度に対応する各光強度信号a,bを出力するので、
図1に示す第1実施形態の表面疵検査装置とほぼ同様の
作用効果が得られる。
Even with such a configuration, the first and second light receiving cameras 28a and 29a independently receive the p-polarized component and the s-polarized component of the specularly reflected light 26, and change the respective light intensities. Output the respective light intensity signals a and b corresponding to
Almost the same functions and effects as those of the surface flaw inspection apparatus of the first embodiment shown in FIG. 1 can be obtained.

【0088】なお、第1,第2の受光カメラ28a,2
9aはそれぞれの光軸は一致していないので、第1,第
2の受光カメラ28a,29aにおける視野ずれの補正
を行う必要がある。この視野ずれの補正は信号処理部3
1内の総合判定部38で簡単に実施することが可能であ
る。
The first and second light receiving cameras 28a, 28a
Since the optical axes of 9a do not coincide, it is necessary to correct the field of view in the first and second light receiving cameras 28a and 29a. The correction of the visual field shift is performed by the signal processor 3
1 can be easily implemented by the overall determination unit 38.

【0089】(第3実施形態)図6は本発明の第3実施
形態の表面疵検査装置の側面図である。図1に示す第1
実施形態の表面疵検査装置と同一部分には同一符号が付
してある。したがって、重複する部分の詳細説明は省略
する。
(Third Embodiment) FIG. 6 is a side view of a surface flaw inspection apparatus according to a third embodiment of the present invention. The first shown in FIG.
The same parts as those of the surface flaw inspection apparatus of the embodiment are denoted by the same reference numerals. Therefore, the detailed description of the overlapping part will be omitted.

【0090】この第3実施形態の表面疵検査装置におい
ては、線状拡散光源として、点光源に近いハロゲンラン
プ41と拡散板42とを組込んでいる。この場合、ハロ
ゲンランプ41から出射された光は拡散板42で鋼板2
1の幅方向に均一に拡散されて、次の偏光板25へ入射
される。したがって、図1に示す線状拡散光源22とシ
リンドリカルレンズ24ととの場合と同様の入射光23
が鋼板21へ入射されるので、第1実施形態の表面疵検
査装置とほぼ同様の作用効果が得られる。
In the surface flaw inspection apparatus of the third embodiment, a halogen lamp 41 and a diffusion plate 42, which are close to a point light source, are incorporated as linear diffusion light sources. In this case, the light emitted from the halogen lamp 41 is
1 is uniformly diffused in the width direction and is incident on the next polarizing plate 25. Therefore, the incident light 23 similar to the case of the linear diffusion light source 22 and the cylindrical lens 24 shown in FIG.
Is incident on the steel plate 21, so that substantially the same operation and effect as those of the surface flaw inspection apparatus of the first embodiment can be obtained.

【0091】[0091]

【発明の効果】以上説明したように、本発明の表面疵検
査装置及び表面疵検査方法においては、線状拡散光源を
使用し、p偏光もしくはs偏光を被検査面に入射させ、
正反射方向から正反射光のうち入射光の偏光と同一方向
の偏光成分を受光し、正反射光のうち入射光の偏光と直
交方向の偏光成分とを受光することによって、被検査面
からの反射光に含まれる鏡面反射成分と鏡面拡散反射成
分とを区別して検出している。
As described above, in the surface flaw inspection apparatus and the surface flaw inspection method of the present invention, a linearly diffused light source is used, and p-polarized light or s-polarized light is incident on a surface to be inspected.
From the specular reflection direction, by receiving the polarization component of the same direction as the polarization of the incident light among the specular reflection light, and receiving the polarization component of the incident light and the polarization component of the orthogonal direction among the specular reflection light, The specular reflection component and the specular diffuse reflection component contained in the reflected light are detected separately.

【0092】したがって、鏡面反射成分からは欠陥が観
察できない欠陥も検出可能となり、従来、検出できなか
った被検査面における表面の割れ・抉れ・めくれ上がり
のような顕著な凹凸性を持たない模様状ヘゲ欠陥を確実
に検出でき、高い欠陥検出精度を発揮でき、製品の品質
検査ラインにも十分組込ことができる。
Therefore, it is possible to detect a defect in which no defect can be observed from the specular reflection component, and a pattern having no remarkable unevenness such as a crack, a gouge or a curl up on the surface to be inspected which could not be detected conventionally. It can reliably detect barbed defects, exhibit high defect detection accuracy, and can be fully incorporated into product quality inspection lines.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1実施形態の表面疵検査装置の概
略構成を示す側面図及び上面図
FIG. 1 is a side view and a top view showing a schematic configuration of a surface flaw inspection apparatus according to a first embodiment of the present invention.

【図2】 同表面疵検査装置の信号処理部の概略構成を
示すブロック図
FIG. 2 is a block diagram showing a schematic configuration of a signal processing unit of the surface flaw inspection apparatus.

【図3】 同表面疵検査装置で測定された光強度信号波
形図
FIG. 3 is a waveform diagram of a light intensity signal measured by the surface flaw inspection apparatus.

