JP2000055495A - Air conditioner provided with ice heat storage tank - Google Patents

Air conditioner provided with ice heat storage tank

Info

Publication number
JP2000055495A
JP2000055495A JP22196798A JP22196798A JP2000055495A JP 2000055495 A JP2000055495 A JP 2000055495A JP 22196798 A JP22196798 A JP 22196798A JP 22196798 A JP22196798 A JP 22196798A JP 2000055495 A JP2000055495 A JP 2000055495A
Authority
JP
Japan
Prior art keywords
tank
ice
heat storage
refrigerant
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22196798A
Other languages
Japanese (ja)
Other versions
JP3802238B2 (en
Inventor
Yoshiaki Kurosawa
美暁 黒澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP22196798A priority Critical patent/JP3802238B2/en
Publication of JP2000055495A publication Critical patent/JP2000055495A/en
Application granted granted Critical
Publication of JP3802238B2 publication Critical patent/JP3802238B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform good cooling operation utilizing cold heat of ice in an ice heat storage tank. SOLUTION: In an air conditioner 20 comprising a heat source side unit 21 provided with a compressor 28 and a heat source side heat exchanger 30, an ice heat storage unit 22 with a coil 34 arranged in submerged state in an ice heat storage tank 35, and a using side unit 23 provided with a using side heat exchanger 32, and provided with the ice heat storage tank for ice making operation and cooling operation, surge tanks 43A and 43B for storing refrigerant are arranged in parallel between the coil in the ice heat storage tank and the using side heat exchanger, liquid refrigerant condensed in the coil is stored in the above tank, the stored liquid refrigerant is force-fed to the using side heat exchanger by high pressure gas refrigerant alternately supplied into the tank, and the alternate supply of the high pressure gas refrigerant is switched over based on the temperature of the refrigerant flowing out from the inside of the above tank detected by a third temperature sensor 63.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、氷蓄熱槽を備えた
空気調和装置に係り、氷蓄熱ユニットに蓄熱された冷熱
を放熱して放冷冷房運転を実施する氷蓄熱槽を備えた空
気調和装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner having an ice heat storage tank, and more particularly to an air conditioner having an ice heat storage tank for performing cooling and cooling operation by radiating cold stored in an ice heat storage unit. Related to the device.

【0002】[0002]

【従来の技術】一般に、図3に示すように、圧縮機1、
熱源側熱交換器2、四方弁3及び電動膨張弁4を備えた
熱源側ユニット5と、氷蓄熱槽6内にコイル7が水没状
態で配設されてコイル7外周に氷が形成可能な氷蓄熱ユ
ニット8と、利用側熱交換器9を備えた利用側ユニット
10とを有し、製氷運転、放冷冷房運転、通常冷房運転
を実施可能とする空気調和装置11が知られている。
2. Description of the Related Art Generally, as shown in FIG.
A heat source side unit 5 including a heat source side heat exchanger 2, a four-way valve 3 and an electric expansion valve 4, and an ice capable of forming ice on the outer periphery of the coil 7 with a coil 7 disposed in a submerged state in an ice heat storage tank 6. An air conditioner 11 having a heat storage unit 8 and a use side unit 10 including a use side heat exchanger 9 and capable of performing an ice making operation, a cooling / cooling operation, and a normal cooling operation is known.

【0003】製氷運転は、圧縮機1からのガス冷媒が熱
源側熱交換器2を経て液冷媒となり、その後に電動膨張
弁4を通り、氷蓄熱槽6内のコイル7に流入して蒸発
し、この氷蓄熱槽6内で製氷動作が実施された後、ガス
冷媒が圧縮機1へ戻されて実施される。
[0003] In the ice making operation, the gas refrigerant from the compressor 1 passes through the heat source side heat exchanger 2 to become a liquid refrigerant, and then flows through the electric expansion valve 4 into the coil 7 in the ice heat storage tank 6 to evaporate. After the ice making operation is performed in the ice heat storage tank 6, the gas refrigerant is returned to the compressor 1 for execution.

【0004】放冷冷房運転は、熱源側ユニット5の圧縮
機1を停止させ、氷蓄熱ユニット8に設置されて冷媒を
圧送する液ポンプ又はガスポンプなどの循環ポンプ12
(図3では液冷媒を圧送する液ポンプ)を稼働させるこ
とによりなされている。つまり、循環ポンプ12の稼働
により、氷蓄熱ユニット8における氷蓄熱槽6のコイル
7内で、氷に蓄熱された冷熱を吸収して凝縮した液冷媒
が利用側熱交換器9へ圧送され、この利用側熱交換器9
において液冷媒が蒸発して、この蒸発潜熱と氷の冷熱の
放熱とにより放冷冷房運転が実施される。
In the cooling / cooling operation, the compressor 1 of the heat source side unit 5 is stopped, and a circulating pump 12 such as a liquid pump or a gas pump installed in the ice heat storage unit 8 for pumping the refrigerant.
(In FIG. 3, the liquid pump for pumping the liquid refrigerant is operated). That is, by the operation of the circulation pump 12, the liquid refrigerant that has absorbed and condensed the cold stored in the ice in the coil 7 of the ice heat storage tank 6 of the ice heat storage unit 8 is pumped to the use-side heat exchanger 9, User side heat exchanger 9
, The liquid refrigerant evaporates, and the cooling / cooling operation is performed by the latent heat of evaporation and the heat radiation of the cold heat of ice.

【0005】通常冷房運転は、圧縮機1から熱源側熱交
換器2へ導かれて液冷媒となった冷媒を、氷蓄熱槽6の
コイル7内へ流すことなく、利用側熱交換器9へ供給し
て液冷媒を蒸発し、この蒸発潜熱により実施される。
In the normal cooling operation, the refrigerant that has been guided from the compressor 1 to the heat source side heat exchanger 2 and becomes a liquid refrigerant flows to the use side heat exchanger 9 without flowing into the coil 7 of the ice heat storage tank 6. The liquid refrigerant is supplied to evaporate the liquid refrigerant, and the operation is performed by the latent heat of evaporation.

【0006】[0006]

【発明が解決しようとする課題】ところで、上述の放冷
冷房運転では、特に循環ポンプ12が液ポンプの場合
に、この循環ポンプ12にキャビテーションが発生する
おそれがある。そこで、この液ポンプを用いず、氷蓄熱
槽6のコイル7内の凝縮した液冷媒を複数(例えば2
個)のタンク内に貯溜させ、これらのタンク内へ高圧ガ
ス冷媒を交互に供給することにより、上記タンク内で凝
縮した上記液冷媒を利用側熱交換器9へ圧送して、放冷
冷房運転を実施可能とするものが考えられる。
In the cooling / cooling operation described above, cavitation may occur in the circulation pump 12, particularly when the circulation pump 12 is a liquid pump. Therefore, without using this liquid pump, a plurality of condensed liquid refrigerants in the coil 7 of the ice heat storage tank 6 (for example, 2
), And the high-pressure gas refrigerant is alternately supplied into these tanks, whereby the liquid refrigerant condensed in the tank is pressure-fed to the use side heat exchanger 9 to perform a cooling / cooling operation. Can be implemented.

【0007】しかし、この場合には、高圧ガス冷媒を複
数のタンク内へ交互に供給させるタイミングがずれる
と、タンク内の液冷媒を利用側熱交換器9へ、滞ること
なく連続的に圧送することができず、氷の冷熱を利用し
た放冷冷房運転を良好に実施できない恐れがある。
However, in this case, if the timing for alternately supplying the high-pressure gas refrigerant into the plurality of tanks is shifted, the liquid refrigerant in the tank is continuously pressure-fed to the use-side heat exchanger 9 without any delay. Therefore, the cooling / cooling operation using the cold heat of the ice may not be satisfactorily performed.

