JP5104004B2 - Surface defect inspection apparatus and surface defect inspection method - Google Patents

Surface defect inspection apparatus and surface defect inspection method Download PDF

Info

Publication number
JP5104004B2
JP5104004B2 JP2007110770A JP2007110770A JP5104004B2 JP 5104004 B2 JP5104004 B2 JP 5104004B2 JP 2007110770 A JP2007110770 A JP 2007110770A JP 2007110770 A JP2007110770 A JP 2007110770A JP 5104004 B2 JP5104004 B2 JP 5104004B2
Authority
JP
Japan
Prior art keywords
light
angle
camera
inspected
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007110770A
Other languages
Japanese (ja)
Other versions
JP2008267972A (en
Inventor
賢一郎 溝口
薫 田中
一雅 吉田
彰 風間
実 窪津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007110770A priority Critical patent/JP5104004B2/en
Publication of JP2008267972A publication Critical patent/JP2008267972A/en
Application granted granted Critical
Publication of JP5104004B2 publication Critical patent/JP5104004B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば、薄鋼板表面などの被検査面に光を照射してその検査面の表面欠陥(凹凸状欠陥や模様状欠陥)を光学的に検出するための表面欠陥検査装置および表面欠陥検査方法に関するものである。   The present invention provides, for example, a surface defect inspection apparatus and a surface defect for optically detecting a surface defect (an uneven defect or a pattern defect) on a surface to be inspected such as a surface of a thin steel plate by irradiating light. It relates to the inspection method.

従来、自動車用外板鋼板などの極めて高い品質精度が要求される鋼板を出荷するに際しては、その表面の凹凸欠陥や模様状欠陥などを検出すべく厳格な表面欠陥検査が行われている。
この鋼板表面の欠陥検査方法としては、検査員による目視検査の他、製造ラインを流れる鋼板にレーザ光を照射してその反射パターンで表面欠陥を検出する方法が主流であったが、目視検査方法では見落としや検査員による技量の差が大きく、また、レーザ光を用いる方法では大きな凹凸状欠陥はほぼ100%検出できるものの表面が平滑な模様状欠陥や微小な凹凸状欠陥には対応できないといった欠点がある。
Conventionally, when a steel sheet that requires extremely high quality accuracy, such as an automobile outer sheet steel, is shipped, a strict surface defect inspection is carried out to detect surface irregularities and pattern defects.
As a method for inspecting defects on the surface of the steel sheet, in addition to visual inspection by an inspector, a method for detecting surface defects with the reflection pattern by irradiating the steel sheet flowing through the production line with laser light was the mainstream. However, there is a large difference in oversight and skill by the inspector, and the method using laser light can detect almost 100% of large irregularities, but it cannot cope with pattern defects with a smooth surface or minute irregularities. There is.

そのため、最近ではこれらの検査方法に代わって、偏光を利用したいわゆる偏光式表面欠陥検査方法や光の乱反射を利用したいわゆる乱反射式表面欠陥検査方法が主流となってきている。
この偏光式表面欠陥検査方法は、例えば以下の特許文献1や2などに示すように、入射光に対して正反射位置3つの偏光カメラを設置し、これら3つの偏光カメラによって偏光角をそれぞれ異ならしめて受光するようにしたものであり、模様状欠陥に光を入射した場合の反射率の違いにより、偏光角に散乱された光を3つの偏光カメラで受光することで特に模様状欠陥に対して精度良く識別することが可能となっている。
Therefore, in recent years, instead of these inspection methods, a so-called polarization type surface defect inspection method using polarized light and a so-called diffuse reflection type surface defect inspection method using diffused reflection of light have become mainstream.
In this polarization type surface defect inspection method, for example, as shown in the following Patent Documents 1 and 2, for example, three polarization cameras having regular reflection positions with respect to incident light are installed, and the polarization angles are different depending on the three polarization cameras. It is designed to receive light, and the light scattered at the polarization angle is received by three polarization cameras due to the difference in reflectivity when light is incident on the pattern defect. It is possible to identify with high accuracy.

一方、乱反射式表面検査方法は、例えば以下の特許文献3などに示すように、光の正反射位置と乱反射位置とにそれぞれ受光カメラを設置し、それぞれの正反射光と乱反射光のカメラ信号を比較し、例えばお互いの論理和をとるなどによって特に凹凸状欠陥に対して精度良く識別することが可能となっている。
特開平11−183398号公報 特開平9−166552号公報 特開昭58−204353号公報
On the other hand, in the irregular reflection type surface inspection method, for example, as shown in Patent Document 3 below, a light receiving camera is installed at each of the regular reflection position and the irregular reflection position of light, and the camera signal of each regular reflection light and irregular reflection light is obtained. In comparison, for example, by taking the logical sum of each other, it is possible to identify the irregular defect particularly accurately.
Japanese Patent Laid-Open No. 11-183398 JP-A-9-166552 JP 58-204353 A

ところで、前者の偏光式表面欠陥検査方法(装置)では、模様状の欠陥や大きな凹凸欠陥は容易に識別できるが、小さな凹凸欠陥は識別し難いといった欠点がある。
一方、前述した第2の方法(装置)では、これとは反対に、凹凸欠陥や大きな模様状欠陥の識別には優れているが、小さな模様状欠陥は識別し難いといった欠点がある。
すなわち、従来の方法(装置)では、小さな凹凸欠陥や模様状欠陥を同時に検出することは殆ど不可能であり、これらの微小な表面欠陥を検出するためには、これら2種類の装置を製造ライン方向にリニアに並べて段階的に検査するしか方法がなく、その分検査に要する手間やコストが高くなるといった問題点がある。
そこで、本発明はこのような課題を有効に解決するために案出されたものであり、その主な目的は、小さな凹凸欠陥や模様状欠陥を精度良くかつほぼ同時に検出することができる新規な表面欠陥検査装置および表面欠陥検査方法を提供するものである。
By the way, in the former polarization type surface defect inspection method (apparatus), a pattern-like defect and a large irregularity defect can be easily identified, but a small irregularity defect is difficult to identify.
On the other hand, the second method (apparatus) described above, on the other hand, is excellent in identifying uneven defects and large pattern defects, but has a drawback that it is difficult to identify small pattern defects.
That is, with the conventional method (apparatus), it is almost impossible to detect small irregularities and pattern defects at the same time. In order to detect these minute surface defects, these two types of apparatuses are manufactured on the production line. There is only a method of inspecting step by step in a linear arrangement in the direction, and there is a problem that labor and cost required for the inspection increase accordingly.
Therefore, the present invention has been devised to effectively solve such problems, and its main purpose is a novel that can detect small irregularities and pattern defects accurately and almost simultaneously. A surface defect inspection apparatus and a surface defect inspection method are provided.

前記課題を解決するために請求項1の発明は、
被検査面に直線偏光を入射する直線偏光光源と、前記被検査面からの反射光を第1の検光角で受光する、レンズの前に前記第1の検光角に設定された検光子を有する第1の受光カメラ、前記被検査面からの反射光を第2の検光角で受光する、レンズの前に前記第2の検光角に設定された検光子を有する第2の受光カメラ、及び前記被検査面からの反射光を第3の検光角で受光する、レンズの前に前記第3の検光角に設定された検光子を有する第3の受光カメラとを有する表面欠陥検査装置であって、前記第1の受光カメラと第2の受光カメラを前記被検査面からの正反射光路上に配置すると共に、前記第3の受光カメラを正反射光路上から所定角度ずらして配置し、前記正反射光路上に配置される前記第1の受光カメラの前記第1の検光角は前記正反射光方向に対して35°〜60°、前記正反射光路上に配置される前記第2の受光カメラの前記第2の検光角は前記正反射光方向に対して−5°〜5°となっていると共に、前記第3の受光カメラの前記第3の検光角は、前記正反射方向に対して−30°〜−50°になっていることを特徴とする表面欠陥検査装置である。
すなわち、本発明装置は前述したような従来の偏光式表面欠陥検査装置を構成する3つの受光カメラのうちの1つの受光カメラ(第3の受光カメラ)の位置を正反射光路上から所定角度ずらして配置したものであり、これによって後に実証するように従来の偏光式表面欠陥検査装置では識別が困難であった小さな凹凸欠陥についても高精度に識別することができる。
ここで、第1の受光カメラの第1の検光角は、正反射光方向に対して35°〜60°であれば良いが、好ましくは約40°である。また、同様に第2の受光カメラの第2の検光角は、前記正反射光方向に対して−5°〜5°であれば良いが、好ましくは約0°である。
In order to solve the above-mentioned problem, the invention of claim 1
A linearly polarized light source that makes linearly polarized light incident on the surface to be inspected, and an analyzer that receives the reflected light from the surface to be inspected at a first detection angle and is set at the first detection angle before the lens. A second light receiving camera having an analyzer set at the second detection angle in front of the lens, receiving the reflected light from the surface to be inspected at a second detection angle. A surface having a camera and a third light receiving camera that receives reflected light from the surface to be inspected at a third detection angle and has an analyzer set at the third detection angle in front of the lens. the defect inspection apparatus, prior Symbol predetermined angle with, the third light receiving camera from specular reflected light path of the first light receiving camera and the second light receiving camera placed specularly reflected light path from the surface to be inspected staggered disposed, said first detection optical angle of the first light receiving camera disposed in the specular reflected light path is The second detection angle of the second light receiving camera arranged on the specular reflection light path is −35 ° to the specular reflection light direction. Surface defect inspection characterized in that the third light detection camera has a third light detection angle of −30 ° to −50 ° with respect to the regular reflection direction. Device.
That is, the apparatus of the present invention shifts the position of one light receiving camera (third light receiving camera) of the three light receiving cameras constituting the conventional polarization type surface defect inspection apparatus as described above by a predetermined angle from the regular reflection optical path. Thus, as will be demonstrated later, it is possible to identify with high accuracy even small irregularities that have been difficult to identify with a conventional polarizing surface defect inspection apparatus.
Here, the first light detection angle of the first light receiving camera may be 35 ° to 60 ° with respect to the direction of specular reflection light, but is preferably about 40 °. Similarly, the second light detection angle of the second light receiving camera may be −5 ° to 5 ° with respect to the specularly reflected light direction, but is preferably about 0 °.

また、請求項の発明は、
請求項に記載の表面欠陥検査装置において、前記正反射光の反射角度は、前記被検査面に対して45°〜65°になっていると共に、前記第3の受光カメラは、前記被検査面に対して45°〜55°の角度で設置されていることを特徴とする表面欠陥検査装置である。ここで、前記正反射光の反射角度は、前記被検査面に対して45°〜65°が望ましいが、より好ましくは60°である。
The invention of claim 2
2. The surface defect inspection apparatus according to claim 1 , wherein a reflection angle of the specularly reflected light is 45 ° to 65 ° with respect to the surface to be inspected, and the third light receiving camera has the surface to be inspected. The surface defect inspection apparatus is installed at an angle of 45 ° to 55 ° with respect to the surface. Here, the reflection angle of the regular reflection light is desirably 45 ° to 65 ° with respect to the surface to be inspected, and more preferably 60 °.

一方、請求項の発明は、
直線偏光を被検査面に入射し、前記被検査面からの反射光を第1〜第3の3つの受光カメラを用いてそれぞれ第1の検光角、第2の検光角、及び第3の検光角で受光して前記被検査面上の欠陥を検査するようにした表面欠陥検査方法であって、前記第1の受光カメラが、レンズの前に前記第1の検光角に設定された検光子を有し、前記第2のカメラが、レンズの前に前記第2の検光角に設定された検光子を有し、前記第3の受光カメラが、レンズの前に前記第3の検光角に設定された検光子を有する表面欠陥検査方法において、記第1の受光カメラと前記第2の受光カメラを前記被検査面から正反射光路上に配置すると共に、前記第3の受光カメラを正反射光路上から所定角度ずらして配置し、前記正反射光路上に配置される前記第1の受光カメラの前記第1の検光角は前記正反射光方向に対して35°〜60°、前記正反射光路上に配置される前記第2の受光カメラの前記第2の検光角は前記正反射光方向に対して−5°〜5°となっていると共に、前記第3の受光カメラの前記第3の検光角は、前記正反射方向に対して−30°〜−50°になっており、その後、前記直線偏光光源から被検査面に直線偏光を入射し、前記被検査面からの反射光をこれら第1〜第3の3つの受光カメラで同時に受光して前記被検査面上の欠陥を監査するようにしたことを特徴とする表面欠陥検査方法である。
これによって、前記請求項1の発明と同様に、従来の偏光式表面欠陥検査装置が得意とする模様状欠陥を精度良く検出できることは勿論、識別が困難であった小さな凹凸欠陥についても高精度に識別することができる。
On the other hand, the invention of claim 3
The linearly polarized light is incident on the surface to be inspected, and the reflected light from the surface to be inspected is first, second, and third using the first to third light receiving cameras, respectively . A surface defect inspection method in which a defect on the surface to be inspected is received by detecting at a detection angle of the first , wherein the first light receiving camera is set at the first detection angle before a lens. The second camera has an analyzer set at the second analysis angle in front of the lens, and the third light-receiving camera has the first camera in front of the lens. in the surface defect inspection method with 3 set analyzer to test light angle, with the the previous SL first light receiving camera the second light receiving camera placed in the specular reflected light path from the surface to be inspected, the first 3 by shifting a predetermined angle light receiving camera from specular reflected light path is disposed, said first receiving disposed on the specularly reflected light path The first detection angle of the camera is 35 ° to 60 ° with respect to the specular reflection light direction, and the second detection angle of the second light receiving camera disposed on the specular reflection light path is the positive reflection angle. The third light detection camera has a third light detection angle of −30 ° to −50 ° with respect to the regular reflection direction. and, after that, the incident linearly polarized light from the linearly polarized light source to the surface to be inspected, the surface to be inspected by receiving simultaneously in these first to third three light receiving camera reflected light from the surface to be inspected A surface defect inspection method characterized by auditing the above defects.
As a result, as in the first aspect of the present invention, it is possible to accurately detect pattern defects that the conventional polarizing surface defect inspection apparatus is good at, and to accurately detect small uneven defects that are difficult to identify. Can be identified.

