JP2000056343A - 光導波路素子およびその製造方法 - Google Patents

光導波路素子およびその製造方法

Info

Publication number
JP2000056343A
JP2000056343A JP11029724A JP2972499A JP2000056343A JP 2000056343 A JP2000056343 A JP 2000056343A JP 11029724 A JP11029724 A JP 11029724A JP 2972499 A JP2972499 A JP 2972499A JP 2000056343 A JP2000056343 A JP 2000056343A
Authority
JP
Japan
Prior art keywords
optical waveguide
buffer layer
thin film
substrate
waveguide device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11029724A
Other languages
English (en)
Inventor
Keiichi Nashimoto
恵一 梨本
Masao Watabe
雅夫 渡部
Hiroaki Moriyama
弘朗 森山
Shigetoshi Nakamura
滋年 中村
Hideyori Osakabe
英資 長ケ部
Takashi Morikawa
尚 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP11029724A priority Critical patent/JP2000056343A/ja
Publication of JP2000056343A publication Critical patent/JP2000056343A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

(57)【要約】 【課題】低駆動電圧特性と低伝搬損失特性を同時に解決
できる構造を有する光導波路素子を提供すること。 【解決手段】不純物元素を0.01重量%から5.0重
量%ドープした導電性または半導電性の下部電極となる
SrTiO単結晶基板2と、単結晶基板2表面に設け
られたエピタキシャルまたは単一配向性の酸化物バッフ
ァ層4と、バッファ層4上に設けられたエピタキシャル
または単一配向性の電気光学効果を有する酸化物薄膜光
導波路1と、光導波路1上に設けられた導電性薄膜また
は半導電性薄膜の上部電極7とを備えた光導波路素子に
よる。本発明の光導波路素子は上部電極7と下部電極2
との間に電圧を印加することにより、光導波路に入射す
る光ビームを変調、スイッチング、または偏向すること
ができる。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、光導波路と、この
光導波路内に入射されたレーザ・ビームを電気光学効果
によって偏向、スイッチング、あるいは変調するための
電極が備えられた光導波路素子に関する。本発明は特
に、レーザ・プリンター、デジタル複写機、ファクシミ
リ用の光偏向素子、光通信や光コンピューター用の光ス
イッチおよび光変調素子、光ディスク用のピックアップ
などを含むオプト・エレクトロニクス全般に適用可能な
光導波路素子に関する。
【0002】
【従来の技術】レーザ・ビーム・プリンター、デジタル
複写機、ファクシミリなどに用いられるレーザ・ビーム
光偏向装置として、気体レーザや半導体レーザからのビ
ームをを偏向するポリゴンミラーと呼ばれる回転多面鏡
と、その回転多面鏡により反射されたレーザ・ビームを
感光体などの結像面上において、等速度直線運動の状態
に集光するfθレンズとで構成されたものが代表的に用
いられている。このようなポリゴンミラーを用いる光偏
向装置はポリゴンミラーをモーターによって高速回転さ
せるために耐久性に問題があるとともに騒音が発生し、
また光走査速度がモーターの回転数によって制限される
問題がある。
【0003】一方、固体型のレーザ・ビーム光偏向装置
としては、音響光学効果を利用した光偏向素子があり、
なかでも光導波路型素子が期待されている。この光導波
路素子はポリゴンミラーを用いたレーザ・ビーム光走査
装置の欠点を解決するレーザ・ビーム光走査素子とし
て、プリンターなどへの応用が検討されている。この光
導波路型の光偏向素子は、LiNbOやZnOなどよ
りなる光導波路と、この光導波路内にレーザ光ビームを
カップリング(入射)させる手段を有し、さらに光導波
路中の光ビームを音響光学効果により偏向するための表
面弾性波を励起するくし形の電極と偏向された光ビーム
を光導波路中よりアウトプットするための手段が備えら
れたものであり、このほかに必要に応じて薄膜レンズな
どが素子へ付加される。しかしながら、音響光学効果を
利用した光偏向素子は一般に偏向速度限界によるレーザ
偏向速度の上限の問題があり、レーザ・プリンター、デ
ジタル複写機、ファクシミリなどの画像形成装置への応
用には限界が存在する。
【0004】これに対して、音響光学効果と比較して変
調速度の速い電気光学効果を有する酸化物強誘電体材料
を用いた、例えば「A.Yariv,Optical Electronics,4th
ed.(New York,Rinehart and Winston,1991)336〜3
39頁」等に解説されたプリズム型光偏向素子が知られ
ている。このような素子としてはセラミックや単結晶を
用いたバルク素子があるが、寸法が大きく、また、駆動
電圧がかなり高いために実用的な偏向角度を得ることが
できなかった。また、Ti拡散型光導波路やプロトン交
換型光導波路を作製したLiNbO単結晶ウエハーを
用いてカスケード型にプリズムを配したプリズム型ドメ
イン反転光偏向素子またはプリズム型電極光偏向素子が
「Q.Chen,et al.,J.Lightwave Tech.vol.12(1994)14
01頁」(文献1)や特開平1−248141号公報な
どに示されている。しかし、LiNbO単結晶ウエハ
の厚さである0.5mm程度の電極間隔が必要となるた
めに依然として駆動電圧が高く、上記の文献1では±6
00Vの駆動電圧でもわずか0.2度程度の偏向角度し
か得られておらず、実用的な偏向角度を得ることはでき
ないという問題がある。
【0005】
【発明が解決しようとする課題】これに対して、本発明
者達は導電性基板上に設けられたエピタキシャルまたは
単一配向性の電気光学効果を有する酸化物光導波路と、
この光導波路内に光ビームを入射させる光源を有し、光
導波路中の光ビームを電気光学効果によって偏向するた
めの電極が備えられた薄膜光導波路を用い、駆動電圧の
問題を解決したプリズム型光偏向素子を発明し、これを
特開平9−5797号公報に開示した。
【0006】しかし、光導波路を伝搬するレーザ光の電
磁界分布は基板への染みだしが起こる。実用的な抵抗率
を有する基板の吸収係数は大きく、多くの場合には染み
だし成分は導電性基板中のフリー・キャリアによって強
く吸収されるため、薄膜光導波路中の伝搬損失は光導波
路自体の散乱による損失に加えて、吸収により数十dB
/cmとなり、実用には不十分であるという問題があっ
た。また、一般に、コプレーナ型電極配置を有する素子
において、光導波路上の金属電極と光導波路間にはSi
によるクラッド層が挿入され、金属電極への電磁界
の染みだしを防ぎ、伝搬光の吸収を回避する方法がとら
れている。しかし、SiOを導電性基板と酸化物光導
波路との間に設けると、SiOがアモルファスである
ためにエピタキシャルまたは単一配向性の電気光学効果
を有する酸化物光導波路を作製できなくなる問題があっ
た。さらに、電気光学効果を有する酸化物光導波路材料
の比誘電率は数十から数千におよび、SiOの比誘電
率3.9と比べると極めて大きく、さらに、上記の導電
性基板上の薄膜光導波路構造においては等価回路として
直列コンデンサを形成するため、薄膜光導波路にかかる
実効電圧は印加電圧に対して数%以下にしかならず、結
局駆動電圧の大幅な増加を招くこととなってしまう問題
があった。
【0007】また、化合物半導体であるi−GaAs導
波路において、i−GaAs導波路とn−AlGaAs
下部クラッド層との間にi−AlGaAsクラッド層が
挿入され、n−AlGaAs下部クラッド層への電磁界
の染みだしを防ぐことにより、n−AlGaAs下部ク
ラッド層のフリー・キャリアによる吸収を回避する方法
が文献(K. Hamamoto, et al., Electron. Lett. Vol. 2
8 (1992) 441)に示されている。しかし、化合物半導体
とは全く異なる材料であり、エピタキシャル成長が容易
ではなく、比誘電率は数十から数千におよぶ電気光学効
果を有する酸化物光導波路において同様の構造を設ける
方法は知られていなかった。一方、シリコン基板上にス
ピネル層を形成し、その上にPLZTバッファ層と、さ
らにその上にバッファ層よりも屈折率の大きいPLZT
光導波路層を設けた構造により低電圧で駆動する素子を
提供する方法が特公平6−70693号公報に示されて
いる。しかし、スピネル層の比誘電率はPLZT薄膜の
2000近くに達する比誘電率と比較して8程度と小さ
いため、スピネル層を10nm程度の極薄膜にしなけれ
ば駆動電圧は大幅に増加してしまう問題と、このような
極薄膜スピネル層の上にPLZT薄膜を成長させるとP
LZT薄膜の結晶性の低下やPbのSi基板への拡散な
どが起こる問題、そしてシリコンの屈折率が3.45と
大きいため、屈折率が2.6前後であるPLZTによっ
て光導波路層とそれより低い屈折率を有するバッファ層
の構造を設けても、屈折率が1.75であるスピネル層
を10nmより1桁以上厚くしなければ光はシリコン基
板にリークし、実際にはPLZT光導波路層における光
減衰が極めて大きくなってしまう問題とがあった。
【0008】このため、本発明者らは導電性基板上に高
誘電率のエピタキシャルまたは単一配向性のバッファ層
を設け、その上にエピタキシャルまたは単一配向性の電
気光学効果を有する酸化物薄膜光導波路を設け、さらに
その上に電極を設けた構造を発明してこれを特許出願し
(特願平9−212505号)、低駆動電圧特性と低光
伝播損失特性とを両立することを可能にしたが、基板、
バッファ層、光導波路の各材料の組み合わせによってそ
れらの特性が大きく影響し、適切な組み合わせを見出す
ことがさらに必要であった。
【0009】本発明の目的は、光導波路素子において、
低駆動電圧特性と低伝搬損失特性を同時に解決できる構