【0008】本発明の課題は、上述の事情を考慮してな
されたものであり、氷蓄熱槽内の氷の冷熱を利用した冷
房運転を良好に実施できる氷蓄熱槽を備えた空気調和装
置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above circumstances, and provides an air conditioner having an ice heat storage tank capable of performing a cooling operation using the cold heat of ice in the ice heat storage tank. To provide.

【0009】[0009]

【課題を解決するための手段】請求項1記載の発明は、
圧縮機及び熱源側熱交換器を備えた熱源側ユニットと、
氷蓄熱槽内にコイルが水没状態で配設されてこのコイル
外周に氷が形成可能な氷蓄熱ユニットと、利用側熱交換
器を備えた利用側ユニットとを有し、製氷運転、冷房運
転を実施可能とする氷蓄熱槽を備えた空気調和装置にお
いて、上記氷蓄熱槽内の上記コイルと上記利用側熱交換
器との間に、冷媒を貯溜可能な複数のタンクが並列状態
で配設され、上記コイル内で凝縮した液冷媒が上記タン
ク内に貯溜されて、これらのタンク内へ交互に供給され
る高圧ガス冷媒により上記利用側熱交換器へ圧送可能に
構成され、上記高圧ガス冷媒の上記タンク内への交互の
供給が、上記タンク内から流出する冷媒の温度に基づき
切り換えられることを特徴とするものである。
According to the first aspect of the present invention,
A heat source side unit including a compressor and a heat source side heat exchanger,
An ice heat storage unit in which a coil is disposed in a submerged state in an ice heat storage tank and ice can be formed on the outer periphery of the coil, and a use-side unit having a use-side heat exchanger, and perform an ice making operation and a cooling operation. In an air conditioner having an ice heat storage tank to be enabled, a plurality of tanks capable of storing a refrigerant are arranged in parallel between the coil and the use side heat exchanger in the ice heat storage tank. The liquid refrigerant condensed in the coil is stored in the tank, and is configured to be able to be pressure-fed to the use side heat exchanger by a high-pressure gas refrigerant alternately supplied into these tanks. The alternate supply into the tank is switched based on the temperature of the refrigerant flowing out of the tank.

【0010】請求項2記載の発明は、請求項1に記載の
発明において、上記高圧ガス冷媒のタンク内への交互の
供給は、上記タンク内から流出する冷媒の温度と、当該
タンク内へ供給される高圧ガス冷媒の温度との差の絶対
値が所定温度以下になった時点で切り換えられるよう構
成されたことを特徴とするものである。
According to a second aspect of the present invention, in the first aspect of the present invention, the alternate supply of the high-pressure gas refrigerant into the tank is based on the temperature of the refrigerant flowing out of the tank and the supply of the refrigerant into the tank. The switching is performed when the absolute value of the difference from the temperature of the high-pressure gas refrigerant becomes equal to or lower than a predetermined temperature.

【0011】請求項3記載の発明は、請求項1に記載の
発明において、上記高圧ガス冷媒のタンク内への交互の
供給は、上記タンク内から流出する冷媒の温度の時間的
変化率が所定値以上になった時点で切り換えられるよう
構成されたことを特徴とするものである。
According to a third aspect of the present invention, in the first aspect of the present invention, the alternate supply of the high-pressure gas refrigerant into the tank is such that a temporal change rate of the temperature of the refrigerant flowing out of the tank is a predetermined rate. It is characterized in that it is configured to be switched when the value becomes equal to or more than the value.

【0012】請求項4記載の発明は、請求項1乃至3の
いずれかに記載の発明において、上記複数のタンクへ交
互に供給される高圧ガス冷媒は、熱源側ユニットの圧縮
機よりも容量の小さな小容量圧縮機から供給される高圧
ガス冷媒であることを特徴とするものである。
According to a fourth aspect of the present invention, in the first aspect of the present invention, the high-pressure gas refrigerant alternately supplied to the plurality of tanks has a larger capacity than the compressor of the heat source side unit. It is a high-pressure gas refrigerant supplied from a small small capacity compressor.

【0013】請求項1乃至4に記載の発明には、次の作
用がある。
The first to fourth aspects of the present invention have the following effects.

【0014】タンク内から流出する冷媒の温度が、氷蓄
熱槽のコイルから流出する凝縮した液冷媒の温度に近い
場合には当該タンク内に液冷媒が存在し、また、タンク
内から流出する冷媒の温度が、当該タンク内に供給され
る高圧ガス冷媒の温度に略等しい場合には、当該タンク
内に液冷媒が存在しないと判定できる。従って、タンク
から流出する冷媒の温度を管理することにより、当該タ
ンク内における液冷媒の液面レベルを把握でき、一方の
タンク内の液冷媒が存在しなくなった時点、または存在
しなくなる直前もしくは直後、直ちに、他方のタンクか
ら利用側熱交換機へ液冷媒を圧送することにより、タン
ク内の液冷媒を連続的に且つ確実に利用側熱交換器へ圧
送でき、したがって、氷蓄熱槽内の氷の冷熱を利用した
冷房運転を良好に実施できる。
When the temperature of the refrigerant flowing out of the tank is close to the temperature of the condensed liquid refrigerant flowing out of the coil of the ice heat storage tank, the liquid refrigerant exists in the tank, and the refrigerant flowing out of the tank also exists. Is substantially equal to the temperature of the high-pressure gas refrigerant supplied into the tank, it can be determined that no liquid refrigerant exists in the tank. Therefore, by managing the temperature of the refrigerant flowing out of the tank, the liquid level of the liquid refrigerant in the tank can be grasped, and when the liquid refrigerant in one of the tanks does not exist, or immediately before or immediately after the liquid refrigerant no longer exists. Immediately, by pumping the liquid refrigerant from the other tank to the use-side heat exchanger, the liquid refrigerant in the tank can be continuously and reliably pumped to the use-side heat exchanger. Cooling operation using cold heat can be performed well.

【0015】また、冷媒温度を検出する温度センサをタ
ンクの流出側などに設置し、タンク内の液冷媒の液面を
直接検出する、温度センサよりも高価な液面センサをタ
ンクに設置しないことから、コストを低減できる。
In addition, a temperature sensor for detecting the refrigerant temperature is installed on the outflow side of the tank or the like, and a liquid level sensor, which is more expensive than the temperature sensor and directly detects the liquid level of the liquid refrigerant in the tank, is not installed in the tank. Therefore, the cost can be reduced.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】図1は、本発明に係る氷蓄熱槽を備えた空
気調和装置の一実施の形態を示す管路図である。
FIG. 1 is a pipeline diagram showing an embodiment of an air conditioner having an ice heat storage tank according to the present invention.

【0018】この図1に示す空気調和装置20は、熱源
側ユニット21、氷蓄熱ユニット22及び利用側ユニッ
ト23を有して構成される。熱源側ユニット21の冷媒
配管24が、氷蓄熱ユニット22の冷媒配管25、26
を介して利用側ユニット23の冷媒配管27に接続され
る。
The air conditioner 20 shown in FIG. 1 includes a heat source unit 21, an ice heat storage unit 22, and a use unit 23. The refrigerant pipes 24 of the heat source side unit 21 are connected to the refrigerant pipes 25, 26 of the ice heat storage unit 22.
Is connected to the refrigerant pipe 27 of the use-side unit 23 via the.