また、請求項の発明は、
請求項に記載の表面欠陥検査方法であって、
前記第1〜第3の受光カメラの前にそれぞれの受光量を調節するフィルターを設けると共に、当該フィルターの透過率と前記直線偏光光源とを前記被検査面の種別ごとに調節して前記被検査面の種別ごとに異なる前記第1〜第3の受光カメラの受光輝度を平滑化することを特徴とする表面欠陥検査方法である。
これによって、前記被検査面の種別に拘わらず、その被検査面の小さな凹凸欠陥についても高精度に識別することができる。
The invention of claim 4
The surface defect inspection method according to claim 3 ,
A filter for adjusting the amount of received light is provided in front of the first to third light receiving cameras, and the transmittance of the filter and the linearly polarized light source are adjusted for each type of the surface to be inspected. It is a surface defect inspection method characterized by smoothing the light-receiving luminance of the first to third light-receiving cameras different for each type of surface.
As a result, regardless of the type of the surface to be inspected, small irregularities on the surface to be inspected can be identified with high accuracy.

次に、このような本発明の表面欠陥検出の原理を図面を用いて詳細に説明する。
先ず、本発明の表面欠陥検査装置が検査対象とする鋼板表面の光学的反射の形態を鋼板表面のミクロな凹凸形状と関連付けて説明する。
例えば、検査対象が合金化亜鉛めっき鋼板の場合においては、図10(a)に示すように下地の冷延鋼板は、溶融亜鉛めっきされた後、合金化炉を通過する。この間に下地鋼板1の鉄元素がめっき層2の亜鉛中に拡散し、通常図10(c)に示すように合金の柱状結晶3を形成する。このめっきされた鋼板4は次にロール5a、5bで調質圧延される。すると、図10(d)に示すように、柱状結晶3における特に突出した箇所がロール5a、5bで平坦に潰され、それ以外の箇所は元の柱状結晶3の形状を維持したままとなる。
そして、この調質圧延のロール5a、5bにて平坦に潰された部分をテンパ部6と呼び、それ以外の調質圧延のロール5a、5bが当接しない元の凹凸形状を残した部分を非テンパ部7と称する。
Next, the principle of surface defect detection according to the present invention will be described in detail with reference to the drawings.
First, the form of optical reflection on the surface of the steel sheet to be inspected by the surface defect inspection apparatus of the present invention will be described in relation to the micro uneven shape on the surface of the steel sheet.
For example, when the inspection object is an alloyed galvanized steel sheet, the underlying cold-rolled steel sheet passes through an alloying furnace after being hot-dip galvanized as shown in FIG. During this time, the iron element of the base steel plate 1 diffuses into the zinc of the plating layer 2 and usually forms columnar crystals 3 of the alloy as shown in FIG. The plated steel plate 4 is then temper-rolled with rolls 5a and 5b. Then, as shown in FIG. 10D, particularly protruding portions in the columnar crystal 3 are flattened by the rolls 5a and 5b, and the other portions remain in the original shape of the columnar crystal 3.
And the part crushed flat by this roll 5a, 5b of temper rolling is called the temper part 6, and the part which left the original uneven | corrugated shape which the rolls 5a, 5b of other temper rolls do not contact is called This is referred to as a non-tempered portion 7.

図11は、このようなテンパ部6と非テンパ部7とを有する鋼板4の表面でどのような光学的反射が生ずるかをモデル化した断面模式図である。
調質圧延のロール5a、5bにより押し潰されたテンパ部6に入射した入射光8は鋼板4の正反射方向に鏡面的に反射して正反射光9となる。
一方、調質圧延のロール5a、5bが当接しない元の柱状結晶3の構造を残す非テンパ部7に入射した入射光8は、ミクロに見れば柱状結晶3の各表面の微小面素一つ一つにより鏡面的に反射されるが、反射方向は鋼板4の正反射方向とは必ずしも一致しない拡散反射光10となる。
FIG. 11 is a schematic cross-sectional view modeling what kind of optical reflection occurs on the surface of the steel plate 4 having such a temper portion 6 and a non-temper portion 7.
Incident light 8 incident on the tempered portion 6 crushed by the temper rolling rolls 5 a and 5 b is specularly reflected in the regular reflection direction of the steel plate 4 to become regular reflection light 9.
On the other hand, the incident light 8 incident on the non-tempered portion 7 that leaves the original structure of the columnar crystal 3 with which the temper rolling rolls 5a and 5b do not abut is microscopically uniform on each surface of the columnar crystal 3 when viewed microscopically. Although it is reflected in a specular manner by one, the reflection direction is diffuse reflection 10 that does not necessarily coincide with the regular reflection direction of the steel plate 4.

従って、鋼板4の表面におけるテンパ部6および非テンパ部7の各反射光の角度分布はマクロに見ればそれぞれ図12(a)、(b)のようになる。すなわち、テンパ部6では鋭い鏡面性の正反射が発生し、非テンパ部7では柱状結晶3の表面の微小面素の角度分布に対応した広がりをもった拡散反射光となる。なお、本発明においては、このテンパ部6の反射光を正反射光9と称し、非テンパ部7の反射光を拡散反射光10と称する。   Accordingly, the angle distribution of the reflected light of the temper portion 6 and the non-temper portion 7 on the surface of the steel plate 4 is as shown in FIGS. 12A and 12B, respectively, when viewed macroscopically. In other words, sharp specular regular reflection occurs in the temper portion 6, and the non-temper portion 7 becomes diffusely reflected light having a spread corresponding to the angular distribution of the minute surface elements on the surface of the columnar crystal 3. In the present invention, the reflected light from the temper portion 6 is referred to as regular reflected light 9, and the reflected light from the non-tempered portion 7 is referred to as diffuse reflected light 10.

そして実際にはテンパ部6と非テンパ部7はマクロ的には混在しているので、カメラ等の光学測定器で観察される反射光の角度分布は、図12(c)に示すように正反射光9および拡散反射光10の角度分布をテンパ部6と非テンパ部7とのそれぞれの面積率に応じて加算したものとなる。以上、テンパ部6と非テンパ部7とを合金化亜鉛めっき鋼板を例に説明したが、調質圧延により平坦部が生じる他の鋼板にも一般に成立する。   Actually, the temper portion 6 and the non-temper portion 7 are mixed macroscopically, and therefore the angle distribution of the reflected light observed by an optical measuring instrument such as a camera is positive as shown in FIG. The angular distributions of the reflected light 9 and the diffusely reflected light 10 are added according to the respective area ratios of the temper portion 6 and the non-temper portion 7. As described above, the tempered portion 6 and the non-tempered portion 7 have been described by taking the galvannealed steel plate as an example.

次に、本発明で検出可能である顕著な凹凸形状をもたない模様状ヘゲ欠陥などと呼ばれる模様状欠陥の光学反射特性について説明する。
図13に示すように、合金化溶融亜鉛めっき鋼板に見られるヘゲ欠陥(ヘゲ部11)は、めっき加工前の冷延鋼板原板にヘゲ欠陥(ヘゲ部11)が存在し、その上にめっき層2が乗り、さらに下地鋼板1の鉄元素の拡散によるヘゲ欠陥の合金化が進行したものである。
Next, the optical reflection characteristics of a pattern defect called a pattern hege defect that does not have a remarkable uneven shape that can be detected by the present invention will be described.
As shown in FIG. 13, the hege defect (hege portion 11) seen in the alloyed hot-dip galvanized steel sheet is present in the cold-rolled steel sheet before plating, The plating layer 2 is placed thereon, and further alloying of hege defects due to diffusion of iron elements in the base steel sheet 1 has progressed.

一般にヘゲ部11は、鋼板4の正常部分を示す母材12と比較して例えばめっき厚に違いが生じたり、合金化の程度に違いが生じる。その結果、例えば、ヘゲ部11のめっき厚が厚く母材12に対し、凸の場合には、調質圧延が印加されることによりテンパ部6の面積が非テンパ部7に比べて多くなる。逆に、ヘゲ部11のめっき厚が薄く母材12に比べ凹の場合には、ヘゲ部11は調質圧延のロール5a、5bが当接せず、非テンパ部7が大半を占める。また、ヘゲ部11の合金化が浅い場合には微小面素の角度分布は鋼板法線方向に強く、拡散性は小さくなる。   In general, the shaving portion 11 has a difference in, for example, a plating thickness or a difference in the degree of alloying as compared with the base material 12 indicating a normal portion of the steel plate 4. As a result, for example, in the case where the plating thickness of the shaving portion 11 is thick and the base material 12 is convex, the area of the temper portion 6 becomes larger than that of the non-temper portion 7 by applying temper rolling. . On the contrary, when the plating thickness of the shaving portion 11 is thin and concave compared to the base material 12, the temper rolling rolls 5 a and 5 b do not come into contact with the shaving portion 11, and the non-tempered portion 7 occupies the majority. . Further, when the alloying of the shaving portion 11 is shallow, the angle distribution of the micro surface elements is strong in the normal direction of the steel plate, and the diffusibility is small.

次に、このようなヘゲ部11と母材部12の表面正常の違いにより、模様状ヘゲ欠陥がどのように見えるかを説明する。
上述したモデルに基づき、ヘゲ部11と母材部12の違いについて分類すると、一般に次の3種類(a〜c)に分けられる。
(a)ヘゲ部11におけるテンパ部6の面積率および非テンパ部7の微小面素の角度分布が、母材部12におけるテンパ部6の面積率および非テンパ部7の微小面素の角度分布と異なる(図15(a)、図14(a))。
Next, it will be described how the pattern-like shave defect looks due to the difference in normal surface between the shave part 11 and the base material part 12.
Based on the model described above, the difference between the shaving portion 11 and the base material portion 12 is generally classified into the following three types (ac).
(A) The area ratio of the tempered part 6 in the shaving part 11 and the angle distribution of the minute surface elements of the non-tempered part 7 are the area ratio of the tempered part 6 in the base material part 12 and the angle of the minute surface element of the non-tempered part 7. It is different from the distribution (FIG. 15 (a), FIG. 14 (a)).

(b)ヘゲ部11におけるテンパ部6の面積率は母材部12におけるテンパ部6の面積率と異なるが、ヘゲ部11における非テンパ部7の微小面素の角度分布は母材部12における非テンパ部7の微小面素の角度分布と変わらない(図15(b)、図14(b))。
(c)ヘゲ部11における非テンパ部7の微小面素の角度分布は母材部12における非テンパ部7の微小面素の角度分布と異なるが、ヘゲ部11におけるテンパ部6の面積率は母材部12におけるテンパ部6の面積率と変わらない(図15(c)、図14(c))。
(B) Although the area ratio of the temper portion 6 in the spatula portion 11 is different from the area ratio of the temper portion 6 in the base material portion 12, the angle distribution of the minute surface elements of the non-temper portion 7 in the spatula portion 11 is the base material portion. 12 is the same as the angular distribution of the minute surface elements of the non-tempered portion 7 (FIG. 15B, FIG. 14B).
(C) Although the angular distribution of the minute surface element of the non-tempered part 7 in the shaving part 11 is different from the angular distribution of the minute surface element of the non-tempered part 7 in the base material part 12, the area of the tempered part 6 in the shading part 11 The rate is the same as the area rate of the temper portion 6 in the base material portion 12 (FIGS. 15C and 14C).

図16に示すように、入射光8が当接する微小面素13の法線方向の鋼板4の鋼板法線方向に対する傾斜角度を微小面素13の法線角度ξ(クスィー、クサイ)とし、この法線角度ξとテンパ部6の面積率S(ξ)との関係を、上述した(a)〜(c)の3つの場合について、図15(a)、(b)、(c)に示す。
このようなテンパ部6の面積率S(ξ)および微小面素13の角度分布の違いが、図14(a)、(b)、(c)に示すような反射光量の角度分布の違いとして観察される。図中実線で示す角度分布がヘゲ部11に対応するヘゲ部角度分布11aであり、図中点線で示す角度分布が母材部12に対応する母材部角度分布12aである。
As shown in FIG. 16, the inclination angle of the normal direction of the fine surface element 13 with which the incident light 8 abuts with respect to the normal direction of the steel sheet 4 is defined as the normal angle ξ of the fine surface element 13. The relationship between the normal angle ξ and the area ratio S (ξ) of the temper portion 6 is shown in FIGS. 15A, 15B, and 15C for the three cases (a) to (c) described above. .
The difference in the area ratio S (ξ) of the tempered portion 6 and the angular distribution of the minute surface element 13 is the difference in the angular distribution of the reflected light amount as shown in FIGS. 14 (a), 14 (b), and 14 (c). Observed. The angle distribution indicated by the solid line in the figure is the bald part angle distribution 11 a corresponding to the bald part 11, and the angle distribution indicated by the dotted line in the figure is the base material part angle distribution 12 a corresponding to the base material part 12.