【図4】 従来の表面疵検査装置で測定された光強度信
号波形図
FIG. 4 is a waveform diagram of a light intensity signal measured by a conventional surface flaw inspection device.

【図5】 本発明の第2実施形態の表面疵検査装置の概
略構成を示す上面図
FIG. 5 is a top view showing a schematic configuration of a surface flaw inspection apparatus according to a second embodiment of the present invention.

【図6】 本発明の第3実施形態の表面疵検査装置の概
略構成を示す側面図
FIG. 6 is a side view showing a schematic configuration of a surface flaw inspection apparatus according to a third embodiment of the present invention.

【図7】 同表面疵検査装置の検査対象となる合金亜鉛
メッキ鋼板の製造方法及び詳細断面構造を示す図
FIG. 7 is a view showing a manufacturing method and a detailed cross-sectional structure of an alloy galvanized steel sheet to be inspected by the surface defect inspection apparatus.

【図8】 検査対象の鋼板におけるテンパ部と非テンパ
部における入射光と反射光との関係を示す断面模式図
FIG. 8 is a schematic cross-sectional view showing a relationship between incident light and reflected light in a tempered portion and a non-tempered portion of a steel plate to be inspected.

【図9】 同テンパ部と非テンパ部とにおける反射光の
角度分布図
FIG. 9 is an angle distribution diagram of reflected light between the tempered portion and the non-tempered portion.

【図10】 鋼板に存在するヘゲ部の生成過程を説明す
るための図
FIG. 10 is a diagram for explaining a generation process of a barbed portion existing in a steel plate.

【図11】 ヘゲ部における鏡面反射成分及び鏡面拡散
反射成分と、母材部における鏡面反射成分及び鏡面拡散
反射成分との関係を示す図
FIG. 11 is a diagram showing a relationship between a specular reflection component and a specular diffuse reflection component in a stub, and a specular reflection component and a specular diffuse reflection component in a base material portion.

【図12】 線状拡散光源の各位置からの各入射光と鋼
板上の入射位置との関係を示す図
FIG. 12 is a diagram showing a relationship between each incident light from each position of a linear diffused light source and an incident position on a steel plate.

【図13】 線状拡散光源の各入射光が偏光されていた
場合における反射光の偏光状態を示す図
FIG. 13 is a diagram showing a polarization state of reflected light when each incident light of the linear diffusion light source is polarized.

【符号の説明】[Explanation of symbols]

4、21…鋼板 6…テンパ部 7…非テンパ部 8,23…入射光 9…鏡面反射光 10…鏡面拡散反射光 11…ヘゲ部 12…母財部 13…微小面素 22…線状拡散光源 25…偏光板 27…ビームスプリッタ 28,28a…第1の受光カメラ 29,29a…第2の受光カメラ 30a,30b…検光子 31…信号処理部 4, 21 ... steel plate 6 ... tempered part 7 ... non-tempered part 8, 23 ... incident light 9 ... specular reflected light 10 ... specular diffuse reflected light 11 ... hedged part 12 ... base member 13 ... microscopic element 22 ... linear diffusion Light source 25 ... Polarizer 27 ... Beam splitter 28, 28a ... First light receiving camera 29, 29a ... Second light receiving camera 30a, 30b ... Analyzer 31 ... Signal processing unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 的場 有治 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 猪股 雅一 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 吉川 省二 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 河村 努 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 杉浦 寛幸 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yuji Matoba 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Masakazu Inomata 1-1-1, Marunouchi, Chiyoda-ku, Tokyo No. 2 Inside Nippon Kokan Co., Ltd. (72) Inventor Shoji Yoshikawa 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (72) Inventor Tsutomu Kawamura 1-1-2 Marunouchi, Chiyoda-ku, Tokyo No. Nippon Kokan Co., Ltd. (72) Inventor Hiroyuki Sugiura 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被検査面に対してこの被検査面に対する
入射面に平行もしくは垂直な方向に直線偏光された照明
光を入射する線状拡散光源と、 前記被検査面からの正反射光に含まれる前記照明光の偏
光方向と同一方向の偏光成分を受光する第1の受光手段
と、 前記被検査面からの正反射光に含まれる前記照明光の偏
光方向と直交方向の偏光成分を受光する第2の受光手段
と、 前記第1及び第2の受光手段で受光された同一方向及び
直交方向の各偏光成分に基づいて前記被検査面の表面疵
の有無を判定する判定処理部とを備えた表面疵検査装
置。
1. A linear diffused light source for entering illumination light linearly polarized in a direction parallel or perpendicular to an inspection surface with respect to an inspection surface, and a specular reflection light from the inspection surface. First light receiving means for receiving a polarization component in the same direction as the polarization direction of the illumination light included, and receiving a polarization component in a direction orthogonal to the polarization direction of the illumination light included in the specularly reflected light from the surface to be inspected A second light receiving unit, and a determination processing unit that determines presence / absence of a surface flaw on the surface to be inspected based on polarization components in the same direction and orthogonal directions received by the first and second light receiving units. Surface flaw inspection equipment provided.
【請求項2】 前記被検査面からの正反射光を前記第1
及び第2の受光手段に分岐する光分岐手段を備えたこと
を特徴とする請求項1記載の表面疵検査装置。
2. The method according to claim 1, wherein the light reflected from the surface to be inspected is transmitted to the first surface.
2. The surface flaw inspection apparatus according to claim 1, further comprising a light branching unit that branches to the second light receiving unit.
【請求項3】 前記第1及び第2の受光手段は、前記線
状拡散光源と平行する方向に配列されたことを特徴とす
る請求項1記載の表面疵検査装置。
3. The surface flaw inspection apparatus according to claim 1, wherein the first and second light receiving means are arranged in a direction parallel to the linear diffusion light source.
【請求項4】 線状拡散光源から被検査面に対してこの
被検査面に対する入射面に平行もしくは垂直な方向に直
線偏光された照明光を入射し、 前記被検査面からの正反射光に含まれる前記照明光の偏
光方向と同一方向の偏光成分を受光し、 前記被検査面からの正反射光に含まれる前記照明光の偏
光方向と直交方向の偏光成分を受光し、 前記受光された同一方向及び直交方向の各偏光成分に基
づいて前記被検査面の表面疵の有無を判定することを特
徴とするを表面疵検査方法。
4. An illumination light linearly polarized in a direction parallel or perpendicular to a surface to be inspected from the linear diffused light source in a direction parallel or perpendicular to the surface to be inspected. Receiving a polarization component in the same direction as the polarization direction of the included illumination light; receiving a polarization component in a direction perpendicular to the polarization direction of the illumination light included in the specularly reflected light from the surface to be inspected; A method for inspecting a surface flaw, wherein the presence or absence of a surface flaw on the surface to be inspected is determined based on each polarization component in the same direction and the orthogonal direction.
JP9912798A 1998-04-10 1998-04-10 Method and equipment for inspecting surface flaw Pending JPH11295238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9912798A JPH11295238A (en) 1998-04-10 1998-04-10 Method and equipment for inspecting surface flaw