【0019】熱源側ユニット21は、冷媒配管24に圧
縮機28、四方弁29、熱源側熱交換器30及び電動膨
張弁31が順次接続されて構成される。また、利用側ユ
ニット23は、冷媒配管27に利用側熱交換器32及び
電動膨張弁33が配設されて構成され、この電動膨張弁
33は、空調負荷に応じて開度が調整される。
The heat source side unit 21 is configured such that a compressor 28, a four-way valve 29, a heat source side heat exchanger 30 and an electric expansion valve 31 are sequentially connected to a refrigerant pipe 24. Further, the use side unit 23 is configured such that the use side heat exchanger 32 and the electric expansion valve 33 are disposed in the refrigerant pipe 27, and the degree of opening of the electric expansion valve 33 is adjusted according to the air conditioning load.

【0020】氷蓄熱ユニット22は、コイル34を収容
した氷蓄熱槽35を備えると共に、冷媒配管25に第1
開閉弁36が、冷媒配管26に第2開閉弁37がそれぞ
れ配設される。更に、冷媒配管25には、第1開閉弁3
6の配設位置よりも利用側ユニット23側に、接続配管
38を介してコイル34の一端が接続され、この接続配
管38に電動膨張弁39が配設される。また、コイル3
4の他端は、第3開閉弁40を備えた接続配管41を介
して、冷媒配管26における第2開閉弁37配設位置の
利用側ユニット23側に接続される。
The ice heat storage unit 22 includes an ice heat storage tank 35 accommodating a coil 34,
An on-off valve 36 is provided, and a second on-off valve 37 is provided on the refrigerant pipe 26. Further, the first on-off valve 3 is connected to the refrigerant pipe 25.
One end of the coil 34 is connected to the use side unit 23 side from the disposition position 6 via a connection pipe 38, and an electric expansion valve 39 is disposed on the connection pipe 38. In addition, coil 3
The other end of 4 is connected via a connection pipe 41 provided with a third on-off valve 40 to the use side unit 23 side of the refrigerant pipe 26 where the second on-off valve 37 is provided.

【0021】氷蓄熱槽35には水が充満され、コイル3
4はこの氷蓄熱槽35内に水没状態で配設される。この
コイル34内には、空気調和装置20の製氷運転時に熱
源側熱交換器30から液冷媒が流入して蒸発し、これに
より、コイル34の外周に氷が付着して形成される。
The ice heat storage tank 35 is filled with water and the coil 3
4 is provided in the ice heat storage tank 35 in a state of being submerged. During the ice making operation of the air conditioner 20, the liquid refrigerant flows from the heat source side heat exchanger 30 and evaporates in the coil 34, whereby ice adheres to the outer periphery of the coil 34 and is formed.

【0022】上記接続配管38には、電動膨張弁39と
コイル34との間に、二股に分岐する分岐配管42を介
して2個のサージタンク43A及び43Bが並列状態で
接続される。これらのサージタンク43A、43Bが合
流配管44を介して、冷媒配管25における第1開閉弁
36配設位置と接続配管38接続位置との間に接続され
る。これにより、サージタンク43A及び43Bは、氷
蓄熱槽35内のコイル34と利用側熱交換器32との間
に配設されて、氷蓄熱槽35内の氷に蓄熱された冷熱に
より凝縮された液冷媒が貯溜可能に設けられる。
Two surge tanks 43A and 43B are connected in parallel to the connection pipe 38 between the electric expansion valve 39 and the coil 34 via a branch pipe 42 that branches into two branches. These surge tanks 43 </ b> A and 43 </ b> B are connected via a merging pipe 44 between the position where the first on-off valve 36 is disposed in the refrigerant pipe 25 and the position where the connection pipe 38 is connected. Thereby, the surge tanks 43A and 43B are disposed between the coil 34 in the ice heat storage tank 35 and the use side heat exchanger 32, and are condensed by the cold stored in the ice in the ice heat storage tank 35. The liquid refrigerant is provided so as to be able to be stored.

【0023】分岐配管42には、サージタンク43A、
43Bの流入側に流入側逆止弁45A、45Bが、ま
た、合流配管44には、サージタンク43A、43Bの
流出側に流出側逆止弁46A、46Bがそれぞれ配設さ
れている。これらの流入側逆止弁45A、45Bは、氷
蓄熱槽35のコイル34からサージタンク43A、43
Bへのみ流れる冷媒の流れを許容し、流出側逆止弁46
A、46Bは、サージタンク43A、43Bから利用側
熱交換器32側へのみ流れる冷媒の流れを許容する。
In the branch pipe 42, a surge tank 43A,
Inflow side check valves 45A and 45B are provided on the inflow side of 43B, and outflow side check valves 46A and 46B are provided on the merging pipe 44 on the outflow side of the surge tanks 43A and 43B, respectively. These inflow side check valves 45A, 45B are connected to the surge tanks 43A, 43A from the coil 34 of the ice heat storage tank 35.
B, and allows the flow of the refrigerant flowing only to
A and 46B allow the flow of the refrigerant flowing only from the surge tanks 43A and 43B to the use-side heat exchanger 32 side.

【0024】サージタンク43A及び43Bは、第1配
管51、第2配管52、第3配管53及び第4配管54
を介して、四方弁55及び小容量圧縮機56に接続され
る。第1配管51、第2配管52、第3配管53及び第
4配管54は、それぞれの一端が四方弁55の各ポート
に接続されると共に、第1配管51、第2配管52の他
端が小容量圧縮機56の吐出口と吸込口にそれぞれ接続
される。また、第3配管53、第4配管54の他端がサ
ージタンク43A、43Bにそれぞれ接続される。
The surge tanks 43A and 43B are connected to a first pipe 51, a second pipe 52, a third pipe 53, and a fourth pipe 54.
Is connected to the four-way valve 55 and the small capacity compressor 56. One end of each of the first pipe 51, the second pipe 52, the third pipe 53, and the fourth pipe 54 is connected to each port of the four-way valve 55, and the other ends of the first pipe 51 and the second pipe 52 are connected. It is connected to the discharge port and the suction port of the small capacity compressor 56, respectively. The other ends of the third pipe 53 and the fourth pipe 54 are connected to surge tanks 43A and 43B, respectively.

【0025】四方弁55の切り換え操作により、第1配
管51及び第3配管53の連通並びに第2配管52及び
第4配管54の連通(A側切換)と、第1配管51及び
第4配管54の連通並びに第2配管52及び第3配管5
3の連通(B側切換)とが選択的に切り換えられる。ま
た、小容量圧縮機56は、熱源側ユニット21における
圧縮機28よりも小さな容量(1/10〜1/20)の
圧縮機であり、空気調和装置20の放冷冷房運転時にの
み稼働される。この小容量圧縮機56から吐出される冷
媒は、熱源側ユニット21の圧縮機28から吐出される
冷媒と同一組成である。
By the switching operation of the four-way valve 55, the communication between the first pipe 51 and the third pipe 53, the communication between the second pipe 52 and the fourth pipe 54 (switching on the A side), the first pipe 51 and the fourth pipe 54 are performed. And the second pipe 52 and the third pipe 5
3 (B side switching) is selectively switched. The small capacity compressor 56 is a compressor having a smaller capacity (1/10 to 1/20) than the compressor 28 in the heat source side unit 21 and is operated only during the cooling / cooling operation of the air conditioner 20. . The refrigerant discharged from the small capacity compressor 56 has the same composition as the refrigerant discharged from the compressor 28 of the heat source side unit 21.