造を提供することにある。また、本発明の目的は、光導
波路素子を各種の偏向素子、スイッチング素子、あるい
は変調素子へ利用可能とすることである。
【0010】
【課題を解決するための手段】本発明の目的は、不純物
元素を0.01重量%から5.0重量%ドープした導電
性または半導電性の下部電極となるSrTiO単結晶
基板と、単結晶基板表面に設けられたエピタキシャルま
たは単一配向性の酸化物バッファ層と、バッファ層上に
設けられたエピタキシャルまたは単一配向性の電気光学
効果を有する酸化物薄膜光導波路と、光導波路上に設け
られた導電性薄膜または半導電性薄膜の上部電極とを備
えたことを特徴とする光導波路素子によって達成でき
る。また、本発明の光導波路素子は上部電極と下部電極
との間に電圧を印加することにより、光導波路に入射す
る光ビームを変調、スイッチング、または偏向すること
ができる。つまり本発明の光導波路素子は、不純物元素
を0.01重量%から5.0重量%ドープすることによ
って導電性または半導電性としたSrTiO単結晶基
板、あるいは不純物元素を0.05重量%から5.0重
量%ドープすることによって導電性または半導電性とし
たエピタキシャルまたは単一配向性のSrTiO薄膜
を表面に有する単結晶基板上へ作製されたエピタキシャ
ルまたは単一配向性の高誘電率バッファ層と、さらにそ
の上に作製されたエピタキシャルまたは単一配向性の電
気光学効果を有する光導波路と、光導波路上の導電性ま
たは半導電性の上部電極が設けられ、下部電極となる導
電性または半導電性の基板あるいは薄膜と上部電極間に
電圧を印加することにより異なる屈折率をもつ部分を発
生させてレーザー・ビームを電圧に応じて偏向、スイッ
チング、または変調する。ここで、単一配向性とは薄膜
のX線回折パターンにおいて基板面に平行な特定の結晶
面の強度が他の結晶面の強度に対して1%以下である場
合を指し、エピタキシャルとは単一配向性の薄膜がさら
に基板の面内方向にも単一配向性を有している場合を指
す。
【0011】本発明の光導波路素子において、下部電極
基板としてドープしたSrTiO単結晶半導体基板、
あるいはエピタキシャルまたは単一配向性のドープした
SrTiO半導体薄膜の不純物ドーパントとして用い
ることが可能な元素は、SrTiOのSrサイトある
いはTiサイトを置換することが可能なイオン半径を有
し、かつSrあるいはTiと原子価が異なる元素であれ
ば良いが、望ましくはSrサイトに対しては酸素イオン
に対して12配位をとることが可能なSc、Lu、Y
b、Tm、Er、Ho、Y、Dy、Tb、Bi、Gd、
Na、Eu、Sm、Zn、Nd、Pr、Ce、La、I
n、K、Tl、Rb、Csなど、Tiサイトに対しては
酸素イオンに対して6配位をとることが可能なAl、A
s、V、Ni、Ga、Sb、Co、Fe、Ta、Rh、
Nb、Cr、Mn、Bi、Ru、In、Sc、Sn、P
u、Np、Lu、Yb、U、Tm、Er、Pa、Ho、
Y、Dy、Tb、Tl、Gd、Eu、Sm、Pm、A
m、Nd、Pr、Ce、La、Th、Acなどが挙げら
れ、さらに望ましくは周期率表のIII族の元素である
Sc、Y、La、Ce、Pr、Nd、Pm、Sm、E
u、Gd、Tb、Dy、Ho、Er、Tm、Yb、L
u、Ac、Al、Ga、In、またはV族の元素である
V、Nb、Ta、Pa、As、Sb、Biより選ばれ、
さらに望ましくはLaまたはNbを用いることができ
る。
【0012】ドーピングを行ったSrTiO半導体の
抵抗率としては10Ω・cm以下、望ましくは10
Ω・cm以下がRC時定数、および電圧降下の点から有
効である。このため、不純物ドーパントの量としては
0.01重量%から5.0重量%ドープ、望ましくは
0.1重量%から1.0重量%ドープが有効である。
0.01重量%よりも少なくドープしたSrTiO
結晶基板は抵抗率を10Ω・cm以下にすることが難
しく、5.0重量%よりも多くドープしたSrTiO
単結晶基板を用いることは、結晶性の低下やドーパント
の均一性などの点で困難となる。SrTiO半導体の
屈折率は、波長0.633umで2.40程度、波長
1.3umで2.31程度と、3.45程度の大きな屈
折率を有するシリコン基板などと異なって通常のバッフ
ァ層や光導波路材料よりも屈折率が低いため、基板への
光のリークを阻止するためのバッファ層の膜厚を低減し
易く、低電圧駆動化するために望ましい。
【0013】基板と光導波路の間に設けた不純物元素を
0.01重量%から5.0重量%ドープしたエピタキシ
ャルまたは単一配向性のSrTiO半導体薄膜の基板
として用いることが可能な材料は、SrTiO、Ba
TiO、BaZrO、LaAlO、ZrO、Y
8%−ZrO、MgO、MgAlなどの
酸化物、Si、Ge、ダイアモンドなどの単体半導体、
AlAs、AlSb、AlP、GaAs、GaSb、I
nP、InAs、InSb、AlGaP、AlLnP、
AlGaAs、AlInAs、AlAsSb、GaIn
As、GaInSb、GaAsSb、InAsSbなど
のIII−V系の化合物半導体、ZnS、ZnSe、Z
nTe、CaSe、Cdte、HgSe、HgTe、C
dSなどのII−VI系の化合物半導体などを用いるこ
とができるが、SrTiOを用いることが上部に配置
する酸化物薄膜光導波路の膜質にとって有利なことが多
い。
【0014】バッファ層は望ましくは基板材料よりも大
きい屈折率を有し、また、薄膜光導波路材料よりも小さ
い屈折率を有し、かつバッファ層の比誘電率と前記光導
波路の比誘電率の比が0.002以上、望ましくはバッ
ファ層の比誘電率と前記光導波路の比誘電率の比が0.
006以上であり、かつバッファ層の比誘電率が8以上
である材料が選ばれる。また、バッファ層材料は導電性
基板材料と光導波路材料とのエピタキシ関係を保持でき
ることが必要である。このエピタキシ関係を保持できる
条件としては、バッファ層材料が導電性基板材料と光導
波路材料の結晶構造に類似で、格子常数の差が10%以
下であることが望ましいが、必ずしもこの関係に従わな
くともエピタキシ関係を保持できれば良い。具体的に
は、ABO 型のペロブスカイト型酸化物では、正方
晶、三方晶、斜方晶または擬立方晶系として例えばSr
TiO、BaTiO、(Sr1−xBa)TiO
(0<x<1.0)、PbTiO、Pb1−xLa
(ZrTi1−y1−x /4(0<x<0.
3、0<y<1.0、xおよびyの値によりPZT、P
LT、PLZT)、Pb(Mg1/3Nb2/3
、KNbOなど、六方晶系として例えばLiNb
、LiTaOなどに代表される強誘電体、タング
ステンブロンズ型酸化物ではSrBa1−xNb
、PbBa1−xNbなど、またこのほか
に、BiTi12、PbKNb15、K
LiNb15、ZnOさらに以上の置換誘導体よ
り選ばれる。しかし、ドープしたSrTiO単結晶半
導体基板またはドープしたSrTiO半導体薄膜に対
して同様のペロブスカイト構造を有し、これらに対する
格子常数の差が小さく、これらの屈折率2.399より
も屈折率が大きいPb1−xLa(Zr
1−y1−x/4を用いることが最も望まし
い。バッファ層の膜厚と前記光導波路の膜厚の比は0.
1以上、望ましくは0.5以上であり、かつバッファ層
の膜厚が10nm以上であることが有効である。
【0015】薄膜光導波路材料としては電気光学効果を
有する酸化物から選択され、具体的にはABO型のペ
ロブスカイト型では正方晶、三方晶、斜方晶または擬立
方晶系として例えばBaTiO、PbTiO、Pb
1−xLa(ZrTi −y1−x/4、P
b(Mg1/3Nb2/3)O、KNbOなど、六
方晶系として例えばLiNbO、LiTaOなどに
代表される強誘電体、タングステンブロンズ型ではSr
Ba1−xNb、PbBa1−xNb
など、またこのほかに、BiTi12、Pb
Nb15、KLiNb15、さらに以上の
置換誘導体などより選ばれる。しかし、バッファ層を介
すもののドープしたSrTiO単結晶半導体基板また
はドープしたSrTiO半導体薄膜に対して同様のペ
ロブスカイト構造を有し、これらに対する格子常数の差
が小さく、これらの屈折率2.399よりも屈折率が大
きく、かつ高い電気光学係数を有するPb1−xLa
(ZrTi1−y1− x/4を用いることが最
も望ましい。薄膜光導波路の膜厚は通常0.1μmから
10μmの間に設定されるが、これは目的によって適当
に選択することができる。バッファ層と薄膜光導波路層
の材料の組み合わせとしては上記の条件を満たす各種の
ものが可能であるが、ドープしたSrTiO単結晶半
導体基板またはドープしたSrTiO半導体薄膜に対
して同様のペロブスカイト構造を有し、これらに対する
格子常数の差が小さく、これらの屈折率2.399より
も屈折率が大きく、かつ高い電気光学係数を有し、組
成、すなわちPb、La、Zr、Tiの比を変化させる
だけでそれぞれの層として利用可能なPb1−xLa
(Zr Ti1−y1−x/4を用いることが最
も有効である。
【0016】上部電極はAl、Ti、Cr、Ni、C
u、Pd、Ag、In、Sn、Ta、W、Ir、Pt、
Auなどの各種金属電極や合金、AlドープZnO、I
、RuO、BaPbO、SrRuO、Y
BaCu7−x、SrVO、LaNiO、L
0.5Sr0.5CoO、ZnGa、CdG
、CdGa、MgTiO、MgTi
などの酸化物を用いることが可能であるが、伝播
損失を低減するためにITOまたはAlドープZnOな
どのなどの透明酸化物電極を用いることが望ましい。ま
た、動作時間に伴って疲労やDCドリフトなどが生じる
場合には酸化物を用いることが有効である。
【0017】前記バッファ層および薄膜光導波路は電子
ビーム蒸着、フラッシュ蒸着、イオン・プレーティン
グ、Rf−マグネトロン・スパッタリング、イオン・ビ
ーム・スパッタリング、レーザー・アブレーション、M
BE、CVD、プラズマCVD、MOCVDなどより選
ばれる気相成長法およびゾルゲル法、MOD法などのウ
エット・プロセスにより作製された薄膜の固相成長法に
よって作製される。このうちゾルゲル法やMOD法など
のウエット・プロセスにより金属アルコキシドや有機金
属塩などの金属有機化合物の溶液を基板に塗布し、さら
に焼成することによって前記バッファ層と前記薄膜光導
波路を固相エピタキシャル成長することが最も有効であ
る。これらの固相エピタキシャル成長は、各種気相成長
法と比較して設備コストが低く、基板面内での均一性が
良いだけでなく、バッファ層と光導波路層の構造制御に
とって重要な屈折率の制御が、バッファ層および光導波
路層に必用な屈折率を有する薄膜組成に応じて金属有機
化合物前駆体の組成を配合するだけで容易に、再現性良
く実現でき、さらに光伝搬損失も低いバッファ層と光導