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9912798A JPH11295238A (en) 1998-04-10 1998-04-10 Method and equipment for inspecting surface flaw

Publications (1)

Publication Number Publication Date
JPH11295238A true JPH11295238A (en) 1999-10-29

Family

ID=14239100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9912798A Pending JPH11295238A (en) 1998-04-10 1998-04-10 Method and equipment for inspecting surface flaw

Country Status (1)

Country Link
JP (1) JPH11295238A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010112786A (en) * 2008-11-05 2010-05-20 Canon Inc Illumination apparatus and appearance inspection apparatus having the same
JP2017203347A (en) * 2016-05-13 2017-11-16 Toto株式会社 Faucet device
CN109856155A (en) * 2019-01-18 2019-06-07 北京兆维电子(集团)有限责任公司 A kind of liquid crystal display surface detection apparatus and method based on polarised light

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010112786A (en) * 2008-11-05 2010-05-20 Canon Inc Illumination apparatus and appearance inspection apparatus having the same
JP2017203347A (en) * 2016-05-13 2017-11-16 Toto株式会社 Faucet device
CN109856155A (en) * 2019-01-18 2019-06-07 北京兆维电子(集团)有限责任公司 A kind of liquid crystal display surface detection apparatus and method based on polarised light

Similar Documents

Publication Publication Date Title
JP5104004B2 (en) Surface defect inspection apparatus and surface defect inspection method
JPH11183397A (en) Surface flaw inspecting device and method
JP3275811B2 (en) Surface defect inspection apparatus and method
JP3591160B2 (en) Surface inspection equipment
JP3446008B2 (en) Surface inspection equipment
JP2000298102A (en) Surface inspecting device
JPH11183396A (en) Surface flaw inspecting device and method
JP2002221495A (en) Inspecting equipment for surface flaw and its method
JP2000065755A (en) Surface inspection apparatus
JP3826578B2 (en) Surface inspection device
JPH11295241A (en) Method and equipment for inspecting surface flaw
JPH11295240A (en) Method and equipment for inspecting surface flaw
JP5104443B2 (en) Surface inspection apparatus and method
JP3531002B2 (en) Surface inspection device
JP3508589B2 (en) Surface flaw inspection equipment
JPH11183400A (en) Surface flaw inspecting device and method
JPH11295238A (en) Method and equipment for inspecting surface flaw
JPH09178666A (en) Surface inspection device
JP3716650B2 (en) Surface flaw inspection device
JPH11183399A (en) Surface flaw inspecting device and surface observing method
JP2002243648A (en) Inspection device for treated surface of band-shaped metal
JPH11295239A (en) Method and equipment for inspecting surface flaw
JPH09178667A (en) Inspection apparatus for surface
JP2005221391A (en) Surface flaw inspection device
JP6028828B2 (en) Surface flaw inspection apparatus and surface flaw inspection method