JP5837283B2 - Tire appearance inspection method and appearance inspection apparatus - Google Patents

Tire appearance inspection method and appearance inspection apparatus Download PDF

Info

Publication number
JP5837283B2
JP5837283B2 JP2010061931A JP2010061931A JP5837283B2 JP 5837283 B2 JP5837283 B2 JP 5837283B2 JP 2010061931 A JP2010061931 A JP 2010061931A JP 2010061931 A JP2010061931 A JP 2010061931A JP 5837283 B2 JP5837283 B2 JP 5837283B2
Authority
JP
Japan
Prior art keywords
tire
light
camera
polarized light
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010061931A
Other languages
Japanese (ja)
Other versions
JP2011196741A (en
Inventor
哲也 ▲鮭▼川
哲也 ▲鮭▼川
智之 金子
智之 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2010061931A priority Critical patent/JP5837283B2/en
Priority to PCT/JP2011/056574 priority patent/WO2011115256A1/en
Publication of JP2011196741A publication Critical patent/JP2011196741A/en
Application granted granted Critical
Publication of JP5837283B2 publication Critical patent/JP5837283B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/303Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces using photoelectric detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/02Tyres
    • G01M17/027Tyres using light, e.g. infrared, ultraviolet or holographic techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/10Wheel alignment
    • G01B2210/28Beam projector and related sensors, camera, inclinometer or other active sensing or projecting device
    • G01B2210/283Beam projectors and related sensors
    • G01B2210/286Projecting a light pattern on the wheel or vehicle body

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

本発明は、タイヤの外観検査方法および外観検査装置(以下、単に「検査方法」および「検査装置」とも称する)に関し、詳しくは、製品タイヤの外観形状を自動的に検査することが可能なタイヤの外観検査方法および外観検査装置に関する。   The present invention relates to a tire appearance inspection method and an appearance inspection apparatus (hereinafter also simply referred to as “inspection method” and “inspection apparatus”), and more specifically, a tire capable of automatically inspecting the appearance shape of a product tire. The present invention relates to an appearance inspection method and an appearance inspection apparatus.

従来、タイヤの外観形状の良否を検査する方法として、図4に示すような、光切断法を用いた検査方法が知られている。この検査方法は、検査するタイヤ60を回転装置71に搭載して回転させるとともに、半導体レーザなどを用いた投光装置72によりタイヤ60のサイド部60Kにスリット光を照射して、上記サイド部60Kのスリット像をCCDカメラなどのエリアカメラ73により撮影した後、このスリット像Sの画像データ(輝度データ)からサイド部60Kの形状を求め、これを基準となるサイド部60Kの画像と比較して、その形状の良否を判定するものである。   Conventionally, an inspection method using a light cutting method as shown in FIG. 4 is known as a method for inspecting the quality of the appearance of a tire. In this inspection method, the tire 60 to be inspected is mounted on the rotating device 71 and rotated, and the light projecting device 72 using a semiconductor laser or the like irradiates the side portion 60K of the tire 60 with slit light, thereby the side portion 60K. After the slit image is taken by an area camera 73 such as a CCD camera, the shape of the side portion 60K is obtained from the image data (luminance data) of the slit image S, and this is compared with the reference image of the side portion 60K. The quality of the shape is determined.

タイヤ等の外観検査に係る技術としては、例えば、特許文献1に、被検体の検査対象面にスリット光を照射する投光手段と上記スリット光の照射部を撮影するエリアカメラとを備えた撮影手段と被検体とを相対的に移動させて上記被検体を撮影し、この撮影されたエリアカメラの画素データから上記被検体の座標と輝度とを算出して上記被検体の形状と濃淡とを検出し、上記被検体の形状及び外観を同時に検査するようにした被検体の外観・形状検査方法が開示されている。また、タイヤ等の外観検査を精度良く行うための技術としては、例えば、特許文献2〜4に開示されている技術も公知である。   As a technique related to an appearance inspection of a tire or the like, for example, Japanese Patent Application Laid-Open No. H10-228867 includes a light projecting unit that irradiates slit light onto a surface to be inspected of a subject and an area camera that photographs the slit light irradiation unit. The subject and the subject are relatively moved to photograph the subject, and the coordinates and brightness of the subject are calculated from the pixel data of the photographed area camera to obtain the shape and shading of the subject. A method for inspecting the appearance and shape of a subject that is detected and simultaneously inspected for the shape and appearance of the subject is disclosed. Moreover, as a technique for accurately performing an appearance inspection of a tire or the like, for example, techniques disclosed in Patent Documents 2 to 4 are also known.