【0026】上記四方弁55のA側切換又はB側切換へ
の操作により、小容量圧縮機56からの高圧ガス冷媒が
サージタンク43A又は43B内へ交互に供給可能に構
成される。これにより、サージタンク43A、43B内
に貯溜された液冷媒が利用側熱交換器32へ圧送可能に
構成される。
By switching the four-way valve 55 to the A-side switching or the B-side switching, the high-pressure gas refrigerant from the small capacity compressor 56 can be alternately supplied into the surge tank 43A or 43B. Thus, the liquid refrigerant stored in the surge tanks 43A and 43B is configured to be able to be pressure-fed to the use-side heat exchanger 32.

【0027】上記サージタンク43A、43Bの上流側
及び下流側配管に、これらのサージタンク43A、43
B内の液冷媒の液面レベルを間接的に検出するための第
1温度センサ61、第2温度センサ62、第3温度セン
サ63及び第4温度センサ64が配設されている。
The surge tanks 43A, 43B are connected to the upstream and downstream pipes of the surge tanks 43A, 43B, respectively.
A first temperature sensor 61, a second temperature sensor 62, a third temperature sensor 63, and a fourth temperature sensor 64 for indirectly detecting the liquid level of the liquid refrigerant in B are provided.

【0028】つまり、第3配管53に第1温度センサ6
1が設置されて、小容量圧縮機56からサージタンク4
3A内へ吐出される高圧ガス冷媒、またはサージタンク
43A内から小容量圧縮機56へ吸い込まれる低圧ガス
冷媒の温度T1(図2)が検出される。また、第4配管
54には第2温度センサ62が設置されて、小容量圧縮
機56からサージタンク43B内へ吐出される高圧ガス
冷媒、またはサージタンク43B内から小容量圧縮機5
6へ吸い込まれる低圧ガス冷媒の温度T2(図2)が検
出される。
That is, the first temperature sensor 6 is connected to the third pipe 53.
1 is installed, and the surge tank 4
The temperature T1 (FIG. 2) of the high-pressure gas refrigerant discharged into 3A or the low-pressure gas refrigerant sucked from the surge tank 43A into the small capacity compressor 56 is detected. Further, a second temperature sensor 62 is installed in the fourth pipe 54, and the high-pressure gas refrigerant discharged from the small capacity compressor 56 into the surge tank 43B or the small capacity compressor 5 from the surge tank 43B.
The temperature T2 (FIG. 2) of the low-pressure gas refrigerant sucked into 6 is detected.

【0029】合流配管44には、その合流部分に第3温
度センサ63が設置されて、サージタンク43Aまたは
43Bから流出する冷媒の温度T3(図2)が検出され
る。この温度T3は、サージタンク43A又は43B内
に貯溜されて利用側熱交換器32へ圧送される凝縮した
液冷媒の温度であるか、または、小容量圧縮機56から
サージタンク43A若しくは43B内へ吐出されて流出
する高圧ガス冷媒の温度である。
The junction pipe 44 is provided with a third temperature sensor 63 at its junction to detect the temperature T3 (FIG. 2) of the refrigerant flowing out of the surge tank 43A or 43B. This temperature T3 is the temperature of the condensed liquid refrigerant stored in the surge tank 43A or 43B and pumped to the use side heat exchanger 32, or from the small capacity compressor 56 to the surge tank 43A or 43B. This is the temperature of the high-pressure gas refrigerant that is discharged and flows out.

【0030】更に、分岐配管42には、その合流部分に
第4温度センサ64が設置されて、氷蓄熱槽35のコイ
ル34内からサージタンク43A、又は43B内へ導か
れる凝縮した液冷媒の温度T4(図2)が検出される。
Further, a fourth temperature sensor 64 is installed at the junction of the branch pipe 42 and the temperature of the condensed liquid refrigerant guided from the coil 34 of the ice heat storage tank 35 into the surge tank 43A or 43B. T4 (FIG. 2) is detected.

【0031】図1に示す制御装置60は、第1温度セン
サ61、第2温度センサ62、第3温度センサ63及び
第4温度センサ64からの検出温度(それぞれ温度T
1、T2、T3、T4)を取り込み、サージタンク43
A、43B内の液冷媒の液面レベル、特にサージタンク
43A、43B内に液冷媒が殆ど又は全く存在しなくな
った状態を検出して、四方弁55の切り換えを制御す
る。
The control device 60 shown in FIG. 1 controls the temperatures detected by the first temperature sensor 61, the second temperature sensor 62, the third temperature sensor 63, and the fourth temperature sensor 64 (each temperature T
1, T2, T3, T4) and surge tank 43
The switching of the four-way valve 55 is controlled by detecting the liquid level of the liquid refrigerant in the tanks A and 43B, in particular, the state in which the liquid refrigerant hardly or completely does not exist in the surge tanks 43A and 43B.

【0032】すなわち、四方弁55がA側切換とされて
いるときには、サージタンク43A内に小容量圧縮機5
6からの高圧ガス冷媒が吐出されて、T1>T2となる
ため、サージタンク43Aの液面レベルを検知する必要
がある。サージタンク43Aから、貯溜された液冷媒が
利用側熱交換器32へ良好に圧送されている間は、この
サージタンク43A内に液冷媒が存在し、図2に示すよ
うに、第3温度センサ63にて検出される温度T3は、
第4温度センサ64にて検出される温度T4に近い温度
となる。しかし、サージタンク43A内の液冷媒が不足
してくると第3温度センサ63にて検出される温度T3
が上昇し、液冷媒が存在しなくなると、温度T3は第1
温度センサ61にて検出される温度T1とほぼ等しくな
る。ここで、図2の符号Aは、サージタンク43A内の
液冷媒の液面レベルを、符号Bは、サージタンク43B
内の液冷媒の液面レベルをそれぞれ示す。
That is, when the four-way valve 55 is switched to the A side, the small capacity compressor 5 is installed in the surge tank 43A.
Since the high-pressure gas refrigerant from 6 is discharged and T1> T2, it is necessary to detect the liquid level of the surge tank 43A. While the stored liquid refrigerant is being satisfactorily pumped from the surge tank 43A to the use-side heat exchanger 32, the liquid refrigerant exists in the surge tank 43A, and as shown in FIG. The temperature T3 detected at 63 is
The temperature is close to the temperature T4 detected by the fourth temperature sensor 64. However, when the liquid refrigerant in the surge tank 43A becomes insufficient, the temperature T3 detected by the third temperature sensor 63
Rises, and when the liquid refrigerant no longer exists, the temperature T3 becomes the first temperature.
It becomes almost equal to the temperature T1 detected by the temperature sensor 61. Here, the symbol A in FIG. 2 indicates the liquid level of the liquid refrigerant in the surge tank 43A, and the symbol B indicates the surge tank 43B.
The liquid surface level of the liquid refrigerant in each of them is shown.

【0033】そこで、制御装置60は、温度T3と温度
T1との温度差(T3−T1)の絶対値が所定温度以下
になった時点でサージタンク43A内に液冷媒がほとん
ど存在しなくなった、または完全に存在しなくなったと
判断し、四方弁55をB側切換として、小容量圧縮機5
6から吐出される高圧ガス冷媒をサージタンク43B内
へ導き、このサージタンク43B内に貯溜された液冷媒
を利用側熱交換器32へ圧送させる。
Therefore, when the absolute value of the temperature difference (T3-T1) between the temperature T3 and the temperature T1 becomes equal to or lower than the predetermined temperature, the controller 60 determines that almost no liquid refrigerant is present in the surge tank 43A. Alternatively, it is determined that the small-capacity compressor 5 has completely disappeared, and the four-way valve 55
The high-pressure gas refrigerant discharged from 6 is guided into the surge tank 43B, and the liquid refrigerant stored in the surge tank 43B is pumped to the use-side heat exchanger 32.

