JPH09178668A - Surface inspection device - Google Patents

Surface inspection device

Info

Publication number
JPH09178668A
JPH09178668A JP29789696A JP29789696A JPH09178668A JP H09178668 A JPH09178668 A JP H09178668A JP 29789696 A JP29789696 A JP 29789696A JP 29789696 A JP29789696 A JP 29789696A JP H09178668 A JPH09178668 A JP H09178668A
Authority
JP
Japan
Prior art keywords
light
flaw
defect
steel plate
parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29789696A
Other languages
Japanese (ja)
Inventor
Tsutomu Kawamura
努 河村
Yuji Matoba
有治 的場
Akira Kazama
彰 風間
Takahiko Oshige
貴彦 大重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP29789696A priority Critical patent/JPH09178668A/en
Publication of JPH09178668A publication Critical patent/JPH09178668A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8914Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the material examined
    • G01N2021/8918Metal

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To discriminate classification and degree of a flaw by continuously detecting a patterned flaw and rugged flaws on a steel plate surface on line. SOLUTION: The different polarized lights of the reflected light from a steel plate 4 are measured with three sets of linear array sensors 10a-10c. A signal processing part 13 extracts a proposed flaw area from a polarization image measured. Based on average light intensity in the extracted proposed flaw area, representative values of ellipso-parameter tanΨ, cosΔ of the extracted flaw area and a representative value of surface reflection intensity are calculated, and, based on polarity showing whether the ellipse parameter and the surface reflection intensity calculated are in plus area or minus area of a normal part, variation amount and feature amount of form of the flaw, type and classification of the flaw are decided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、例えば薄鋼板等
の表面疵を光学的に検出する表面検査装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface inspection device for optically detecting surface defects such as thin steel plates.

【0002】[0002]

【従来の技術】例えば鋼板の表面疵を光学的に検出する
装置としては、レ−ザ光の散乱又は回折パタ−ンの変化
を利用して疵を検出する方法が多く用いられている。こ
の方法は鋼板の表面に明らかな凹凸を形成している疵を
検出する場合には有効な方法である。
2. Description of the Related Art For example, as an apparatus for optically detecting a surface flaw of a steel sheet, a method of detecting a flaw by utilizing the scattering of laser light or the change of a diffraction pattern is often used. This method is an effective method for detecting flaws that form apparent irregularities on the surface of a steel sheet.

【0003】一方、鋼板等の疵には、表面の凹凸はな
く、物性値のむら,ミクロな粗さのむら,薄い酸化膜等
の局所的な存在あるいはコ−ティング膜の厚さむらとい
った模様状疵といわれるものがある。このような模様状
疵はレ−ザ光の散乱や回折パタ−ンの変化では検出が困
難である。例えば正常部で100Å程度の酸化膜が付いて
いる鋼板表面に、局所的に400Å程度の酸化膜が厚く付
いている異常部がある場合、このような異常部の領域は
表面処理工程において塗装不良が生じるため、疵として
検出して除去したい要請がある。しかしながら、異常部
と正常部の酸化膜厚の差は鋼板表面の粗さに埋もれてし
まい、光の散乱や回折を利用した方法では全く検出が不
可能である。
On the other hand, a flaw of a steel plate or the like has no unevenness on the surface and has a pattern-like flaw such as unevenness of physical properties, unevenness of microscopic roughness, local presence of thin oxide film or uneven thickness of coating film. There is something called. Such pattern flaws are difficult to detect by scattering of laser light or changes in the diffraction pattern. For example, if there is an abnormal area with a thick oxide film of about 400Å locally on the surface of a steel sheet with an oxide film of about 100Å in the normal area, such an abnormal area will cause coating failure during the surface treatment process. Therefore, there is a request to detect and remove defects. However, the difference in the oxide film thickness between the abnormal portion and the normal portion is buried in the roughness of the steel sheet surface, and cannot be detected at all by the method utilizing light scattering or diffraction.

【0004】このように光の散乱や回折を利用した方法
では検出できない疵を検出するために、偏光を用いた疵
検査方法が例えば特開昭52−138183号公報や特開昭58−
204356号公報等に開示されている。特開昭52−138183号
公報に示された検査方法は被検査体の表面から反射した
P偏光とS偏光の比があらかじめ定めた比較レベルより
高いか否可によって欠陥の有無を検知するものである。
また、特開昭58−204356号公報に示された検出方法は被
検査体の表面に特定角度の入射角で光を照射して、表面
欠陥を検出するときのS/N比を向上するようにしたも
のである。また、偏光を用いた膜厚あるいは物性値の測
定方法が例えば特開昭62−293104号公報に開示されてい
る。特開昭62−293104号公報に示された検査方法は、試
料から反射した偏光を方位角の異なる3個の検光子を通
して受光し、異なる3種類の偏光の光強度から各位置の
エリプソパラメ−タすなわち反射光の電気ベクトルのう
ち入射面方向の成分であるP偏光と入射面に垂直方向の
成分であるS偏光との振幅反射率比tanΨと位相差Δを
演算して、被検査面上の酸化膜やコ−ティング厚さある
いは物性値を精度良く測定する方法である。
In order to detect a flaw that cannot be detected by a method utilizing light scattering or diffraction, a flaw inspection method using polarized light is disclosed in, for example, JP-A-52-138183 and JP-A-58-58.
No. 204356 is disclosed. The inspection method disclosed in Japanese Unexamined Patent Publication No. 52-138183 is to detect the presence or absence of a defect by determining whether or not the ratio of P-polarized light and S-polarized light reflected from the surface of the object to be inspected is higher than a predetermined comparison level. is there.
Further, the detection method disclosed in JP-A-58-204356 aims to improve the S / N ratio when detecting a surface defect by irradiating the surface of the inspection object with light at an incident angle of a specific angle. It is the one. Further, a method of measuring a film thickness or a physical property value using polarized light is disclosed in, for example, JP-A-62-293104. The inspection method disclosed in Japanese Patent Application Laid-Open No. 62-293104 receives polarized light reflected from a sample through three analyzers having different azimuth angles, and determines the ellipso parameter at each position from the light intensities of three different kinds of polarized light. That is, the amplitude reflectance ratio tan Ψ and the phase difference Δ between the P-polarized light which is the component in the incident surface direction and the S-polarized light which is the component in the direction perpendicular to the incident surface in the electric vector of the reflected light are calculated, and Is a method for accurately measuring the oxide film, coating thickness or physical property value of the above.

【0005】[0005]

【発明が解決しようとする課題】特開昭52−138183号公
報や特開昭58−204356号公報に示された検査方法は、偏
光を用いて正常部と異常部とを弁別しているが、厳密な
エリプソパラメ−タである振幅反射率比tanΨと位相差
Δを判定することなしに疵を検出するようにしている。
鋼板等の表面の疵部は光学的物性が正常部と異なった部
分であることが多く、このような部分は複素屈折率が正
常部と異なっているといえる。このような場合、エリプ
ソパラメ−タの振幅反射率比tanΨと位相差Δの両方を
考慮しないと、エリプソパラメ−タの変化の一部しか捕
らえることができず、例えば検査結果として異常部が検
出できたとしても、それが油のしみか、酸化膜のむら
か、又は何らかしらの異常な付着物が付着したのである
か等を弁別することができず、異常部の種別と程度を判
定することは困難であった。
The inspection methods disclosed in JP-A-52-138183 and JP-A-58-204356 use polarized light to discriminate between a normal part and an abnormal part. Defects are detected without determining the amplitude reflectance ratio tan Ψ and the phase difference Δ, which are strict ellipsometry parameters.
A flaw on the surface of a steel plate or the like is often a portion having different optical properties from the normal portion, and it can be said that such a portion has a complex refractive index different from that of the normal portion. In such a case, if both the amplitude reflectance ratio tan Ψ and the phase difference Δ of the ellipsometer are not taken into consideration, only a part of the change in the ellipsometer can be captured. For example, an abnormal part is detected as the inspection result. Even if it is possible, it is not possible to discriminate whether it is oil stains, uneven oxide film, or some abnormal deposits, and determine the type and degree of abnormal parts. Was difficult.