特開2003‐240521号公報(特許請求の範囲等)JP 2003-240521 A (Claims etc.) 特開2001‐249012号公報(特許請求の範囲等)JP 2001-249012 A (claims, etc.) 特開2005‐148010号公報(特許請求の範囲等)JP-A-2005-148010 (Claims etc.) 特開2008‐232779号公報(特許請求の範囲等)JP 2008-232779 (Claims etc.)

しかしながら、従来のタイヤの外観検査方法は、断面画像データを立体(3D)処理して形状データを取得するものであるため、1個のタイヤの検査に要する計算量が多く、処理が煩雑で、時間がかかるという問題があった。また、従来の光切断法を用いた外観検査方法では、分解能はカメラの性能およびラインレーザーの線幅により制限されるため、微細な凹凸欠陥を検出するためにはレーザーおよびカメラの両方の性能を向上させる必要があった。したがって、より短時間で、かつ、簡素な処理方法で、タイヤ表面の微小欠陥を検出することができる検査技術が求められていた。   However, the conventional tire appearance inspection method is to obtain the shape data by processing the cross-sectional image data three-dimensionally (3D), so the amount of calculation required for the inspection of one tire is large, the processing is complicated, There was a problem that it took time. In addition, in the conventional visual inspection method using the light cutting method, the resolution is limited by the performance of the camera and the line width of the line laser, so the performance of both the laser and the camera must be used to detect fine irregularities. There was a need to improve. Therefore, there has been a demand for an inspection technique that can detect minute defects on the tire surface in a shorter time and with a simple processing method.

そこで本発明の目的は、上記問題を解消して、タイヤの外観形状の検査を、従来法と比較してより短時間で、かつ、簡素な処理方法により行うことができ、さらにはタイヤ表面の微小欠陥についても検出することが可能なタイヤの外観検査方法および外観検査装置を提供することにある。   Accordingly, an object of the present invention is to solve the above problems, and to inspect the external shape of the tire in a shorter time and with a simple processing method compared to the conventional method, and further, on the tire surface. An object of the present invention is to provide a tire appearance inspection method and appearance inspection apparatus that can detect even minute defects.

本発明者は鋭意検討した結果、タイヤ表面に対し偏光を照射して、その反射光の偏光状態の変化を分析する手法を用いることで、上記問題を解決できることを見出して、本発明を完成するに至った。   As a result of intensive studies, the present inventor has found that the above problem can be solved by irradiating the tire surface with polarized light and analyzing the change in the polarization state of the reflected light, thereby completing the present invention. It came to.

すなわち、本発明のタイヤの外観検査方法は、タイヤの表面に対し偏光を照射して、該タイヤ表面からの該偏光の反射光を、少なくとも3以上の異なる方向の偏光子を備える、1つの偏光カメラにより受光し、受光した反射光の光強度から該タイヤ表面の凹凸を検出するタイヤの外観検査方法であって、前記偏光カメラとしてラインカメラを用い、前記タイヤの表面に対し54〜60°の角度から偏光を照射するとともに、該偏光カメラを、前記タイヤ表面に対し垂直な方向に配置して、前記タイヤを周方向に回転させながら連続的に検査を行うことを特徴とするものである。   That is, in the tire appearance inspection method of the present invention, the polarized light is applied to the tire surface, and the polarized reflected light from the tire surface is provided with at least three polarizers in different directions. A tire appearance inspection method for detecting an unevenness of a tire surface from light intensity of reflected light received by a camera, wherein a line camera is used as the polarizing camera, and the tire surface is 54 to 60 ° with respect to the tire surface. In addition to irradiating polarized light from an angle, the polarizing camera is arranged in a direction perpendicular to the tire surface and continuously inspected while rotating the tire in the circumferential direction.