【0034】制御装置60は、サージタンク43B内か
ら利用側熱交換器32へ液冷媒が圧送されている場合に
は、温度T3と、第2温度センサ62にて検出される温
度T2との温度差(T3−T2)を算出し、その絶対値
が上記所定温度以下となった時点で、サージタンク43
B内に液冷媒がほとんど存在しなくなった、または完全
に存在しなくなったと判断して、四方弁55をA側切換
とする。これにより、サージタンク43A内に貯溜され
た液冷媒が利用側熱交換器32へ圧送される。
When the liquid refrigerant is being pumped from the surge tank 43B to the use side heat exchanger 32, the controller 60 determines the temperature between the temperature T3 and the temperature T2 detected by the second temperature sensor 62. The difference (T3-T2) is calculated, and when the absolute value falls below the predetermined temperature, the surge tank 43
It is determined that the liquid refrigerant has hardly or completely no longer existed in B, and the four-way valve 55 is switched to the A side. As a result, the liquid refrigerant stored in the surge tank 43A is pumped to the use-side heat exchanger 32.

【0035】制御装置60は、四方弁55を上述のよう
に切り換え操作して、サージタンク43A又は43B内
に貯溜された液冷媒を交互に利用側熱交換器32へ圧送
する。
The control device 60 switches the four-way valve 55 as described above to alternately pump the liquid refrigerant stored in the surge tank 43A or 43B to the use side heat exchanger 32.

【0036】次に、空気調和装置20の製氷運転、放冷
冷房運転、通常冷房運転を説明する。
Next, the ice making operation, the cooling / cooling operation, and the normal cooling operation of the air conditioner 20 will be described.

【0037】[A]製氷運転 空気調和装置20の製氷運転は、例えば、夜間10時か
ら翌朝8時までの電力料金の安い時間帯に、熱源側熱交
換器30からの液冷媒を氷蓄熱槽35のコイル34内へ
供給し、氷蓄熱槽35内に氷を作る運転である。
[A] Ice Making Operation The ice making operation of the air conditioner 20 is performed, for example, in a time period when power rates are low from 10:00 at night to 8:00 in the next morning, when the liquid refrigerant from the heat source side heat exchanger 30 is stored in an ice storage tank. In this operation, the ice is supplied into the coil 34 of FIG.

【0038】この場合には、電動膨張弁33が閉弁さ
れ、第1開閉弁36、第2開閉弁37、第3開閉弁40
及び電動膨張弁39が開弁操作される。
In this case, the electric expansion valve 33 is closed, and the first on-off valve 36, the second on-off valve 37, the third on-off valve 40
The electric expansion valve 39 is opened.

【0039】この状態で、熱源側ユニット21の圧縮機
28が稼働されると、この圧縮機28から吐出されたガ
ス冷媒は、熱源側熱交換器30にて凝縮され、電動膨張
弁31及び39を経て減圧され、氷蓄熱槽35のコイル
34内へ流入する。このコイル34内に流入した冷媒は
蒸発して、コイル34の外周に氷を付着した状態で形成
する。その後、コイル34内のガス冷媒は接続配管41
及び冷媒配管26を経て四方弁29へ至り、圧縮機28
に戻される。
In this state, when the compressor 28 of the heat source side unit 21 is operated, the gas refrigerant discharged from the compressor 28 is condensed in the heat source side heat exchanger 30 and the electric expansion valves 31 and 39 , And flows into the coil 34 of the ice heat storage tank 35. The refrigerant that has flowed into the coil 34 evaporates and forms with ice adhered to the outer periphery of the coil 34. Thereafter, the gas refrigerant in the coil 34 is connected to the connection pipe 41.
And a refrigerant pipe 26 to a four-way valve 29, and a compressor 28
Is returned to.

【0040】[B]放冷冷房運転 空気調和装置20の放冷冷房運転は、例えば、昼間気温
が上昇する時間帯に、氷蓄熱槽35のコイル34内で氷
の冷熱により液化されてサージタンク43A、43B内
に貯溜された液冷媒を、このサージタンク43A、43
Bから利用側熱交換器32へ圧送することにより実施さ
れる。
[B] Cooling / cooling operation The cooling / cooling operation of the air conditioner 20 is performed, for example, in a time zone when the temperature rises in the daytime by liquefaction by the cold heat of the ice in the coil 34 of the ice storage tank 35 and the surge tank. The liquid refrigerant stored in 43A, 43B is supplied to the surge tanks 43A, 43B.
This is performed by pumping from B to the use side heat exchanger 32.

【0041】この場合には、第1開閉弁36、第2開閉
弁37及び電動膨張弁39が閉弁され、電動膨張弁33
及び第3開閉弁40が開弁操作される。また、熱源側ユ
ニット21の圧縮機28は、製氷運転終了後の停止状態
にある。
In this case, the first on-off valve 36, the second on-off valve 37 and the electric expansion valve 39 are closed, and the electric expansion valve 33
And the third on-off valve 40 is operated to open. Further, the compressor 28 of the heat source side unit 21 is in a stopped state after the ice making operation is completed.

【0042】この状態で、小容量圧縮機56が稼働さ
れ、第1温度センサ61、第2温度センサ62及び第3
温度センサ63からの温度信号に基づき、制御装置60
が四方弁55のA側切換とB側切換とを交互に実施す
る。例えば、第3温度センサ63にて検出された温度T
3と第2温度センサ62にて検出された温度T2との温
度差(T3−T2)の絶対値が所定温度以下となったと
きに、制御装置60は、四方弁55をB側切換からA側
切換として、小容量圧縮機56から吐出された高圧ガス
冷媒を、第1配管51及び第3配管53を経てサージタ
ンク43A内へ導く。これにより、このサージタンク4
3A内の貯溜液冷媒が流出側逆止弁46A、合流配管4
4、冷媒配管25及び27を経て利用側熱交換器32内
へ流入する。サージタンク43A内に貯溜した液冷媒
は、氷蓄熱槽35のコイル34内を通り、氷蓄熱槽35
内の氷に蓄熱された冷熱により凝縮された液冷媒である
ため、利用側熱交換器32内で蒸発することにより、上
記氷の冷熱の放熱(放冷)と蒸発潜熱とにより室内を効
率的に冷却する。
In this state, the small capacity compressor 56 is operated, and the first temperature sensor 61, the second temperature sensor 62, and the third
Based on the temperature signal from the temperature sensor 63, the control device 60
Performs the switching between the A side and the B side of the four-way valve 55 alternately. For example, the temperature T detected by the third temperature sensor 63
When the absolute value of the temperature difference (T3−T2) between the third temperature T3 and the temperature T2 detected by the second temperature sensor 62 becomes equal to or less than the predetermined temperature, the control device 60 switches the four-way valve 55 from B side switching to A As the side switching, the high-pressure gas refrigerant discharged from the small capacity compressor 56 is guided into the surge tank 43A via the first pipe 51 and the third pipe 53. Thereby, this surge tank 4
The stored liquid refrigerant in 3A flows out of the check valve 46A on the outflow side,
4. The refrigerant flows into the use-side heat exchanger 32 through the refrigerant pipes 25 and 27. The liquid refrigerant stored in the surge tank 43A passes through the coil 34 of the ice heat storage tank 35,
Since it is a liquid refrigerant condensed by the cold heat stored in the ice inside, it evaporates in the use-side heat exchanger 32, thereby efficiently radiating the cold heat of the ice (cooling) and the latent heat of evaporation to make the room more efficient. Cool.