【0006】これに対して特開昭62−293104号公報に示
された検査方法は、エリプソパラメ−タの振幅反射率比
tanΨと位相差Δを使用しているから、油のしみや酸化
膜のむら,異物の付着を弁別できる可能性がある。しか
しながら、この方法は基本的に点測定であり、鋼板等の
表面全体の検査に適さない。仮に、特開昭62−293104号
公報に示されて装置を鋼板の幅方向に多数並べたり、幅
方向に高速に移動可能な機構を持った手段によって1台
の装置を走査したり、何らかの工夫により全面走査が可
能になったとしても、信号処理部は全測定点について偏
光強度信号からエリプソパラメ−タの振幅反射率比tan
Ψと位相差Δを演算し、画像処理装置などを用いて疵種
と疵の等級を判定する必要がある。しかし、幅方向1ラ
インで1000点以上の偏光強度信号を処理しなけらばなら
ず、特にエリプソパラメ−タ演算はソフトウェア演算で
行った場合、約数10秒の演算時間がかかるため、例えば
毎分数100mの速度で通過する鋼板等のシ−ト状製品の
表面をオンラインで連続的に検査することは不可能であ
った。このために専用の偏光パラメ−タ等の演算処理装
置が必要となり、装置が高価になってしまう。
On the other hand, the inspection method disclosed in Japanese Unexamined Patent Publication No. 62-293104 uses the elliptic parameter amplitude reflectance ratio.
Since tan Ψ and phase difference Δ are used, there is a possibility that it is possible to discriminate oil stains, oxide film unevenness, and foreign matter adhesion. However, this method is basically point measurement and is not suitable for inspection of the entire surface of a steel plate or the like. For example, as shown in JP-A-62-293104, a large number of devices are arranged in the width direction of the steel sheet, one device is scanned by means having a mechanism capable of moving at high speed in the width direction, or some device is devised. Even if the entire surface can be scanned by the signal processing unit, the signal processing unit determines the amplitude reflectance ratio tan of the ellipsometer from the polarization intensity signal at all measurement points.
It is necessary to calculate Ψ and the phase difference Δ, and to determine the defect type and the defect grade using an image processing device or the like. However, it is necessary to process polarization intensity signals of 1000 points or more in one line in the width direction, and especially when the ellipsometer parameter calculation is performed by software, it takes about several tens of seconds to calculate the polarization intensity signal. It was not possible to continuously inspect online the surface of a sheet-like product such as a steel plate that passes at a speed of a fraction of 100 m. For this reason, an arithmetic processing device such as a dedicated polarization parameter is required, and the device becomes expensive.

【0007】しかしながら、この方法は検査手法として
は非常に敏感であり、他の種類の疵や汚れ,油むら,ス
ケ−ルなどから相対的に微弱な検出強度した与えない模
様状の表面疵の情報のみを弁別して検出することは困難
であった。特に、表面に油膜が塗布されて製造ライン上
を移動する鋼板を検査する場合には、その油膜むらと本
来検出すべき表面疵の両方を含んだ偏光パラメ−タを検
出してしまい、表面疵の情報だけを弁別して検出するこ
とはできなかった。このため、特に防錆のために表面に
油膜が塗布されていることが多い冷延鋼板等の通常の鋼
板の表面疵の検出に使える可能性がないと考えられてお
り、鋼板の模様状疵を光学的手段で検出することや表面
疵の種類や等級までを判定することは不可能とされてい
た。
However, this method is very sensitive as an inspection method, and relatively weak detection strength from other kinds of flaws, stains, oil spots, scales, and the like, which does not give a pattern-like surface flaw. It was difficult to discriminate and detect only the information. In particular, when inspecting a steel sheet that has an oil film applied to the surface and moves on the production line, a polarization parameter that includes both the oil film unevenness and the surface defect that should be detected should be detected. It was not possible to discriminate and detect only the information of. For this reason, it is considered that there is no possibility that it can be used to detect surface flaws of ordinary steel sheets such as cold-rolled steel sheets, which often have an oil film applied to the surface for rust prevention. It has been considered impossible to detect such defects by optical means or to determine the type and grade of surface defects.

【0008】また、この方法は膜厚あるいは物性値を測
定する方法であり、そのためにはエリプソパラメ−タの
振幅反射率比tanΨと位相差Δを測定すれば十分であっ
た。しかしながら、これらのパラメ−タは必ずしも人の
目で見た状態と一致するものではなく、人が疵と認識で
きてもエリプソパラメ−タは変化しない疵については検
出することができない。
Further, this method is a method for measuring the film thickness or the physical property value, and for that purpose, it was sufficient to measure the amplitude reflectance ratio tan Ψ and the phase difference Δ of the ellipsometer. However, these parameters do not always correspond to the conditions seen by the human eye, and even if a person can recognize a flaw, the ellipso parameter cannot detect a flaw that does not change.

【0009】また、エリプソパラメ−タの演算を行う
と、疵部でのS/Nが撮像装置で捕らえた偏光画像のう
ちS/Nが最大のものと比べると低下してしまう場合も
あり、疵を見逃す危険性があった。
In addition, when the ellipsometer parameters are calculated, the S / N ratio at the flaw may be lower than that of the polarized image captured by the image pickup device. There was a risk of overlooking the flaw.

【0010】この発明はかかる短所を改善するためにな
されたものであり、簡単な構成でシ−ト状製品の表面に
ある模様状疵や凹凸状の疵をオンラインで連続的に検出
して、その種別や程度を正確に弁別することができる表
面検査装置を得ることを目的とするものである。
The present invention has been made to solve the above-mentioned disadvantages, and it is possible to continuously detect online the pattern-like flaws and the uneven flaws on the surface of the sheet-like product with a simple structure, An object of the present invention is to obtain a surface inspection device capable of accurately discriminating its type and degree.

【0011】[0011]

【課題を解決するための手段】この発明に係る表面検査
装置は、投光部と受光部と信号処理部とを有し、投光部
は被検査面の幅方向全体にわたり偏光光束を入射し、受
光部は被検査面からの反射光から異なる3つの偏光成分
を抽出して画像信号に変換し、信号処理部は疵候補領域
抽出部と特徴量演算部とパラメ−タ演算部及び疵判定部
とを有し、疵候補領域抽出部は上記3種類の偏光画像の
濃度レベルと基準濃度レベルとを比較して、測定した偏
光画像の濃度レベルが地肌レベルに相当する基準濃度レ
ベルの範囲外となる領域を疵候補領域として抽出し、特
徴量演算部は抽出した疵候補領域内における測定光強度
の平均値を算出し、パラメ−タ演算部は算出した平均光
強度からエリプソパラメ−タと表面反射強度を算出し、
疵判定部は算出したエリプソパラメ−タと表面反射強度
の特性とあらかじめ定められた表面疵の特性とを比較し
て表面疵の種類と等級を判定することを特徴とする。
A surface inspection apparatus according to the present invention has a light projecting portion, a light receiving portion, and a signal processing portion, and the light projecting portion makes a polarized light beam incident over the entire width direction of the surface to be inspected. The light receiving unit extracts three different polarization components from the reflected light from the surface to be inspected and converts them into an image signal, and the signal processing unit, the defect candidate region extraction unit, the feature amount calculation unit, the parameter calculation unit, and the defect determination. The defect candidate area extraction unit compares the density levels of the above-mentioned three types of polarized images with the reference density level, and the measured density level of the polarized image is outside the range of the reference density level corresponding to the background level. Area is extracted as a defect candidate area, the feature amount calculation unit calculates an average value of the measured light intensity in the extracted defect candidate region, the parameter calculation unit from the calculated average light intensity as an ellipso parameter. Calculate the surface reflection intensity,
The flaw determination unit is characterized by comparing the calculated ellipsoparameter and surface reflection strength characteristics with predetermined surface flaw characteristics to determine the type and grade of the surface flaw.

【0012】上記特徴量演算部は抽出した疵候補領域内
における測定光強度の平均値を算出するとともに疵の形
状,濃度の特徴量を算出し、疵判定部はパラメ−タ演算
部で算出したエリプソパラメ−タと表面反射強度の特性
とあらかじめ定められた表面疵の特性との比較結果及び
疵の形状,濃度の特徴量から表面疵の種類と等級を判定
することが望ましい。
The characteristic amount calculation unit calculates the average value of the measured light intensities in the extracted defect candidate areas and the characteristic amounts of the shape and density of the defect, and the defect determination unit is calculated by the parameter calculation unit. It is desirable to determine the type and grade of the surface flaw based on the result of comparison between the characteristics of the ellipsometer and the surface reflection intensity and the characteristics of the predetermined surface flaw, and the features of the flaw shape and density.

【0013】また、上記受光部は被検査面からの反射光
を3本のビ−ムに分離するビ−ムスプリッタと、分離さ
れた3本のビ−ムの光路にそれぞれ設けられ、それぞれ
異なる方位角を有する検光子と、各検光子を透過した光
を受光するリニアアレイセンサとを有すると良い。
Further, the light receiving portion is provided in each of the beam splitter for separating the reflected light from the surface to be inspected into three beams and the optical path of the separated three beams, which are different from each other. It is preferable to have an analyzer having an azimuth angle and a linear array sensor that receives light transmitted through each analyzer.