また、本発明のタイヤの外観検査装置は、タイヤの表面に対し偏光を照射する光照射手段と、該タイヤ表面からの該偏光の反射光を受光する1つの偏光カメラと、該偏光カメラで受光した反射光の光強度から該タイヤ表面の凹凸を検出する凹凸検出手段と、前記タイヤを周方向に回転させることが可能な回転手段とを備え、該偏光カメラがラインカメラであって、該偏光カメラが、前記タイヤ表面に対し垂直な方向に配置されるとともに、前記光照射手段が、前記タイヤの表面に対し54〜60°の角度から偏光を照射するよう配置されており、前記偏光カメラが、少なくとも3以上の異なる方向の偏光子を備えることを特徴とするものである。   The tire appearance inspection apparatus according to the present invention includes a light irradiating means for irradiating polarized light onto a tire surface, one polarization camera for receiving reflected light of the polarized light from the tire surface, and light received by the polarized camera. An unevenness detecting means for detecting unevenness on the tire surface from the light intensity of the reflected light, and a rotating means capable of rotating the tire in the circumferential direction, wherein the polarization camera is a line camera, and the polarization The camera is disposed in a direction perpendicular to the tire surface, and the light irradiation means is disposed so as to irradiate polarized light from an angle of 54 to 60 degrees with respect to the tire surface. And at least three or more polarizers in different directions.

本発明において、前記偏光としては、直線偏光を用いることが好ましい。   In the present invention, it is preferable to use linearly polarized light as the polarized light.

本発明によれば、タイヤの外観形状の検査を、従来法と比較してより短時間で、かつ、簡素な処理方法により行うことができ、しかも、従来方法では不可能だったタイヤ表面の微小欠陥の検出が可能であるタイヤの外観検査方法および外観検査装置を実現することが可能となった。   According to the present invention, the inspection of the appearance shape of a tire can be performed in a shorter time and by a simple processing method compared to the conventional method, and the tire surface minuteness that has been impossible with the conventional method can be performed. A tire appearance inspection method and appearance inspection apparatus capable of detecting defects can be realized.

本発明のタイヤの外観検査装置の一構成例を示す概略斜視図およびその部分上面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic perspective view showing a configuration example of a tire appearance inspection apparatus according to the present invention and a partial top view thereof. 偏光子方向θと受光強度(透過光強度)Iとの関係を示すグラフである。4 is a graph showing a relationship between a polarizer direction θ and received light intensity (transmitted light intensity) I. 本発明のタイヤの外観検査装置の他の構成例を示す概略斜視図およびその部分上面図である。It is the schematic perspective view which shows the other structural example of the external appearance inspection apparatus of the tire of this invention, and its partial top view. 従来の光切断法を用いたタイヤの外観検査方法を示す説明図である。It is explanatory drawing which shows the external appearance inspection method of the tire using the conventional light cutting method.

以下、本発明の実施の形態について、図面を参照しつつ詳細に説明する。
図1に、本発明のタイヤの外観検査装置の一構成例を示す概略斜視図およびその部分上面図を示す。図示するように、本発明の検査装置は、タイヤ10の表面に対し偏光Lを照射する光照射手段1と、タイヤ10の表面からの偏光の反射光Lを受光する偏光カメラ2と、偏光カメラ2で受光した反射光Lの光強度からタイヤ10の表面の凹凸を検出する凹凸検出手段(図示せず)とを備える。図中のXは偏光カメラ2の視野を示す。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic perspective view showing a configuration example of a tire appearance inspection apparatus according to the present invention and a partial top view thereof. As shown in the drawing, the inspection apparatus of the present invention includes a light irradiation means 1 that irradiates polarized light L 1 on the surface of the tire 10, a polarization camera 2 that receives reflected light L 2 of polarized light from the surface of the tire 10, and and a concave-convex detecting means for detecting the unevenness of the surface of the tire 10 from the light intensity of the reflected light L 2 received by the polarization camera 2 (not shown). X in the figure indicates the field of view of the polarization camera 2.