すなわち、図14(a)は、ヘゲ部角度分布11aと、母材部角度分布12eとの間において、正反射成分と拡散反射成分とが共に差が存在する場合を示し、図14(b)は、正反射成分のみに差が存在する場合を示し、図14(c)は拡散反射成分のみに差が存在する場合を示す。
そして、ヘゲ部角度分布11aと母材部角度分布12aとでテンパ部6の面積率S(ξ)に相違がある場合には、図14(a)、(b)に示すように、その差は正反射方向から観察される。具体的には、正反射方向からヘゲ部11の反射光を測定した場合と、母材部12の反射光を測定した場合に、ヘゲ部11のテンパ部6の面積率S(ξ)が母材部12のテンパ部6の面積率S(ξ)より大きい場合には、ヘゲ部11は母材部12に比較して相対的に明るく見える。逆に、ヘゲ部11のテンパ部6が母材部12より小さいときにはヘゲ部11は母材部12に比較して相対的に暗く観察される。
That is, FIG. 14A shows a case where there is a difference between the specular reflection component and the diffuse reflection component between the bevel portion angle distribution 11a and the base material portion angle distribution 12e. ) Shows a case where a difference exists only in the regular reflection component, and FIG. 14C shows a case where a difference exists only in the diffuse reflection component.
When there is a difference in the area ratio S (ξ) of the temper portion 6 between the bevel portion angle distribution 11a and the base material portion angle distribution 12a, as shown in FIGS. 14 (a) and 14 (b), The difference is observed from the specular direction. Specifically, the area ratio S (ξ) of the temper portion 6 of the spatula portion 11 when the reflected light of the spatula portion 11 is measured from the regular reflection direction and when the reflected light of the base material portion 12 is measured. Is larger than the area ratio S (ξ) of the temper portion 6 of the base material portion 12, the bald portion 11 looks relatively brighter than the base material portion 12. On the contrary, when the temper portion 6 of the shaving portion 11 is smaller than the base material portion 12, the shaving portion 11 is observed relatively darker than the base material portion 12.

ヘゲ部角度分布11aと母材部角度分布12aとでテンパ部6の面積率S(ξ)に違いがない場合には、図14(c)に示すように正反射方向からの単なる受光強度の差を観察するのみではヘゲ部11の存在を観察できない。しかし、拡散反射成分の拡散性(角度分布)に違いがあるときには図14(c)に示すように正反射方向以外の拡散方向から欠陥が観察される。   When there is no difference in the area ratio S (ξ) of the temper portion 6 between the bevel portion angle distribution 11a and the base material portion angle distribution 12a, as shown in FIG. Only by observing the difference, the presence of the shaving portion 11 cannot be observed. However, when there is a difference in the diffusivity (angle distribution) of the diffuse reflection component, a defect is observed from a diffusion direction other than the regular reflection direction as shown in FIG.

例えば、ヘゲ部11の拡散反射成分の拡散性(角度分布)が小さいときには、一般に正反射方向に比較的近い拡散方向からはヘゲ部11は明るく観察され、正反射方向から離れるにしたがって明るさは小さくなり、ある角度で観察不能となる。さらに正反射方向から遠ざかると今度はヘゲ部11は暗く観察される。
このようなヘゲ部11を母材部12と確実に区別して検出するためには、図15において、どういう角度(法線角度ξ)の微小面素13からの反射光を抽出するのかを検討することが必要である。例えば、先の図14(a)、(b)の例のように、正反射方向でヘゲ部11と母材部12の違いを検出するということは、図15で示される微小面素13の角度分布のうち微小面素13の法線角度ξ=0について抽出し、ヘゲ部11と母材部12との違いを検出していることになる。
For example, when the diffusivity (angle distribution) of the diffuse reflection component of the shaving portion 11 is small, the shaving portion 11 is generally observed brightly from the diffusion direction relatively close to the regular reflection direction, and becomes brighter as the distance from the regular reflection direction increases. The height becomes smaller, and observation becomes impossible at a certain angle. Further, when moving away from the regular reflection direction, the bevel 11 is observed darkly.
In order to reliably detect such a shaved part 11 from the base material part 12, in FIG. 15, it is examined what angle (normal angle ξ) of reflected light from the micro-surface element 13 is extracted. It is necessary to. For example, as in the example of FIGS. 14A and 14B, detecting the difference between the beveled portion 11 and the base material portion 12 in the regular reflection direction means that the micro surface element 13 shown in FIG. Thus, the normal angle ξ = 0 of the minute surface element 13 is extracted from the angle distribution, and the difference between the bald portion 11 and the base material portion 12 is detected.

ここで、微小面素13の法線角度ξ=0の反射光を抽出するということを数学的に表現すると、図15の特性(面積率S(ξ))それぞれに、図17(a)に示すデルタ関数δ(ξ)で表される抽出特性を示す関数(以後この関数を重み関数I(ξ)と呼ぶ)を乗じて積分することに相当する。
また、例えば、入射角60°において、正反射方向から20°ずれた40°の角度位置で反射光を測定することは、図17(b)のようなデルタ関数δ(ξ+10)なる重み関数I(ξ)を用いて計算することに相当する。
Here, when expressing that the reflected light with the normal angle ξ = 0 of the minute surface element 13 is extracted mathematically, the characteristic (area ratio S (ξ)) of FIG. 15 is shown in FIG. This corresponds to integration by multiplying by a function indicating the extraction characteristic represented by the delta function δ (ξ) (hereinafter referred to as a weighting function I (ξ)).
Further, for example, when the reflected light is measured at an angular position of 40 ° shifted by 20 ° from the regular reflection direction at an incident angle of 60 °, the weighting function I represented by the delta function δ (ξ + 10) as shown in FIG. This corresponds to calculation using (ξ).

なお、図16に示すように、反射角度θ´と微小面素13の法線角度ξと入射光8の入射角度θとの関係は簡単な幾何学的考察によって以下の式(1)で求まる。
θ´=−θ+2ξ …(1)
すなわち、どういう角度(法線角度ξ)の微小面素13からの反射光を抽出するかということは、どのような重み関数I(ξ)を設計するかということに相当することが理解できる。
As shown in FIG. 16, the relationship between the reflection angle θ ′, the normal angle ξ of the minute surface element 13, and the incident angle θ of the incident light 8 can be obtained by the following formula (1) by simple geometrical consideration. .
θ ′ = − θ + 2ξ (1)
That is, it can be understood that what kind of angle (normal angle ξ) the reflected light from the minute surface element 13 is extracted corresponds to what weight function I (ξ) is designed.

このような観点から、図15(a)、(b)、(c)で表されるような各ヘゲ部11を母材部12と弁別し検出するための重み関数I(ξ)を考えると、図17(a)、(b)に示すデルタ関数δ(ξ),δ(ξ+10)も有効な重み関数I(ξ)の一つである。
なお、重み関数I(ξ)は、必ずしも図17に示した特定の法線角度のみを抽出する幅が無限小のデルタ関数δ(ξ)である必要はなく、ある程度の信号幅を有することも可能である。
From this point of view, a weight function I (ξ) for discriminating and detecting each bald portion 11 as shown in FIGS. 15A, 15B, and 15C from the base material portion 12 is considered. The delta functions δ (ξ) and δ (ξ + 10) shown in FIGS. 17A and 17B are also effective weight functions I (ξ).
Note that the weighting function I (ξ) does not necessarily need to be a delta function δ (ξ) with an infinitesimal width for extracting only the specific normal angle shown in FIG. 17, and may have a certain signal width. Is possible.

しかしながら、このような弁別手法においては、2つの光学系の視野を同一にすることはできない。また、拡散反射光を測定するために一旦カメラを設置すると、その重み関数I(ξ)を変更することは、カメラの設置位置を変更することが必要であるから、容易ではない。
前者の課題に対しては同一光軸上の測定の必要がある。すなわち、拡散反射光を捉えるのでなく、鋼板4の正反射方向からの測定のみで正反射成分と拡散反射成分との両成分が捉えられることが望ましい。そして、後者の課題に対しては、重み関数I(ξ)をある程度自由度をもって設定できることが望ましい。
However, in such a discrimination method, the fields of view of the two optical systems cannot be made the same. Also, once a camera is installed to measure diffusely reflected light, it is not easy to change its weight function I (ξ) because it is necessary to change the installation position of the camera.
For the former problem, measurement on the same optical axis is necessary. That is, it is desirable that both the regular reflection component and the diffuse reflection component are captured only by measurement from the regular reflection direction of the steel plate 4, instead of capturing diffuse reflection light. For the latter problem, it is desirable that the weight function I (ξ) can be set with a certain degree of freedom.

そこで、本発明においては、まず光源として、レーザのような平行光源ではなく拡散特性をもつ線状の光源、すなわち線状拡散光源を用いている。また、鋼板4の正反射方向から正反射成分と拡散反射成分とを分離して抽出する必要があるので偏光を用いている。
この線状拡散光源(直線偏光光源)の効果を説明するために、図18(a)、(b)に示すように、線状拡散光源14を鋼板4の表面に平行に配置し、光源に垂直な面内にあり、入射角が出射角と一致する方向である鋼板正反射方向から鋼板4上の一点を観察したときの反射特性を考える。
Therefore, in the present invention, a linear light source having diffusion characteristics, that is, a linear diffused light source is used as a light source instead of a parallel light source such as a laser. Further, polarized light is used because it is necessary to separate and extract the regular reflection component and the diffuse reflection component from the regular reflection direction of the steel plate 4.
In order to explain the effect of this linear diffused light source (linearly polarized light source), as shown in FIGS. 18 (a) and 18 (b), the linear diffused light source 14 is arranged in parallel to the surface of the steel plate 4, and the light source is used. Consider a reflection characteristic when a point on the steel plate 4 is observed from the normal reflection direction of the steel plate, which is in a vertical plane and the incident angle coincides with the emission angle.

図18(a)に示すように、線状拡散光源14の中央部から照射された入射光8の場合、テンパ部6に入射した入射光8は鏡面的に反射され、鋼板正反射方向で全て捉えられる。一方、非テンパ部7に入射した光は拡散的に反射され、たまたま鋼板法線方向と同一方向を向いている微小面素13により反射された分のみが捉えられる。このような方向を向いている微小面素13は非常に少ないので、鋼板正反射方向に配設された受光カメラで捉えられる反射光のうちではテンパ部6からの正反射光が支配的である。   As shown in FIG. 18 (a), in the case of the incident light 8 irradiated from the central part of the linear diffused light source 14, the incident light 8 incident on the temper part 6 is specularly reflected and is all reflected in the regular reflection direction of the steel sheet. Be captured. On the other hand, the light incident on the non-tempered portion 7 is diffusely reflected, and only the portion reflected by the minute surface element 13 that happens to be in the same direction as the normal direction of the steel plate is captured. Since there are very few micro-surface elements 13 facing in such a direction, the regular reflection light from the temper portion 6 is dominant among the reflected light captured by the light receiving camera arranged in the regular reflection direction of the steel plate. .

これに対し、図18(b)に示すように、線状拡散光源14の中央部以外の位置から照射された入射光8の場合には、テンパ部6に入射した光は鏡面反射して鋼板正反射方向とは異なる方向へ反射する。そのため、鏡面反射した光は鋼板正反射方向では捉えることができない。一方、非テンパ部7に入射した光は拡散的に反射され、そのうち鋼板正反射方向に反射された分が受光カメラで捉えられる。従って、鋼板正反射方向に配設された受光カメラで捉えられる反射光は全て非テンパ部7で反射した拡散反射光である。
以上2つの場合を併せると、線状拡散光源14の長尺方向全体から照射される全ての入射光8のうち鋼板正反射方向からの観察で捉えられるのは、テンパ部6からの正反射光と非テンパ部7からの拡散反射光との和である。
On the other hand, as shown in FIG. 18B, in the case of the incident light 8 irradiated from a position other than the central portion of the linear diffused light source 14, the light incident on the temper portion 6 is specularly reflected and reflected by the steel plate. Reflects in a direction different from the regular reflection direction. Therefore, the specularly reflected light cannot be captured in the regular reflection direction of the steel plate. On the other hand, the light incident on the non-tempered portion 7 is diffusely reflected, and the portion reflected in the regular reflection direction of the steel plate is captured by the light receiving camera. Therefore, all the reflected light captured by the light receiving camera disposed in the regular reflection direction of the steel sheet is diffusely reflected light reflected by the non-tempered portion 7.
Combining the above two cases, the specularly reflected light from the temper portion 6 is captured by observation from the regular reflection direction of the steel sheet among all the incident light 8 irradiated from the entire longitudinal direction of the linear diffused light source 14. And the diffusely reflected light from the non-tempered portion 7.

次に、鋼板4の正反射方向から線状拡散光源14を使用して観察した場合に、偏光特性がどう変化するかについて説明する。
一般に、鏡面状の金属表面での反射においては、電界の方向が入射面に平行な光(P偏光)あるいは入射面に直角な光(S偏光)においては、反射によっても偏光特性は保存される。すなわち、P偏光のまま、またはS偏光のまま出射する。また、P偏光成分とS偏光成分とを同時にもつ任意の偏光角を有した直線偏光が反射されると、P、S偏光の反射率比tanΨおよび位相差Δに応じた楕円偏光となって出射する。
Next, how the polarization characteristics change when observed from the regular reflection direction of the steel plate 4 using the linear diffused light source 14 will be described.
In general, in the case of reflection on a mirror-like metal surface, the polarization characteristics are preserved even by reflection when the direction of the electric field is light parallel to the incident surface (P-polarized light) or light perpendicular to the incident surface (S-polarized light). . That is, the light is output as P-polarized light or S-polarized light. Further, when linearly polarized light having an arbitrary polarization angle having both P-polarized light component and S-polarized light component is reflected, it becomes an elliptically polarized light according to the reflectance ratio tanΨ and phase difference Δ of P and S-polarized light. To do.