【0014】[0014]

【発明の実施の形態】この発明においては、表面検査装
置を投光部と受光部及び信号処理部で構成する。投光部
は被検査面の幅方向全体にわたり一定入射角で光束を入
射するように光源が配置され、光源と被検査面の入射面
との間に偏光子が設けられ、被検査面に一定偏光角の偏
光を入射する。受光部は3組のリニアアレイセンサと、
各リニアアレイセンサの受光面の前面に設けられた検光
子とで構成し、3組の検光子はそれぞれ異なる方位角、
すなわち透過軸が被検査面の入射面となす角が、例えば
「0」,「π/4」,「−π/4」になるように配置さ
れ、3組のリニアアレイセンサは各検光子を通った偏光
を入射して偏光の強度分布を示す画像を信号処理部に出
力する。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a surface inspection apparatus is composed of a light projecting section, a light receiving section, and a signal processing section. A light source is arranged in the light projecting portion so that a light beam is incident at a constant incident angle over the entire width direction of the surface to be inspected. A polarized light having a polarization angle is incident. The light receiving part consists of three sets of linear array sensors,
Each linear array sensor is composed of an analyzer provided on the front surface of the light receiving surface, and the three sets of analyzers have different azimuth angles,
That is, the transmission axis is arranged so that the angle formed by the incident surface of the surface to be inspected is, for example, “0”, “π / 4”, “−π / 4”, and the three sets of linear array sensors are arranged so that each analyzer is The transmitted polarized light is incident and an image showing the intensity distribution of the polarized light is output to the signal processing unit.

【0015】信号処理部には疵候補領域抽出部と特徴量
演算部とパラメ−タ演算部及び疵判定部とが設けられて
いる。疵候補領域抽出部には、被検査面の正常状態を示
す基準濃度レベルがあらかじめ格納されているか、もし
くは測定したデ−タのピ−ク値やバラツキ等から自動的
に求めるようになっている。そして3組のリニアアレイ
センサから入力された偏光画像の濃度レベルと基準濃度
レベルとを比較して、測定した偏光画像の濃度レベルが
基準濃度レベルの範囲外となる領域を疵候補領域として
抽出する。この抽出した疵候補領域内における測定光強
度を特徴量演算部で抽出して平均して疵候補領域の平均
光強度を算出するとともに、疵の座標から長さ,幅,面
積等の形状の特徴量と光強度ピ−ク値,平均光強度等の
濃度の特徴量を算出する。パラメ−タ演算部はこの平均
光強度から疵候補領域のエリプソパラメ−タtanΨ,cos
Δの代表値と表面反射強度の代表値を算出することによ
り、演算処理するデ−タ数を減少して演算処理時間を短
縮する。さらにパラメ−タ演算部で演算する前に疵候補
領域を特定することにより、疵部の信号レベルが低下す
ることを防ぎ、疵の検出精度を高める。疵判定部は算出
したエリプソパラメ−タと表面反射強度が正常部よりプ
ラス領域かマイナス領域かを示す極性と変化量及び疵の
形状の特徴量から異常の程度を判定する。
The signal processing section is provided with a flaw candidate area extracting section, a feature quantity computing section, a parameter computing section and a flaw determining section. In the defect candidate area extraction unit, a reference density level indicating the normal state of the surface to be inspected is stored in advance, or it is automatically obtained from the measured peak value or variation of the data. . Then, the density level of the polarized image input from the three sets of linear array sensors is compared with the reference density level, and a region where the measured density level of the polarized image is outside the range of the reference density level is extracted as a defect candidate region. . The measured light intensity in the extracted defect candidate area is extracted by the feature amount calculation unit and averaged to calculate the average light intensity of the defect candidate area, and the shape features such as the length, width, and area from the defect coordinates are calculated. Amounts, light intensity peak values, density feature values such as average light intensity are calculated. From the average light intensity, the parameter calculation unit calculates the ellipso parameters tan Ψ, cos of the defect candidate area.
By calculating the representative value of Δ and the representative value of the surface reflection intensity, the number of data to be processed is reduced and the processing time is shortened. Furthermore, by specifying the defect candidate area before the calculation by the parameter calculation unit, it is possible to prevent the signal level of the defect from lowering and to improve the defect detection accuracy. The defect determination unit determines the degree of abnormality from the calculated ellipsoparameter and the polarity indicating whether the surface reflection intensity is a positive region or a negative region from the normal region and the change amount and the feature amount of the defect shape.

【0016】[0016]

【実施例】図1はこの発明の一実施例の光学系を示す配
置図である。図に示すように、光学系1は投光部2と受
光部3を有する。投光部2は被検査体例えば鋼板4の幅
方向全体に一定の入射角で偏光を入射するものであり、
光源5と、光源5の前面に設けられた光ファイバ束6
と、光ファイバ束6の先端部に設けられたレンズ群7
と、レンズ群7の前面に設けられた偏光子8とを有す
る。なお、投光部2は光源5として鋼板4の幅方向に伸
びた棒状の光源を使用して光ファイバ束6とレンズ群7
を省略するようにしても良い。偏光子8は偏光板もしく
は偏光フィルタからなり、図2に示すように、透過軸P
が鋼板4の入射面となす角α1がπ/4になるように配
置されている。受光部3は鋼板4から反射角θの正反射
光を受光するものであり、ビ−ムスプリッタ9a,9b
と、例えばCCDからなるリニアアレイカメラ10a,
10b,10cと、リニアアレイカメラ10a,10
b,10cの受光面の前面に設けられた検光子11a,
11b,11cとを有する撮像装置12が鋼板4の幅方
向に連設されている。検光子11a,11b,11cは
例えば偏光板若しくは偏光フィルタからなり、図2に示
すように、検光子11の透過軸が鋼板4の入射面となす
角α2は検光子11aがα2=0、検光子11bがα2
π/4、検光子11cがα2=−π/4になるように配置
されている。リニアアレイカメラ10a〜10cは鋼板
4からの反射光の光強度I1,I2,I3を示す画像信号
を一定周期で1ライン信号として出力する。
1 is a layout view showing an optical system according to an embodiment of the present invention. As shown in the figure, the optical system 1 has a light projecting section 2 and a light receiving section 3. The light projecting portion 2 is for injecting polarized light at a constant incident angle over the entire width direction of the inspection object, for example, the steel plate 4,
Light source 5 and optical fiber bundle 6 provided in front of light source 5
And a lens group 7 provided at the tip of the optical fiber bundle 6.
And a polarizer 8 provided on the front surface of the lens group 7. The light projecting unit 2 uses a rod-shaped light source that extends in the width direction of the steel plate 4 as the light source 5, and uses the optical fiber bundle 6 and the lens group 7.
May be omitted. The polarizer 8 is composed of a polarizing plate or a polarizing filter, and as shown in FIG.
Is arranged so that the angle α 1 formed with the incident surface of the steel plate 4 is π / 4. The light receiving portion 3 receives the regular reflection light having the reflection angle θ from the steel plate 4, and the beam splitters 9a and 9b.
And a linear array camera 10a composed of, for example, a CCD,
10b and 10c and linear array cameras 10a and 10
An analyzer 11a provided on the front surface of the light receiving surface of b, 10c,
The imaging device 12 including 11b and 11c is arranged in series in the width direction of the steel plate 4. The analyzers 11a, 11b, 11c are, for example, polarizing plates or polarizing filters. As shown in FIG. 2, the angle α 2 formed by the transmission axis of the analyzer 11 and the incident surface of the steel plate 4 is α 2 = 0 for the analyzer 11a. , The analyzer 11b has α 2 =
π / 4, and the analyzer 11c is arranged so that α 2 = −π / 4. The linear array cameras 10a to 10c output image signals indicating the light intensities I 1 , I 2 , and I 3 of the reflected light from the steel plate 4 as one line signal at a constant cycle.

【0017】受光部3のリニアアレイカメラ10a,1
0b,10cは、図3のブロック図に示すように、信号
処理部13に接続されている。信号処理部13は前処理
部14a,14b,14cとフレ−ムメモリ15a,1
5b,15c,エッジ検出部16,輝度むら補正部1
7,2値化処理部18,メモリ19a,19b,19
c,オア処理部20,2値メモリ21,疵候補領域抽出
部22,特徴量演算部23,パラメ−タ演算部24及び
疵判定部25を有する。
Linear array cameras 10a, 1 of the light receiving section 3
0b and 10c are connected to the signal processing unit 13, as shown in the block diagram of FIG. The signal processor 13 includes preprocessors 14a, 14b, 14c and frame memories 15a, 1c.
5b and 15c, edge detection unit 16, brightness unevenness correction unit 1
7, binarization processing unit 18, memories 19a, 19b, 19
c, an OR processing unit 20, a binary memory 21, a defect candidate area extraction unit 22, a feature amount calculation unit 23, a parameter calculation unit 24, and a defect determination unit 25.