波路層の成長が可能である。ゾルゲル法やMOD法など
を用いた固相エピタキシャル成長において、有機金属化
合物は各種の金属と、有機化合物、望ましくは常圧での
沸点が80℃以上である有機化合物との反応生成物であ
る金属アルコキシドまたは金属塩より選ばれるがこれに
限られるわけではない。金属アルコキシド化合物の有機
配位子としては、RO−またはRORO−より選
ばれる(式中、RおよびRは脂肪族炭化水素基を表
し、Rはエーテル結合を有してもよい2価の脂肪族炭
化水素基を表す)。これらの原料は所定の組成にて望ま
しくは常圧での沸点が80℃以上であるアルコール類、
ジケトン類、ケトン酸類、アルキルエステル類、オキシ
酸類、オキシケトン類、及び酢酸などより選ばれた溶媒
と反応され、または溶媒中に溶解されたのち、基板への
塗布をされる。これら有機金属化合物は加水分解をした
後に塗布をすることも可能であるが、エピタキシャル強
誘電体薄膜を得るためには加水分解をしないことが望ま
しい。さらに、これらの反応工程は、乾燥した窒素やア
ルゴン雰囲気中にて行うことが得られる薄膜の品質の点
より望ましい。金属アルコキシド化合物はROHまた
はROROHで表される有機溶媒中で蒸留や還流に
よって合成することができ、RおよびRの脂肪族炭
化水素基としては、炭素数1〜4のアルキル基が好まし
く、Rは、炭素数2〜4のアルキレン基、炭素数2〜
4のアルキレン基がエーテル結合によって結合している
全炭素数4〜8の2価の基が好ましい。沸点が80℃以
上である溶媒としては具体的には、金属アルコキシドの
アルコール交換反応が容易な例えば(CHCHO
H(沸点82.3℃)、CH(C)CHOH
(沸点99.5℃)、(CHCHCHOH(沸
点108℃)、COH(沸点117.7℃)、
(CHCHCOH(沸点130.5℃)、
CHOCHCHOH(沸点124.5℃)、C
OCHCHOH(沸点135℃)、C
CHCHOH(沸点171℃)などのアルコール類
が最も望ましが、これらに限定されるものではなくC
OH(沸点78.3℃)なども使用可能である。こ
の溶液を単結晶基板上にスピンコート法、ディッピング
法、スプレー法、スクリーン印刷法、インクジェット法
より選ばれた方法にて塗布する。これらの塗布の工程
は、乾燥した窒素やアルゴン雰囲気中にて行うことが得
られる薄膜の品質の点より望ましい。この後、必要に応
じて、前処理として酸素を含む雰囲気中、望ましくは酸
素中にて、0.1〜1000℃/秒の昇温速度、望まし
くは1〜100℃/秒の昇温速度で基板を加熱し、10
0℃〜500℃、望ましくは200℃〜400℃の結晶
化の起こらない温度範囲で塗布層を熱分解することによ
りアモルファス状の薄膜を形成する。さらに、酸素を含
む雰囲気中、望ましくは酸素中にて、10〜500℃/
秒の昇温速度、望ましくは20〜100℃/秒の昇温速
度で高速加熱し、650℃〜1200℃、望ましくは7
00℃〜900℃の温度範囲で強誘電体薄膜を基板表面
より固相エピタキシャル成長させる。このエピタキシャ
ル結晶化においては、上記の温度にて1秒間から24時
間、望ましくは10秒間から12時間の加熱を行う。こ
れらの酸素雰囲気としては少なくとも一定時間乾燥した
酸素雰囲気を用いることが得られる薄膜の品質の点より
望ましいが、必要に応じて加湿することも可能である。
これらのエピタキシャル結晶化工程において、一層の膜
厚が10nmから1000nm、望ましくは膜厚50n
mから200nmの強誘電体薄膜層を単結晶基板上に固
相エピタキシャル成長することを一回以上行う。それぞ
れのエピタキシャル成長の後には0.01〜100C/
秒の冷却速度で冷却を行なう。
【0018】以上の構造を具備する光導波路素子は下部
電極となる導電性または半導電性の基板あるいは薄膜と
上部電極間に電圧を印加することにより異なる屈折率を
もつ部分を発生させてレーザー・ビームを電圧に応じて
偏向、スイッチング、または変調する。そのような素子
はさらに具体的には、プリズム型偏向素子、マッハツェ
ンダ干渉スイッチ、方向性結合スイッチ、全反射型スイ
ッチ、ブラッグ反射型スイッチ、デジタル型スイッチ、
位相変調素子、モード変換素子、波長フィルター素子な
どEO効果を用いるすべての光導波路素子が対象となり、
本発明よって低駆動電圧特性と低伝搬損失特性を同時に
満足できる光導波路素子が提供される。
【0019】次に、本発明の光導波路素子の基本原理に
ついて図1乃至図10を用いて詳細に説明する。図1は
抵抗率0.05Ω・cm、吸収係数α=174を有す
る、NbドープSrTiO導電性基板(n=2.4
0)12上に600nmの厚さのPZT(52/48)
薄膜光導波路(n=2.56)11が設けられ、その
上に媒質13が設けられた構造における、波長633n
mでのTEモードの強度分布の模式図を示す。計算値
は全光強度の3.6%が基板へ染みだすことを示した。
この際、基板12の光吸収により光導波路11中の光伝
搬にともない基板12へ染みだした成分が吸収され、伝
搬損失となる。このとき光導波路表面や光導波路中の粒
界などによる散乱、および光導波路自身の吸収による損
失に加えて、基板吸収によって生じる伝搬損失が生じ
る。この伝搬損失は光導波路の膜厚に依存し、光導波路
膜厚が厚いほうが電界の光導波路中での閉じ込めが強く
なり、基板へ染みだす割合が少なくなるために伝搬損失
は図2に示すように小さくなる。
【0020】しかし、この染みだしている領域の厚さ分
を図3および表1に示すように吸収の少ないノンドープ
SrTiOバッファ層14で置き換えればNbドープ
SrTiO導電性基板12による吸収はなくなり、伝
搬損失の低減が可能となる。
【0021】
【表1】
【0022】バッファ層14がこのように薄膜光導波路
11と導電性基板12の隔離層として機能するために
は、一般に、バッファ層材料の屈折率が薄膜光導波路材
料の屈折率よりも小さいことが必要である。また、光導
波路表面や光導波路中の粒界などによる散乱に起因する
光伝播損失を実用レベルに低減するためには、バッファ
層材料は導電性基板材料と光導波路材料とのエピタキシ
関係を保持できることが必要である。このエピタキシ関
係を保持できる条件としては、バッファ層材料が導電性
基板材料と光導波路材料の結晶構造に類似で、格子常数
の差が10%以下であることが望ましいが、必ずしもこ
の関係に従わなくともエピタキシ関係を保持できる場合
がある。また、光導波路材料は高い電気光学係数を有す
ることが望ましく、導電性基板材料は低い抵抗率を有す
ることが望ましい。
【0023】このような関係を満たすバッファ層材料お
よび光導波路材料と導電性基板材料の組み合わせとして
は、バッファ層材料および光導波路材料としてPb
1−xLa(ZrTi1−y1−x/4、基
板としては不純物元素をドープすることによって導電性
または半導電性としたSrTiO単結晶基板が最も適
切であることが数多くの材料の鋭意検討によってわかっ
た。SrTiOは電気光学効果を有する酸化物材料で
あるぺロブスカイト構造を有し、不純物のドープによっ
て半導体化し、さらに良好な単結晶を作製することが可
能な材料である。Pb1−xLa(Zr
1−y1−x/4は不純物をドープしたSrT
iO単結晶半導体基板またはドープしたSrTiO
半導体薄膜に対して同様のペロブスカイト構造を有し、
これらに対する格子常数の差が小さく、これらの屈折率
2.399よりも屈折率が大きく、かつ高い電気光学係
数を有する材料である。不純物ドープSrTiO導電
性基板と例えばPZT(52/48)の格子常数の差は
3%と極めて小さい。
【0024】上記の構造(表1)におけるバッファ層膜
厚と基板吸収による伝搬損失の関係を図4に示す。バッ
ファ層膜厚ゼロすなわちバッファ層がない場合伝搬損失
は62.9dB/cmにもなるが、膜厚300nmの膜
厚のバッファ層を挿入すると伝搬損失はわずか0.6d
B/cmにまで低減できる。また、図5には各波長にお
けるPZT(52/48)薄膜光導波路/ノンドープS
rTiOバッファ層/NbドープSrTiO基板構
造における、基板吸収による伝搬損失が1dB/cmと
なる光導波路膜厚とバッファ層膜厚の関係を示す。一般
に、波長が長いほうが屈折率の波長分散による低下と実
効屈折率の低下とにより電界の光導波路中での閉じ込め
が弱くなり、基板への染みだしが多くなるが、この図5
の例の様にバッファ層の膜厚を適切に選択することによ
って伝搬損失を小さくすることができる。バッファ層と
光導波路の膜厚比は伝搬損失を1dB/cm以下に低減
するために少なくとも0.1以上が必要である。また、
TEのシングルモードでの動作を前提とする際には
0.5以上とすることが適切である。バッファ層と光導
波路の膜厚比の上限としては、光導波路のTEモード
のカットオフ膜厚において最大となり、一般に10程度
となる。
【0025】一方、導電性基板と薄膜光導波路の間にバ
ッファ層が存在すると、上下電極間に印加した電圧は薄
膜光導波路とバッファ層のそれぞれの容量に従って分配
され、薄膜光導波路に印加できる実効電圧は低下する。
図6は等価回路であり、薄膜光導波路11の容量C
バッファ層14の容量Cからなる直列回路で表され、
容量の関係は次のようになる。
【0026】 1/C=1/C+1/C=(C+Cb)/(C・C) ・・・ [1] または、薄膜光導波路の比誘電率をε、膜厚をd
バッファ層の比誘電率をε、膜厚をd、εを真空
の誘電率で8.854×10−14(F/cm)、Sを
電極面積とすると次式のようになる。
【0027】 1/C=1/C+1/C=(ε+ε)/(εεε・S ) ・・・[1’] 電荷は同じなので、 Q=C=C ・・・[2] (C・C)/(C+C)×V=C ・・・[3] 従って、薄膜光導波路に印加される実効電圧は、薄膜光
導波路の比誘電率をε 、膜厚をd、バッファ層の比
誘電率をε、膜厚をdとすると次式のようになる。 V=C/(C+C)×V=ε/(ε+ε)×V ・・・[4]
【0028】先の、NbドープSrTiO基板上(ε
=300)に600nmの厚さのPZT薄膜光導波路
(ε=900)が設けられた場合に、基板と同じ屈折
率と比誘電率を有する300nmの厚さのSrTiO
バッファ層(ε=300)を設けた場合には、 V=ε/(ε+ε)×V=30
0×600/(900×300+300×600)×V
=0.40×V と印加電圧の40%を実効電圧として光導波路に印加可
能となる。
【0029】[4]式は、さらに下記のように変形でき
る。 V/V=(ε/ε)/{(d/d)+(ε/ε)}=1/{( d/d)/(ε/ε)+1} 1/(V/V)=(d/d)/(ε/ε)+1 ε/ε=(d/d)/{1/(V/V)−1} ・・・[5]