合金化亜鉛めっき鋼板に線状拡散光源14から光が照射される場合を図19(a)、(b)を用いて説明する。
図19(a)に示すように、線状拡散光源14の中央部から出射した光は鋼板4のテンパ部6で鏡面反射して鋼板正反射方向で観察される。これに関しては上記一般の鏡面状の金属表面での反射がそのまま成立する。
一方、図19(b)に示すように、線状拡散光源14の中央部以外の位置から出射した光は、鋼板4の非テンパ部7の結晶表面の傾いた微小面素13で鏡面反射して鋼板正反射方向で観察される。この場合、鋼板4の入射面に平行なP偏光の光を入射したとしても実際に反射する傾いた微小面素13に対して考えた場合には入射面は微小面素13に対して平行ではなく、P、S両偏光成分をもつ直線偏光であるため、楕円偏光となって出射する。線状拡散光源14からS偏光を入射した場合も同様である。
A case where the alloyed galvanized steel sheet is irradiated with light from the linear diffusion light source 14 will be described with reference to FIGS. 19 (a) and 19 (b).
As shown in FIG. 19A, the light emitted from the central portion of the linear diffused light source 14 is specularly reflected by the temper portion 6 of the steel plate 4 and observed in the regular reflection direction of the steel plate. In this regard, the reflection on the general mirror-like metal surface is established as it is.
On the other hand, as shown in FIG. 19B, the light emitted from a position other than the central portion of the linear diffused light source 14 is specularly reflected by the minute surface element 13 inclined on the crystal surface of the non-tempered portion 7 of the steel plate 4. And observed in the direction of regular reflection of the steel sheet. In this case, even if P-polarized light parallel to the incident surface of the steel plate 4 is incident, the incident surface is not parallel to the minute surface element 13 in consideration of the inclined minute surface element 13 that actually reflects. Since it is linearly polarized light having both P and S polarization components, it is emitted as elliptically polarized light. The same applies when S-polarized light is incident from the linear diffused light source 14.

また、線状拡散光源14からP、S両偏光成分をもつ任意の偏光角αの直線偏光が鋼板4に入射した場合、線状拡散光源14の中央部以外の位置から傾いた微小面素13に入射した光は偏光角αが傾いて作用するため、鋼板正反射方向に出射する楕円偏光の形状は、線状拡散光源14の中央部から入射してテンパ部6で鏡面反射した光とは異なる。
以下、P,S両偏光成分をもつ直線偏光を線状拡散光源14から鋼板4に入射する場合について詳細に検証する。
Further, when linearly polarized light having an arbitrary polarization angle α having both P and S polarization components is incident on the steel plate 4 from the linear diffuse light source 14, the minute surface element 13 tilted from a position other than the central portion of the linear diffuse light source 14. Is incident on the steel plate regular reflection direction, the shape of the elliptically polarized light that is incident from the center of the linear diffused light source 14 and is specularly reflected by the temper unit 6 Different.
Hereinafter, a case where linearly polarized light having both P and S polarization components is incident on the steel plate 4 from the linear diffused light source 14 will be described in detail.

まず、図20に示すように、線状拡散光源14からの入射光8を方位角(偏光角)αを有する偏光板15で直線偏光にした後、水平に配置された鋼板4に入射させ、その正反射光を受光カメラ16で受光する。前述したように、線状拡散光源14上のC点から出射された入射光8については、鋼板4におけるテンパ部6により鏡面反射された成分、および、非テンパ部7におけるたまたま法線が鋼板4の鉛直方向を向いた法線角度ξ=0の微小面素13から拡散反射された成分が鋼板4上のO点から受光カメラ16方向へ反射する光に寄与している。   First, as shown in FIG. 20, the incident light 8 from the linear diffused light source 14 is linearly polarized by a polarizing plate 15 having an azimuth angle (polarization angle) α, and then incident on a steel plate 4 arranged horizontally, The regular reflection light is received by the light receiving camera 16. As described above, with respect to the incident light 8 emitted from the point C on the linear diffused light source 14, the component specularly reflected by the temper portion 6 in the steel plate 4 and the normal line in the non-temper portion 7 happen to be normal. The component diffusely reflected from the micro-surface element 13 with the normal angle ξ = 0 directed in the vertical direction is contributing to the light reflected from the point O on the steel plate 4 toward the light receiving camera 16.

一方、図21に示すように、線状拡散光源14上の鋼板4のO点から見て角度φだけずれた点Aからの入射光8については、鏡面反射成分は受光カメラ16方向とは異なる方向に反射されるため、前述した法線角度ξの微小面素13による拡散反射成分のみが寄与する。
ここで、入射光8の入射方向を示す角度φと微小面素13の法線角度ξとの関係は、入射光8の鋼板4に対する入射角度θを用いて、簡単な幾何学的考察により、以下の式(2) 式で与えられる。
cosξ=[2・ cosθ・ cos2(φ/2)]
/[s in2 φ+4・{ cos2 θ・ cos4 (φ/4)
+sin2 θ・ sin4 (φ/2)}]1/2 …(2)
On the other hand, as shown in FIG. 21, the specular reflection component of the incident light 8 from the point A shifted from the point O of the steel plate 4 on the linear diffused light source 14 by the angle φ is different from the direction of the light receiving camera 16. Since the light is reflected in the direction, only the diffuse reflection component by the minute surface element 13 having the normal angle ξ described above contributes.
Here, the relationship between the angle φ indicating the incident direction of the incident light 8 and the normal angle ξ of the micro-surface element 13 is determined by simple geometric considerations using the incident angle θ of the incident light 8 with respect to the steel plate 4. It is given by the following equation (2).
cosξ = [2 · cosθ · cos 2 (φ / 2)]
/ [S in 2 φ + 4 ・ {cos 2 θ ・ cos 4 (φ / 4)
+ Sin 2 θ · sin 4 (φ / 2)}] 1/2 (2)

次に、このようにして反射された光の偏光状態について考える。
C点から出射された入射光8が、方位角(偏光角)αの偏光板15を通り、鋼板4上のO点にて鏡面反射された後の偏光状態EC は、偏光光学で一般に用いられるジョーンズ行列を用いて、
C =T・Ein …(3)
と表される。
但し、Ein は偏光板15の方位角(偏光角)αの直線偏光ベクトルを示し、Tは鋼板4の反射特性行列を示す。
そして、直線偏光ベクトルEinおよび反射特性行列Tはそれぞれ以下の式(4)、(5)で与えられる。
Next, the polarization state of the light reflected in this way will be considered.
The polarization state E C after the incident light 8 emitted from the point C passes through the polarizing plate 15 having the azimuth angle (polarization angle) α and is specularly reflected at the point O on the steel plate 4 is generally used in polarization optics. Using the Jones matrix
E C = T · E in (3)
It is expressed.
However, E in represents the linear polarization vector of the azimuth angle (polarization angle) alpha polarizer 15, T indicates the reflection characteristic matrix of the steel sheet 4.
The linearly polarized light vector Ein and the reflection characteristic matrix T are given by the following equations (4) and (5), respectively.

Figure 0005104004
Figure 0005104004

但し、tanΨ:P,S偏光の振幅反射率比
Δ:P,S偏光の反射率の位相差
S :S偏光の振幅反射率
同様に、線状拡散光源14上のA点から出射した入射光8が、法線角度ξの微小面素13で受光器16方向に反射された光の偏光状態EA は、入射面が偏光板15および受光カメラ16の検光子と直交しているとすれば以下の式(6)で与えられる。
A =R(ξ)・T・R(−ξ)・Ein …(6)
但し、Rは回転行列であり、以下の式(7)で与えられる。
However, tan ψ: Amplitude reflectance ratio of P and S-polarized light Δ: Phase difference of reflectance of P and S-polarized light r S : Amplitude reflectance of S-polarized light Similarly, incident light emitted from point A on the linear diffused light source 14 by the light 8, the polarization state E a of light reflected by the light receiver 16 direction in the minute area element 13 of the normal angle xi], the incident plane is perpendicular to the analyzer of the polarizing plate 15 and the light receiving camera 16 Is given by the following equation (6).
E A = R (ξ) · T · R (−ξ) · E in (6)
However, R is a rotation matrix and is given by the following equation (7).

Figure 0005104004
Figure 0005104004

前述した式(3)は、式(6)において微小面素13の法線角度ξ=0とした特別の場合であり、正反射成分についても散反射成分についても式(6)を用いて統一的に考えることができる。式(6)を計算し、法線角度ξの微小面素13からの反射光の楕円偏光状態を図示すると、図22に示すようになる。
但し、ここで入射偏光の方位角(偏光角)αは45°、入射角θは60°、鋼板4の反射特性としてP,S偏光の振幅反射率比の逆正接Ψ=28゜、P,S偏光の反射率の位相差Δ=120゜とした。
Equation (3) described above is a special case where the normal angle ξ = 0 of the micro-surface element 13 in Equation (6), and the regular reflection component and the diffuse reflection component are unified using Equation (6). Can think about it. FIG. 22 shows the elliptically polarized state of the reflected light from the micro-surface element 13 having the normal angle ξ by calculating the equation (6).
Here, the azimuth angle (polarization angle) α of the incident polarized light is 45 °, the incident angle θ is 60 °, the reflection characteristic of the steel plate 4 is P, and the arctangent Ψ = 28 ° of the amplitude reflectance ratio of S polarized light. The phase difference Δ = 120 ° of the reflectance of S-polarized light was set.

図22より、法線角度ξ=0、すなわち正反射の場合の楕円に対して法線角度ξの値が変化するにしたがって、楕円が傾いていくのが理解できる。
従って、例えば受光カメラ16の前に検光子17を挿入し、その検光角βを設定することによって、どの法線角度ξの微小面素13からの反射光をより多く抽出するかを選択することができる。
このことを定量化するために、図21に示すように、式(3)で表される偏光状態EA の反射光に対して検光角βの検光子17を挿入した後における偏光状態E0 を求めると、以下の式(8)となる。
0 =R(β)・A・R(−β)・EA
=R(β)・A・R(−β)・R(ξ)・T・R(−ξ)・Ein …(8)
但し、Aは検光子17を表す行列であり、以下の式(9)で示される。
From FIG. 22, it can be understood that the ellipse tilts as the normal angle ξ = 0, that is, the value of the normal angle ξ changes with respect to the ellipse in the case of regular reflection.
Therefore, for example, by inserting the analyzer 17 in front of the light receiving camera 16 and setting the detection angle β, it is selected which normal angle ξ to extract more reflected light from the micro-surface element 13. be able to.
To quantify this, as shown in FIG. 21, the polarization state E in after insertion of the analyzer 17 of the detection optical angle β with respect to the reflected light of the polarization state E A of the formula (3) When 0 is obtained, the following equation (8) is obtained.
E 0 = R (β) · A · R (−β) · E A
= R (β) · A · R (−β) · R (ξ) · T · R (−ξ) · E in (8)
However, A is a matrix representing the analyzer 17 and is represented by the following equation (9).

Figure 0005104004
Figure 0005104004

次に、この式(8)から受光カメラ16で検出する法線角度ξの微小面素13からの反射光の光強度を求める。
前述したように、該当微小面素13の面積率をS(ξ)とすると、以下の式(10)が成立する。
S(ξ)・|E0 2 =rS 2 P 2 ・S(ξ)・I(ξ,β)
I(ξ,β)= tan2 Ψ・cos2 (ξ−α)・cos2 (ξ−β)
+2・tanΨ・cosΔ・cos(ξ−α)・sin(ξ−α)
×cos(ξ−β)・sin(ξ−β)
+sin2 (ξ−α)・sin2 (β−ξ)…(10)
上式におけるI(ξ,β)は、前述したように、法線角度ξの微小面素13からの反射光をどの程度抽出できるかを示す重み関数であり、光学系および被検体の偏光特性に依存する。そして、それに鋼板4の反射率rS 2 、入射光光量EP 2、面積率S(ξ)を乗じたものが検出される光強度になる。
Next, the light intensity of the reflected light from the minute surface element 13 having the normal angle ξ detected by the light receiving camera 16 is obtained from the equation (8).
As described above, when the area ratio of the corresponding micro-surface element 13 is S (ξ), the following equation (10) is established.
S (ξ) · | E 0 | 2 = r S 2 E P 2 · S (ξ) · I (ξ, β)
I (ξ, β) = tan 2 Ψ ・ cos 2 (ξ−α) ・ cos 2 (ξ−β)
+2 ・ tanΨ ・ cosΔ ・ cos (ξ−α) ・ sin (ξ−α)
× cos (ξ−β) ・ sin (ξ−β)
+ Sin 2 (ξ−α) · sin 2 (β−ξ) (10)
As described above, I (ξ, β) in the above equation is a weighting function indicating how much the reflected light from the micro-surface element 13 having the normal angle ξ can be extracted, and the polarization characteristics of the optical system and the subject. Depends on. Then, the light intensity obtained by multiplying the reflectance r S 2 , the incident light quantity E P 2 , and the area ratio S (ξ) of the steel plate 4 is detected.