【0018】前処理部14a〜14cはリニアアレイカ
メラ10a〜10cから出力された反射光の光強度
1,I2,I3を示す画像信号を加算平均するとともに
鋼板4のラインの移動量を検出して、鋼板4が信号処理
における1ラインの長さだけ移動したら、加算平均した
信号を1ラインのデ−タとしてフレ−ムメモリ15a〜
15cに送り、鋼板4の速度が変わっても信号処理にお
ける1ラインの鋼板移動方向の分解能を一定にする。フ
レ−ムメモリ15a〜15cは、例えば横1024画素×縦
200ラインで構成され、1024画素の1ラインデ−タを同
一タイミングでサンプリングして、200ラインに達する
まで順次格納し、2次元の偏光画像を形成する。エッジ
検出部16は鋼板のエッジ部を検出する。輝度むら補正
部17は光源5の強度むらや鋼板反射率むらによる幅方
向の強度むらと、それに伴う感度むらを補正する。2値
化処理部18は偏光画像を2値化して、それぞれメモリ
19a〜19cに格納する。オア処理部20はメモリ1
9a〜19cに格納された2値画像の各画素をオア処理
して2値メモリ21に格納する。疵候補領域抽出部22
は2値メモリ21に格納された2値画像の各画素の濃度
から疵候補領域の位置を特定する。特徴量演算部23は
疵候補領域における測定光強度を抽出して平均して疵候
補領域の平均光強度を算出するとともに、疵の長さ,
幅,面積等の形状の特徴量と光強度ピ−ク値,平均光強
度等の濃度の特徴量を算出する。パラメ−タ演算部24
は疵候補領域の画素の光強度I1,I2,I3の平均光強
度から疵候補領域のエリプソパラメ−タすなわち振幅反
射率比tanΨと位相差Δを示すcosΔと、鋼板4の反射光
の表面反射強度I0を演算する。疵判定部25は算出し
たエリプソパラメ−タと表面反射強度の特性の正常部よ
りプラス領域かマイナス領域かを示す極性と変化量及び
疵の長さ,幅,面積等の形状の特徴量と光強度ピ−ク
値,平均光強度等の濃度の特徴量から異常の程度を判定
する。
The preprocessors 14a to 14c average the image signals indicating the light intensities I 1 , I 2 and I 3 of the reflected light output from the linear array cameras 10a to 10c and calculate the moving amount of the line of the steel plate 4. When the steel plate 4 is detected and moved by the length of one line in the signal processing, the signal obtained by averaging is used as the data of one line in the frame memories 15a ...
15c, even if the speed of the steel plate 4 is changed, the resolution in the steel plate moving direction of one line in the signal processing is made constant. The frame memories 15a to 15c are, for example, 1024 horizontal pixels × vertical.
One line data of 1024 pixels, which is composed of 200 lines, is sampled at the same timing, and sequentially stored until 200 lines are reached to form a two-dimensional polarized image. The edge detector 16 detects the edge of the steel sheet. The brightness unevenness correction unit 17 corrects the intensity unevenness in the width direction due to the intensity unevenness of the light source 5, the steel plate reflectance unevenness, and the sensitivity unevenness associated therewith. The binarization processing unit 18 binarizes the polarization image and stores it in the memories 19a to 19c, respectively. The OR processing unit 20 is the memory 1
Each pixel of the binary image stored in 9 a to 19 c is OR-processed and stored in the binary memory 21. Defect candidate area extraction unit 22
Specifies the position of the defect candidate area from the density of each pixel of the binary image stored in the binary memory 21. The feature amount calculation unit 23 extracts the measured light intensities in the defect candidate area and averages them to calculate the average light intensity of the defect candidate area, and also calculates the length of the defect,
Shape feature amounts such as width and area and light intensity peak values and density feature amounts such as average light intensity are calculated. Parameter calculator 24
Is the ellipso parameter of the defect candidate region, that is, cos Δ indicating the amplitude reflectance ratio tan Ψ and the phase difference Δ, and the reflected light of the steel plate 4 from the average light intensity I 1 , I 2 , and I 3 of the pixels in the defect candidate region. The surface reflection intensity I 0 of is calculated. The defect determination unit 25 is a polarity and change amount indicating whether the calculated ellipsoparameter and the characteristic of the surface reflection intensity is a positive region or a negative region from the normal region, and the feature amount of the shape such as the length, width and area of the defect and the light. The degree of abnormality is judged from the feature values of density such as intensity peak value and average light intensity.

【0019】上記のように構成された表面検査装置の動
作を説明するに当たり、3個のリニアアレイカメラ10
a,10b,10cで検出した光強度から振幅反射率比
tanΨとcosΔと鋼板4の反射光の表面反射強度I0を演
算する原理を説明する。
In explaining the operation of the surface inspection apparatus constructed as described above, three linear array cameras 10 are used.
a, 10b, 10c from the light intensity detected by the amplitude reflectance ratio
The principle of calculating tan Ψ, cos Δ, and the surface reflection intensity I 0 of the reflected light of the steel plate 4 will be described.

【0020】図2に示すように偏光子8の透過軸Pと検
光子11の透過軸Aが鋼板4の入射面となす角をα1
α2とすると、任意の入射角θで鋼板4に入射して反射
したp偏光成分とs偏光成分が検光子11を通って合成
されたときの光強度I(α1,α2)は、p成分とs成分の
振幅反射率をrp,rsとすると次式で表せる。
As shown in FIG. 2, the angle between the transmission axis P of the polarizer 8 and the transmission axis A of the analyzer 11 and the incident surface of the steel plate 4 is α 1 ,
Letting α 2 be the light intensity I (α 1 , α 2 ) when the p-polarized component and the s-polarized component reflected by entering the steel plate 4 at an arbitrary incident angle θ are combined through the analyzer 11, If the amplitude reflectances of the p component and s component are r p and r s , they can be expressed by the following equation.

【0021】[0021]

【数1】 [Equation 1]

【0022】ここでα1=π/4にしたとき、α2=0の
検光子11aを通った光強度I1は、I1=I0ρ2とな
り、α2=π/4の検光子11bを通った光強度I2は、
2=I0(1+ρ2+2ρcosΔ)/2、α2=−π/4の
検光子11cを通った光強度I3は、I3=I0(1+ρ2
−2ρcosΔ)/2となる。この光強度I1,I2,I3
らtanΨとcosΔ及び表面反射強度I0は次式で得られ
る。
Here, when α 1 = π / 4, the light intensity I 1 passing through the analyzer 11a with α 2 = 0 becomes I 1 = I 0 ρ 2 and the analyzer with α 2 = π / 4 The light intensity I 2 passing through 11b is
I 2 = I 0 (1 + ρ 2 + 2ρcos Δ) / 2, α 2 = −π / 4, and the light intensity I 3 that has passed through the analyzer 11 c is I 3 = I 0 (1 + ρ 2
−2 ρ cos Δ) / 2. From the light intensities I 1 , I 2 and I 3 , tan Ψ and cos Δ and the surface reflection intensity I 0 can be obtained by the following equation.

【0023】[0023]

【数2】 [Equation 2]

【0024】但し、光強度I1,I2,I3はカメラのア
ンプゲインなどの選び方によって定数倍される場合もあ
る。
However, the light intensities I 1 , I 2 , and I 3 may be multiplied by a constant number depending on how to select the amplifier gain of the camera.