【0030】d/dとε/εの関係を各V
の値について図7および図8に示す。本発明におい
てはd/dは0.1以上であるので、V/V
0.02以上の値、すなわち実効電圧が印加電圧の2%
以上となるε/εとして0.002以上の領域、望
ましくはV/Vが0.1以上の値、すなわち実効電
圧が印加電圧の10%以上となるε/εとして0.
006以上の領域となる。ε/εの上限としては、
バッファ層と薄膜光導波路に用いることができる材料の
組合せで決まり、10程度となる。バッファ層の比誘電
率は、光導波路の比誘電率として4000近くの材料が
あるため、ε/εとして0.002以上を確保でき
る8以上の値を有することが望ましい。バッファ層と薄
膜光導波路に用いることができる材料の組合せは、実効
電圧が印加電圧の1%以下となる条件では、導電性基板
上に電気光学効果を有するエピタキシャル光導波路を設
け、駆動電圧を大幅に低減する目的に対し有効ではなく
なる。すなわち、実効電圧が印加電圧の2%以下となる
条件ではバッファ層を有する膜厚1.0μmの光導波路
素子へ印加する電圧は、バッファ層がなく、拡散光導波
路を有する厚さ50.0μmのウエハー素子へ印加する
電圧と等しくなり、このような厚さ50.0μmまでの
ウエハーは研磨などによって加工可能であるため、導電
性基板上に電気光学効果を有するエピタキシャル光導波
路を設けるメリットがなくなる。
【0031】さらに、薄膜光導波路素子が基板と上部電
極で挟まれた構造での偏向速度、スイッチング速度、あ
るいは変調速度を次式のRC時定数で決まる周波数応答
の3dbポイントfで基板の抵抗率の許容範囲を検討す
る。なお、実際には駆動系のインピーダンスが加わり、
RC時定数はさらに大きくなる。
【0032】 f=1/(2π・R・C) =1/(2π・ρd/S×εεS/d) =1/(2π・ρ・εε×d/d) ・・・[6] または、 f=1/(2π・R・C) =1/(2π・ρd/S×(εεε・S)/(ε+ε) ) ・・・[6’]
【0033】ここで、Rは基板の抵抗、ρは基板の抵抗
率、dは基板の厚さ、Cは光導波路の静電容量、ε
は比誘電率、dは光導波路の厚さである。基板の厚さ
は50μm程度が薄さの限界であるためdを50μ
m、光導波路の厚さは一般に1μm程度であるためd
を1μmとした場合の抵抗率と周波数応答の関係を図9
に示す。強誘電体材料の比誘電率は数10から数100
0であるが、このような強誘電体材料からなる光導波路
素子でも1kHz以上の応答を示すためには基板の抵抗
率は10Ω・cm以下が必要になる。光導波路素子の
応答が1kHz以下である場合は機械的素子の応答速度
のレベルであり、本来高速である電気光学効果を用いた
素子の意義がなくなる。
【0034】また、偏向、スイッチング、あるいは変調
のための電圧を薄膜光導波路素子が基板と上部電極で挟
まれた構造へ印加した場合、多くの場合、薄膜光導波路
には10−7A/cm以上のリーク電流が流れる。こ
のため基板抵抗が大きいと基板での電圧降下が著しくな
り薄膜光導波路にかかる電圧が低下する。基板での電圧
降下ΔVは次式の関係で検討する。 ΔV=IR=j・S×ρ・d/S=j×ρ・d ・・・[7]
【0035】ここで、Iはリーク電流、jはリーク電流
密度、Rは基板の抵抗、ρは基板の抵抗率、dは基板
の厚さ、Sは電極面積である。基板の厚さは500μm
程度以下であるためdを500μmとした場合の抵抗
率と電圧降下の関係を図10に示す。導電性基板上薄膜
光導波路素子構造においては低電圧駆動が可能であるた
め、駆動電圧は少なくとも100V以下、多くの場合1
0V以下となる。このような駆動電圧に対して基板での
電圧降下ΔVが無視できる領域となる1%以下、すなわ
ち駆動電圧が10Vの場合にリーク電流密度が10−4
A/cm程度でも電圧降下が0.1V以下とするため
には基板の抵抗率は10Ω・cm以下が必要となるこ
とがわかる。しかし、これらのリーク電流密度は定常状
態における電流密度であり、光導波路の充放電の瞬間に
おける電流密度はもっと大きいため、望ましくは抵抗率
は10Ω・cm以下が必要となる。
【0036】このような抵抗値の要求を満足できる不純
物元素をドープすることによって導電性または半導電性
としたSrTiO材料は、不純物元素を0.01重量
%から5.0重量%ドープしたSrTiOである。
0.01重量%よりも少なくドープしたSrTiO
抵抗率を10Ω・cm以下にすることが難しく、5.
0重量%よりも多くドープしたSrTiOは、結晶性
の低下やドーパントの均一性などの点で使用が困難とな
る。
【0037】
【発明の実施の形態】本発明の第1の実施の形態による
光導波路素子を図11および図12を用いて説明する。
図11は本実施の形態による光導波路素子の上面図であ
り、図12はその側面図である。本実施の形態において
は表2に示すように抵抗率が0.05Ω・cm、吸収係
数174のNb0.5%ドープSrTiO(100)
単結晶導電性の下部電極基板2上へ、膜厚500nmの
エピタキシャルPLZT(9/65/35)バッファ層
4を成長させ、次に膜厚1000nmのエピタキシャル
PZT(52/48)薄膜光導波路1を成長させ、さら
にプリズム型電極7を形成することによってEO偏向素
子を作製した。PLZT光導波路層はゾルゲル法を用い
た固相エピタキシャル成長によって作製した。まず、無
水酢酸鉛Pb(CHCOO)、ランタン・イソプロ
ポキシドLa(O−i−C、ジルコニウム・
イソプロポキシドZr(O−i−C、および
チタン・イソプロポキシドTi(O−i−C
を出発原料として、2−メトキシエタノールに溶解し、
6時間の蒸留を行ったのち18時間の還流を行い、最終
的にPb濃度で0.6MのPLZT用前駆体溶液を得
た。さらに、この前駆体溶液をNbドープSrTiO
基板へスピンコーティングを行った。以上の操作はすべ
てN雰囲気中にて行った。次に、加湿O雰囲気中で
20℃/secにて昇温して350℃にて保持の後、7
50℃に保持し、最後に電気炉の電源を切り冷却した。
これにより膜厚100nmの第一層目のPLZT薄膜を
固相エピタキシャル成長した。これをさらに4回繰り返
すことにより総膜厚500nmのエピタキシャルPLZ
Tバッファ層が得られた。PZT光導波路層は同様にし
て作製したPZT用前駆体溶液をPLZTバッファ層表
面へスピンコーティングを行い、加湿O雰囲気中で2
0℃/secにて昇温して350℃にて保持の後、65
0℃に保持し、最後に電気炉の電源を切り冷却した。こ
れにより膜厚100nmの第一層目のPZT薄膜を固相
エピタキシャル成長した。これをさらに9回繰り返すこ
とにより総膜厚1000 nmのエピタキシャルPZT
薄膜光導波路が得られた。
【0038】
【表2】
【0039】結晶学的関係は単一配向のPZT(10
0)//PLZT(100)//Nb−SrTiO
(100)、面内方位PZT[001]//PLZT
[001]//Nb−SrTiO[001]の構造が
得られた。PZT薄膜光導波路上にはRfスパッタリン
グによる膜厚100nmのITO薄膜による底辺100
μm、高さ1000μmのプリズム形上部電極をリフト
オフ法によって形成し、プリズム型EO偏向素子を作製
した。また、NbドープSrTiO基板へのオーミッ
ク・コンタクトはInによって得た。
【0040】ここで、一般に電気光学効果を有する材料
に電場を加えると、その部分の屈折率の低下が起こる。
本実施の形態においては、上面三角形の電極が図11よ
び図12のプリズム電極7の位置に配置され、距離dの
下部電極であるNbドープSrTiO基板2と上部電
極であるITO電極7との間に電圧Vが印加されると、 Δn=−1/2・r・n・(V/d) ・・・[8] の屈折率変化が生じ、プリズムの長さをL、幅をWとすると θ=−Δn×L/W=1/2・r・n・(V/d)・(L/W) ・・・ [9] の偏向が生じる。なお、二次の電気光学効果であるKe
rr効果を有する強誘電体を用いたプリズム型光偏向素
子において次のようになる。 θ=1/2・r・n・(V/d)・(L/W) ・・・[10]
【0041】まず、光導波路特性の評価を行なうため、
プリズム・カップリングによって633nmのレーザ光
を本実施の形態のPZT薄膜光導波路に導入し、光伝搬
方向のTEモードの散乱光強度分布を光ファイバーに
よって測定した。散乱光強度の対数と光伝搬距離の関係
の傾きより、光伝搬損失を求めたところ、5.2dB/
cmと良好な値を示した。また、NbドープSrTiO
基板上へそれぞれ直接成長したPLZTバッファ層の
比誘電率測定値1900と、PZT薄膜光導波路の比誘
電率測定値900より、式[4]より求められるPZT
薄膜光導波路の実効電圧は81%となった。また、Nb
ドープSrTiO基板上へ直接成長したPZT薄膜光
導波路の電気光学係数および屈折率を測定した結果、r
=50pm/V、およびn=2.56であった。
【0042】本実施の形態のプリズム型EO偏向素子へ
レーザ光源9からの633nmの波長のレーザー・ビー
ムをレンズ10で幅100μmにコリメートした後、P
ZT薄膜光導波路1へプリズム5を介して導入し、下部
NbドープSrTiO基板電極2とITO上部プリズ
ム電極7間に電圧を印加することにより、導入されたレ
ーザー・ビーム6が偏向された。偏向の後、偏向された
レーザー・ビーム8は端面から出射され、投影面上での
レーザ・スポット位置の変位より偏向角度を求めると、
5V印加、すなわち実効電圧4.5Vで1.08度の偏
向が確認された。先に求めた=50pm/V、およびn
=2.56と、設計値となるd=1000nm、W=1
00μm、L=1000μmより実効電圧4.5Vでの
偏向角度を逆に求めると実測と同じ1.08度となっ
た。
【0043】偏向速度を測定すると周波数応答は8.8
MHzを示した。本実施の形態のNbドープSrTiO
基板上へ成長したPLZTバッファ層の比誘電率測定
値1900と、PZT薄膜光導波路の比誘電率測定値9
00、および式[1’]より合成容量を求め、さらに式
[6’]よりRC時定数に測定系の抵抗50Ωを考慮す
ることによって決まる周波数応答と求めると9.0MH
zと、実測値にほぼ一致した。また、リーク電流密度は
1×10−7A/cmであり、式[7]より求められ
る基板での電圧降下ΔVは3×10−10Vと無視でき
るレベルであった。以上のように、本実施の形態は有効
に機能した。
【0044】次に本実施の形態に対する第1の比較例を
説明する。本比較例においては抵抗率が5×10Ω・
cm、厚さが500μmのNb0.005%ドープSr
TiO(100)単結晶導電性の下部電極基板上へ、
第1の実施の形態と同様にして膜厚500nmのエピタ