表面処理鋼板などのように、鋼板表面の材質が均−な対象を考える場合は反射率rS 2 の値は一定と考えられる。また、入射光光量EP 2 は入射光量が光源の位置によらず均一ならば同じく一定の値としてよい。
従って、受光カメラ16が検出する光強度を求めるには、法線角度ξの微小面素13の面積率S(ξ)と重み関数I(ξ,β)とを考えれば良い。
ここで、重み関数I(ξ,β)について考える。法線角度ξの微小面素13からの寄与が最も大きくなるような検光子17の検光角β0 を選定しようとした場合、その候補は次の式(11)をβについて解くことによって与えられる。
When considering an object whose surface material is uniform, such as a surface-treated steel plate, the value of the reflectance r S 2 is considered to be constant. Further, the incident light amount E P 2 may be a constant value if the incident light amount is uniform regardless of the position of the light source.
Therefore, in order to obtain the light intensity detected by the light receiving camera 16, the area ratio S (ξ) and the weighting function I (ξ, β) of the minute surface element 13 having the normal angle ξ may be considered.
Here, the weight function I (ξ, β) is considered. When trying to select the analysis angle β 0 of the analyzer 17 in which the contribution of the normal angle ξ from the micro surface element 13 is the largest, the candidate is given by solving the following equation (11) for β: It is done.

Figure 0005104004
Figure 0005104004

この式(11)により、法線角度ξ=0、すなわち鏡面反射成分の寄与が最も大きくなるような検光角βを求めると、検光角βは約−45°である。但し、ここでも、鋼板4の反射特性として前述した反射率比の逆正接Ψ=28°、位相差Δ=120°を採用し、線状拡散光源14からの入射光8に対する偏光板15の方位角(偏光角)α=40°を採用した。   According to this equation (11), when the normal angle ξ = 0, that is, the detection angle β that maximizes the contribution of the specular reflection component, the detection angle β is about −45 °. However, also here, the reflection factor of the steel plate 4 adopts the above-described arctangent ψ = 28 ° and the phase difference Δ = 120 ° of the reflectance ratio, and the orientation of the polarizing plate 15 with respect to the incident light 8 from the linear diffused light source 14. An angle (polarization angle) α = 40 ° was adopted.

図23に、検光子17の検光角βが−45°の場合における微小面素13の法線角度ξと重み関数I(ξ,−45)との関係を示す。但し、見やすさのために重み関数I(ξ,−45)の最大値を[1]に規格化してある。
図23の特性から、法線角度ξ=0°、すなわち正反射成分が最も支配的で、逆に法線角度ξ=±35°付近の微小面素13からの鏡面拡散反射光が最も抽出されないことが理解できる。
また、逆に法線角度ξ=±35°の反射光を最も良く抽出するような検光子17の検光角βを式(10)および式(11)より求めると、およそβ=40°である。
検光子17の検光角β=40°に対する微小面素13の法線角度ξと重み関数I(ξ,40)の関係を図24に示す。
FIG. 23 shows the relationship between the normal angle ξ of the minute surface element 13 and the weighting function I (ξ, −45) when the analysis angle β of the analyzer 17 is −45 °. However, the maximum value of the weight function I (ξ, −45) is normalized to [1] for ease of viewing.
From the characteristics of FIG. 23, the normal angle ξ = 0 °, that is, the specular reflection component is the most dominant, and conversely, the specular diffuse reflected light from the microelement 13 near the normal angle ξ = ± 35 ° is least extracted. I understand that.
Conversely, when the detection angle β of the analyzer 17 that best extracts the reflected light with the normal angle ξ = ± 35 ° is obtained from the equations (10) and (11), it is approximately β = 40 °. is there.
FIG. 24 shows the relationship between the normal angle ξ of the minute surface element 13 and the weighting function I (ξ, 40) with respect to the analysis angle β = 40 ° of the analyzer 17.

なお、図24の重み関数I(ξ,β)の特性が左右対称でないのは、入射面(微小面素13に対する入射光8と反射光により張られる平面)を基準に考えると、微小面素13の法線角度ξが正の場合、見かけ上入射光8の偏光の方位角(偏光角)αが小さくなる(P偏光に近づく)ことと、鋼板4のP偏光反射率がS偏光反射率より小さいことによる。
また、検光子17の検光角β=−45°と40°の中間の特性となるβ=0°についても計算した重み関数I(ξ,0)も図24に示した。
Note that the characteristic of the weight function I (ξ, β) in FIG. 24 is not symmetrical. Considering the incident surface (the plane stretched by the incident light 8 and the reflected light with respect to the minute surface element 13) as a reference, the minute surface element When the normal angle ξ of 13 is positive, the azimuth angle (polarization angle) α of the polarization of the incident light 8 appears to be small (approaching P-polarized light), and the P-polarized reflectance of the steel plate 4 is the S-polarized reflectance. By being smaller.
FIG. 24 also shows the weighting function I (ξ, 0) calculated for β = 0 °, which is an intermediate characteristic between the analysis angle β = −45 ° and 40 ° of the analyzer 17.

式(10)で示したように、法線角度ξの微小面素13からの反射光強度は、重み関数I(ξ,β)と面積率S(ξ)の積により与えられるから、最終的に受光カメラ16で受光する光強度は[S(ξ)・I(ξ,β)]を法線角度ξについて積分したものになる。例えば、図25に示すような反射特性を有する鋼板4からの反射光を、検光角βが−45°の検光子17を通して受光した場合、図25で示される面積率S(ξ)を図23に示す重み関数I(ξ,β)で示される重みをつけて積分したものが実際に受光した光強度となる。   As shown in the equation (10), the intensity of the reflected light from the micro-surface element 13 having the normal angle ξ is given by the product of the weight function I (ξ, β) and the area ratio S (ξ). The light intensity received by the light receiving camera 16 is obtained by integrating [S (ξ) · I (ξ, β)] with respect to the normal angle ξ. For example, when the reflected light from the steel plate 4 having reflection characteristics as shown in FIG. 25 is received through the analyzer 17 having the detection angle β of −45 °, the area ratio S (ξ) shown in FIG. The light intensity actually received is obtained by integrating the weights indicated by the weight function I (ξ, β) shown in FIG.

そこで、鋼板4の表面に、図14(a)、(b)、(c)に示されるような特性のヘゲ部11が存在した場合を考える。その場合の各面積率S(ξ)は、それぞれ図15(a)、(b)、(c)のようになっている。
まず、図14(b)、図15(b)のように鏡面反射成分のみに違いがある場合を考える。このような欠陥を検光角β=−45°の検光子17を通して受光したときの光強度は、図15(b)に示す面積率S(ξ)に図23で表される重み関数I(ξ,β)をかけて積分したものに相当するから、母材部12とヘゲ部11との反射光量の違いを検出することができる。
Therefore, a case is considered in which the shaving portion 11 having the characteristics shown in FIGS. 14A, 14 </ b> B, and 14 </ b> C exists on the surface of the steel plate 4. The area ratios S (ξ) in that case are as shown in FIGS. 15A, 15B, and 15C, respectively.
First, let us consider a case where there is a difference only in the specular reflection component as shown in FIGS. 14B and 15B. The light intensity when such a defect is received through the analyzer 17 having the detection angle β = −45 ° is expressed by the weighting function I () shown in FIG. 23 to the area ratio S (ξ) shown in FIG. Since it corresponds to an integral obtained by multiplying by (ξ, β), it is possible to detect a difference in the amount of reflected light between the base material portion 12 and the shaving portion 11.

また、同一欠陥を検光角β=45°の検光子17を通して受光したときの光強度については、図15(b)に示すように、拡散反射成分に違いがないため、図24の検光角β=40°の重み関数I(ξ,β)をかけて積分することを考えると明らかなように、母材部12とヘゲ部11との違いを検出することができない。
また、図14(c)、図15(c)のように拡散反射成分のみに違いがある場合には、逆に、検光角β=−45°の検光子17を通したのでは検出できず、検光角β=40°の度検光子17を通したときに検出できる。
Further, with respect to the light intensity when the same defect is received through the analyzer 17 having the detection angle β = 45 °, there is no difference in the diffuse reflection component as shown in FIG. As is apparent from the fact that the integration is performed by applying the weighting function I (ξ, β) with the angle β = 40 °, the difference between the base material portion 12 and the shaving portion 11 cannot be detected.
14C and 15C, when only the diffuse reflection component is different, it can be detected by passing through the analyzer 17 having the detection angle β = −45 °. First, it can be detected when it passes through the power analyzer 17 having a light detection angle β = 40 °.

但し、母材部12とヘゲ部11の拡散反射成分の違いがなくなっている法線角度ξは、図15(c)では法線角度ξ=±20°付近であったが、もし、その角度がたまたま±30数°付近となる欠陥があると、検光角β=40°の検光子17を通しても検出できなくなる。
その場合は、別の重み関数(例えばI(ξ,90))となるような検光角β(例えば0゜)の検光子17をもう一つ別に用意し、3番目の受光カメラ16で受光するようにすれば良い。
一般に、鋼板4の表面の母材部12とヘゲ部11の反射特性は図14(a)、(b)、(c)のいずれかであるので、ヘゲ部11の見落としをなくするためには、3つの異なる検光角βの検光子17を用い、対応する3つの法線角度ξの微小面素13からの反射光を抽出して受光するようにすることが必要である。
However, the normal angle ξ at which the difference between the diffuse reflection components of the base material portion 12 and the shaving portion 11 has disappeared was around the normal angle ξ = ± 20 ° in FIG. 15 (c). If there is a defect whose angle happens to be around ± 30 °, it cannot be detected even through the analyzer 17 having the detection angle β = 40 °.
In that case, another analyzer 17 having a detection angle β (for example, 0 °) that has another weight function (for example, I (ξ, 90)) is prepared and received by the third light receiving camera 16. You should do it.
In general, the reflection characteristics of the base material portion 12 and the shaving portion 11 on the surface of the steel plate 4 are any one of FIGS. 14A, 14B, and 14C, so that the shading portion 11 is not overlooked. It is necessary to extract and receive the reflected light from the micro-surface element 13 having three corresponding normal angles ξ by using the analyzer 17 having three different detection angles β.

また、図14(a)、図15(a)のように正反射成分、拡散反射成分ともに違いがある場合には、基本的には、例えば−45°と+40°とのいずれの検光子17を通した反射光でも母材部12とヘゲ部11との違いを検出できる。
そして、本発明は前述したように、この−45°の検光子17を有する受光カメラ16(偏光カメラ)を正反射光路(60°)から所定角度(55°〜45°)ずらして配置して乱反射光を受光するようにしたものであり、このような検出原理によって微小な模様状欠陥のみならず微小な凹凸状欠陥も精度良く検出することができる。
When there is a difference in both the regular reflection component and the diffuse reflection component as shown in FIGS. 14A and 15A, basically, for example, the analyzer 17 of −45 ° or + 40 °. The difference between the base material portion 12 and the shaving portion 11 can be detected even by the reflected light that has passed through.
In the present invention, as described above, the light receiving camera 16 (polarization camera) having the −45 ° analyzer 17 is arranged with a predetermined angle (55 ° to 45 °) shifted from the regular reflection optical path (60 °). The diffused reflected light is received, and not only a minute pattern defect but also a minute uneven defect can be detected with high accuracy by such a detection principle.

本発明によれば、従来の偏光式表面欠陥検査装置を構成する3つの受光カメラのうちの1つの受光カメラの位置を正反射光路上から所定角度ずらして配置したため、従来の偏光式表面欠陥検査装置では識別が困難であった小さな凹凸欠陥についても高精度に識別することができる。
この結果、本発明装置のみによって小さな凹凸欠陥や模様状欠陥を精度良く同時に検出できるため、従来のように2種類の装置を製造ライン方向にリニアに並べて段階的に検査するような方法に比較して、検査に要する手間やコストを省くことができる。
According to the present invention, since the position of one of the three light receiving cameras constituting the conventional polarization type surface defect inspection apparatus is shifted from the regular reflection optical path by a predetermined angle, the conventional polarization type surface defect inspection is performed. Even small uneven defects, which are difficult to identify with the apparatus, can be identified with high accuracy.
As a result, small uneven defects and pattern defects can be detected simultaneously with high accuracy only by the apparatus of the present invention, so that it is compared with the conventional method in which two types of apparatuses are linearly arranged in the production line direction and inspected step by step. Thus, labor and cost required for inspection can be saved.

以下、本発明を実施するための最良の形態を添付図面を参照しながら詳述する。
図1(a)は本発明に係る表面欠陥検査装置100の実施の一形態を示す側面図であり、図1(b)は同表面欠陥検査装置100を示す平面図、図2は同表面欠陥検査装置100の光学系のおおまかな配置関係を分かりやすく示す斜視図である。
図示するようにこの表面欠陥検査装置100は、亜鉛系めっき鋼板の品質検査ライン上に設置された例であり、図中矢印方向に搬送される帯状の鋼板21の搬送路の上方位置にその幅方向に沿って配設される線状拡散光源22と、この線状拡散光源22から鋼板21表面に照射された線状の反射光を受光する受光部27と、その受光部27からの信号を処理する信号処理部40とを主に備えた構成となっている。
Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the accompanying drawings.
1A is a side view showing an embodiment of a surface defect inspection apparatus 100 according to the present invention, FIG. 1B is a plan view showing the surface defect inspection apparatus 100, and FIG. 2 is a perspective view showing the general arrangement relationship of the optical system of the inspection apparatus 100 in an easily understandable manner. FIG.
As shown in the figure, this surface defect inspection apparatus 100 is an example installed on a quality inspection line for a zinc-based plated steel sheet, and its width is positioned above the transport path of a strip-shaped steel sheet 21 transported in the direction of the arrow in the figure. A linear diffused light source 22 disposed along the direction, a light receiving unit 27 that receives linear reflected light irradiated on the surface of the steel plate 21 from the linear diffused light source 22, and a signal from the light receiving unit 27 The signal processing unit 40 for processing is mainly provided.