【0043】利用側熱交換器32にて蒸発したガス冷媒
は、接続配管41及び第3開閉弁40を経て氷蓄熱槽3
5のコイル34内へ流入し、上述の如く、氷蓄熱槽35
内の氷により凝縮して液冷媒となって、流入側逆止弁4
5Bを経てサージタンク43B内へ流入する。
The gas refrigerant evaporated in the use-side heat exchanger 32 passes through the connection pipe 41 and the third on-off valve 40 and is stored in the ice heat storage tank 3.
5 and into the ice heat storage tank 35 as described above.
Is condensed by the ice inside to become a liquid refrigerant, and the inflow-side check valve 4
It flows into the surge tank 43B via 5B.

【0044】この時、サージタンク43A内が高圧であ
るため、氷蓄熱槽35のコイル34内の液冷媒は、サー
ジタンク43A内へ流れることなくサージタンク43B
内へ流れる。同様に、サージタンク43B内がサージタ
ンク43Aに比べて低圧であるため、サージタンク43
B内の貯溜冷媒が流出側逆止弁46Bを経て利用側熱交
換器32側へ流出することもない。
At this time, since the pressure in the surge tank 43A is high, the liquid refrigerant in the coil 34 of the ice heat storage tank 35 does not flow into the surge tank 43A,
Flows inside. Similarly, since the pressure inside the surge tank 43B is lower than that of the surge tank 43A,
The stored refrigerant in B does not flow out to the use side heat exchanger 32 via the outflow side check valve 46B.

【0045】第3温度センサ63にて検出された温度T
3と第1温度センサ61にて検出された温度T1との温
度差(T3−T1)の絶対値が所定温度以下になった時
に、制御装置60は、四方弁55をB側切換として、小
容量圧縮機56から吐出された高圧ガス冷媒を、第1配
管51及び第4配管54を経てサージタンク43B内へ
導く。すると、サージタンク43B内に貯溜された液冷
媒が、流出側逆止弁46B、合流配管44、冷媒配管2
5、27及び電動膨張弁33を経て利用側熱交換器32
へ流入し蒸発して、前述と同様に、放冷及び蒸発潜熱に
より室内を効率的に冷房する。この利用側熱交換器32
からのガス冷媒は、接続配管41及び第3開閉弁40を
経て氷蓄熱槽35のコイル34内で氷の冷熱により凝縮
されて液冷媒となり、分岐配管42及び流入側逆止弁4
5Aを経てサージタンク43A内へ流入する。
The temperature T detected by the third temperature sensor 63
When the absolute value of the temperature difference (T3−T1) between the third temperature 3 and the temperature T1 detected by the first temperature sensor 61 becomes equal to or lower than the predetermined temperature, the control device 60 switches the four-way valve 55 to the B side to switch The high-pressure gas refrigerant discharged from the displacement compressor 56 is guided into the surge tank 43B via the first pipe 51 and the fourth pipe 54. Then, the liquid refrigerant stored in the surge tank 43B is discharged to the outflow-side check valve 46B, the merging pipe 44, the refrigerant pipe 2
5 and 27 and the use side heat exchanger 32 via the electric expansion valve 33
Then, as described above, the room is efficiently cooled by cooling and latent heat of vaporization. This use side heat exchanger 32
Is condensed by the cold heat of ice in the coil 34 of the ice heat storage tank 35 through the connection pipe 41 and the third on-off valve 40 to become a liquid refrigerant, and is branched into the branch pipe 42 and the inflow-side check valve 4.
It flows into the surge tank 43A via 5A.

【0046】制御装置60は、温度T3とT2との温度
差(T3−T2)の絶対値が所定温度以下となったとき
に四方弁55をA側切換とし、温度T3とT1との温度
差(T3−T1)の絶対値が所定温度以下となったとき
に四方弁をB側切換として、上述の動作を繰り返し、放
冷冷房運転を継続させる。
The controller 60 switches the four-way valve 55 to the A side when the absolute value of the temperature difference (T3-T2) between the temperatures T3 and T2 becomes equal to or less than the predetermined temperature, and sets the temperature difference between the temperatures T3 and T1. When the absolute value of (T3−T1) becomes equal to or lower than the predetermined temperature, the four-way valve is switched to the B side, and the above operation is repeated to continue the cooling / cooling operation.

【0047】[C]通常冷房運転 空気調和装置20の通常冷房運転は、氷蓄熱槽35内の
氷に蓄熱された冷熱を利用しないで実施される冷房運転
であり、電動膨張弁39及び第3開閉弁40が閉弁さ
れ、第1開閉弁36、第2開閉弁37並びに電動膨張弁
31及び33が開弁操作される。
[C] Normal Cooling Operation The normal cooling operation of the air conditioner 20 is a cooling operation that is performed without using the cold heat stored in the ice in the ice heat storage tank 35, and includes the electric expansion valve 39 and the third cooling operation. The on-off valve 40 is closed, and the first on-off valve 36, the second on-off valve 37, and the electric expansion valves 31 and 33 are opened.

【0048】この状態で、圧縮機28が稼働されると、
この圧縮機28から吐出されたガス冷媒は、熱源側熱交
換器30にて凝縮され、電動膨張弁31、冷媒配管25
及び電動膨張弁33を経て利用側熱交換器32へ流入
し、この利用側熱交換器32にて蒸発して、蒸発潜熱に
より室内を冷房した後、冷媒配管26及び四方弁29を
経て圧縮機28へ戻される。
In this state, when the compressor 28 is operated,
The gas refrigerant discharged from the compressor 28 is condensed in the heat source side heat exchanger 30, and the electric expansion valve 31, the refrigerant pipe 25
After flowing into the use-side heat exchanger 32 through the electric expansion valve 33 and evaporating in the use-side heat exchanger 32 to cool the room by the latent heat of evaporation, the compressor passes through the refrigerant pipe 26 and the four-way valve 29. Returned to 28.

【0049】上記実施の形態の空気調和装置20は、上
述のように構成されたことから、次の効果〜を奏す
る。
The air conditioner 20 of the above embodiment has the following effects 1 to 3 because it is configured as described above.