タイヤ10の表面に対し偏光を照射すると、表面の局所的な形状や粗さの違いによって偏光の入射角が異なる結果、その反射光の偏光状態も局所的に変化する。したがって、タイヤ表面に凹凸が存在すると、その凹凸部分では、反射光の偏光状態が他の部分とは異なるものとなる。本発明においては、これを利用して、偏光カメラを用いてこの偏光の反射光における偏光状態の変化、すなわち偏光角度の変化を取得、分析することで、タイヤ10の表面の凹凸情報を得るものである。これにより、従来の形状計測方法では不可能だったタイヤ表面の微小欠陥、例えば、目視では確認するのが困難なレベルの浅く小さな凹凸欠陥や、異種ゴムが加硫成型された欠陥などの検出が可能となる。また、従来法よりも簡便な方法で、高速かつ高精度に、タイヤの表面情報を取得することが可能であり、タイヤ表面の欠陥を自動的に判別することができるものである。さらに、従来の光切断法による3次元形状測定は、タイヤ表面の汚れや色むら等により多少とも影響を受け、特に微小欠陥を検出する際には、このような汚れや色むら等の影響が小さくないと考えられる。これに対し、本発明で用いる偏光の偏光角は、このような汚れや色むら等に影響されず、表面の凹凸のみにより決まるものであるので、本発明においては、この点からも、従来法と比較して、より精度の高い検出を行うことが可能である。   When the surface of the tire 10 is irradiated with polarized light, the incident angle of the polarized light varies depending on the local shape and roughness of the surface, and the polarization state of the reflected light also changes locally. Therefore, when unevenness exists on the tire surface, the polarization state of the reflected light is different from the other portions in the uneven portion. In the present invention, by using this, a polarization camera is used to obtain and analyze a change in polarization state of reflected light of this polarized light, that is, a change in polarization angle, thereby obtaining uneven information on the surface of the tire 10. It is. This makes it possible to detect small defects on the tire surface that were impossible with conventional shape measurement methods, such as shallow small irregularities that are difficult to see visually, or defects in which different types of rubber were vulcanized. It becomes possible. Further, it is possible to acquire tire surface information at a high speed and with high accuracy by a simpler method than the conventional method, and it is possible to automatically determine a tire surface defect. Furthermore, the three-dimensional shape measurement by the conventional light cutting method is slightly affected by dirt and color unevenness on the tire surface, and particularly when detecting a micro defect, the influence of such dirt and color unevenness is affected. It is not considered small. On the other hand, the polarization angle of the polarized light used in the present invention is not affected by such stains and color unevenness, and is determined only by the surface irregularities. Therefore, in the present invention, the conventional method is also used. It is possible to carry out detection with higher accuracy than

本発明においては、まず、タイヤ10の表面に対し偏光Lを照射する。偏光Lを照射するための光照射手段1としては、偏光を照射できるものであれば、いかなる照明を用いてもよい。具体的には例えば、LED(Light Emitting Diode,発光ダイオード)等の照明器具と、この照明器具から出射した光を偏光させる偏光板とを組み合わせたものを用いることができる。中でも、受光感度の高い赤色のLEDを偏光板とを組み合わせたものを用いることが好ましい。また、本発明においては、タイヤ表面で反射した偏光の反射光における偏光角度の変化が検出できるものであればよいので、使用する偏光については特に制限はないが、通常は、直線偏光を用いる。直線偏光の偏光角度は、特に制限されるものではないが、p波およびs波による情報がバランスよく得られることから、45°偏光とすることが好ましい。 In the present invention, first, irradiated with polarized L 1 with respect to the surface of the tire 10. As the light irradiation means 1 for irradiating a polarized light L 1, as long as it can emit polarized light, it may use any illumination. Specifically, for example, a combination of a lighting fixture such as an LED (Light Emitting Diode) and a polarizing plate that polarizes light emitted from the lighting fixture can be used. Among them, it is preferable to use a combination of a red LED having a high light receiving sensitivity and a polarizing plate. In the present invention, any polarized light can be used as long as it can detect a change in the polarization angle in the reflected light of the polarized light reflected from the tire surface. However, the polarized light to be used is not particularly limited, but usually linearly polarized light is used. The polarization angle of the linearly polarized light is not particularly limited, but it is preferably 45 ° polarized light because information by the p wave and s wave can be obtained in a balanced manner.