【0025】次に、上記原理を使用した表面検査装置の
動作を説明する。投光部2から出射されて一定速度で移
動している鋼板4の表面で反射した偏光はビ−ムスプリ
ッタ9a,9bで分離され、検光子11a,11b,1
1cを通ってリニアアレイカメラ10a,10b,10
cに入射する。このリニアアレイカメラ10a,10
b,10cで反射光の光強度を検出するときに、リニア
アレイカメラ10aの前面にはα2=0の検光子11a
が設けられているから、リニアアレイカメラ10aは前
記光強度I1を検出し、リニアアレイカメラ10bの前
面にはα2=π/4の検光子11bが設けられているか
ら、リニアアレイカメラ10bは前記光強度I2を検出
し、リニアアレイカメラ10cの前面にはα2=−π/
4の検光子11cが設けられているから、リニアアレイ
カメラ10cは前記光強度I3を検出する。リニアアレ
イカメラ10a,10b,10cで検出した光強度
1,I2,I3を示す画像信号がそれぞれ前処理部14
a〜14bで前処理がされてフレ−ムメモリ15a〜1
5cに展開され、図4の画像説明図の(a)に示すよう
に、I1偏光画像26aとI2偏光画像26bとI3偏光
画像26cを形成する。ここでリニアアレイカメラ10
a,10b,10cは光学的に位置,角度を調整して同
じ視野となっており、同じタイミングで検出した光強度
1,I2,I3は鋼板4の同一位置で反射した光の光強
度になっている。なお、リニアアレイカメラ10a,1
0b,10cで同一位置の反射光を同じタイミングで検
出できない場合は、リニアアレイカメラ10a,10
b,10cの出力端に遅延回路等を設けて、検出位置と
タイミングを合わせるようにしても良い。
Next, the operation of the surface inspection apparatus using the above principle will be described. The polarized light emitted from the light projecting unit 2 and reflected by the surface of the steel plate 4 moving at a constant speed is separated by the beam splitters 9a and 9b, and the analyzers 11a, 11b and 1 are separated.
Linear array cameras 10a, 10b, 10 through 1c
c. This linear array camera 10a, 10
When detecting the light intensity of the reflected light with b and 10c, the analyzer 11a with α 2 = 0 on the front surface of the linear array camera 10a.
Is provided, the linear array camera 10a detects the light intensity I 1 , and the linear array camera 10b is provided with an analyzer 11b for α 2 = π / 4 on the front surface of the linear array camera 10b. Detects the light intensity I 2, and α 2 = −π / on the front surface of the linear array camera 10c.
Since the four analyzers 11c are provided, the linear array camera 10c detects the light intensity I 3 . The image signals indicating the light intensities I 1 , I 2 , and I 3 detected by the linear array cameras 10a, 10b, and 10c are preprocessing units 14, respectively.
The frame memories 15a to 1 are preprocessed by a to 14b.
5c, and I 1 polarized image 26a, I 2 polarized image 26b, and I 3 polarized image 26c are formed as shown in (a) of the image explanatory view of FIG. Here, the linear array camera 10
a, 10b, and 10c have the same field of view by optically adjusting the position and angle, and the light intensities I 1 , I 2 , and I 3 detected at the same timing are the light of the light reflected at the same position on the steel plate 4. It is strong. In addition, the linear array cameras 10a, 1
When the reflected light at the same position cannot be detected at the same timing in 0b and 10c, the linear array cameras 10a and 10
A delay circuit or the like may be provided at the output ends of b and 10c so as to match the timing with the detection position.

【0026】エッジ検出部16はフレ−ムメモリ15a
〜15cに展開された画像の鋼板4の領域では信号レベ
ルが高く、鋼板4ではない背景領域では信号レベルが小
さくなることから信号レベルが急激に変わっている点を
鋼板4のエッジ部として特定し、信号処理領域を定め
る。輝度むら補正部17は1ラインの信号を幅方向に基
準点を中心に左右の数10点で移動平均して補正し、補正
前の信号を移動平均化された信号の同じ画素の信号で除
算し、地肌である正常部を示す基準レベルを加算して輝
度むら補正する。この輝度むら補正した信号において、
鋼板4の地肌である正常部に対して明るく見える疵の信
号レベルは基準レベルより高く、正常部に対して暗く見
える疵の信号レベルは基準レベルより低くなる。この補
正された画像を2値化処理部25で2値化して、図4
(b)に示すような2値化画像27a,27b,27c
をぞれぞれメモリ19a〜19cに格納する。この2値
化するときの2値化レベルは鋼板4の表面粗さや表面の
塗油状態に応じて定められているが、測定したデ−タの
ピ−ク値やバラツキ等から自動的に求めてノイズレベル
に設定しても良い。また、疵は種類によって正常部のレ
ベルに対して高いレベルになる場合と低いレベルになる
場合があるため、図5に示すように正常レベルに対して
プラス,マイナス両方の2値化レベル28a,28bを
設定して2値化し、図4(b)に示すように、例えば疵
部29a,29bを白、正常部30を黒とする。
The edge detector 16 is a frame memory 15a.
Since the signal level is high in the area of the steel plate 4 in the images developed to 15c and the signal level is low in the background area other than the steel plate 4, the point where the signal level is rapidly changed is specified as the edge portion of the steel plate 4. , Define the signal processing area. The luminance nonuniformity correction unit 17 corrects the signal of one line by moving and averaging the signal of several lines on the left and right centering on the reference point in the width direction, and dividing the signal before correction by the signal of the same pixel of the moving averaged signal. Then, the luminance unevenness is corrected by adding the reference level indicating the normal portion which is the background. In this luminance unevenness corrected signal,
The signal level of a flaw that appears bright with respect to the normal portion that is the background of the steel plate 4 is higher than the reference level, and the signal level of a flaw that appears dark with respect to the normal portion is lower than the reference level. The binarized processor 25 binarizes the corrected image,
Binarized images 27a, 27b, 27c as shown in (b)
The data is stored in the memories 19a to 19c, respectively. The binarization level for this binarization is determined according to the surface roughness of the steel plate 4 and the oil coating state of the surface, but it is automatically determined from the measured peak value of the data and the variation. You may set it to the noise level. Depending on the type, the defect may have a higher level or a lower level than the normal part level. Therefore, as shown in FIG. 5, both the positive and negative binarization levels 28a, 28b is set and binarized, and as shown in FIG. 4B, for example, the flaw portions 29a and 29b are white and the normal portion 30 is black.

【0027】この2値化画像27a〜27cはI1
2,I3の3画像があり、図4(b)に示すように、疵
29a,29bが3画像に共通して異常値として検出さ
れるとは限らないため、オア処理部20で、図4(c)
に示すように、I1,I2,I3の2値画像を各画素毎に
オア処理して、オア処理画像31を2値メモリ21に格
納する。疵候補領域抽出部22は2値メモリ21に格納
されたオア処理画像31の疵部29a,29bを示す白
い部分の位置を求め、図4(d)に示すように、白い部
分に外接する長方形の領域を疵候補領域32a,32b
として抽出し、疵候補領域32a,32bの2点例えば
右上のP1,P3点と左下のP2,P4点の座標から疵候補
領域32a,32bを特定して特徴量演算部23に送
る。特徴量演算部23は疵候補領域32a,32bにお
ける各画素の光強度I1,I2,I3を抽出して平均し、
疵候補領域32a,32bの各平均光強度を算出すると
ともに、疵の長さ,幅,面積等の形状の特徴量と光強度
ピ−ク値,平均光強度等の濃度の特徴量を算出する。パ
ラメ−タ演算部20は送られた疵候補領域30a,30
bの各平均光強度からエリプソパラメ−タである振幅反
射率比tanΨと位相cosΔと鋼板4の反射光の表面反射強
度I0を演算し疵判定部25に送る。
The binarized images 27a to 27c are I 1 ,
Since there are three images I 2 and I 3 , and as shown in FIG. 4B, the flaws 29a and 29b are not always detected as an abnormal value in common to the three images, the OR processor 20 Figure 4 (c)
As shown in FIG. 3 , the binary image of I 1 , I 2 , and I 3 is OR-processed for each pixel, and the OR-processed image 31 is stored in the binary memory 21. The flaw candidate area extraction unit 22 obtains the position of the white portion showing the flaw portions 29a and 29b of the OR processing image 31 stored in the binary memory 21, and as shown in FIG. 4D, a rectangle circumscribing the white portion. Areas of the defect candidate areas 32a, 32b
As the defect candidate areas 32a and 32b, for example, the defect candidate areas 32a and 32b are specified from the coordinates of the upper right P 1 and P 3 points and the lower left P 2 and P 4 points, and the characteristic amount calculation unit 23 is identified. send. The feature amount calculation unit 23 extracts and averages the light intensities I 1 , I 2 , and I 3 of each pixel in the defect candidate regions 32a and 32b,
The average light intensity of each of the defect candidate regions 32a and 32b is calculated, and the feature amount of the shape such as the length, width, and area of the defect and the feature amount of density such as the light intensity peak value and the average light intensity are calculated. . The parameter calculation unit 20 sends the defect candidate areas 30a, 30
The amplitude reflectance ratio tan Ψ, the phase cos Δ, and the surface reflection intensity I 0 of the reflected light from the steel plate 4 are calculated from the respective average light intensities b, and are sent to the flaw determination unit 25.