この線状拡散光源22は、一部に拡散反射塗料を塗布した透明導光棒の両端から内部へメタルハライド光源の光を投光することによって、幅方向に一様の出射光を得るようになっている。そして、この線状拡散光源22の各位置から出射された鋼板21に対する入射光23は、シリンドリカルレンズ24と偏光板25を介して走行状態の鋼板21の全幅に対して、例えば60°の入射角θで照射するようになっており、この鋼板21で反射された反射光26は、鋼板正反射方向に配置された受光部27に入射するようになっている。なお、偏光板25の方位角(偏光角)αは、例えば45°に設定されている。
この受光部27は、レンズの前に検光角βが40°、0°、−45°に設定された検光子28a,28b,28cを有する3台のリニアアレイカメラからなる受光カメラ29a(第1の受光カメラ),29b(第2の受光カメラ),29c(第3の受光カメラ)から構成されている。
The linear diffused light source 22 emits the light of the metal halide light source from both ends of the transparent light guide rod partially coated with the diffuse reflection paint, thereby obtaining uniform outgoing light in the width direction. ing. And the incident light 23 with respect to the steel plate 21 radiate | emitted from each position of this linear diffused light source 22 has an incident angle of 60 degrees, for example with respect to the full width of the steel plate 21 in the running state via the cylindrical lens 24 and the polarizing plate 25. The reflected light 26 reflected by the steel plate 21 is incident on the light receiving unit 27 arranged in the regular reflection direction of the steel plate. Note that the azimuth angle (polarization angle) α of the polarizing plate 25 is set to 45 °, for example.
The light-receiving unit 27 includes a light-receiving camera 29a (first lens) including three linear array cameras having analyzers 28a, 28b, and 28c whose detection angles β are set to 40 °, 0 °, and −45 ° in front of the lens. 1 light receiving camera), 29b (second light receiving camera), and 29c (third light receiving camera).

そして、これら各受光カメラ29a,29b,29cのうち、検光角βが40°および0°に設定された検光子28a,28bをそれぞれ有する受光カメラ29a,29bの2台は、正反射光路(反射角θ)上であってそれぞれの各光軸は互いに平行に維持されているのに対し、検光角βが−45°に設定された検光子29cを有する受光カメラ29cは、鋼板21の表面(照射面)に対して約50°の反射角θで設置されている。なお、3台の受光カメラ29a,29b,29cの視野のずれは、信号処理部40において補正している。また、このようにリニアアレイカメラを採用することによって、ビームスプリッタを用いる場合に比べて、光量のロスがなくなり、効率的な測定が可能となる。
ここで、受光部27を構成する受光カメラ29a,29b,29cとしては具体的には特に限定されるものではないが、前述したリニアアレイカメラの代りに2次元CCDカメラや、単一光検出素子とガルヴァノミラーやポリゴンミラーを組み合わせた走査型の光検出器などを使用することも可能である。
Of these light-receiving cameras 29a, 29b, and 29c, two light-receiving cameras 29a and 29b each having analyzers 28a and 28b whose light-detecting angles β are set to 40 ° and 0 ° are specular reflection light paths ( While each optical axis is maintained parallel to each other on the reflection angle θ), the light receiving camera 29c having the analyzer 29c with the detection angle β set to −45 ° is provided on the steel plate 21. It is installed at a reflection angle θ of about 50 ° with respect to the surface (irradiated surface). Note that the signal processing unit 40 corrects the visual field shift of the three light receiving cameras 29a, 29b, and 29c. In addition, by adopting the linear array camera in this way, there is no loss of light amount compared to the case of using a beam splitter, and efficient measurement is possible.
Here, the light receiving cameras 29a, 29b, and 29c constituting the light receiving unit 27 are not specifically limited, but a two-dimensional CCD camera or a single light detecting element instead of the linear array camera described above. It is also possible to use a scanning photodetector that combines a galvano mirror and a polygon mirror.

また、線状拡散光源22として、蛍光灯を使用することもできる。また、バンドルファイバの出射端を直線上に整列させたファイバ光源を使用することもできる。各ファイバからの出射光は、ファイバのN/Aに対応して充分な広がり角をもつため、これを整列させたファイバ光源は実質的に線状拡散光源となるためである。
そして、このようにして各受光カメラ29a,29b,29cで受光された反射光26における鋼板21の幅方向の1ライン分の各画素ごとの光強度は、それぞれ光強度信号a,b,cに変換されて図3に示すような信号処理部40へ送信されるようになっている。
In addition, a fluorescent lamp can be used as the linear diffused light source 22. A fiber light source in which the exit ends of the bundle fiber are aligned on a straight line can also be used. This is because the light emitted from each fiber has a sufficient divergence angle corresponding to the N / A of the fiber, and the fiber light source in which the light is aligned is substantially a linear diffused light source.
Then, the light intensity for each pixel for one line in the width direction of the steel plate 21 in the reflected light 26 received by the light receiving cameras 29a, 29b, and 29c in this way is the light intensity signals a, b, and c, respectively. It is converted and transmitted to the signal processing unit 40 as shown in FIG.

図3は、この信号処理部40の概略構成を示すブロック図である。
40°の検光子28aが組込まれた第1のカメラとしての受光カメラ29a、0°の検光子28bが組込まれた第2のカメラとしての受光カメラ29b、−45°検光子28cが組込まれた第3のカメラとしての受光カメラ29cから入力された各光強度信号a,b,cは、それぞれ平均値間引き部30a,30b,30cへ入力される。
FIG. 3 is a block diagram showing a schematic configuration of the signal processing unit 40.
A light receiving camera 29a as a first camera incorporating a 40 ° analyzer 28a, a light receiving camera 29b as a second camera incorporating a 0 ° analyzer 28b, and a −45 ° analyzer 28c are incorporated. The light intensity signals a, b, and c input from the light receiving camera 29c as the third camera are input to the average value thinning units 30a, 30b, and 30c, respectively.

各平均値間引き部30a〜30cは、各受光カメラ29a〜29cのスキャン周期ごとに各受光カメラ29a〜29cから入力される各光強度信号a〜cを平均し、鋼板21が信号処理における長手方向分解能に相当する距離を移動した場合に、1ライン分の信号を出力する。
このような間引き処理を行うことにより、鋼板21の搬送速度が変化しても信号処理における1ラインの鋼板移動方向の分解能を一定にすることができる。また、スキャン周期ごとの各光強度信号a〜cを平均しているので、信号処理における1ラインの鋼板移動方向の分解能が受光カメラ29a〜29cの鋼板移動方向の視野サイズよりも充分大きい場合にも、間を細かく測定した平均値を用いることができるので、見落としをなくすことができる。
Each of the average value thinning units 30a to 30c averages the light intensity signals a to c input from the light receiving cameras 29a to 29c for each scanning period of the light receiving cameras 29a to 29c, and the steel plate 21 is longitudinal in the signal processing. When a distance corresponding to the resolution is moved, a signal for one line is output.
By performing such a thinning process, the resolution in the moving direction of one line of the steel plate in the signal processing can be made constant even if the conveying speed of the steel plate 21 changes. Further, since the light intensity signals a to c for each scanning cycle are averaged, when the resolution in the steel plate moving direction of one line in the signal processing is sufficiently larger than the visual field size of the light receiving cameras 29a to 29c in the steel plate moving direction. However, since an average value measured finely can be used, oversight can be eliminated.

各平均値間引き部30a〜30cで信号処理された各光強度信号a〜cは、次の各前処理部31a,31b,31cへ入力される。各前処理部31a〜31cは、1ラインの信号の輝度ムラを補正する。ここでいう輝度ムラには、光学系に起因するムラも鋼板21の反射率に起因するムラも含まれる。また、各前処理部31a〜31cは、鋼板21の両側のエッジ位置も検出し、エッジにおける急激な光強度信号a〜cの変化を表面欠陥と誤認識することを防ぐ処理も実施する。各前処理部31a〜31cで信号処理された各光強度信号a〜cは次の各2値化処理部32a,32b,32cへ入力される。   The light intensity signals a to c subjected to the signal processing by the average value thinning units 30a to 30c are input to the next preprocessing units 31a, 31b, and 31c. Each pre-processing part 31a-31c correct | amends the brightness nonuniformity of the signal of 1 line. The luminance unevenness here includes unevenness caused by the optical system and unevenness caused by the reflectance of the steel plate 21. Moreover, each pre-processing part 31a-31c also detects the edge position of the both sides of the steel plate 21, and also performs the process which prevents misrecognizing the rapid change of the light intensity signals a-c in an edge as a surface defect. The light intensity signals a to c signal-processed by the pre-processing units 31a to 31c are input to the following binarization processing units 32a, 32b, and 32c.

各2値化処理部32a〜32cは、各光強度信号a〜cに含まれる各画素のデータを予め決められたしきい値と比較し、表面欠陥候補点を抽出して、次の特徴量算出部33a,33b,33cへ送出する。
特徴量抽出部33a〜33cは、一続きとなっている表面欠陥候補点を1つの表面欠陥候補領域と判定し、例えばスタートアドレス、エンドアドレスなどの位置特徴量や、ピーク値などの濃度特徴量などを算出する。
正反射性欠陥判定部34および拡散反射性欠陥判定部35では、各受光カメラ29a〜29cに対応する各特徴量抽出部33a〜33cにより算出された特徴量に基づいて、欠陥の種類、およびその程度を判定する。
Each of the binarization processing units 32a to 32c compares the data of each pixel included in each of the light intensity signals a to c with a predetermined threshold value, extracts surface defect candidate points, and outputs the next feature amount The data is sent to the calculation units 33a, 33b, and 33c.
The feature amount extraction units 33a to 33c determine a continuous surface defect candidate point as one surface defect candidate region, and position feature amounts such as a start address and an end address, and density feature amounts such as a peak value, for example. Etc. are calculated.
In the regular reflection defect determination unit 34 and the diffuse reflection defect determination unit 35, based on the feature amounts calculated by the feature amount extraction units 33a to 33c corresponding to the respective light receiving cameras 29a to 29c, the type of the defect and its Determine the degree.

そして、欠陥総合判定部36では、正反射性欠陥判定部34および拡散反射性欠陥判定部35での判定結果および特徴量により、検査対象としての鋼板21に対する最終的な欠陥の種別およびその程度を判定する。
また、この総合判定部36では、各特徴量抽出部33a〜33cからの位置特徴量を基に、各受光カメラ29a〜29cにおける視野ずれの補正も行う。このように、特徴量単位で受光カメラ29a〜29c相互間の視野ずれの補正を行うので、受光カメラ29a〜29c相互間の視野を画素単位で調整しておく必要はない。
Then, in the defect comprehensive determination unit 36, the final defect type and the degree of the defect with respect to the steel plate 21 as the inspection target are determined based on the determination result and the feature amount in the regular reflection defect determination unit 34 and the diffuse reflection defect determination unit 35. judge.
In addition, the comprehensive determination unit 36 also corrects the field deviation in each of the light receiving cameras 29a to 29c based on the position feature amounts from the feature amount extraction units 33a to 33c. As described above, since the field shift between the light receiving cameras 29a to 29c is corrected in units of feature amounts, it is not necessary to adjust the field of view between the light receiving cameras 29a to 29c in units of pixels.

そして、このような構成をした本発明の表面欠陥検査装置100を用いた亜鉛系めっき鋼板(合金化溶融亜鉛めっきGA1、GA2)、溶融亜鉛めっきGI1,GI2)の表面欠陥の識別を行ったところ、例えば、ヘゲ、不めっき、スプラッシュ、アッシュ、デンツ、焼けムラ、擦り傷、白筋状スケール、筋模様などの顕著な凹凸欠陥や模様状欠陥については正確に識別できたことは、勿論、従来の偏光式表面欠陥装置では検出することができなかった、白筋状スケール(B級)などの微小凹凸欠陥についてもはっきりと識別することができた。   And when the surface defect of the galvanized steel plate (alloyed hot dip galvanized GA1, GA2), hot dip galvanized GI1, GI2) was identified using the surface defect inspection apparatus 100 of the present invention having such a configuration. For example, it has been possible to accurately identify remarkable irregularities and pattern defects such as baldness, non-plating, splash, ash, dents, burn unevenness, scratches, white streak scales, and streaks. It was also possible to clearly discriminate minute irregularities such as a white streak scale (class B) that could not be detected by the polarization type surface defect apparatus.

次に、このような構成をした本発明の表面欠陥検査装置100のカメラ位置や検出条件の選定などについて主に図4〜図9の図面を参照しながら説明する。
先ず、前述した3つの受光カメラ29a(以後、これを「偏光40°カメラ」と称す)、受光カメラ29b(以後、これを「偏光0°カメラ」と称す)、受光カメラ29c(以後、これを「偏光−45°カメラ」と称す)のうち、いずれのカメラ位置を正反射光路上である正反射位置から乱反射位置にずらすかを決定するに際し、それぞれのカメラを実際に正反射位置から乱反射位置にずらしたときの感度余裕度(a.u.)を調べた。
Next, selection of the camera position, detection conditions, etc. of the surface defect inspection apparatus 100 of the present invention having such a configuration will be described with reference mainly to the drawings of FIGS.
First, the above-described three light receiving cameras 29a (hereinafter referred to as “polarized light 40 ° camera”), light receiving camera 29b (hereinafter referred to as “polarized light 0 ° camera”), and light receiving camera 29c (hereinafter referred to as “polarized light 40 ° camera”). When deciding which camera position to shift from the regular reflection position on the regular reflection light path to the irregular reflection position, the camera is actually moved from the regular reflection position to the irregular reflection position. The sensitivity margin (au) when shifted to is examined.