【0050】第1温度センサ61、第2温度センサ6
2、第3温度センサ63及び第4温度センサ64を用い
て、サージタンク43A、43Bから流出する冷媒の温
度を管理することにより、サージタンク43A、43B
内における液冷媒の液面レベルを把握でき、第3温度セ
ンサ63にて検出される温度T3、第2温度センサ62
にて検出される温度T2、及び第1温度センサ61にて
検出される温度T1から、温度差(T3−T1)と温度
差(T3−T2)とのそれぞれの絶対値が所定温度以下
となったときに、一方のタンク(サージタンク43A又
は43B)に液冷媒が完全に存在しなくなった、または
完全に存在しなくなる直前もしくは直後であると判断し
て、他方のタンク(サージタンク43B又は43A)か
ら利用側熱交換器32へ直ちに液冷媒を圧送する。この
結果、サージタンク43A、43B内の液冷媒を滞るこ
となく連続的に、かつ確実に利用側熱交換器32へ圧送
でき、従って、氷蓄熱槽35内の氷の冷熱を利用した放
冷冷房運転を良好に実施できる。
First temperature sensor 61, second temperature sensor 6
2. By controlling the temperature of the refrigerant flowing out of the surge tanks 43A, 43B using the third temperature sensor 63 and the fourth temperature sensor 64, the surge tanks 43A, 43B
The level of the liquid refrigerant in the chamber can be ascertained, the temperature T3 detected by the third temperature sensor 63, the second temperature sensor 62
The absolute value of each of the temperature difference (T3-T1) and the temperature difference (T3-T2) is equal to or less than a predetermined temperature based on the temperature T2 detected by the control unit and the temperature T1 detected by the first temperature sensor 61. When it is determined that the liquid refrigerant has completely disappeared in one of the tanks (surge tank 43A or 43B) or immediately before or immediately after it has completely disappeared, the other tank (surge tank 43B or 43A) ), The liquid refrigerant is immediately pressure-fed to the use-side heat exchanger 32. As a result, the liquid refrigerant in the surge tanks 43A and 43B can be continuously and reliably pumped to the use-side heat exchanger 32 without stagnation, and therefore, cooling / cooling using the cold heat of the ice in the ice heat storage tank 35 can be performed. Operation can be performed well.

【0051】冷媒温度を検出する第1温度センサ6
1、第2温度センサ62、第3温度センサ63及び第4
温度センサ64をタンクの流出側及び流入側等に設置
し、サージタンク43A、43B内の液冷媒の液面レベ
ルを直接検出する、温度センサよりも高価な液面センサ
をサージタンク43A、43Bに設置しないことから、
コストを低減できる。
First temperature sensor 6 for detecting refrigerant temperature
1, the second temperature sensor 62, the third temperature sensor 63, and the fourth
The temperature sensors 64 are installed on the outflow side and the inflow side of the tank, and the liquid level sensors of the liquid refrigerant in the surge tanks 43A and 43B are directly detected. Because we do not install,
Cost can be reduced.

【0052】第1温度センサ61と第2温度センサ6
2により、小容量圧縮機56からの吐出ガス冷媒及び吸
込ガス冷媒の温度を管理でき、第3温度センサ63によ
り、サージタンク43Aまたは43Bから利用側熱交換
器32へ圧送される冷媒の温度を管理することができ
る。
The first temperature sensor 61 and the second temperature sensor 6
2, the temperature of the discharge gas refrigerant and the suction gas refrigerant from the small capacity compressor 56 can be managed, and the temperature of the refrigerant pressure-fed from the surge tank 43A or 43B to the use side heat exchanger 32 can be controlled by the third temperature sensor 63. Can be managed.

【0053】以上、一実施の形態に基づいて本発明を説
明したが、本発明はこれに限定されるものではない。
Although the present invention has been described based on one embodiment, the present invention is not limited to this.

【0054】例えば、上記実施の形態では、制御装置6
0が温度差(T3−T1)と、温度差(T3−T2)と
のそれぞれの温度差の絶対値を管理して、四方弁55の
切り換えを実施するものを述べたが、制御装置60は、
第3温度センサ63にて検出される温度T3の時間的変
化率(温度T3の時間微分)が所定値以上となった時点
で、合流配管44内へ液冷媒でなくガス冷媒が流れ始め
たと判断して、四方弁55の切り換えを直ちに実施して
もよい。
For example, in the above embodiment, the control device 6
Although 0 is described as managing the absolute value of the temperature difference between the temperature difference (T3-T1) and the temperature difference (T3-T2) and switching the four-way valve 55, the control device 60 ,
When the time rate of change of the temperature T3 (time derivative of the temperature T3) detected by the third temperature sensor 63 becomes equal to or greater than a predetermined value, it is determined that the gas refrigerant, not the liquid refrigerant, has begun to flow into the junction pipe 44. Then, the four-way valve 55 may be switched immediately.

【0055】また、流入側逆止弁45A、45B、流出
側逆止弁46A、46Bを流入側開閉弁70A、70
B、流出側開閉弁71A、71Bにそれぞれ置き換えて
もよい。この場合、これら流入側開閉弁70A、70
B、流出側開閉弁71A及び71Bは、製氷運転及び通
常冷房運転時には全て閉弁される。更に、放冷冷房運転
時には、流入側開閉弁70A及び流出側開閉弁71Bが
連動して開閉し、流入側開閉弁70B及び流出側開閉弁
71Aが連動して、流入側開閉弁70A及び流出側開閉
弁71Bとは逆に開閉操作する。更に、サージタンク4
3A、43Bは3以上あってもよい。
The inflow-side check valves 45A and 45B and the outflow-side check valves 46A and 46B are connected to the inflow-side on-off valves 70A and 70B.
B, may be replaced with the outflow side on-off valves 71A and 71B, respectively. In this case, these inflow-side on-off valves 70A, 70A
B, the outflow side on-off valves 71A and 71B are all closed during the ice making operation and the normal cooling operation. Further, during the cooling / cooling operation, the inflow-side on-off valve 70A and the outflow-side on-off valve 71B open and close in conjunction with each other, and the inflow-side on-off valve 70B and the outflow-side on-off valve 71A operate in conjunction with each other to form the inflow-side on-off valve 70A and the outflow-side Opening / closing operation is performed in reverse to the opening / closing valve 71B. Furthermore, surge tank 4
3A and 43B may be three or more.

【0056】[0056]

【発明の効果】以上のように、氷蓄熱槽内のコイルと利
用側熱交換器との間に、冷媒を貯溜可能な複数のタンク
が並列状態で配設され、上記コイル内で凝縮された液冷
媒が上記タンク内に貯留されて、これらのタンク内へ交
互に供給される高圧ガス冷媒により利用側熱交換器へ圧
送可能に構成され、上記高圧ガス冷媒の上記タンク内へ
の交互の供給が、上記タンク内から流出する冷媒の温度
に基づき切り換えられることから、一方のタンク内の液
冷媒が存在しなくなった時点または存在しなくなる直前
もしくは直後、直ちに、他方のタンクから利用側熱交換
器へ液冷媒を圧送することができるので、氷蓄熱槽内の
氷の冷熱を利用した冷房運転を良好に実施できる。
As described above, a plurality of tanks capable of storing the refrigerant are arranged in parallel between the coil in the ice heat storage tank and the use side heat exchanger, and condensed in the coil. A liquid refrigerant is stored in the tank, and high-pressure gas refrigerant alternately supplied into these tanks is configured to be able to be pressure-fed to the use-side heat exchanger, and alternate supply of the high-pressure gas refrigerant into the tank Is switched based on the temperature of the refrigerant flowing out of the tank, so that at the time when the liquid refrigerant in one of the tanks does not exist or immediately before or immediately after the liquid refrigerant does not exist, immediately from the other tank, the use side heat exchanger Since the liquid refrigerant can be pumped to the cooling medium, the cooling operation using the cold heat of the ice in the ice heat storage tank can be favorably performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る氷蓄熱槽を備えた空気調和装置の
一実施の形態を示す管路図である。
FIG. 1 is a pipeline diagram showing an embodiment of an air conditioner including an ice heat storage tank according to the present invention.

【図2】温度センサにより検出された冷媒温度と、サー
ジタンク内の液冷媒の液面レベルとの関係を示すグラフ
である。
FIG. 2 is a graph showing a relationship between a refrigerant temperature detected by a temperature sensor and a liquid level of a liquid refrigerant in a surge tank.