【0028】疵判定部25は送られた疵候補領域30
a,30bの振幅反射率比tanΨと位相cosΔと鋼板4の
反射光の表面反射強度I0の各レベルを正常部の基準レ
ベルと比較し、プラス領域かマイナス領域かを示す極性
と変化量から疵の種類を判定する。例えば冷延鋼板にお
ける異なる疵種S,T,U,V,Wに対するtanΨとcos
ΔとI0の極性変化を調べた結果は図6に示すようにな
り、鍍金鋼板における異なる疵種S,X,Y,V,Wに
対するtanΨとcosΔとI0の極性変化を調べた結果は図
7に示すようになった。そこで疵判定部25はこの各疵
種のtanΨとcosΔとI0の極性変化の特性と疵候補領域
30a,30bのtanΨとcosΔとI0の組合せから疵の
疵種を判別することができる。このようにエリプソパラ
メ−タに加えて反射光の表面反射強度I0も演算するか
ら検出可能な疵種を細分化することができる。
The defect determination unit 25 sends the defect candidate area 30.
Each level of the amplitude reflectance ratio tan Ψ and the phase cos Δ of a and 30b and the surface reflection intensity I 0 of the reflected light of the steel plate 4 is compared with the reference level of the normal portion, and the polarity and the variation amount indicating the plus or minus region are used. Determine the type of flaw. For example, tan Ψ and cos for different flaw types S, T, U, V, W in cold rolled steel sheet
Result of examining the change in polarity Δ and I 0 is as shown in FIG. 6, different flaw types S in plated steel sheet, X, Y, V, results of examining the change in polarity tanΨ and cosΔ and I 0 for W is As shown in FIG. Therefore flaw determination unit 25 can determine the flaw species flaw from a combination of the polarity changes in the characteristics and flaw candidate region 30a, 30b of tanΨ and cosΔ and I 0 of tanΨ and cosΔ and I 0 of each flaw types. In this way, the surface reflection intensity I 0 of the reflected light is also calculated in addition to the ellipsometer, so that the detectable flaw types can be subdivided.

【0029】この疵種は、例えば同じ疵種Sであって
も、検査員が目視判定する場合にはさらに疵の長さと幅
で詳細に分類する。そこで疵判定部25は上記のように
疵候補領域30a,30bのtanΨとcosΔとI0の組合
せから疵の疵種を判別するとともに、疵候補領域抽出部
22で明らかにした疵の長さと幅で判別した疵種をさら
に詳細に区分する。疵の等級はエリプソパラメ−タや表
面反射強度の値だけで判定する以外に形状の特徴量や濃
度の特徴量も使い判定する。このようにして疵種と等級
を判定した結果、冷延鋼板では疵種の一致率が100%、
等級の一致率が90%程度であり、鍍金鋼板では疵種の一
致率が100%、等級の一致率が95%程度であった。
Even if the defect type is the same as the defect type S, if the inspector makes a visual judgment, the defect type is further classified in detail according to the length and width of the defect. Therefore, the defect determination unit 25 determines the defect type of the defect based on the combination of tan Ψ, cos Δ, and I 0 of the defect candidate regions 30a and 30b as described above, and the defect length and width revealed by the defect candidate region extraction unit 22. The defect types determined in step 1 are further classified in detail. The grade of the flaw is judged not only by the ellipso parameter and the value of the surface reflection intensity but also by the shape feature amount and the density feature amount. As a result of determining the flaw type and grade in this way, the cold rolled steel sheet shows a 100% match rate for the flaw type,
The degree of agreement of grades was about 90%, and that of plated steel sheets was 100%, and that of grades was about 95%.

【0030】このように疵候補領域30a,30bの各
平均光強度からtanΨとcosΔ及び表面反射強度I0を演
算するから、画像全体の領域について演算する場合と比
べてパラメ−タ演算時間を大幅に短縮することができ
る。すなわち、例えば1024画素×200ラインの各画素の
エリプソパラメ−タを全て演算していると汎用画像処理
装置で演算した場合に約数10秒かかる。これに対して疵
候補領域30a,30bの平均光強度から疵候補領域の
エリプソパラメ−タの代表値と表面反射強度の代表値を
求めることで、演算するデ−タ数が各疵候補領域で1個
ずつになるから、パラメ−タ演算時間は0.1msec程度の
短時間で済む。例えば100m/分で移動する鋼板4の偏光
画像を1画面形成する時間は数100msecであることか
ら、高価な特別の装置を使用せずにオンラインで疵種と
等級を検出することができる。
Since tan Ψ and cos Δ and the surface reflection intensity I 0 are calculated from the respective average light intensities of the defect candidate areas 30a and 30b as described above, the parameter calculation time is significantly longer than that in the case of calculating the entire image area. Can be shortened to That is, for example, if all the ellipsoparameters of each pixel of 1024 pixels × 200 lines are calculated, it takes about several tens of seconds when calculated by the general-purpose image processing device. On the other hand, by calculating the representative value of the ellipso parameter and the representative value of the surface reflection intensity of the defect candidate area from the average light intensity of the defect candidate areas 30a and 30b, the number of data to be calculated is different in each defect candidate area. Since it becomes one each, the parameter calculation time can be as short as 0.1 msec. For example, since it takes several 100 msec to form one polarization image of the steel plate 4 moving at 100 m / min, it is possible to detect the defect type and grade online without using an expensive special device.

【0031】また、偏光画像について疵候補領域30
a,30bを抽出しているから、偏光画像の全画素から
tanΨとcosΔ及び表面反射強度I0を算出してエリプソ
パラメ−タ画像と表面反射強度画像について疵候補領域
を抽出する場合と比べて疵部の抽出を確実に行うことが
でき、見逃しや過検出を減らすことができる。例えば偏
光画像における疵部のS/Nと偏光画像の全画素からta
nΨ画像とcosΔ画像及び表面反射強度I0画像を算出し
たときの疵部のS/Nの評価を図8,図9に示す。図8
は無塗油状態を示し、図9は塗油状態を示す。いずれの
場合も偏光画像での疵部のS/Nのほうが高く、疵の検
出を確実に行うことができた。
Further, regarding the polarization image, the defect candidate region 30
Since a and 30b are extracted, from all pixels of the polarization image
Compared with the case where tan Ψ, cos Δ, and surface reflection intensity I 0 are calculated to extract the defect candidate area for the ellipso-parameter image and the surface reflection intensity image, the defect portion can be extracted more reliably, and the defect or over-detection can be performed. Can be reduced. For example, from the S / N of the flaw in the polarized image and all the pixels in the polarized image, ta
FIGS. 8 and 9 show the evaluation of the S / N of the flaw when the nΨ image, the cosΔ image, and the surface reflection intensity I 0 image are calculated. FIG.
Shows the oil-free state, and FIG. 9 shows the oil-coated state. In either case, the S / N ratio of the flaw portion in the polarized image was higher, and the flaw could be detected reliably.

【0032】また、上記実施例は光強度の平均値でエリ
プソパラメ−タと表面反射強度を演算したが、光ピ−ク
値など他の濃度の特徴量を用いても良い。
Further, in the above-mentioned embodiment, the ellipsometer and the surface reflection intensity are calculated by the average value of the light intensity, but the characteristic amount of other density such as the light peak value may be used.

【0033】また、上記実施例は鋼板4からの反射光か
ら異なる3つの偏光成分を抽出するためにビ−ムスプリ
ッタ9a,9bを用いた場合について説明したが、図1
0に示すように鋼板4の移動方向に距離L毎にずれた位
置を検出するリニアアレイカメラ10a〜10cを用
い、設置位置のずれを考慮してメモリ上から偏光画像を
読み出してエリプソパラメ−タと表面反射強度を演算す
るようにしても良い。
In the above embodiment, the beam splitters 9a and 9b are used to extract three different polarization components from the reflected light from the steel plate 4, but FIG.
As shown in 0, the linear array cameras 10a to 10c that detect the positions displaced by the distance L in the moving direction of the steel plate 4 are used, and the polarization image is read from the memory in consideration of the displacement of the installation position and the ellipsometer parameters are read. Alternatively, the surface reflection intensity may be calculated.

【0034】なお、上記実施例は受光部3にリニアアレ
イカメラ10a〜10cを使用した場合について説明し
たが、2次元カメラを使用しても良い。
In the above embodiment, the case where the linear array cameras 10a to 10c are used for the light receiving section 3 has been described, but a two-dimensional camera may be used.