キシャルPLZT(9/65/35)バッファ層を成長
させ、次に膜厚1000nmのエピタキシャルPZT
(52/48)薄膜光導波路を成長させ、さらに第1の
実施の形態と同様のプリズム型電極を形成することによ
ってEO偏向素子を作製した。
【0045】第1の実施の形態と同様にして光伝搬損失
を求めたところ、本比較例のPZT光導波路の光伝搬損
失は5.1dB/cmと、実用レベルに入る特性を示し
た。次に、第1の実施の形態と同様にして本比較例のプ
リズム型EO偏向素子へ633nmの波長のレーザー・
ビームをPZT薄膜光導波路へプリズムを介して導入
し、下部NbドープSrTiO基板電極とITO上部
プリズム電極の間に電圧を印加することにより、レーザ
ー・ビームを偏向した。端面から出射された投影面上で
のレーザ・スポット位置の変位より偏向角度を求める
と、5V印加で0.97度の偏向が確認された。
【0046】一方、偏向速度を測定すると周波数応答は
100Hzと非常に遅い値を示した。本実施の形態のN
bドープSrTiO基板上へ成長したPLZTバッフ
ァ層の比誘電率測定値1900と、PZT薄膜光導波路
の比誘電率測定値900より合成容量を求め、さらにR
C時定数に測定系の抵抗50Ωを考慮することによって
決まる周波数応答と求めると99Hzと、実測値にほぼ
一致した。また、リーク電流密度4×10−7A/cm
より求められる基板での電圧降下ΔVは1×10−3
Vと第1の実施の形態に比較してかなり大きかった。
【0047】次に、本発明の第2の実施の形態による光
導波路素子について説明する。本実施の形態においては
表3に示すように抵抗率が0.05Ω・cm、吸収係数
174のNb0.5%ドープSrTiO(100)単
結晶導電性の下部電極基板上へ、膜厚300nmのエピ
タキシャルSrTiOバッファ層を成長させ、次に膜
厚900nmのエピタキシャルPZT(52/48)薄
膜光導波路を成長させ、さらに第1の実施の形態と同様
のプリズム型電極を形成することによってEO偏向素子
を作製した。
【0048】
【表3】
【0049】SrTiOバッファ層はRfスパッタリ
ングにより成長させた。膜厚300nmのSrTiO
バッファ層を成長の後、第1の実施の形態と同様にゾル
ゲル法を用いた固相エピタキシャル成長によって総膜厚
900nmのエピタキシャルPZT薄膜を得た。結晶学
的関係は単一配向のPZT(100)//SrTiO
(100)//Nb−SrTiO(100)、面内方
位PZT[001]//SrTiO[001]//N
b−SrTiO[001]の構造が得られた。PZT
薄膜光導波路上には膜厚100nmのITO薄膜による
プリズム形上部電極を形成した。
【0050】プリズム・カップリングによって633n
mのレーザ光を本実施の形態のPZT薄膜光導波路に導
入し、TEモードの伝搬損失を測定した所、3.6d
B/cmと良好な値を示した。一方、本実施の形態のS
rTiOバッファ層のみをNbドープSrTiO
板上へ成長した状態で膜厚300nmのSrTiO
ッファ層の比誘電率を測定したところ300を示した。
一方、第1の実施の形態と同様にNbドープSrTiO
基板上へ直接成長したPZT薄膜光導波路において比
誘電率を測定した結果、900であった。従って、PZ
T薄膜光導波路の実効電圧の見積もりは50%となっ
た。
【0051】第1の実施の形態と同様に本実施の形態の
プリズム型EO偏向素子へ633nmの波長のレーザー
・ビームをプリズムを介してPZT薄膜光導波路へ導入
し、下部NbドープSrTiO基板電極とITO上部
プリズム電極間に電圧を印加することによりレーザー・
ビームが偏向された。偏向されたレーザー・ビームは端
面から出射され、投影面上でのレーザ・スポット位置の
変位より偏向角度を求めると、20V印加、すなわち実
効電圧10Vで2.58度の偏向が確認された。先に求
めたr=50pm/V、およびn=2.56と、設計値
となるd=900nm、W=100μm、L=1000
μmより実効電圧10Vでの偏向角度を逆に求めると実
測とほぼ同じ2.67度となった。
【0052】偏向速度を測定すると周波数応答は12.
0MHzを示した。本実施の形態のNbドープSrTi
基板上へ成長したSrTiOバッファ層の比誘電
率測定値300と、PZT薄膜光導波路の比誘電率測定
値900より合成容量を求め、さらにRC時定数に測定
系の抵抗50Ωを考慮することによって決まる周波数応
答と求めると13.1MHzと、実測値にほぼ一致し
た。また、リーク電流密度2×10−7A/cmより
求められる基板での電圧降下ΔVは5×10−1 Vと
無視できるレベルであった。
【0053】次に本実施の形態に対する第2の比較例を
説明する。本比較例においては第2の実施の形態と同様
に抵抗率が0.05Ω・cm、吸収係数174のNb
0.5%ドープSrTiO(100)単結晶導電性の
下部電極基板上へ、膜厚12nmのエピタキシャルSr
TiOバッファ層を成長させ、次に膜厚900nmの
エピタキシャルPZT(52/48)薄膜光導波路を成
長させた。
【0054】SrTiOバッファ層はRfスパッタリ
ングにより成長させた。膜厚12nmのSrTiO
ッファ層を成長の後、PZT(52/48)光導波路層
も第1の実施の形態と同様にゾルゲル法を用いた固相エ
ピタキシャル成長によって総膜厚900nmのエピタキ
シャルPZT薄膜を得た。結晶学的関係は単一配向のP
ZT(100)//SrTiO(100)//Nb−
SrTiO(100)、面内方位PZT[001]/
/SrTiO[001]//Nb−SrTiO[0
01]の構造が得られた。
【0055】プリズム・カップリングによって633n
mのレーザ光を本比較例のPZT薄膜光導波路に導入
し、TEモードの伝搬損失を測定した所、42dB/
cmとバッファ層の挿入効果はほとんど見られず、シュ
ミレーションから予想されるように、バッファ層を挿入
してもバッファ層と光導波路の膜厚比が0.05以下の
領域では実用レベルの伝搬損失は得られないことがわか
った。
【0056】次に本実施の形態に対する第3の比較例を
説明する。本比較例においては第2の実施の形態と同様
に抵抗率が0.05Ω・cm、吸収係数174のNb
0.5%ドープSrTiO(100)単結晶導電性の
下部電極基板上へ、膜厚900nmのエピタキシャルP
ZT(52/48)薄膜光導波路を直接成長させた。P
ZT(52/48)光導波路層は第1の実施の形態と同
様にしてゾルゲル法を用いた固相エピタキシャル成長に
よって、総膜厚900nmのエピタキシャルPZT薄膜
を作製した。結晶学的関係は単一配向のPZT(10
0)//Nb−SrTiO(100)、面内方位PZ
T[001]//Nb−SrTiO[001]の構造
が得られた。
【0057】プリズム・カップリングによって633n
mのレーザ光を本比較例のPZT薄膜光導波路に導入
し、TEモードの伝搬損失測定を行った所、Nbドー
プSrTiO基板による吸収減衰が大きく伝搬損失は
求めることができなかった。
【0058】次に本実施の形態に対する第4の比較例を
説明する。本比較例においては第2の実施の形態と同様
に抵抗率が0.05Ω・cm、吸収係数174のNb
0.5%ドープSrTiO(100)単結晶導電性の
下部電極基板上へ、屈折率が1.46、比誘電率が3.
9である膜厚300nmのSiOバッファ層を成長さ
せ、次に膜厚900nmのPZT(52/48)薄膜光
導波路を成長させた。SiOバッファ層はゾルゲル法
を用いて形成した。膜厚300nmのSiO バッファ
層を成長の後、PZT(52/48)光導波路層も第2
の実施の形態と同様にゾルゲル法を用いて総膜厚900
nmのPZT薄膜を得た。SiOバッファ層は非晶質
であるため導電性基板と光導波路とのエピタキシ関係を
保持できず、結晶学的関係はランダムであった。
【0059】プリズム・カップリングによって633n
mのレーザ光を本比較例のPZT薄膜光導波路に導入
し、伝搬損失を測定した所、散乱が激しいため光伝搬が
全く見られなかった。PZT薄膜光導波路の実効電圧
は、PZT(52/48)薄膜光導波路の膜厚900n
m、比誘電率900、およびSiOバッファ層の膜厚
300nm、比誘電率3.9よりわずか1.3%とな
り、第1の実施の形態のように100Vを印加しても実
効電圧は1.3Vにしかならないことがわかった。
【0060】次に、本発明の第3の実施の形態による光
導波路素子について説明する。本実施の形態においては
第1の実施の形態とほぼ同様に表4に示すように抵抗率
が30Ω・cmのNb0.05%ドープSrTiO
(100)単結晶導電性の下部電極基板上へ、膜厚3
00nmのエピタキシャルSrTiOバッファ層を成
長させ、次に膜厚900nmのエピタキシャルPLZT
(9/65/35)薄膜光導波路を成長させ、さらに第
1の実施の形態と同様のプリズム型電極を形成すること
によってEO偏向素子を作製した。
【0061】
【表4】
【0062】SrTiOバッファ層はRfスパッタリ
ングにより膜厚300nmのSrTiOバッファ層を
成長の後、第1の実施の形態と同様にゾルゲル法を用い
た固相エピタキシャル成長によって総膜厚900nmの
エピタキシャルPLZT薄膜を得た。結晶学的関係は単
一配向のPLZT(100)//SrTiO(10
0)//Nb−SrTiO(100)、面内方位PL
ZT[001]//SrTiO[001]//Nb−
SrTiO[001]の構造が得られた。PLZT薄
膜光導波路上には膜厚200nmのITO薄膜によるプ
リズム形上部電極を形成した。
【0063】プリズム・カップリングによって780n
mのレーザ光を本実施の形態のPLZT薄膜光導波路に
導入し、TEモードの伝搬損失を測定した所、2.9
dB/cmと良好な値を示した。また、SrTiO
ッファ層の比誘電率測定値300と、PLZT薄膜光導
波路の比誘電率測定値1900より求められるPLZT
薄膜光導波路の実効電圧は32%となった。また、PL
ZT薄膜光導波路の電気光学係数、および屈折率を測定
した結果、二次の係数R=3×10−16/V
およびn=2.49であった。
【0064】第1の実施の形態と同様に本実施の形態の
プリズム型EO偏向素子へ633nmの波長のレーザー
・ビームをプリズムを介してPLZT薄膜光導波路へ導
入し、下部NbドープSrTiO基板電極とITO上
部プリズム電極間に電圧を印加することによりレーザー
・ビームが偏向された。偏向されたレーザー・ビームは
端面から出射され、投影面上でのレーザ・スポット位置
の変位より偏向角度を求めると、5V印加、すなわち実
効電圧1.6Vで4.20度の偏向が確認された。先に
求めたR=3×10−16/V、およびn=2.