【図3】従来の氷蓄熱槽を備えた空気調和装置を示す管
路図である。
FIG. 3 is a pipeline diagram showing an air conditioner provided with a conventional ice heat storage tank.

【符号の説明】[Explanation of symbols]

21 熱源側ユニット 22 氷蓄熱ユニット 23 利用側ユニット 28 圧縮機 29 四方弁 32 利用側熱交換器 34 コイル 35 氷蓄熱槽 43A、43B サージタンク 55 四方弁 56 小容量圧縮機 60 制御装置 61 第1温度センサ 62 第2温度センサ 63 第3温度センサ 64 第4温度センサ Reference Signs List 21 heat source side unit 22 ice heat storage unit 23 use side unit 28 compressor 29 four-way valve 32 use side heat exchanger 34 coil 35 ice heat storage tank 43A, 43B surge tank 55 four-way valve 56 small capacity compressor 60 control device 61 first temperature Sensor 62 Second temperature sensor 63 Third temperature sensor 64 Fourth temperature sensor

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機及び熱源側熱交換器を備えた熱源
側ユニットと、氷蓄熱槽内にコイルが水没状態で配設さ
れてこのコイル外周に氷が形成可能な氷蓄熱ユニット
と、利用側熱交換器を備えた利用側ユニットとを有し、
製氷運転、冷房運転を実施可能とする氷蓄熱槽を備えた
空気調和装置において、 上記氷蓄熱槽内の上記コイルと上記利用側熱交換器との
間に、冷媒を貯溜可能な複数のタンクが並列状態で配設
され、上記コイル内で凝縮した液冷媒が上記タンク内に
貯溜されて、これらのタンク内へ交互に供給される高圧
ガス冷媒により上記利用側熱交換器へ圧送可能に構成さ
れ、 上記高圧ガス冷媒の上記タンク内への交互の供給が、上
記タンク内から流出する冷媒の温度に基づき切り換えら
れることを特徴とする氷蓄熱槽を備えた空気調和装置。
1. A heat source unit including a compressor and a heat source side heat exchanger, an ice heat storage unit having a coil disposed in a submerged state in an ice heat storage tank and capable of forming ice on the outer periphery of the coil, A use side unit having a side heat exchanger,
In an air conditioner including an ice heat storage tank capable of performing an ice making operation and a cooling operation, a plurality of tanks capable of storing a refrigerant are provided between the coil and the use side heat exchanger in the ice heat storage tank. The liquid refrigerant condensed in the coil is disposed in a parallel state, is stored in the tank, and is configured to be capable of being pumped to the use side heat exchanger by a high-pressure gas refrigerant supplied alternately into these tanks. An air conditioner having an ice heat storage tank, wherein alternate supply of the high-pressure gas refrigerant into the tank is switched based on the temperature of the refrigerant flowing out of the tank.
【請求項2】 上記高圧ガス冷媒のタンク内への交互の
供給は、上記タンク内から流出する冷媒の温度と、当該
タンク内へ供給される高圧ガス冷媒の温度との差の絶対
値が所定温度以下になった時点で切り換えられるよう構
成されたことを特徴とする請求項1に記載の氷蓄熱槽を
備えた空気調和装置。
2. The method according to claim 1, wherein the alternate supply of the high-pressure gas refrigerant into the tank is performed by setting an absolute value of a difference between a temperature of the refrigerant flowing out of the tank and a temperature of the high-pressure gas refrigerant supplied into the tank to a predetermined value. The air conditioner provided with the ice heat storage tank according to claim 1, wherein the air conditioner is configured to be switched when the temperature becomes lower than the temperature.
【請求項3】 上記高圧ガス冷媒のタンク内への交互の
供給は、上記タンク内から流出する冷媒の温度の時間的
変化率が所定値以上になった時点で切り換えられるよう
構成されたことを特徴とする請求項1に記載の氷蓄熱槽
を備えた空気調和装置。
3. The method according to claim 1, wherein the alternate supply of the high-pressure gas refrigerant into the tank is switched when a temporal change rate of the temperature of the refrigerant flowing out of the tank becomes a predetermined value or more. An air conditioner comprising the ice heat storage tank according to claim 1.
【請求項4】 上記複数のタンクへ交互に供給される高
圧ガス冷媒は、熱源側ユニットの圧縮機よりも容量の小
さな小容量圧縮機から供給される高圧ガス冷媒であるこ
とを特徴とする請求項1乃至3のいずれかに記載の氷蓄
熱槽を備えた空気調和装置。
4. The high-pressure gas refrigerant alternately supplied to the plurality of tanks is a high-pressure gas refrigerant supplied from a small-capacity compressor having a smaller capacity than a compressor of the heat source side unit. Item 4. An air conditioner comprising the ice heat storage tank according to any one of Items 1 to 3.
JP22196798A 1998-08-05 1998-08-05 Air conditioner with ice storage tank Expired - Fee Related JP3802238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22196798A JP3802238B2 (en) 1998-08-05 1998-08-05 Air conditioner with ice storage tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22196798A JP3802238B2 (en) 1998-08-05 1998-08-05 Air conditioner with ice storage tank

Publications (2)

Publication Number Publication Date
JP2000055495A true JP2000055495A (en) 2000-02-25
JP3802238B2 JP3802238B2 (en) 2006-07-26

Family

ID=16774982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22196798A Expired - Fee Related JP3802238B2 (en) 1998-08-05 1998-08-05 Air conditioner with ice storage tank

Country Status (1)

Country Link
JP (1) JP3802238B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106765780A (en) * 2017-01-11 2017-05-31 杭州源牌环境设备有限公司 A kind of load-type ice measuring device
WO2022138520A1 (en) * 2020-12-25 2022-06-30 株式会社Boban Operation control method and cooling system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106765780A (en) * 2017-01-11 2017-05-31 杭州源牌环境设备有限公司 A kind of load-type ice measuring device
WO2022138520A1 (en) * 2020-12-25 2022-06-30 株式会社Boban Operation control method and cooling system

Also Published As

Publication number Publication date
JP3802238B2 (en) 2006-07-26

Similar Documents

Publication Publication Date Title
JP5642207B2 (en) Refrigeration cycle apparatus and refrigeration cycle control method
JP5121922B2 (en) Air conditioning and hot water supply complex system
JP5084903B2 (en) Air conditioning and hot water supply complex system
EP2657628B1 (en) Hot-water-supplying, air-conditioning composite device
EP3163176B1 (en) Heating and hot water supply system
EP2527751B1 (en) Air conditioning-hot water supply combined system
JP5854751B2 (en) Cooling system
CN100443824C (en) Oil return control in refrigerant system
JP2013119954A (en) Heat pump hot water heater
JP2009236403A (en) Geothermal use heat pump device
JP3901192B2 (en) Heat pump water heater
JP2005147610A (en) Heat pump water heater
JP3737357B2 (en) Water heater
JP2009300055A (en) Heat pump water heater
JP2010084975A (en) Heating device
JP2011252637A (en) Refrigeration cycle device and its control method
JP2000055495A (en) Air conditioner provided with ice heat storage tank
JP5747160B2 (en) Air conditioner
JP2010054145A (en) Heat pump water heater
KR20050119547A (en) Heat pump system
JP2002115920A (en) Refrigerating device
JP6327499B2 (en) Heat pump water heater
JP3790206B2 (en) Air conditioner
JP2002081771A (en) Heat pump
JP2000249374A (en) Air-conditioning device with ice heat-storing tank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050407

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060427

LAPS Cancellation because of no payment of annual fees