タイヤ10の表面からの偏光の反射光Lは、偏光カメラ2により受光される。本発明に用いる偏光カメラ2は、CCD等のセンサより手前に、通常、少なくとも3以上の異なる方向の偏光子を備えるものである。このような偏光カメラ2を用いて反射光を受光することで、対応する画素単位ごとに3方向以上の偏光子のそれぞれの透過光強度を得て、この透過光強度から、反射光の偏光角度(偏光長軸方向)を画像化することができる。 Polarized reflected light L 2 from the surface of the tire 10 is received by the polarization camera 2. The polarization camera 2 used in the present invention usually includes at least three or more polarizers in different directions before a sensor such as a CCD. By receiving the reflected light using such a polarization camera 2, the transmitted light intensity of the polarizer in three or more directions is obtained for each corresponding pixel unit, and the polarization angle of the reflected light is obtained from the transmitted light intensity. (Polarization major axis direction) can be imaged.

偏光カメラで受光した上記反射光の透過光強度データからのタイヤ表面の凹凸の検出は、以下のようにして行われる。すなわち、角度θ(θ=0〜180°)の偏光子を透過する光強度Iは、下記式、
I=M+Acos(2(θ−α))
(式中、αは、偏光子を回転した場合に最も透過光強度が大きくなる方向(偏光長軸方向)を示し、Aは、光強度のうち偏光子を回転した場合に偏光子の角度に応じて変動する成分の振幅(偏光振幅)を示し、Mは、偏光子を回転しても変動しない成分(平均値)を示し、A/Mは偏光している成分の度合い(偏光度)を意味する)により定義される(図2参照)。したがって、上記式に基づき、3方向以上の偏光子のそれぞれの方向および透過光強度のデータを用いて演算することにより、各画素単位ごとの偏光角度を導出することができるので、偏光角度の異なる凹凸部分の検出を容易に行うことが可能となる。また、この画素単位ごとの偏光角度のデータを、例えば、偏光方向により色相を変えたカラー画像として出力すれば、凹凸部分の色が他の部分と異なって表示された画像データとしても得ることができる。ここで、3方向以上の偏光子の角度としては、例えば、0°、90°および135°の組合せとすることができる。なお、上記凹凸の検出は、凹凸検出手段としての、一般的な演算処理装置(PC)を用いて行えばよい。
Detection of unevenness on the tire surface from the transmitted light intensity data of the reflected light received by the polarization camera is performed as follows. That is, the light intensity I transmitted through the polarizer at an angle θ (θ = 0 to 180 °) is expressed by the following equation:
I = M + Acos (2 (θ−α))
(In the formula, α indicates the direction in which the transmitted light intensity is greatest when the polarizer is rotated (polarization major axis direction), and A indicates the angle of the polarizer when the polarizer is rotated out of the light intensity. The amplitude (polarization amplitude) of the component that fluctuates accordingly is shown, M represents the component (average value) that does not vary even when the polarizer is rotated, and A / M represents the degree of polarization component (polarization degree). (See Fig. 2). Therefore, the polarization angle for each pixel unit can be derived by calculating using the direction and transmitted light intensity data of the polarizers in three or more directions based on the above formula, and therefore the polarization angles are different. It is possible to easily detect the uneven portion. In addition, if the polarization angle data for each pixel unit is output as, for example, a color image whose hue is changed according to the polarization direction, it can be obtained as image data in which the color of the uneven portion is displayed differently from the other portions. it can. Here, the angle of the polarizer in three or more directions can be, for example, a combination of 0 °, 90 °, and 135 °. The detection of the unevenness may be performed using a general arithmetic processing unit (PC) as the unevenness detecting means.

上記のような画像処理により、タイヤ10の表面における微小な凹凸欠陥を検出することができ、また、タイヤ10の表面に形状変化なしで異種ゴムが加硫成型された部分があった場合にも、その検出を行うことが可能となる。   By the image processing as described above, it is possible to detect minute irregularities on the surface of the tire 10, and also when there is a portion where the rubber 10 is vulcanized and molded without changing its shape on the surface of the tire 10. The detection can be performed.

なお、本発明においては、照射光の波長と反射光側の波長とが揃っていることが必要であるので、照射光に赤色光を用いる場合には、偏光カメラ側にも赤色フィルタを用いて、赤色光のみを受光することが必要である。   In the present invention, since it is necessary that the wavelength of the irradiated light and the wavelength of the reflected light are aligned, when using red light for the irradiated light, a red filter is also used on the polarizing camera side. It is necessary to receive only red light.