図4は、4種類の自動車外板用亜鉛系めっき鋼板(GA1(低粗度)、GA2(低粗度)、GI1(中粗度)、GI2(低粗度))についてのそれぞれの偏光40°カメラ、偏光0°カメラ、偏光−45°カメラの感度余裕度(a.u.)を示したものである。
図示するように、いずれのケース(鋼板種)においても、偏光40°カメラの感度余裕度(a.u.)が最も低く、偏光−45°カメラの感度余裕度(a.u.)が最も高い関係であることが分かった。
従って、本発明においては、正反射位置から乱反射位置に移動するカメラとして感度余裕度(a.u.)が最も高い偏光−45°カメラ(受光カメラ29c)を選定した。
FIG. 4 shows polarized light 40 for four types of galvanized steel sheets for automobile outer plates (GA1 (low roughness), GA2 (low roughness), GI1 (medium roughness), GI2 (low roughness)). This shows the sensitivity margin (au) of the ° camera, the polarized light 0 ° camera, and the polarized light −45 ° camera.
As shown in the figure, in any case (steel plate type), the sensitivity margin (au) of the polarization 40 ° camera is the lowest, and the sensitivity margin (au) of the polarization-45 ° camera is the lowest. It turned out to be a high relationship.
Therefore, in the present invention, the polarization-45 ° camera (light receiving camera 29c) having the highest sensitivity margin (au) is selected as the camera that moves from the regular reflection position to the irregular reflection position.

次に、この正反射位置から乱反射位置に移動する偏光−45°カメラの角度を決定するに際して、その感度余裕度(a.u.)が最も高くなる角度を調べた。
図5および図6は、それぞれこの偏光−45°カメラを正反射角度である60°から乱反射角度である45°および50°に変化させたときの感度余裕度(a.u.)を示したものである。
Next, when determining the angle of the polarized -45 ° camera that moves from the regular reflection position to the irregular reflection position, the angle at which the sensitivity margin (au) becomes the highest was examined.
5 and 6 show sensitivity margins (au) when the polarization-45 ° camera is changed from the specular reflection angle of 60 ° to the irregular reflection angles of 45 ° and 50 °, respectively. Is.

図5に示すように、この偏光−45°カメラを正反射角度である60°から乱反射角度である45°に移動した場合では、いずれのケース(鋼板種)においても優れた感度余裕度を示したものの、いずれもそのカメラの感度限界に達しなかったが、図6に示すようにこの偏光−45°カメラを正反射角度である60°から乱反射角度である50°に移動した場合では、いずれのケース(鋼板種)においてもそのカメラの感度限界を超えることが分かり、優れた感度余裕度(a.u.)を発揮することが分かった。
また、特に図示していないが、この偏光−45°カメラの角度をさらに移動した場合、約55°を超えると急激にその感度余裕度(a.u.)が減少することが分かった。
As shown in FIG. 5, when this polarization-45 ° camera is moved from the regular reflection angle of 60 ° to the diffuse reflection angle of 45 °, an excellent sensitivity margin is exhibited in any case (steel plate type). However, none of them reached the sensitivity limit of the camera. However, as shown in FIG. 6, when the polarized-45 ° camera was moved from the regular reflection angle of 60 ° to the diffuse reflection angle of 50 °, In this case (steel plate type), it was found that the sensitivity limit of the camera was exceeded and an excellent sensitivity margin (au) was demonstrated.
Although not specifically shown, it has been found that when the angle of the polarized-45 ° camera is further moved, the sensitivity margin (au) rapidly decreases when the angle exceeds about 55 °.

従って、本発明においては、この乱反射位置に設置する偏光−45°カメラの設置角度として鋼板表面(反射面)に対して約45°〜55°の範囲に設置する必要があり、より望ましくは鋼板表面(反射面)に対して約50°の角度にこの偏光−45°カメラを設置すればより確実に欠陥を識別することができる。
また、このようにして正反射光および拡散反射光を受光するに際しては、各鋼板種ごとに異なる受光輝度(a.u.)をフィルターや光量の調節などによって平滑化することが望ましい。
Therefore, in the present invention, it is necessary to install the polarized-45 ° camera installed at the irregular reflection position in the range of about 45 ° to 55 ° with respect to the steel plate surface (reflecting surface), and more preferably the steel plate. If this polarization-45 ° camera is installed at an angle of about 50 ° with respect to the surface (reflection surface), defects can be identified more reliably.
In addition, when receiving regular reflection light and diffuse reflection light in this way, it is desirable to smooth the light reception luminance (au) that differs for each steel sheet type by adjusting the filter or the amount of light.

図7は、光源の光量値を「7」にしたときの、各カメラの受光輝度を示したものである。図からも分かるように、GA1低粗度鋼およびGA2低粗度鋼の場合は、いずれのカメラにおいてもその受光輝度(a.u.)は、「50」以下であって欠陥検出限界最大輝度である「250」に遙かに満たない状態であるが、GI2低粗度鋼の場合は、いずれのカメラにおいてもその受光輝度(a.u.)は、「50」を超えることが分かる。しかも、GI2低粗度鋼の場合、特に正反射光路上に位置する偏光0°カメラの受光輝度(a.u.)は突出しており、欠陥検出限界最大輝度に達するほどの高い輝度を発揮した。
従って、本発明装置100によって実際に欠陥検出を行うにあたっては、このように各鋼種ごとに異なる受光輝度を考慮し、その受光輝度ができるだけ平滑化するように、光源の光量を調節したり、透過率の異なるフィルターを選定して設置するなどしてから測定することが望ましい。
FIG. 7 shows the received light luminance of each camera when the light amount value of the light source is “7”. As can be seen from the figure, in the case of GA1 low roughness steel and GA2 low roughness steel, the received light intensity (au) of any camera is "50" or less and the defect detection limit maximum brightness. However, in the case of GI2 low-roughness steel, the light receiving luminance (au) of each camera exceeds “50”. Moreover, in the case of GI2 low-roughness steel, the light receiving luminance (au) of the polarization 0 ° camera located on the specular reflection optical path is particularly prominent, and the luminance is high enough to reach the defect detection limit maximum luminance. .
Therefore, when actually detecting defects using the device 100 of the present invention, the light intensity of the light source is adjusted or transmitted so that the light reception brightness is as smooth as possible in consideration of the different light reception brightness for each steel type. It is desirable to measure after selecting and installing filters with different rates.

図8は、このように鋼種ごとに異なる受光輝度を平滑化するための光源の光量値とフィルター透過率との組み合わせの一例を示したものである。
すなわち、GA1低粗度鋼およびGA2低粗度鋼の場合は、図7に示したようにいずれのカメラもその受光輝度(a.u.)が低いことから、その光源の光量値を標準値である「7」からそれぞれ「9.1」、「7.8」に上昇させると共に、各カメラごとに異なる受光輝度(a.u.)の最大値の差を小さくすべく、フィルターの透過率を、受光輝度(a.u.)が最も低い偏光40°カメラでは100%とするのに対し、他のカメラではそれぞれ44%、79%とする。
FIG. 8 shows an example of a combination of the light amount value of the light source and the filter transmittance for smoothing the light receiving luminance that differs for each steel type.
That is, in the case of GA1 low roughness steel and GA2 low roughness steel, as shown in FIG. 7, since the received light intensity (au) of each camera is low, the light intensity value of the light source is set to the standard value. In order to reduce the difference in the maximum value of the received light luminance (au) that is different for each camera, the transmittance of the filter is increased from “7” to “9.1” and “7.8”, respectively. Is set to 100% for a polarized light 40 ° camera with the lowest received luminance (au), whereas it is set to 44% and 79% for other cameras, respectively.

一方、これらGA1低粗度鋼およびGA2低粗度鋼に比べて受光輝度(a.u.)が高いGI2低粗度鋼の場合は、その光源の光量値を標準値である「7」からそれぞれ「6.4」に下げると共に、各カメラごとに異なる受光輝度(a.u.)の最大値の差を小さくするべく、フィルターの透過率を、受光輝度(a.u.)が最も高い偏光0°カメラでは、14%とし、他のカメラではそれぞれ65%、33%などとする。
これによって、図9に示すように、受光輝度が鋼種やカメラの位置に拘わらず上昇し、かつその最大値が平滑化されるため、より高い精度で確実に鋼板表面の欠陥を識別することが可能となる。
On the other hand, in the case of GI2 low roughness steel having a higher light receiving luminance (au) than these GA1 low roughness steel and GA2 low roughness steel, the light intensity value of the light source is changed from the standard value “7”. In order to reduce the maximum value of the received light luminance (au) that is different for each camera while reducing the value to “6.4”, the transmittance of the filter is highest for the received light luminance (au). For a camera with 0 ° polarization, it is 14%, and for other cameras it is 65%, 33%, etc.
As a result, as shown in FIG. 9, the received light brightness increases regardless of the steel type and the position of the camera, and the maximum value is smoothed, so that defects on the surface of the steel sheet can be reliably identified with higher accuracy. It becomes possible.

(a)は、本発明に係る表面欠陥検査装置100の実施の一形態を示す側面図、(b)はその平面図である。(A) is a side view which shows one Embodiment of the surface defect inspection apparatus 100 which concerns on this invention, (b) is the top view. 本発明に係る表面欠陥検査装置100の実施の一形態を示す斜視図である。1 is a perspective view showing an embodiment of a surface defect inspection apparatus 100 according to the present invention. 信号処理部の構成を示すブロック図である。It is a block diagram which shows the structure of a signal processing part. 4種類の自動車外板用亜鉛系めっき鋼板(GA1(低粗度)、GA2(低粗度)、GI1(中粗度)、GI2(低粗度))についてのそれぞれの偏光40°カメラ、偏光0°カメラ、偏光−45°カメラの感度余裕度(a.u.)を示すグラフ図である。Polarized 40 ° camera and polarized light for four types of zinc-plated steel sheets for automotive outer panels (GA1 (low roughness), GA2 (low roughness), GI1 (medium roughness), GI2 (low roughness)) It is a graph which shows the sensitivity margin (au) of a 0 degree camera and a polarized light -45 degree camera. 偏光−45°カメラを正反射角度である60°から乱反射角度である45°に変化させたときの感度余裕度(a.u.)を示すグラフ図である。It is a graph which shows a sensitivity margin (au) when changing a polarized light -45 degree camera from 60 degrees which are regular reflection angles to 45 degrees which are irregular reflection angles. 偏光−45°カメラを正反射角度である60°から乱反射角度である50°に変化させたときの感度余裕度(a.u.)を示すグラフ図である。It is a graph which shows a sensitivity margin (au) when changing a polarized light -45 degree camera from 60 degrees which are regular reflection angles to 50 degrees which are irregular reflection angles. 光源の光量値を「7」にしたときの、各カメラの受光輝度を示したグラフ図である。It is a graph which showed the light-receiving luminance of each camera when the light quantity value of a light source is set to "7". 鋼種ごとに異なる受光輝度を平滑化するための光源の光量値とフィルター透過率との組み合わせの一例を示す表図である。It is a table | surface figure which shows an example of the combination of the light quantity value of the light source and filter transmittance | permeability for smoothing the light-receiving brightness | luminance which changes with steel types. 平滑化処理後の最大受光輝度を示すグラフ図である。It is a graph which shows the maximum light reception brightness | luminance after a smoothing process. 表面欠陥検査装置の検査対象となる合金亜鉛めっき鋼板の製造方法および詳細断面構造を示す図である。It is a figure which shows the manufacturing method and detailed cross-section structure of the alloy galvanized steel plate used as the test object of a surface defect inspection apparatus. 検査対象の鋼板におけるテンパ部と非テンパ部における入射光と反射光との関係を示す断面模式図である。It is a cross-sectional schematic diagram which shows the relationship between the incident light and reflected light in the temper part in a steel plate to be examined, and a non-temper part. 同テンパ部と非テンパ部とにおける反射光の角度分布図である。It is an angle distribution figure of the reflected light in the same temper part and a non-temper part. 鋼板に存在するヘゲ部の生成過程を説明するための図である。It is a figure for demonstrating the production | generation process of the shaving part which exists in a steel plate. ヘゲ部における正反射成分および拡散反射成分と、母材部における正反射成分および拡散反射成分との関係を示す図である。It is a figure which shows the relationship between the regular reflection component and diffuse reflection component in a bald part, and the regular reflection component and diffuse reflection component in a base material part. 鋼板の照射部における微小面素の法線角度と面積率との関係を示す図である。It is a figure which shows the relationship between the normal line angle and area ratio of a micro surface element in the irradiation part of a steel plate. 鋼板に対する入射光の入射角と微小面素の法線角度との関係を示す図である。It is a figure which shows the relationship between the incident angle of the incident light with respect to a steel plate, and the normal line angle of a micro surface element. 微小面素の法線角度と重み関数との関係を示す図である。It is a figure which shows the relationship between the normal line angle of a micro surface element, and a weight function. 線状拡散光源の各位置からの各入射光と鋼板上の入射位置との関係を示す図である。It is a figure which shows the relationship between each incident light from each position of a linear diffused light source, and the incident position on a steel plate. 線状拡散光源の各入射光が偏光されていた場合における反射光の偏光状態を示す図である。It is a figure which shows the polarization state of reflected light in case each incident light of a linear diffused light source is polarized. 線状拡散光源の中央部からの各入射光が偏光されていた場合における微小面素からの反射光を示す図である。It is a figure which shows the reflected light from a micro surface element in case each incident light from the center part of a linear diffused light source is polarized. 線状拡散光源の中央部以外の位置からの各入射光が偏光されていた場合における微小面素からの反射光を示す図である。It is a figure which shows the reflected light from a micro surface element in case each incident light from positions other than the center part of a linear diffused light source is polarized. 微小面素の法線角度と反射光の楕円偏光状態との関係を示す図である。It is a figure which shows the relationship between the normal line angle of a micro surface element, and the elliptical polarization state of reflected light. 反射光の光路に検光子を挿入した場合における微小面素の法線角度と重み関数との関係を示す図である。It is a figure which shows the relationship between the normal line angle of a micro surface element, and a weight function at the time of inserting an analyzer in the optical path of reflected light. 検光子の検光角を変更した場合における微小面素の法線角度と重み関数との関係を示す図である。It is a figure which shows the relationship between the normal line angle of a micro surface element, and a weight function at the time of changing the analysis angle of an analyzer. 微小面素の法線角度と面積率との関係を示す図である。It is a figure which shows the relationship between the normal line angle of a micro surface element, and an area ratio.