【0035】また、上記実施例は光学系1の受光部3に
3組のリニアアレイカメラ10a〜10cを設けた場合
について説明したが、図11に示すように、受光部3に
3板式偏光リニアアレイカメラ31を使用しても良い。
図11に示す光学系1は投光部2と3板式偏光リニアア
レイカメラ31を有する。投光部2は被検査体例えば鋼
板4の表面に一定の入射角で偏光を入射するものであ
り、光源5と光源5の前面に設けられた偏光子8とを有
する。光源5は鋼板4の幅方向に伸びた棒状発光装置か
らなり、鋼板4の幅方向全体に一定間隔で光を照射す
る。また、場合によっては光源5と偏光子8の間にシリ
ンドリカルレンズを設けて、光源5からの光を鋼板4の
表面に集光しても良い。偏光子8は例えば1/4波長板
からなり、図12の配置説明図に示すように、透過軸P
が鋼板4の入射面となす角α1がπ/4になるように配
置されている。3板式偏光リニアアレイカメラ31は、
図13の構成図に示すように、ビ−ムスプリッタ32と
3個の検光子33a,33b,33cと3個のリニアア
レイセンサ34a,34b,34cとを有する。ビ−ム
スプリッタ32は3個のプリズムからなり、入射面に誘
電体多層膜を蒸着した半透過性を有する反射面が2面設
けられ、鋼板4からの反射光を入射する第1の反射面3
2aは透過率と反射率が2対1の割合になっており、第
1の反射面32aを透過した光を入射する第2の反射面
32bは透過率と反射率が1対1の割合になっており、
鋼板4からの反射光を同じ光量の3本のビ−ムに分離す
る。また、ビ−ムスプリッタ32の入射面から分離した
3本のビ−ムの出射面までの光路長は同じにしてある。
検光子33aは第2の反射面32bの透過光の光路に設
けられ、図12に示すように、方位角すなわち透過軸が
鋼板4の入射面となす角α2が0度になるように配置さ
れ、検光子33bは第2の反射面32bの反射光の光路
に設けられ、方位角α2がπ/4度になるように配置さ
れ、検光子33cは第1の反射面32aの反射光の光路
に設けられ、方位角α2が−π/4になるように配置され
ている。リニアアレイセンサ34a,34b,34cは
例えばCCDセンサからなり、それぞれ検光子33a,
33b,33cの後段に配置されている。また、ビ−ム
スプリッタ32と検光子33a,33b,33cの間に
はビ−ムスプリッタ32内の多重反射光や不必要な散乱
光をカットするスリット35a,35b,35cが設け
られ、ビ−ムスプリッタ32の前段にはレンズ群36が
設けられている。また、リニアアレイセンサ34a,3
4b,34cは同じ光強度の光が入射したときに同じ信
号を出力するように利得が調整してある。
In the above embodiment, the light receiving section 3 of the optical system 1 is provided with the three sets of linear array cameras 10a to 10c. However, as shown in FIG. The array camera 31 may be used.
The optical system 1 shown in FIG. 11 has a light projecting section 2 and a three-plate type polarization linear array camera 31. The light projecting unit 2 is for injecting polarized light on the surface of the object to be inspected, for example, the steel plate 4 at a constant incident angle, and has a light source 5 and a polarizer 8 provided in front of the light source 5. The light source 5 is composed of a rod-shaped light emitting device extending in the width direction of the steel plate 4, and irradiates the entire width direction of the steel plate 4 with light at regular intervals. In some cases, a cylindrical lens may be provided between the light source 5 and the polarizer 8 so that the light from the light source 5 is condensed on the surface of the steel plate 4. The polarizer 8 is composed of, for example, a quarter-wave plate, and as shown in the layout explanatory view of FIG.
Is arranged so that the angle α 1 formed with the incident surface of the steel plate 4 is π / 4. The three-plate polarization linear array camera 31
As shown in the configuration diagram of FIG. 13, it has a beam splitter 32, three analyzers 33a, 33b and 33c, and three linear array sensors 34a, 34b and 34c. The beam splitter 32 is composed of three prisms and has two semi-transmissive reflecting surfaces provided with vapor-deposited dielectric multilayer films on the incident surface, and the first reflecting surface on which the reflected light from the steel plate 4 is incident. Three
In 2a, the transmittance and the reflectance are in a ratio of 2: 1, and in the second reflecting surface 32b on which the light transmitted through the first reflecting surface 32a is incident, the ratio of the transmittance and the reflectance is 1: 1. Has become
The reflected light from the steel plate 4 is separated into three beams having the same light quantity. Further, the optical path lengths from the incident surface of the beam splitter 32 to the emitting surfaces of the three separated beams are the same.
The analyzer 33a is provided in the optical path of the transmitted light of the second reflecting surface 32b, and is arranged so that the azimuth angle, that is, the angle α 2 formed by the transmission axis with the incident surface of the steel plate 4 is 0 degree, as shown in FIG. The analyzer 33b is provided in the optical path of the reflected light of the second reflecting surface 32b, and is arranged so that the azimuth angle α 2 is π / 4 degrees, and the analyzer 33c is the reflected light of the first reflecting surface 32a. Is provided in the optical path of, and the azimuth angle α 2 is −π / 4. The linear array sensors 34a, 34b, 34c are composed of, for example, CCD sensors, and the analyzers 33a,
It is arranged in the latter stage of 33b and 33c. Between the beam splitter 32 and the analyzers 33a, 33b, 33c, slits 35a, 35b, 35c for cutting the multiple reflected light in the beam splitter 32 and unnecessary scattered light are provided. A lens group 36 is provided in front of the optical splitter 32. In addition, the linear array sensors 34a, 3a
The gains of 4b and 34c are adjusted so that the same signal is output when light of the same light intensity enters.

【0036】このように入射した光を分離した3本のビ
−ムの光路に検光子33a〜33cとリニアアレイセン
サ34a〜34cが一体化して設けられているから、リ
ニアアレイセンサ34a〜34c等を鋼板4の搬送路近
傍に設置して鋼板4からの反射光を検出するときに、リ
ニアアレイセンサ34a〜34c等の位置調整を必要と
しないとともに、鋼板4の同じ位置からの反射光を同じ
タイミングで検出することができる。また、3板式偏光
リニアアレイカメラ31内に3組のリニアアレイセンサ
34a〜34cがまとまって収納されて小型化している
から、3板式偏光リニアアレイカメラ31を鋼板4の反
射光の光路に簡単に配置することができるとともに、配
置位置を任意に選択することができ、光学系1の配置の
自由度を向上することができる。
Since the analyzers 33a to 33c and the linear array sensors 34a to 34c are integrally provided in the optical paths of the three beams separating the incident light in this way, the linear array sensors 34a to 34c, etc. Is installed in the vicinity of the conveying path of the steel plate 4 and the reflected light from the steel plate 4 is detected, position adjustment of the linear array sensors 34a to 34c and the like is not required, and the reflected light from the same position of the steel plate 4 is the same. It can be detected at the timing. Further, since three sets of linear array sensors 34a to 34c are collectively housed in the three-plate polarization linear array camera 31, the three-plate polarization linear array camera 31 can be easily installed in the optical path of the reflected light of the steel plate 4. The optical system 1 can be arranged and the arrangement position can be arbitrarily selected, so that the degree of freedom in the arrangement of the optical system 1 can be improved.

【0037】また、上記実施例は受光部3が鋼板4から
の正反射光を受光するように配置されている場合につい
て説明したが、検出する疵種によっては鋼板4からの散
乱反射光を受光するようにしても良い。
In the above embodiment, the case where the light receiving section 3 is arranged to receive the specularly reflected light from the steel plate 4 has been described. However, depending on the flaw type to be detected, the scattered and reflected light from the steel plate 4 is received. It may be done.

【0038】[0038]

【発明の効果】この発明は以上説明したように、偏光画
像から疵候補領域を抽出し、疵候補領域の光強度の平均
値でエリプソパラメ−タtanΨとcosΔ及び表面反射強度
0を疵候補領域の代表値として演算するようにしたか
ら、画像の全画素について演算する場合と比べてパラメ
−タ演算時間を大幅に短縮することができ、高速で移動
しているシ−ト状製品の表面異常部を高価な特別の装置
を使用せずにオンラインで確実に検出することができ
る。
As described above, the present invention extracts flaw candidate regions from a polarized image, and determines the ellipso parameters tan Ψ and cos Δ and the surface reflection intensity I 0 by the average value of the light intensity of the flaw candidate regions. Since the calculation is performed as the representative value of the area, the parameter calculation time can be significantly shortened compared to the case of calculating all the pixels of the image, and the surface of the sheet-like product moving at high speed. Abnormal parts can be reliably detected online without using expensive special equipment.

【0039】また、エリプソパラメ−タtanΨとcosΔ及
び表面反射強度I0で疵種を判別するとともに、判別し
た疵種を疵の長さと幅等の形状でさらに詳細に区分けす
るから、より確実に疵の判定を行うことができる。
Further, since the flaw type is discriminated by the ellipso parameters tan Ψ and cos Δ and the surface reflection intensity I 0 , and the discriminated flaw type is classified in more detail by the shape such as the length and width of the flaw, it is more reliable. Defects can be judged.

【0040】さらに、偏光画像から疵候補領域を抽出す
るから、疵の見逃しを減らして安定して疵を検出するこ
とができる。
Further, since the defect candidate area is extracted from the polarized image, it is possible to reduce the miss of the defect and to detect the defect stably.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例の光学系を示す配置図であ
る。
FIG. 1 is a layout diagram showing an optical system according to an embodiment of the present invention.

【図2】上記実施例の配置を示す説明図である。FIG. 2 is an explanatory diagram showing the arrangement of the above embodiment.

【図3】上記実施例の信号処理部を示すブロック図であ
る。
FIG. 3 is a block diagram showing a signal processing unit of the above embodiment.

【図4】上記実施例の動作を示す画像説明図である。FIG. 4 is an image explanatory view showing the operation of the above embodiment.

【図5】2値化レベルを示す濃度特性図である。FIG. 5 is a density characteristic diagram showing a binarization level.