49と、設計値となるd=900nm、W=100μ
m、L=1000μmより実効電圧1.6Vでの偏向角
度を逆に求めると実測とほぼ同じ4.19度となった。
【0065】偏向速度を測定すると周波数応答は180
kHzを示した。本実施の形態のNbドープSrTiO
基板上へ成長したSrTiOバッファ層の比誘電率
測定値300と、PLZT薄膜光導波路の比誘電率測定
値1900より合成容量を求め、さらにRC時定数に測
定系の抵抗50Ωを考慮することによって決まる周波数
応答と求めると174kHzと、実測値にほぼ一致し
た。また、リーク電流密度9×10−8A/cmより
求められる基板での電圧降下ΔVは1×10−7Vと無
視できるレベルであった。
【0066】次に、本発明の第4の実施の形態による光
導波路素子について説明する。本実施の形態においては
第1の実施の形態とほぼ同様に表5に示すように抵抗率
が0.002Ω・cmのLa1.0%ドープSrTiO
(100)単結晶導電性の下部電極基板上へ、膜厚5
00nmのエピタキシャルPLZT(9/65/35)
バッファ層を成長させ、次に膜厚1000nmのエピタ
キシャルPZT(52/48)薄膜光導波路を成長さ
せ、さらに第1の実施の形態と同様のプリズム型電極を
形成することによってEO偏向素子を作製した。
【0067】
【表5】
【0068】PLZT(9/65/35)バッファ層お
よびPZT(52/48)薄膜光導波路は、第1の実施
の形態と同様にゾルゲル法を用いた固相エピタキシャル
成長によってPLZT(9/65/35)バッファ層の
積層の後、PZT(52/48)薄膜光導波路を積層す
ることによって得た。結晶学的関係は単一配向のPZT
(100)//PLZT(100)//Nb−SrTi
(100)、面内方位PZT[001]//PLZ
T[001]//Nb−SrTiO[001]の構造
が得られた。PZT薄膜光導波路上には膜厚200nm
のAl2.0%ドープZnO薄膜による底辺100μ
m、高さ1000μmのプリズム形上部電極を形成し、
プリズム型EO偏向素子を作製した。
【0069】プリズム・カップリングによって633n
mのレーザ光を本実施の形態のPZT薄膜光導波路に導
入し、TEモードの伝搬損失を測定した所、5.5d
B/cmと良好な値を示した。また、PLZTバッファ
層の比誘電率測定値1900と、PZT薄膜光導波路の
比誘電率測定値900より求められるPLZT薄膜光導
波路の実効電圧は81%となった。
【0070】第1の実施の形態と同様に本実施の形態の
プリズム型EO偏向素子へ633nmの波長のレーザー
・ビームをプリズムを介してPZT薄膜光導波路へ導入
し、下部NbドープSrTiO基板電極とAlドープ
ZnO上部プリズム電極間に電圧を印加することにより
レーザー・ビームが偏向された。偏向されたレーザー・
ビームは端面から出射され、投影面上でのレーザ・スポ
ット位置の変位より偏向角度を求めると、5V印加、す
なわち実効電圧4.5Vで1.10度の偏向が確認され
た。先に求めた=50pm/V、およびn=2.56
と、設計値となるd=1000nm、W=100μm、
L=1000μmより実効電圧4.5Vでの偏向角度を
逆に求めると実測とほぼ同じ1.08度となった。
【0071】偏向速度を測定すると周波数応答は7.7
MHzを示した。本実施の形態のLaドープSrTiO
基板上へ成長したPLZTバッファ層の比誘電率測定
値1900と、PZT薄膜光導波路の比誘電率測定値9
00、より合成容量を求め、さらにRC時定数に測定系
の抵抗50Ωを考慮することによって決まる周波数応答
と求めると7.7MHzと、実測値に一致した。また、
リーク電流密度は3×10−7A/cmであり、基板
での電圧降下ΔVは3×10−11Vと無視できるレベ
ルであった。
【0072】次に、本発明の第5の実施の形態による光
導波路素子について説明する。第1の実施の形態とほぼ
同様に表6に示すようにLa0.1%ドープSrTiO
(100)単結晶導電性の下部電極基板上へ、膜厚5
00nmのエピタキシャルPZT(85/15)バッフ
ァ層を成長させ、次に膜厚1000nmのエピタキシャ
ルPZT(52/48)薄膜光導波路を成長させ、さら
に薄膜光導波路のパターンニングによるチャンネルの形
成と電極の設置によってマッハツェンダ干渉スイッチを
作製することができる。
【0073】
【表6】
【0074】PZT(85/15)バッファ層およびP
ZT(52/48)薄膜光導波路は、第1の実施の形態
と同様にゾルゲル法を用いた固相エピタキシャル成長に
よってPZT(85/15)バッファ層の積層の後、P
ZT(52/48)薄膜光導波路を積層することによっ
て得られる。結晶学的関係は単一配向のPZT(10
0)//PZT(100)//Nb−SrTiO(1
00)、面内方位PZT[001]//PZT[00
1]//Nb−SrTiO[001]の構造が得ら
れ、低伝搬損失で低駆動電圧である良好な光導波路特性
およびスイッチング特性を有する光導波路構造を得るこ
とができる。
【0075】次に、本発明の第6の実施の形態による光
導波路素子について説明する。第5の実施の形態と同様
に表6に示すようにLa0.1%ドープSrTiO
(100)単結晶導電性の下部電極基板上へ、膜厚5
00nmのエピタキシャルPZT(85/15)バッフ
ァ層を成長させ、次に膜厚1000nmのエピタキシャ
ルPZT(52/48)薄膜光導波路を成長させ、さら
に薄膜光導波路のパターンニングによるチャンネルの形
成と電極の設置によって方向性結合スイッチを作製する
ことができ、低伝搬損失で低駆動電圧である良好な光導
波路特性およびスイッチング特性を有する光導波路構造
を得ることができる。
【0076】なお、第1乃至第6の実施の形態と同様に
不純物元素をドープすることによって導電性または半導
電性としたSrTiO単結晶基板上にバッファ層を配
し、その上に薄膜光導波路を設けた構造の他の実施の形
態を表7から表12に示すが、このような構造はこれら
に限られるものではない。
【0077】
【表7】
【0078】
【表8】
【0079】
【表9】
【0080】
【表10】
【0081】
【表11】
【0082】
【表12】
【0083】次に、本発明の第7の実施の形態による光
導波路素子について説明する。表13に示すようにMg
O単結晶基板上へ、膜厚200nmのエピタキシャルN
b0.5%ドープSrTiO(100)導電層を成長
させ、次に膜厚300nmのSrTiOバッファ層を
成長させ、次に膜厚1000nmのエピタキシャルPZ
T(52/48)薄膜光導波路を成長させ、さらに薄膜
光導波路のパターンニングによるチャンネルの形成とX
交差部への電極の設置によって全反射型スイッチを作製
することができる。
【0084】
【表13】
【0085】導電層,バッファ層、導波路層の各層はタ
ーゲット表面をUVレーザー・パルスにより瞬間的に加
熱し蒸着を行うエキシマ・レーザー・デポジション法に
よって成長させることができる。結晶学的関係は単一配
向のPZT(100)//SrTiO(100)//
Nb−SrTiO(100)//MgO(100)の
関係を有し、低伝搬損失で低駆動電圧である良好な光導
波路特性およびスイッチング特性を有する光導波路構造
を得ることができる。
【0086】本実施の形態と同様に基板上に不純物元素
をドープすることによって導電性または半導電性とした
SrTiO導電層とバッファ層を配し、その上に薄膜
光導波路を設けた構造の他の実施の形態を表14に示す
が、このような構造はこれらに限られるものではない。
【0087】
【表14】
【0088】また、以上の実施の形態ではプリズム型偏
向素子、マッハツェンダ干渉スイッチ、方向性結合スイ
ッチ、および全反射型スイッチを示したが、本発明の思
想は言うまでもなくブラッグ反射型スイッチ、デジタル
型スイッチ、位相変調素子、モード変換素子、波長フィ
ルター素子などEO効果を用いるすべての光導波路素子
において同様に適応可能であり、これらの薄膜光導波路
素子においても同じく低駆動電圧特性と低伝搬損失特性
を同時に解決できる構造が提供される。
【0089】
【発明の効果】以上の通り、本発明によれば、低駆動電
圧特性と低伝搬損失特性を同時に解決できる電気光学効
果を有する薄膜光導波路素子が実現できる。本発明の光
導波路素子は各種の偏向素子、スイッチング素子、ある
いは変調素子などを含む電気光学効果を利用する光導波
路素子全般へ利用可能となる。
【図面の簡単な説明】
【図1】本発明の光導波路素子における電界分布を示す
図である。
【図2】吸収係数が174のSrTiO基板上のPZ
T光導波路の伝搬損失と膜厚の関係を示す図である。
【図3】バッファ層を有する光導波路における電界分布
を示す図である。
【図4】吸収係数が174のSrTiO基板上の膜厚
600nmのPZT光導波路の伝搬損失とSrTiO
バッファ層の膜厚の関係を示す図である。
【図5】吸収係数が174のSrTiO基板上による
吸収伝搬損失が1dB/cmとなるPZT光導波路の膜
厚とSrTiOバッファ層の膜厚の関係を示す図であ
る。
【図6】光導波路/バッファ層/基板の等価回路を示す
図である。
【図7】実効電圧と印加電圧の比が0.02〜0.4の
範囲のバッファ層膜厚/光導波路膜厚対バッファ層誘電
率/光導波路誘電率の関係を示す図である。
【図8】実効電圧と印加電圧の比が0.4〜0.9の範
囲のバッファ層膜厚/光導波路膜厚対バッファ層誘電率
/光導波路誘電率の関係を示す図である。
【図9】基板の抵抗率とRC時定数による駆動周波数の
関係を示す図である。
【図10】基板の抵抗率と電圧降下の関係を示す図であ
る。
【図11】第1の実施の形態による光導波路素子のEO
プリズム型偏向素子の上面図である。
【図12】第1の実施の形態による光導波路素子のEO
プリズム型偏向素子の側面図である。
【符号の説明】
1 薄膜光導波路 2 導電性基板 4 バッファ層 5 入射プリズム 6 入射ビーム 7 プリズム電極 8 出射ビーム 9 レーザ光源 10 レンズ
───────────────────────────────────────────────────── フロントページの続き (72)発明者 森山 弘朗 神奈川県足柄上郡中井町境430 グリーン テクなかい 富士ゼロックス株式会社内 (72)発明者 中村 滋年 神奈川県足柄上郡中井町境430 グリーン テクなかい 富士ゼロックス株式会社内 (72)発明者 長ケ部 英資 神奈川県足柄上郡中井町境430 グリーン テクなかい 富士ゼロックス株式会社内 (72)発明者 森川 尚 神奈川県足柄上郡中井町境430 グリーン テクなかい 富士ゼロックス株式会社内