本発明において偏光カメラ2としては、エリアカメラを用いてもラインカメラを用いてもよいが、好ましくは、ラインカメラを用いる。偏光カメラ2としてラインカメラを用いることで、図示するように、タイヤ10を周方向に一定速度で回転させながら撮影を実施して、連続的に検査を行うことが可能となる。タイヤ10の回転は、例えば、タイヤ10を図示しない回転台上に載置して、この回転台を回転させることにより行うことができる。なお、このタイヤ10の回転手段としては、タイヤ10を周方向に回転させることができるものであれば、回転台には特に制限されない。   In the present invention, as the polarization camera 2, an area camera or a line camera may be used, but a line camera is preferably used. By using a line camera as the polarization camera 2, as shown in the figure, it is possible to continuously perform inspection by performing imaging while rotating the tire 10 at a constant speed in the circumferential direction. The rotation of the tire 10 can be performed, for example, by placing the tire 10 on a turntable (not shown) and rotating the turntable. The rotating means of the tire 10 is not particularly limited to a turntable as long as the tire 10 can be rotated in the circumferential direction.

本発明において、光照射手段1と偏光カメラ2との配置条件としては、図1に示すように、タイヤ10の表面に対し、偏光Lが斜めから、例えば、54〜60°の角度から照射されるよう光照射手段1を配置して、偏光カメラ2をタイヤ10の表面に対し垂直な方向に配置することが好ましい。このような配置とすることで、カメラの視野Xがタイヤ半径方向に沿うものとなるので、本発明により得られた画像データと、従来法に従い3次元計測したタイヤ形状データとの位置合わせを行うことにより、タイヤ表面のうちデザイン領域部分について、マスクを行うことなどが可能となる。また、図3に示すように、光照射手段1と偏光カメラ2とを、照射光がタイヤ表面に対しブリュースター角で入射するよう配置することもでき、この場合、入射角と反射角とをブリュースター角に近づけることで、欠陥部での偏光角度変化を最大にして、検出精度を高めることができる。但し、図3に示す配置の場合、タイヤ表面が曲面であるために、偏光カメラ2の視野も、符号Yで示すように曲線状となる。したがって、この場合、得られる画像データが歪んでしまい、タイヤ表面に文字形状等が形成されている場合には、文字形状データとの対応が困難となるとともに、斜めからの撮影であるために文字部分等の凸部の背面側にカメラの死角が生ずるという難点がある。 In the present invention the irradiation, the arrangement condition of the light irradiation means 1 and the polarizing camera 2, as shown in FIG. 1, to the surface of the tire 10, from the polarization L 1 is an oblique, for example, from an angle of 54 - 60 ° It is preferable to arrange the light irradiation means 1 and arrange the polarization camera 2 in a direction perpendicular to the surface of the tire 10. With such an arrangement, the field of view X of the camera is along the tire radial direction, so that the image data obtained by the present invention is aligned with the tire shape data measured three-dimensionally according to the conventional method. This makes it possible to mask the design area of the tire surface. Further, as shown in FIG. 3, the light irradiation means 1 and the polarization camera 2 can be arranged so that the irradiation light is incident on the tire surface at a Brewster angle. In this case, the incident angle and the reflection angle are By bringing the angle closer to the Brewster angle, it is possible to maximize the change in the polarization angle at the defective portion and improve the detection accuracy. However, in the case of the arrangement shown in FIG. 3, since the tire surface is a curved surface, the field of view of the polarizing camera 2 is also curved as indicated by the symbol Y. Therefore, in this case, when the obtained image data is distorted and a character shape or the like is formed on the tire surface, it is difficult to correspond to the character shape data, and the character is captured because it is taken from an oblique direction. There is a drawback that a blind spot of the camera is generated on the back side of the convex part such as a part.