【図6】冷延鋼板における疵種の極性特性図である。FIG. 6 is a polar characteristic diagram of a flaw type in a cold rolled steel sheet.

【図7】鍍金鋼板における疵種の極性特性図である。FIG. 7 is a polar characteristic diagram of a flaw type in a plated steel sheet.

【図8】無塗油状態における疵部のS/Nの評価特性図
である。
FIG. 8 is an evaluation characteristic diagram of S / N of a flaw portion in an oil-free state.

【図9】塗油状態における疵部のS/Nの評価特性図で
ある。
FIG. 9 is an evaluation characteristic diagram of S / N of a flaw portion in an oiled state.

【図10】他の光学系を示す配置図である。FIG. 10 is a layout diagram showing another optical system.

【図11】第3の光学系を示す配置図である。FIG. 11 is a layout diagram showing a third optical system.

【図12】第3の光学系の動作を示す配置説明図であ
る。
FIG. 12 is an arrangement explanatory view showing the operation of the third optical system.

【図13】第3の光学系の3板式偏光リニアカメラの構
成図である。
FIG. 13 is a configuration diagram of a three-plate polarization linear camera of a third optical system.

【符号の説明】[Explanation of symbols]

1 光学系 2 投光部 3 受光部 4 鋼板 8 偏光子 9 ビ−ムスプリッタ 10 リニアアレイカメラ 11 検光子 13 信号処理部 14 前処理部 15 フレ−ムメモリ 16 エッジ検出部 17 輝度むら補正部 18 2値化処理部 19 メモリ 20 オア処理部 21 2値メモリ 22 疵候補領域抽出部 23 特徴量演算部 24 パラメ−タ演算部 25 疵判定部 DESCRIPTION OF SYMBOLS 1 Optical system 2 Light emitting part 3 Light receiving part 4 Steel plate 8 Polarizer 9 Beam splitter 10 Linear array camera 11 Analyzer 13 Signal processing part 14 Pre-processing part 15 Frame memory 16 Edge detection part 17 Brightness unevenness correction part 18 2 Quantization processing unit 19 Memory 20 OR processing unit 21 Binary memory 22 Defect candidate area extraction unit 23 Feature amount calculation unit 24 Parameter calculation unit 25 Defect determination unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大重 貴彦 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Takahiko Oshige 1-2-1 Marunouchi, Chiyoda-ku, Tokyo Inside Nihon Kokan Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 投光部と受光部と信号処理部とを有し、 投光部は被検査面の幅方向全体にわたり偏光光束を入射
し、 受光部は被検査面からの反射光から異なる3つの偏光成
分を抽出して画像信号に変換し、 信号処理部は疵候補領域抽出部と特徴量演算部とパラメ
−タ演算部及び疵判定部とを有し、疵候補領域抽出部は
上記3種類の偏光画像の濃度レベルと基準濃度レベルと
を比較して、測定した偏光画像の濃度レベルが地肌レベ
ルに相当する基準濃度レベルの範囲外となる領域を疵候
補領域として抽出し、特徴量演算部は抽出した疵候補領
域内における測定光強度の平均値を算出し、パラメ−タ
演算部は算出した平均光強度からエリプソパラメ−タと
表面反射強度を算出し、疵判定部は算出したエリプソパ
ラメ−タと表面反射強度の特性とあらかじめ定められた
表面疵の特性とを比較して表面疵の種類と等級を判定す
ることを特徴とする表面検査装置。
1. A light projecting unit, a light receiving unit, and a signal processing unit, wherein the light projecting unit receives a polarized light beam over the entire width direction of the surface to be inspected, and the light receiving unit is different from the light reflected from the surface to be inspected. The three polarization components are extracted and converted into an image signal, and the signal processing section has a flaw candidate area extracting section, a feature quantity computing section, a parameter computing section and a flaw determining section, and the flaw candidate area extracting section By comparing the density levels of the three types of polarized images with the reference density level, a region where the measured density level of the polarized image is outside the range of the reference density level corresponding to the background level is extracted as a defect candidate region, and the feature amount The calculation unit calculates the average value of the measurement light intensity in the extracted defect candidate area, the parameter calculation unit calculates the ellipso parameter and the surface reflection intensity from the calculated average light intensity, and the defect determination unit calculates Ellipso parameters and characteristics of surface reflection intensity A surface inspection apparatus characterized by judging the type and grade of surface flaws by comparing the characteristics of surface flaws determined in advance.
【請求項2】 上記特徴量演算部は抽出した疵候補領域
内における測定光強度の平均値を算出するとともに疵の
形状,濃度の特徴量を明らかにし、疵判定部はパラメ−
タ演算部で算出したエリプソパラメ−タと表面反射強度
の特性とあらかじめ定められた表面疵の特性との比較結
果及び疵の形状,濃度の特徴量から表面疵の種類を判定
する請求項1記載の表面検査装置。
2. The feature amount calculation unit calculates an average value of the measured light intensities in the extracted defect candidate area and clarifies the feature amount of the shape and density of the defect, and the defect determination unit sets the parameter.
3. The type of surface flaw is determined from the result of comparison between the characteristics of the ellipsometer and the surface reflection intensity calculated by the data calculation unit and the characteristics of a predetermined surface flaw, and the feature amount of the flaw shape and density. Surface inspection equipment.
【請求項3】 上記受光部は被検査面からの反射光を3
本のビ−ムに分離するビ−ムスプリッタと、分離された
3本のビ−ムの光路にそれぞれ設けられ、それぞれ異な
る方位角を有する検光子と、各検光子を透過した光を受
光するリニアアレイセンサとを有する請求項1又は2記
載の表面検査装置。
3. The light receiving section receives the reflected light from the surface to be inspected 3
A beam splitter for splitting into a beam of light, an analyzer provided in the optical path of each of the three split beams, and having an azimuth angle different from each other, and receiving light transmitted through each analyzer. The surface inspection apparatus according to claim 1, further comprising a linear array sensor.
JP29789696A 1995-10-24 1996-10-23 Surface inspection device Pending JPH09178668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29789696A JPH09178668A (en) 1995-10-24 1996-10-23 Surface inspection device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-298833 1995-10-24
JP29883395 1995-10-24
JP29789696A JPH09178668A (en) 1995-10-24 1996-10-23 Surface inspection device

Publications (1)

Publication Number Publication Date
JPH09178668A true JPH09178668A (en) 1997-07-11

Family

ID=26561287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29789696A Pending JPH09178668A (en) 1995-10-24 1996-10-23 Surface inspection device

Country Status (1)

Country Link
JP (1) JPH09178668A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011196741A (en) * 2010-03-18 2011-10-06 Bridgestone Corp Visual inspection method and device of tire
JP2012229928A (en) * 2011-04-25 2012-11-22 Jfe Steel Corp Surface flaw detection method and surface flaw detection device
CN103745469A (en) * 2014-01-07 2014-04-23 中国神华能源股份有限公司 Method and device for extracting ground crack information

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011196741A (en) * 2010-03-18 2011-10-06 Bridgestone Corp Visual inspection method and device of tire
JP2012229928A (en) * 2011-04-25 2012-11-22 Jfe Steel Corp Surface flaw detection method and surface flaw detection device
CN103745469A (en) * 2014-01-07 2014-04-23 中国神华能源股份有限公司 Method and device for extracting ground crack information

Similar Documents

Publication Publication Date Title
JPH09127012A (en) Method and device for detecting surface scratch
JP3591160B2 (en) Surface inspection equipment
CN100367027C (en) Method for detecting surface defect and device thereof
JPH11311510A (en) Method and apparatus for inspection of very small uneven part
JP3882302B2 (en) Surface flaw inspection apparatus and method
JPH09178667A (en) Inspection apparatus for surface
JP3728965B2 (en) Surface inspection device
JPH09178666A (en) Surface inspection device
JP3446008B2 (en) Surface inspection equipment
JP3275811B2 (en) Surface defect inspection apparatus and method
JP3826578B2 (en) Surface inspection device
JP2005189113A (en) Surface inspecting device and surface inspection method
JPH09178668A (en) Surface inspection device
JP2000065755A (en) Surface inspection apparatus
JP3275737B2 (en) Surface inspection device and surface inspection method
JP3591161B2 (en) Surface inspection equipment
JPH09159621A (en) Surface inspection device
KR100484812B1 (en) Inspection method of surface by image sensor and the same apparatus
JPH09166549A (en) Surface inspection device
JP3508589B2 (en) Surface flaw inspection equipment
JP2002221495A (en) Inspecting equipment for surface flaw and its method
JP3531002B2 (en) Surface inspection device
JP2002181723A (en) Surface inspection apparatus
JPH09166551A (en) Surface inspection device
JP2005221391A (en) Surface flaw inspection device