Claims (16)

    【特許請求の範囲】
  1. 【請求項1】不純物元素を0.01重量%から5.0重
    量%ドープした導電性または半導電性の下部電極となる
    SrTiO単結晶基板と、 前記単結晶基板表面に設けられたエピタキシャルまたは
    単一配向性の酸化物バッファ層と、 前記バッファ層上に設けられたエピタキシャルまたは単
    一配向性の電気光学効果を有する酸化物薄膜光導波路
    と、 前記光導波路上に設けられた導電性薄膜または半導電性
    薄膜の上部電極とを備えたことを特徴とする光導波路素
    子。
  2. 【請求項2】請求項1記載の光導波路素子において、 前記単結晶半導体基板は、表面に不純物元素を0.01
    重量%から5.0重量%ドープしたエピタキシャルまた
    は単一配向性のSrTiO半導体薄膜を有しているこ
    とを特徴とする光導波路素子。
  3. 【請求項3】請求項1または2に記載の光導波路素子に
    おいて、 前記不純物元素は、III族またはV族の元素であるこ
    とを特徴とする光導波路素子。
  4. 【請求項4】請求項3記載の光導波路素子において、 前記不純物元素は、Nbであることを特徴とする光導波
    路素子。
  5. 【請求項5】請求項3記載の光導波路素子において、 前記不純物元素は、Laであることを特徴とする光導波
    路素子。
  6. 【請求項6】請求項1乃至5のいずれかに記載の光導波
    路素子において、 前記単結晶半導体基板の抵抗率は、10Ω・cm以下
    であることを特徴とする光導波路素子。
  7. 【請求項7】請求項1乃至6のいずれかに記載の光導波
    路素子において、 前記バッファ層は、前記光導波路よりも小さい屈折率を
    有する酸化物であることを特徴とする光導波路素子。
  8. 【請求項8】請求項1乃至7のいずれかに記載の光導波
    路素子において、 前記バッファ層は、Pb1−xLa(ZrTi
    1−y1−x/4(0<x<0.3、0<y<
    1.0)であることを特徴とする光導波路素子。
  9. 【請求項9】請求項1乃至8のいずれかに記載の光導波
    路素子において、 前記薄膜光導波路は、酸化物強誘電体であることを特徴
    とする光導波路素子。
  10. 【請求項10】請求項1乃至9のいずれかに記載の光導
    波路素子において、 前記強誘電体薄膜光導波路は、Pb1−xLa(Zr
    Ti1−y1−x /4(0<x<0.3、0<
    y<1.0)であることを特徴とする光導波路素子。
  11. 【請求項11】請求項1乃至10のいずれかに記載の光
    導波路素子において、 前記上部電極は、前記光導波路よりも小さい屈折率を有
    する透明導電性酸化物であることを特徴とする光導波路
    素子。
  12. 【請求項12】請求項11記載の光導波路素子におい
    て、 前記上部電極は、ITO(インジウムすず酸化物)であ
    ることを特徴とする光導波路素子。
  13. 【請求項13】請求項11記載の光導波路素子におい
    て、 前記上部電極は、AlドープZnOであることを特徴と
    する光導波路素子。
  14. 【請求項14】請求項1乃至13のいずれかに記載の光
    導波路素子において、 前記上部電極と前記下部電極との間に電圧を印加するこ
    とにより、前記光導波路に入射する光ビームを変調、ス
    イッチング、または偏向することを特徴とする光導波路
    素子。
  15. 【請求項15】請求項14記載の光導波路素子におい
    て、 前記上部電極と前記下部電極との間に電圧を印加するこ
    とにより、前記光導波路に入射する光ビームをプリズム
    型偏向、マッハツェンダ干渉スイッチング、方向性結合
    スイッチング、全反射型スイッチング、ブラッグ反射型
    スイッチング、デジタル型スイッチング、位相変調、モ
    ード変換、または波長フィルタリングすることを特徴と
    する光導波路素子。
  16. 【請求項16】酸化物バッファ層と酸化物薄膜光導波路
    とを有する光導波路素子の製造方法において、 前記酸化物バッファ層及び前記酸化物薄膜光導波路は、
    金属有機化合物を塗布した後、焼成による固相エピタキ
    シャル成長により形成することを特徴とする光導波路素
    子の製造方法。
JP11029724A 1998-06-05 1999-02-08 光導波路素子およびその製造方法 Pending JP2000056343A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11029724A JP2000056343A (ja) 1998-06-05 1999-02-08 光導波路素子およびその製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP15760998 1998-06-05
JP10-157609 1998-06-05
JP11029724A JP2000056343A (ja) 1998-06-05 1999-02-08 光導波路素子およびその製造方法