1 光照射手段
2 偏光カメラ
10 タイヤ
,L 偏光
X,Y 偏光カメラの視野
First light emitting means 2 polarization camera 10 tires L 1, L 2 polarization X, the field of view of the Y polarization camera

Claims (4)

タイヤの表面に対し偏光を照射して、該タイヤ表面からの該偏光の反射光を、少なくとも3以上の異なる方向の偏光子を備える、1つの偏光カメラにより受光し、受光した反射光の光強度から該タイヤ表面の凹凸を検出するタイヤの外観検査方法であって、前記偏光カメラとしてラインカメラを用い、前記タイヤの表面に対し54〜60°の角度から偏光を照射するとともに、該偏光カメラを、前記タイヤ表面に対し垂直な方向に配置して、前記タイヤを周方向に回転させながら連続的に検査を行うことを特徴とするタイヤの外観検査方法。 The polarized light is irradiated to the tire surface, and the reflected light of the polarized light from the tire surface is received by one polarization camera having at least three or more polarizers in different directions, and the light intensity of the received reflected light A tire exterior inspection method for detecting irregularities on the tire surface from a line camera as the polarization camera, irradiating polarized light from an angle of 54 to 60 degrees with respect to the tire surface, A method for inspecting the appearance of a tire , wherein the inspection is continuously performed while being arranged in a direction perpendicular to the tire surface and rotating the tire in a circumferential direction . 前記偏光として直線偏光を用いる請求項1記載のタイヤの外観検査方法。   The tire appearance inspection method according to claim 1, wherein linearly polarized light is used as the polarized light. タイヤの表面に対し偏光を照射する光照射手段と、該タイヤ表面からの該偏光の反射光を受光する1つの偏光カメラと、該偏光カメラで受光した反射光の光強度から該タイヤ表面の凹凸を検出する凹凸検出手段と、前記タイヤを周方向に回転させることが可能な回転手段とを備え、該偏光カメラがラインカメラであって、該偏光カメラが、前記タイヤ表面に対し垂直な方向に配置されるとともに、前記光照射手段が、前記タイヤの表面に対し54〜60°の角度から偏光を照射するよう配置されており、前記偏光カメラが、少なくとも3以上の異なる方向の偏光子を備えることを特徴とするタイヤの外観検査装置。 Light irradiation means for irradiating polarized light on the surface of the tire, one polarization camera for receiving the reflected light of the polarized light from the tire surface, and irregularities on the tire surface from the light intensity of the reflected light received by the polarized camera And a rotation means capable of rotating the tire in the circumferential direction, and the polarization camera is a line camera, and the polarization camera is in a direction perpendicular to the tire surface. And the light irradiating means is arranged to irradiate polarized light from an angle of 54 to 60 ° with respect to the surface of the tire, and the polarization camera includes at least three or more polarizers in different directions. A tire appearance inspection apparatus characterized by that. 前記偏光が直線偏光である請求項記載のタイヤの外観検査装置。 The tire appearance inspection apparatus according to claim 3 , wherein the polarized light is linearly polarized light.
JP2010061931A 2010-03-18 2010-03-18 Tire appearance inspection method and appearance inspection apparatus Expired - Fee Related JP5837283B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010061931A JP5837283B2 (en) 2010-03-18 2010-03-18 Tire appearance inspection method and appearance inspection apparatus
PCT/JP2011/056574 WO2011115256A1 (en) 2010-03-18 2011-03-18 Visual inspection method and visual inspection apparatus for tires

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010061931A JP5837283B2 (en) 2010-03-18 2010-03-18 Tire appearance inspection method and appearance inspection apparatus

Publications (2)

Publication Number Publication Date
JP2011196741A JP2011196741A (en) 2011-10-06
JP5837283B2 true JP5837283B2 (en) 2015-12-24

Family

ID=44649336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010061931A Expired - Fee Related JP5837283B2 (en) 2010-03-18 2010-03-18 Tire appearance inspection method and appearance inspection apparatus

Country Status (2)

Country Link
JP (1) JP5837283B2 (en)
WO (1) WO2011115256A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11198339B2 (en) 2017-02-14 2021-12-14 Tekna Automazione E Controllo Srl Apparatus for detecting and checking defects on a tire at the end of a production process