符号の説明Explanation of symbols

100…表面欠陥検査装置
4、21…鋼板
6…テンパ部
7…非テンパ部
8,23…入射光
9…正反射光
10…拡散反射光
11…ヘゲ部
12…母材部
14,22…線状拡散光源
15,25…偏光板
16…受光カメラ
17,28a,28b,28c…検光子
24…シリンドリカルレンズ
27…受光部
29a…第1の受光カメラ(偏光40°カメラ)
29b…第2の受光カメラ(偏光0°カメラ)
29c…第3の受光カメラ(偏光−45°カメラ)
40…信号処理部
DESCRIPTION OF SYMBOLS 100 ... Surface defect inspection apparatus 4, 21 ... Steel plate 6 ... Temper part 7 ... Non-temper part 8, 23 ... Incident light 9 ... Regular reflection light 10 ... Diffuse reflection light 11 ... Spatula part 12 ... Base material part 14, 22 ... Linear diffused light source 15, 25 ... Polarizing plate 16 ... Light receiving camera 17, 28a, 28b, 28c ... Analyzer 24 ... Cylindrical lens 27 ... Light receiving unit 29a ... First light receiving camera (polarized light 40 ° camera)
29b ... 2nd light-receiving camera (polarization 0 degree camera)
29c ... Third light receiving camera (polarized light -45 ° camera)
40: Signal processor

Claims (4)

被検査面に直線偏光を入射する直線偏光光源と、前記被検査面からの反射光を第1の検光角で受光する、レンズの前に前記第1の検光角に設定された検光子を有する第1の受光カメラ、前記被検査面からの反射光を第2の検光角で受光する、レンズの前に前記第2の検光角に設定された検光子を有する第2の受光カメラ、及び前記被検査面からの反射光を第3の検光角で受光する、レンズの前に前記第3の検光角に設定された検光子を有する第3の受光カメラとを有する表面欠陥検査装置であって、
記第1の受光カメラと第2の受光カメラを前記被検査面からの正反射光路上に配置すると共に、前記第3の受光カメラを正反射光路上から所定角度ずらして配置し、
前記正反射光路上に配置される前記第1の受光カメラの前記第1の検光角は前記正反射光方向に対して35°〜60°、前記正反射光路上に配置される前記第2の受光カメラの前記第2の検光角は前記正反射光方向に対して−5°〜5°となっていると共に、
前記第3の受光カメラの前記第3の検光角は、前記正反射方向に対して−30°〜−50°になっていることを特徴とする表面欠陥検査装置。
A linearly polarized light source that makes linearly polarized light incident on the surface to be inspected, and an analyzer that receives the reflected light from the surface to be inspected at a first detection angle and is set at the first detection angle before the lens. A second light receiving camera having an analyzer set at the second detection angle in front of the lens, receiving the reflected light from the surface to be inspected at a second detection angle. A surface having a camera and a third light receiving camera that receives reflected light from the surface to be inspected at a third detection angle and has an analyzer set at the third detection angle in front of the lens. A defect inspection device,
With the previous SL first light receiving camera and the second light receiving camera placed specularly reflected light path from the surface to be inspected, and staggered said third predetermined angle light receiving camera from the specular reflection light path of,
The first detection angle of the first light-receiving camera disposed on the regular reflection optical path is 35 ° to 60 ° with respect to the regular reflection light direction, and the second detection angle is disposed on the regular reflection optical path. The second light detection angle of the light receiving camera is -5 ° to 5 ° with respect to the specularly reflected light direction,
3. The surface defect inspection apparatus according to claim 3, wherein the third light detection angle of the third light receiving camera is −30 ° to −50 ° with respect to the regular reflection direction .
請求項に記載の表面欠陥検査装置において、
前記正反射光の反射角度は、前記被検査面に対して45°〜65°になっていると共に、前記第3の受光カメラは、前記被検査面に対して45°〜55°の角度で設置されていることを特徴とする表面欠陥検査装置。
In the surface defect inspection apparatus according to claim 1 ,
The reflection angle of the regular reflection light is 45 ° to 65 ° with respect to the surface to be inspected, and the third light receiving camera is at an angle of 45 ° to 55 ° with respect to the surface to be inspected. A surface defect inspection apparatus characterized by being installed.
直線偏光を被検査面に入射し、前記被検査面からの反射光を第1〜第3の3つの受光カメラを用いてそれぞれ第1の検光角、第2の検光角、及び第3の検光角で受光して前記被検査面上の欠陥を検査するようにした表面欠陥検査方法であって、前記第1の受光カメラが、レンズの前に前記第1の検光角に設定された検光子を有し、前記第2のカメラが、レンズの前に前記第2の検光角に設定された検光子を有し、前記第3の受光カメラが、レンズの前に前記第3の検光角に設定された検光子を有する表面欠陥検査方法において、
記第1の受光カメラと前記第2の受光カメラを前記被検査面から正反射光路上に配置すると共に、前記第3の受光カメラを正反射光路上から所定角度ずらして配置し、
前記正反射光路上に配置される前記第1の受光カメラの前記第1の検光角は前記正反射光方向に対して35°〜60°、前記正反射光路上に配置される前記第2の受光カメラの前記第2の検光角は前記正反射光方向に対して−5°〜5°となっていると共に、
前記第3の受光カメラの前記第3の検光角は、前記正反射方向に対して−30°〜−50°になっており、
その後、前記直線偏光光源から被検査面に直線偏光を入射し、前記被検査面からの反射光をこれら第1〜第3の3つの受光カメラで同時に受光して前記被検査面上の欠陥を監査するようにしたことを特徴とする表面欠陥検査方法。
The linearly polarized light is incident on the surface to be inspected, and the reflected light from the surface to be inspected is first, second, and third using the first to third light receiving cameras, respectively . A surface defect inspection method in which a defect on the surface to be inspected is received by detecting at a detection angle of the first , wherein the first light receiving camera is set at the first detection angle before a lens. The second camera has an analyzer set at the second analysis angle in front of the lens, and the third light-receiving camera has the first camera in front of the lens. In a surface defect inspection method having an analyzer set to an analysis angle of 3,
With the previous SL first light receiving camera and the second light receiving camera placed in the specular reflected light path from the surface to be inspected, and staggered said third predetermined angle light receiving camera from the specular reflection light path of,
The first detection angle of the first light-receiving camera disposed on the regular reflection optical path is 35 ° to 60 ° with respect to the regular reflection light direction, and the second detection angle is disposed on the regular reflection optical path. The second light detection angle of the light receiving camera is -5 ° to 5 ° with respect to the specularly reflected light direction,
The third light detection angle of the third light receiving camera is −30 ° to −50 ° with respect to the regular reflection direction,
After that, the incident linearly polarized light from the linearly polarized light source to the surface to be inspected, defects on the surface to be inspected at the same time received by these first to third three light receiving camera reflected light from the surface to be inspected A method for inspecting surface defects characterized by auditing
請求項に記載の表面欠陥検査方法であって、
前記第1〜第3の受光カメラの前にそれぞれの受光量を調節するフィルターを設けると共に、当該フィルターの透過率と前記直線偏光光源とを前記被検査面の種別ごとに調節して前記被検査面の種別ごとに異なる前記第1〜第3の受光カメラの受光輝度を平滑化することを特徴とする表面欠陥検査方法。
The surface defect inspection method according to claim 3 ,
A filter for adjusting the amount of received light is provided in front of the first to third light receiving cameras, and the transmittance of the filter and the linearly polarized light source are adjusted for each type of the surface to be inspected. A surface defect inspection method characterized by smoothing the light-receiving luminance of the first to third light-receiving cameras different for each type of surface.
JP2007110770A 2007-04-19 2007-04-19 Surface defect inspection apparatus and surface defect inspection method Active JP5104004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007110770A JP5104004B2 (en) 2007-04-19 2007-04-19 Surface defect inspection apparatus and surface defect inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007110770A JP5104004B2 (en) 2007-04-19 2007-04-19 Surface defect inspection apparatus and surface defect inspection method

Publications (2)

Publication Number Publication Date
JP2008267972A JP2008267972A (en) 2008-11-06
JP5104004B2 true JP5104004B2 (en) 2012-12-19

Family

ID=40047675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007110770A Active JP5104004B2 (en) 2007-04-19 2007-04-19 Surface defect inspection apparatus and surface defect inspection method

Country Status (1)

Country Link
JP (1) JP5104004B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5299046B2 (en) * 2009-04-16 2013-09-25 新日鐵住金株式会社 Wrinkle detection device, wrinkle detection method and program
JP5837283B2 (en) * 2010-03-18 2015-12-24 株式会社ブリヂストン Tire appearance inspection method and appearance inspection apparatus
KR20160027238A (en) * 2010-03-30 2016-03-09 제이에프이 스틸 가부시키가이샤 Surface detection method for steel plate having resin coating film and surface detection device for same
JP5786381B2 (en) * 2011-03-10 2015-09-30 株式会社リコー Apparatus for acquiring polarization image of light incident from road surface, method for acquiring polarization image of light incident from road surface, program, and computer-readable recording medium
JP5928231B2 (en) * 2012-08-02 2016-06-01 Jfeスチール株式会社 Surface defect inspection method
CN105190277B (en) * 2012-12-21 2018-04-10 倍耐力轮胎股份公司 Tire or related process of semi-finished and device are controlled in production line
JP6028828B2 (en) * 2014-04-11 2016-11-24 Jfeスチール株式会社 Surface flaw inspection apparatus and surface flaw inspection method
JP6213595B2 (en) * 2015-03-30 2017-10-18 Jfeスチール株式会社 Method and apparatus for detecting surface position of metal body on which chips are placed
US11846498B2 (en) * 2018-06-05 2023-12-19 Nec Corporation Displacement amount measuring device, displacement amount measuring method, and recording medium
JP6863350B2 (en) * 2018-09-07 2021-04-21 Jfeスチール株式会社 Metal strip surface inspection method and metal strip surface inspection equipment
JP2021169949A (en) * 2020-04-15 2021-10-28 Jfeスチール株式会社 Surface inspection method and surface inspection device for steel plate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204353A (en) * 1982-05-24 1983-11-29 Kawasaki Steel Corp Method for detecting flaw on surface of metallic object
JPH07286968A (en) * 1994-04-20 1995-10-31 Sumitomo Metal Ind Ltd Surface defect inspecting device
JP3882302B2 (en) * 1997-12-25 2007-02-14 Jfeスチール株式会社 Surface flaw inspection apparatus and method
JPH11183400A (en) * 1997-12-25 1999-07-09 Nkk Corp Surface flaw inspecting device and method

Also Published As

Publication number Publication date
JP2008267972A (en) 2008-11-06

Similar Documents

Publication Publication Date Title
JP5104004B2 (en) Surface defect inspection apparatus and surface defect inspection method
JP3882302B2 (en) Surface flaw inspection apparatus and method
JP3275811B2 (en) Surface defect inspection apparatus and method
JP3446008B2 (en) Surface inspection equipment
JP5104443B2 (en) Surface inspection apparatus and method
JP2000298102A (en) Surface inspecting device
JP3826578B2 (en) Surface inspection device
JP2005189113A (en) Surface inspecting device and surface inspection method
JP2000065755A (en) Surface inspection apparatus
JP2002221495A (en) Inspecting equipment for surface flaw and its method
JP3716650B2 (en) Surface flaw inspection device
JP3508589B2 (en) Surface flaw inspection equipment
JPH11183396A (en) Surface flaw inspecting device and method
JP3531002B2 (en) Surface inspection device
JPH11183400A (en) Surface flaw inspecting device and method
JPH09178666A (en) Surface inspection device
JP6028828B2 (en) Surface flaw inspection apparatus and surface flaw inspection method
JP7074202B2 (en) Chemical conversion film inspection method, chemical conversion film inspection equipment, surface treatment steel sheet manufacturing method, surface treatment steel sheet quality control method and surface treatment steel sheet manufacturing equipment
JP2005221391A (en) Surface flaw inspection device
JPH11295240A (en) Method and equipment for inspecting surface flaw
JPH11295241A (en) Method and equipment for inspecting surface flaw
JP2021162584A (en) Surface defect detector, surface defect detecting method, steel plate production method, steel plate quality management method and steel plate production facility
JP3384345B2 (en) Surface flaw inspection equipment
JP4821044B2 (en) Manufacturing method of metal strip with marking
JP3687441B2 (en) Surface flaw marking device and method of manufacturing metal band with marking

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120917

R150 Certificate of patent or registration of utility model

Ref document number: 5104004

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250