Publications (1)

Publication Number Publication Date
JP2000056343A true JP2000056343A (ja) 2000-02-25

Family

ID=26367959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11029724A Pending JP2000056343A (ja) 1998-06-05 1999-02-08 光導波路素子およびその製造方法

Country Status (1)

Country Link
JP (1) JP2000056343A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004279970A (ja) * 2003-03-18 2004-10-07 Fujitsu Ltd 光偏向素子及びそれを用いた光デバイス
JPWO2004068235A1 (ja) * 2003-01-27 2006-05-25 富士通株式会社 光偏向素子およびその製造方法
JP2008239456A (ja) * 2007-03-29 2008-10-09 Shimane Univ 機能性チタン酸ストロンチウム結晶およびその製造方法。
JP2009080378A (ja) * 2007-09-27 2009-04-16 Nec Corp 光学素子、光集積デバイスおよびその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004068235A1 (ja) * 2003-01-27 2006-05-25 富士通株式会社 光偏向素子およびその製造方法
JP2004279970A (ja) * 2003-03-18 2004-10-07 Fujitsu Ltd 光偏向素子及びそれを用いた光デバイス
JP4560273B2 (ja) * 2003-03-18 2010-10-13 富士通株式会社 光偏向素子及びそれを用いた光デバイス
JP2008239456A (ja) * 2007-03-29 2008-10-09 Shimane Univ 機能性チタン酸ストロンチウム結晶およびその製造方法。
JP2009080378A (ja) * 2007-09-27 2009-04-16 Nec Corp 光学素子、光集積デバイスおよびその製造方法

Similar Documents

Publication Publication Date Title
US6078717A (en) Opical waveguide device
US6385355B1 (en) Optical deflection element
TWI284974B (en) Electronic and optical devices and methods of forming these devices
US6470125B1 (en) Optical device, driving method of optical device and manufacture of optical device
JP4204108B2 (ja) 光導波路素子およびその製造方法
JPH095797A (ja) 光偏向素子
US7315662B2 (en) Electronic and optical devices and methods of forming these devices
US20070237483A1 (en) Optical amplifier and fabrication method thereof
US20050162595A1 (en) Optical deflection element and method of producing the same
Nashimoto et al. Fabrication of electro-optic Pb (Zr, Ti) O 3 heterostructure waveguides on Nb-doped SrTiO 3 by solid-phase epitaxy
JP2000056344A (ja) 光導波路素子およびその製造方法
JP2000056343A (ja) 光導波路素子およびその製造方法
JP4399059B2 (ja) 薄膜構造体
JP2000047271A (ja) 光導波路素子およびその作製方法
JP2001296566A (ja) 光偏向素子
JP2000047272A (ja) 光導波路素子およびその作製方法
JP4412796B2 (ja) 光導波路素子の製造方法
JPH11202271A (ja) 光導波路素子
JPH11119265A (ja) 光導波路素子
JP2000330143A (ja) 光偏向素子
US20050082615A1 (en) Epitaxial ferroelectric thin-film device and method of manufacturing the same
US7142760B2 (en) Stabilized titanate thin film structures
Maqueira-Albo et al. Integration of non-volatile ferroelectric actuators in silicon photonics circuits
JP2000241836A (ja) 光スイッチおよび光スイッチの製造方法
JP4506088B2 (ja) 光素子の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060130

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070726

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106