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20121613A1 (en) * 2012-09-27 2014-03-28 Pirelli METHOD FOR THE CONTROL OF THE PRODUCTION OF TIRES FOR VEHICLE WHEELS
WO2014097133A1 (en) 2012-12-21 2014-06-26 Pirelli Tyre S.P.A. Method and apparatus for controlling tyres or related semi-finished products in a production line
JP6485064B2 (en) * 2015-01-21 2019-03-20 株式会社ジェイテクト Sphere position measurement method
WO2019102734A1 (en) * 2017-11-24 2019-05-31 ソニー株式会社 Detection device and electronic device manufacturing method
JP7317286B2 (en) * 2018-12-20 2023-07-31 住友ゴム工業株式会社 Defect detection device with rubber on topping rubber sheet
JP7363217B2 (en) * 2019-09-03 2023-10-18 住友ゴム工業株式会社 Visual inspection equipment
DE112020004391T5 (en) * 2019-09-17 2022-06-02 Boston Polarimetrics, Inc. SYSTEMS AND METHODS FOR SURFACE MODELING USING POLARIZATION FEATURES

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09178668A (en) * 1995-10-24 1997-07-11 Nkk Corp Surface inspection device
JP2003240521A (en) * 2002-02-21 2003-08-27 Bridgestone Corp Method and apparatus for inspection of external appearance and shape of specimen
JP2005221391A (en) * 2004-02-06 2005-08-18 Jfe Steel Kk Surface flaw inspection device
JP4974543B2 (en) * 2005-08-23 2012-07-11 株式会社フォトニックラティス Polarization imaging device
JP5019849B2 (en) * 2006-11-02 2012-09-05 株式会社ブリヂストン Tire surface inspection method and apparatus
JP5104004B2 (en) * 2007-04-19 2012-12-19 Jfeスチール株式会社 Surface defect inspection apparatus and surface defect inspection method
BRPI0917910B1 (en) * 2008-08-26 2019-08-20 Kabushiki Kaisha Bridgestone METHOD AND APPARATUS FOR DETECTION OF SURFACE INEQUALITY OF AN OBJECT UNDER INSPECTION

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11198339B2 (en) 2017-02-14 2021-12-14 Tekna Automazione E Controllo Srl Apparatus for detecting and checking defects on a tire at the end of a production process

Also Published As

Publication number Publication date
WO2011115256A1 (en) 2011-09-22
JP2011196741A (en) 2011-10-06

Similar Documents

Publication Publication Date Title
JP5837283B2 (en) Tire appearance inspection method and appearance inspection apparatus
US11105754B2 (en) Multi-parameter inspection apparatus for monitoring of manufacturing parts
JP5436431B2 (en) Method and apparatus for detecting unevenness of subject
JP5882730B2 (en) Appearance inspection apparatus and appearance inspection method
US11238303B2 (en) Image scanning method for metallic surface and image scanning system thereof
TWI603072B (en) Detecting defects on a wafer
WO2011064969A1 (en) Inspection apparatus, measurement method for three-dimensional shape, and production method for structure
WO2003071224A1 (en) Method of detecting object of detection and device therefor, and method of inspecting object of inspection and device therefor
JP6328130B2 (en) Measurement of fiber orientation of carbon fiber materials and production of objects in carbon fiber composite structures
US20230258578A1 (en) Multi-Parameter Inspection Apparatus for Monitoring of Manufacturing Parts
KR20140146636A (en) Inspection device and inspection method for pattern phase difference filter
JP6317892B2 (en) Appearance inspection apparatus and appearance inspection method
TWI636234B (en) Profile measuring method, profile measuring apparatus and deformation inspecting apparatus
TW201341785A (en) A system and method for inspecting an article for defects
JP2009109243A (en) Device for inspecting resin sealing material
JP2014240766A (en) Surface inspection method and device
JP2000097873A (en) Surface defect inspecting device
KR20190118875A (en) Terahertz wave based defect measurement apparatus and measuring method using the same
JP2864993B2 (en) Surface profile measuring device
JP2010249700A (en) Surface state detection method and device of the same
JP5312182B2 (en) Tire inner surface inspection device
JP5570890B2 (en) Tire appearance inspection method and appearance inspection apparatus
JP2013242257A (en) Inspection method and visual inspection apparatus
KR20110118820A (en) Polarization imaging
JP5367292B2 (en) Surface inspection apparatus and surface inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140822

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150217

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150225

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151105

R150 Certificate of patent or registration of utility model

Ref document number: 5837283

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees