WO2022138520A1 - Operation control method and cooling system - Google Patents

Operation control method and cooling system Download PDF

Info

Publication number
WO2022138520A1
WO2022138520A1 PCT/JP2021/046894 JP2021046894W WO2022138520A1 WO 2022138520 A1 WO2022138520 A1 WO 2022138520A1 JP 2021046894 W JP2021046894 W JP 2021046894W WO 2022138520 A1 WO2022138520 A1 WO 2022138520A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
liquid refrigerant
liquid
temperature
cooler
Prior art date
Application number
PCT/JP2021/046894
Other languages
French (fr)
Japanese (ja)
Inventor
行介 山田
弥彦 芳野
伊朗 井筒
Original Assignee
株式会社Boban
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Boban filed Critical 株式会社Boban
Publication of WO2022138520A1 publication Critical patent/WO2022138520A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice

Definitions

  • the present invention relates to an operation control method and a cooling system.
  • a full-liquid ice maker described in Patent Document 1 is known as a cooling system for producing an ice slurry.
  • salt water is circulated in an ice maker filled with a liquid refrigerant, and the salt water is cooled by heat exchange between the liquid refrigerant and the salt water to generate an ice slurry.
  • An object of the present invention is to provide an operation control method and a cooling system capable of controlling the temperature of a liquid refrigerant and exhibiting stable cooling characteristics.
  • An operation control method for a cooling system having a cooler that cools a medium to be cooled by exchanging heat with a liquid refrigerant comprising controlling the temperature of the liquid refrigerant in the cooler by supplying a high-pressure gaseous gas refrigerant to the liquid refrigerant.
  • the gas refrigerant is generated by compressing the refrigerant with a compressor.
  • a compressor that compresses the refrigerant into a high-pressure gaseous gas refrigerant
  • a condenser that condenses the gas refrigerant into a high-pressure liquid liquid refrigerant
  • a cooler that cools the medium to be cooled by heat exchange with the liquid refrigerant
  • a cooling system comprising: a control device for controlling the temperature of the liquid refrigerant in the cooler by supplying the gas refrigerant to the liquid refrigerant.
  • the temperature of the liquid refrigerant in the cooler is stable, and stable cooling characteristics can be exhibited.
  • the temperature of the liquid refrigerant can be controlled with excellent responsiveness.
  • FIG. 1 is a diagram showing an overall configuration diagram of a cooling system according to the first embodiment.
  • FIG. 2 is a cross-sectional view showing a cooler and a liquid level measuring instrument.
  • FIG. 3 is a block diagram showing a control method of the control device.
  • FIG. 4 is a block diagram showing a control method of the control device.
  • FIG. 5 is a cross-sectional view showing a cooler and a liquid level measuring instrument included in the cooling system according to the second embodiment.
  • the upper side of the paper surface in FIGS. 2 and 5 is the upper side in the vertical direction
  • the lower side of the paper surface is the lower side in the vertical direction.
  • the cooling system 1 shown in FIG. 1 is a system that continuously produces an ice slurry S using salt water B (brine) as a raw material.
  • the ice slurry S refers to sherbet-like ice in which fine ice is turbid in salt water, and may also be referred to as slurry ice, ice slurry, slurry ice, or the like.
  • the cooling system 1 includes a compressor 21, a condenser 22, a cooler 23 (evaporator), and a liquid level measuring unit 24. Further, the cooling system 1 includes a pipe 251 connecting the compressor 21 and the condenser 22, a pipe 252 connecting the condenser 22 and the cooler 23, and a pipe 253 connecting the cooler 23 and the compressor 21. And a pipe 254 that bypasses the pipe 251 and the pipe 252 without passing through the condenser 22. Further, the cooling system 1 has a liquid level adjusting valve 26 provided in the middle of the pipe 252 and a pressure adjusting valve 27 provided in the middle of the pipe 254. Each of these elements constitutes a refrigerant circuit 2 in which the refrigerant R circulates.
  • the refrigerant R is compressed by driving the compressor 21 to form a high-temperature high-pressure gas.
  • the refrigerant R (hereinafter, also referred to as “gas refrigerant Rg”) that has become a high-temperature and high-pressure gas in the compressor 21 flows into the condenser 22 through the pipe 251 and is condensed by heat exchange with air by the operation of the blower fan 221. ⁇ It liquefies and becomes a high-pressure liquid.
  • the high-pressure liquid refrigerant R (hereinafter also referred to as “liquid refrigerant Rl”) in the condenser 22 flows into the cooler 23 through the pipe 252 and evaporates by heat exchange with the salt water B in the cooler 23.
  • the amount of the liquid refrigerant Rl flowing into the cooler 23 is adjusted by the liquid level adjusting valve 26. Further, a part of the gas refrigerant Rg (hot gas) turned into a high-temperature and high-pressure gas by the compressor 21 is supplied to the liquid refrigerant Rl flowing in the pipe 252 through the pipe 254 connected to the pipe 251.
  • the pressure (temperature) of the liquid refrigerant Rl flowing into the cooler 23 can be controlled.
  • the amount of the high gas refrigerant Rg supplied to the liquid refrigerant Rl is adjusted by the pressure adjusting valve 27.
  • the refrigerant R which has become a low-pressure gas due to heat exchange with the salt water B in the cooler 23, is returned to the compressor 21 via the pipe 253, compressed by the compressor 21, and discharged as the gas refrigerant Rg again. Will be done.
  • the refrigerant circuit 2 continuously cools the salt water B in the cooler 23 by circulating the refrigerant R in such a heat exchange cycle.
  • the amount of the liquid refrigerant Rl supplied to the cooler 23 is adjusted by the liquid level adjusting valve 26, and the amount of the liquid refrigerant Rl in the cooler 23, that is, the liquid level height Da of the liquid refrigerant Rl is adjusted.
  • the target liquid level height Dt which is the control target, is maintained.
  • the pressure (temperature) of the liquid refrigerant Rl supplied to the cooler 23 is adjusted by the pressure adjusting valve 27, and the pressure (temperature) of the liquid refrigerant Rl in the cooler 23 is the control target pressure Pt (target temperature). It is kept at Tt).
  • the amount and pressure (temperature) of the liquid refrigerant Rl in the cooler 23 can be maintained at the target values in this way. Therefore, heat exchange between the refrigerant R and the salt water B can be stably performed under desired conditions. Therefore, the salt water B can be continuously cooled stably under appropriate conditions, and the ice slurry S can be efficiently produced. In addition, the ice slurry S produced becomes more homogeneous, and high-quality ice slurry S can be produced.
  • the cooling system 1 includes a storage tank 31 for storing the salt water B and the ice slurry S generated from the salt water B, a pump 32 for circulating the salt water B, and the salt water B supplied to the cooler 23. It has a concentration sensor 33 for detecting a salt concentration, and a concentration sensor 33. Further, the cooling system 1 has a pipe 341 connecting the storage tank 31 and the cooler 23, and a pipe 342 connecting the cooler 23 and the storage tank 31, and a pump 32 is installed in the middle of the pipe 341. The concentration sensor 33 is installed in the cooler 23. Each of these elements constitutes a salt water circulation path 3 (cooled medium circulation path) through which salt water circulates. However, the location of the concentration sensor 33 is not particularly limited as long as it can detect the salt concentration of the salt water B supplied to the cooler 23.
  • the storage tank 31 is provided with a stirring blade 311 for stirring the salt water B and the ice slurry S in the tank, and a motor 312 for rotating the stirring blade 311. This makes it possible to suppress the aggregation of the ice slurry S in the storage tank 31. Further, the storage tank 31 is provided with a discharge pipe 313 for discharging the ice slurry S stored in the tank.
  • the salt water B in the storage tank 31 is supplied to the cooler 23 through the pipe 341 by driving the pump 32.
  • the salt water B supplied into the cooler 23 is cooled by heat exchange with the liquid refrigerant Rl in the cooler 23.
  • the salt water B cooled by the cooler 23 is returned to the storage tank 31 through the pipe 342, and is supplied to the cooler 23 again through the pipe 341.
  • the ice slurry S generated by cooling is stored in the storage tank 31.
  • the salt water circulation path 3 continuously produces the ice slurry S by repeating such a salt water circulation cycle.
  • the cooling system 1 has a control device 4 that controls the drive of each part of the cooling system 1.
  • the control device 4 includes, for example, a processor composed of a computer and processing information, and a memory communicably connected to the processor. Various programs necessary for operating the cooling system 1 are stored in the memory. The processor reads and executes various programs and the like stored in the memory. As a result, the operation of the cooling system 1 as described below is realized.
  • the cooler 23 includes a main evaporator 231, a sub-evaporator 235, and a pressure sensor 239 that detects the pressure of the liquid refrigerant Rl in the main evaporator 231.
  • the pipe 252 is connected to the lower end of the main evaporator 231 and the pipe 253 is connected to the upper end of the sub-evaporator 235.
  • the liquid refrigerant Rl which has become a high-pressure liquid in the condenser 22, is supplied to the main evaporator 231 through the pipe 252.
  • the low-pressure gaseous refrigerant R evaporated and vaporized by heat exchange with the salt water B in the main evaporator 231 is returned from the sub-evaporator 235 to the compressor 21 through the pipe 253.
  • the main evaporator 231 has an outer pipe 232 and an inner pipe 233 coaxially arranged inside the outer pipe 232.
  • the outer pipe 232 and the inner pipe 233 are circular pipes whose ends are closed, respectively.
  • the outer pipe 232 and the inner pipe 233 are not limited to circular pipes, respectively.
  • the outer pipe 232 and the inner pipe 233 are installed upright, and the shaft faces in the vertical direction. That is, the main evaporator 231 is a vertical double-tube evaporator.
  • the main evaporator 231 is a full-liquid evaporator, and almost the entire space between the outer pipe 232 and the inner pipe 233 is filled with the liquid refrigerant Rl.
  • the space will also be referred to as "refrigerant storage unit 234".
  • the salt water B flows in the inner pipe 233. Therefore, heat exchange between the salt water B and the liquid refrigerant Rl is performed through the wall surface of the inner pipe 233.
  • the inner pipe 233 may be made of a material having excellent mechanical strength and high thermal conductivity, such as iron, copper, aluminum, titanium, and stainless steel. preferable. Further, in order to increase the heat exchange efficiency between the liquid refrigerant Rl and the salt water B, the inner pipe 233 is preferably as thin as possible as long as the mechanical strength can be maintained.
  • the sub-evaporator 235 is installed side by side with the main evaporator 231 in the horizontal direction.
  • the sub-evaporator 235 is a circular tube with both ends closed. Further, the sub-evaporator 235 is installed upright, and its axis faces in the vertical direction.
  • Such a sub-evaporator 235 is connected to the refrigerant storage unit 234 via a pair of pipes 236. Therefore, the liquid refrigerant Rl supplied to the refrigerant storage unit 234 is also supplied to the sub-evaporator 235 through these pipes 236.
  • the pressures (internal pressures) of the sub-evaporator 235 and the refrigerant storage unit 234 are equal to each other, and the liquid level height of the liquid refrigerant Rl in the sub-evaporator 235 is the same as the liquid level height of the liquid refrigerant Rl in the refrigerant storage unit 234. equal.
  • the lower end of the sub-evaporator 235 is located above the lower end of the main evaporator 231 in the vertical direction. Therefore, for example, the amount of the liquid refrigerant Rl in the sub-evaporator 235 is higher than the case where the lower end is at the same height as the lower end of the main evaporator 231 or the lower end is located below the lower end of the main evaporator 231 in the vertical direction. Can be reduced. As a result, the amount of the refrigerant R used can be reduced.
  • the sub-evaporator 235 is vertically longer than the main evaporator 231 and its upper end is located vertically above the upper end of the main evaporator 231. Therefore, a space 237 located above the liquid refrigerant Rl is formed in the sub-evaporator 235. As will be described later, a dehumidifying member 238 is arranged in the space 237.
  • the refrigerant R evaporated and vaporized by heat exchange with the salt water B in the main evaporator 231 is returned to the compressor 21 from the upper end of the sub-evaporator 235 through the pipe 253.
  • the compressor 21 may fail due to a sudden increase in the cylinder internal pressure due to the liquid compression. Therefore, a dehumidifying member 238 for removing the liquid (humidity) contained in the vaporized refrigerant R is arranged in the space 237 of the sub-evaporator 235.
  • the dehumidifying member 238 has an umbrella shape with a large number of through holes formed.
  • the through hole serves as a passage for the refrigerant R.
  • the vaporized refrigerant R comes into contact with the dehumidifying member 238 while rising from the liquid surface toward the pipe 253, and the liquid (humidity) contained in the refrigerant R is removed by the contact, and the drier refrigerant R is compressed. It is returned to the machine 21. This makes it possible to prevent the compressor 21 from failing as described above.
  • a plurality of dehumidifying members 238 are arranged in the vertical direction to improve the dehumidifying effect.
  • the dehumidifying member 238 may be omitted when the refrigerant R is almost completely evaporated by heat exchange with the salt water B and the sufficiently dry gaseous refrigerant R returns to the compressor 21. Further, for example, when the dehumidifying member 238 is insufficiently dried, a superheater is arranged in the middle of the pipe 253 in place of or in addition to the dehumidifying member 238, and the refrigerant R is heated by the superheater before the compressor. It may be configured to return to 21.
  • the liquid level measuring unit 24 includes a refrigerant storage pipe 241 and a liquid level detection sensor 242.
  • the refrigerant storage pipe 241 is installed side by side with the sub-evaporator 235 in the horizontal direction. Further, the refrigerant storage pipe 241 is installed upright, and its axis faces in the vertical direction. Further, the refrigerant storage pipe 241 is connected to the sub-evaporator 235 via a pair of pipes 243. Therefore, the liquid refrigerant Rl supplied to the refrigerant storage unit 234 is also supplied to the refrigerant storage pipe 241 via the sub-evaporator 235.
  • the pressures (internal pressures) in the refrigerant storage pipe 241 and the sub-evaporator 235 and the refrigerant storage unit 234 are equal to each other. Therefore, as shown by the chain line in FIG. 2, the liquid level heights of the liquid refrigerants Rl in the refrigerant storage pipe 241 and the sub-evaporator 235 and the refrigerant storage unit 234 are equal to each other. Therefore, by detecting the liquid level height of the liquid refrigerant Rl in the refrigerant storage pipe 241, it is possible to detect the liquid level height of the liquid refrigerant Rl in the refrigerant storage unit 234.
  • a liquid level detection sensor 242 is installed in the refrigerant storage pipe 241, and the liquid level of the liquid refrigerant Rl in the refrigerant storage pipe 241 is detected by the liquid level detection sensor 242, whereby the liquid refrigerant in the refrigerant storage unit 234 is detected. It is configured to detect the liquid level height of Rl.
  • the liquid level detection sensor 242 By installing the liquid level detection sensor 242 at a location different from the refrigerant storage unit 234 in this way, the liquid of the liquid refrigerant Rl in the refrigerant storage unit 234 is not hindered from heat exchange between the liquid refrigerant Rl and the salt water B.
  • the surface height can be detected.
  • the configuration of the liquid level measuring unit 24 is not particularly limited as long as the liquid level height of the liquid refrigerant Rl in the refrigerant storage unit 234 can be detected.
  • the refrigerant storage pipe 241 is a circular pipe with both ends closed, and its length and diameter are smaller than those of the sub-evaporator 235. By making the refrigerant storage pipe 241 smaller than the sub-evaporator 235 in this way, the amount of the liquid refrigerant Rl in the refrigerant storage pipe 241 can be reduced. As a result, the amount of the refrigerant R used can be reduced.
  • the liquid level adjusting valve 26 is a valve for controlling the supply amount of the liquid refrigerant Rl to the main evaporator 231 and is installed on the upstream side of the main evaporator 231.
  • the liquid level adjusting valve 26 can be adjusted not only on / off but also in multiple steps or steplessly with an opening degree of 0 to 100%.
  • the drive of the liquid level adjusting valve 26 is controlled by the control device 4.
  • the control device 4 determines the liquid level height Da of the liquid refrigerant Rl in the refrigerant storage unit 234 indicated by the output of the liquid level detection sensor 242, the target liquid level height Dt which is the control target, and the target liquid level height Dt. Perform feedback control to match.
  • the liquid level height Da of the liquid refrigerant Rl in the refrigerant storage unit 234 can be maintained at the target liquid level height Dt (difference from the target liquid level height Dt can be suppressed), and the liquid refrigerant can be suppressed.
  • the heat exchange between Rl and the salt water B can be stably performed under desired conditions. Therefore, the ice slurry S can be stably and efficiently produced. In addition, the ice slurry S produced becomes more homogeneous, and high-quality ice slurry S can be produced.
  • the control device 4 controls the drive of the liquid level adjusting valve 26 by analog control, particularly PID control. Specifically, the control device 4 controls the PID for the liquid level height Da by using the deviation De between the liquid level height Da and the target liquid level Dt, the integral of the deviation De, and the derivative of the deviation De. Run. Note that FIG. 3 shows the proportional gain Kpp, the integrated gain Kpi, and the differential gain Kpd. According to the PID control, the fluctuation of the liquid level height Da of the liquid refrigerant Rl is reduced and the liquid level height Da is stabilized as compared with the simple ON / OFF control. Therefore, heat exchange between the liquid refrigerant Rl and the salt water B can be performed more stably under desired conditions.
  • the ice slurry S can be stably and efficiently produced.
  • the ice slurry S produced becomes more homogeneous, and high-quality ice slurry S can be produced.
  • the control method of the liquid level adjusting valve 26 is not particularly limited, and may be, for example, other analog control such as P control or PI control, or may be digital control.
  • the pressure adjusting valve 27 is a valve for controlling the pressure of the liquid refrigerant Rl in the main evaporator 231 and is installed on the upstream side of the main evaporator 231.
  • the pressure adjusting valve 27 By supplying the high-temperature high-pressure gaseous gas refrigerant Rg to the high-pressure liquid liquid refrigerant Rl, the pressure of the liquid refrigerant Rl flowing into the refrigerant storage unit 234 can be increased, and the supply amount of the gas refrigerant Rg can be increased by the pressure adjusting valve 27.
  • the pressure of the liquid refrigerant Rl in the refrigerant storage unit 234 can be controlled. According to such a control method, the pressure of the liquid refrigerant Rl in the refrigerant storage unit 234 can be controlled with a simple configuration.
  • Such a pressure adjusting valve 27 can be adjusted not only on / off but also in multiple steps or steplessly with an opening degree of 0 to 100%.
  • the drive of the pressure adjusting valve 27 is controlled by the control device 4.
  • the control device 4 executes feedback control for matching the pressure Pa of the liquid refrigerant Rl in the refrigerant storage unit 234 indicated by the output of the pressure sensor 239 with the target pressure Pt, which is the control target. ..
  • the temperature of the liquid refrigerant Rl is proportional to its pressure. Therefore, controlling the pressure of the liquid refrigerant Rl is synonymous with controlling the temperature of the liquid refrigerant Rl. Therefore, by executing such feedback control, the temperature Ta of the liquid refrigerant Rl in the refrigerant storage unit 234 can be maintained at the target temperature Tt (difference from the target temperature Tt can be suppressed), and the liquid can be suppressed.
  • the heat exchange between the refrigerant Rl and the salt water B can be stably performed under desired conditions. Therefore, the ice slurry S can be stably and efficiently produced. In addition, the ice slurry S produced becomes more homogeneous, and high-quality ice slurry S can be produced.
  • the target temperature Tt temperature Ta of the liquid refrigerant Rl
  • the freezing point Tf freezing point
  • Tf-10 ° C. ⁇ Tt ⁇ Tf is preferable, Tf-10 ° C. ⁇ Tt ⁇ Tf-3 ° C. is more preferable, and Tf-10 ° C. ⁇ Tt ⁇ Tf-5 ° C. is more preferable. Is even more preferable.
  • the temperature of the liquid refrigerant Rl so as to satisfy the relationship of Tf-10 ° C. ⁇ Ta ⁇ Tf, and the liquid refrigerant Rl so as to satisfy the relationship of Tf-8 ° C. ⁇ Ta ⁇ Tf-3 ° C. It is more preferable to control the temperature of the liquid refrigerant Rl, and it is further preferable to control the temperature of the liquid refrigerant Rl so as to satisfy the relationship of Tf-7 ° C ⁇ Ta ⁇ Tf-5 ° C.
  • the cooling system 1 uses a full-liquid main evaporator 231 with high work efficiency, a high work amount can be secured even if the temperature difference ⁇ T is small, and the salt water B is cooled at a sufficient speed. It becomes possible to do. That is, the operation with a small temperature difference ⁇ T is realized because the full-liquid main evaporator 231 is used. Further, according to the cooling system 1, since the temperature of the liquid refrigerant Rl can be closely controlled, the temperature difference ⁇ T can be controlled accurately.
  • the control device 4 Since the freezing point Tf of the salt water B is determined by the salt concentration, the freezing point Tf of the salt water B can be obtained if the salt concentration of the salt water B is known. Therefore, the control device 4 first obtains the freezing point Tf of the salt water B from the salt concentration of the salt water B in the cooler 23 indicated by the output of the concentration sensor 33. Next, the control device 4 sets the target temperature Tt of the liquid refrigerant Rl so that the temperature difference ⁇ T becomes a predetermined value. Next, the control device 4 obtains the pressure of the liquid refrigerant Rl corresponding to the set target temperature Tt, and sets this as the target pressure Pt.
  • the control device 4 controls the drive of the pressure adjusting valve 27 by analog control, particularly PID control. Specifically, as shown in FIG. 4, the control device 4 executes PID control for the pressure Pa by using the deviation Pe between the pressure Pa and the target pressure Pt, the integral of the deviation Pe, and the derivative of the deviation Pe. ..
  • FIG. 4 shows the proportional gain Kpp, the integrated gain Kpi, and the differential gain Kpd. According to the PID control, the fluctuation of the pressure Pa of the refrigerant R is reduced and the pressure Pa is stabilized as compared with the simple ON / OFF control. Therefore, heat exchange between the liquid refrigerant Rl and the salt water B can be performed more stably under desired conditions.
  • the ice slurry S can be stably and efficiently produced.
  • the ice slurry S produced becomes more homogeneous, and high-quality ice slurry S can be produced.
  • the control method of the pressure adjusting valve 27 is not particularly limited, and may be, for example, other analog control such as P control or PI control, or may be digital control.
  • the control device 4 has a plurality of pressure control modes in order to efficiently cool the salt water B while suppressing freezing of the salt water B (adhesion of ice to the inner pipe 233) in the cooler 23. ..
  • a quenching mode M1 and a slow cooling mode M2 are provided as a plurality of pressure control modes.
  • the slow cooling mode M2 is the control mode described above, and is a mode in which the drive of the pressure adjusting valve 27 is controlled so that Tf ⁇ 10 ° C. ⁇ Ta ⁇ Tf.
  • the quenching mode M1 is a mode in which the temperature Ta is lower than that of the slow cooling mode M2, and the drive of the pressure adjusting valve 27 is controlled so as to have a larger temperature difference ⁇ T. Therefore, the quenching mode M1 has a larger work load of the liquid refrigerant Rl than the slow cooling mode M2, and the cooling capacity of the salt water B is higher.
  • the control device 4 sets the temperature above the freezing point Tf as the threshold value SH, controls the drive of the pressure adjusting valve 27 in the quenching mode M1 when the temperature of the salt water B is above the threshold value SH, and slow-cools mode when the temperature of the salt water B is less than the threshold value SH.
  • the drive of the pressure adjusting valve 27 is controlled by M2.
  • the salt water B can be cooled with the largest possible temperature difference (the temperature difference just before freezing) while suppressing the freezing of the salt water B. Therefore, the salt water B can be cooled in a shorter time while suppressing the adhesion of ice into the inner pipe 233. Therefore, the production efficiency of the ice slurry S is improved.
  • the threshold value SH is not particularly limited and varies depending on the performance of each part, but for example, the temperature is preferably 0 ° C. to 7 ° C. higher than the freezing point Tf and 3 ° C. to 5 ° C. higher than the freezing point Tf. Is more preferable.
  • the salt water B can be cooled to a lower temperature in the quenching mode M1 while suppressing the freezing of the salt water B, so that the salt water B can be cooled in a shorter time and the production efficiency of the ice slurry S is improved.
  • the control device 4 may have a drive mode other than the quenching mode M1 and the slow cooling mode M2. Further, the control device 4 may have only the slow cooling mode M2.
  • the cooling system 1 has been described above.
  • a cooling system 1 for example, an ice slurry S made from seawater can be continuously generated. Therefore, the cooling system 1 can be installed in, for example, a fishing boat or a fishing port, and the ice slurry S generated by the cooling system 1 can be used for keeping fresh fish cold.
  • the storage tank 31 may be replenished with fresh seawater in an amount commensurate with the amount of ice slurry S consumed for keeping the fresh fish cold by a replenishment pump (not shown). According to the ice slurry S, it is possible to keep the fresh fish cold for a long time without damaging it.
  • the cooling system 1 of the present embodiment has a stirring device 5 for stirring the salt water B in the cooler 23, in addition to the configuration of the first embodiment described above.
  • the stirring device 5 has a rotating shaft 51 arranged along the central axis of the inner pipe 233, a motor 52 for rotating the rotating shaft 51, and a plurality of blades 53 fixed to the rotating shaft 51. Further, the tip of each blade 53 is in contact with the inner peripheral surface of the inner pipe 233.
  • the rotation shaft 51 is rotated, the blades 53 rotate, and spiral convection occurs in the salt water B flowing in the inner pipe 233. Therefore, the heat exchange efficiency between the liquid refrigerant Rl and the salt water B is increased, and the salt water B can be cooled more efficiently.
  • the ice can be scraped off by the blade 53. Therefore, the growth of ice on the inner peripheral surface of the inner tube 233 can be suppressed, and the decrease in the production efficiency of the ice slurry S can be suppressed.
  • each blade 53 may be non-contact with the inner peripheral surface of the inner pipe 233.
  • the dimensional accuracy of the inner pipe 233 and the blade 53 is not required, so that the device configuration becomes simpler.
  • the present invention is not limited thereto.
  • the configuration of each part can be replaced with an arbitrary configuration that exhibits the same function, or an arbitrary configuration can be added.
  • the salt water B is used as the cooling medium, but the cooling medium is not limited to this.
  • the cooling medium may be various aqueous solutions such as various drinking waters and calcium chloride aqueous solutions.
  • the cooling system 1 is not limited to the application for producing the ice slurry S, and for example, liquids, particularly water, soft drinks, milk, fruit juices, vegetable juices, alcoholic drinks and other various drinking waters are unfrozen. It may be used for cooling as it is. That is, the cooling system 1 may be used as a cooling system. Further, the cooling system 1 may be used as a chiller (cooling water circulation device) for cooling a target device or sample.
  • the operation control method of the cooling system 1 having the cooler 23 for cooling the salt water B as the cooling medium by heat exchange with the liquid refrigerant R1 supplies the liquid refrigerant Rl with the high-pressure gaseous gas refrigerant Rg.
  • the temperature of the liquid refrigerant R1 in the cooler 21 is controlled. Therefore, the temperature Ta of the liquid refrigerant Rl in the refrigerant storage unit 234 can be maintained at the target temperature Tt (difference from the target temperature Tt can be suppressed), and heat exchange between the liquid refrigerant Rl and the salt water B is desired. It can be performed stably under the conditions of. Thereby, the ice slurry S can be stably and efficiently produced. In addition, the ice slurry S produced becomes more homogeneous, and high-quality ice slurry S can be produced. Therefore, its industrial applicability is great.
  • Cooling system 2 ... Refrigerator circuit, 21 ... Compressor, 22 ... Condenser, 221 ... Blower fan, 23 ... Cooler, 231 ... Main evaporator, 232 ... Outer pipe, 233 ... Inner pipe, 234 ... Refrigerator storage Department, 235 ... Sub-evaporator, 236 ... Piping, 237 ... Space, 238 ... Dehumidifying member, 239 ... Pressure sensor, 24 ... Liquid level measuring unit, 241 ... Refrigerator storage pipe, 242 ... Liquid level detection sensor, 243 ... Piping, 251 ... Piping, 252 ... Piping, 253 ... Piping, 254 ... Piping, 26 ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Abstract

The present invention controls liquid-refrigerant temperature, whereby stabilized cooling properties can be demonstrated. In this method of controlling the operation of a refrigerating system 1 having a chiller 23 that chills saltwater B by heat exchange with a liquid refrigerant Rℓ, the liquid refrigerant Rℓ is supplied with a gas refrigerant Rg in a high-pressure gaseous state to control the temperature of the liquid refrigerant Rℓ inside the chiller 23. Furthermore, a refrigerant R is compressed with a compressor 21 to generate the gas refrigerant Rg, and the gas refrigerant Rg is condensed with a condenser 22 to generate the liquid refrigerant Rℓ. Furthermore, on the basis of the pressure of the liquid refrigerant Rℓ inside the chiller 23, the quantity of the gas refrigerant Rg supplied to the liquid refrigerant Rℓ is feedback-controlled.

Description

運転制御方法および冷却システムOperation control method and cooling system
 本発明は、運転制御方法および冷却システムに関する。 The present invention relates to an operation control method and a cooling system.
 例えば、氷スラリーを製造する冷却システムとして特許文献1に記載された満液式の製氷機が知られている。特許文献1の製氷機では、液冷媒で満たされた製氷機に塩水を循環させ、液冷媒と塩水との熱交換により塩水を冷却して氷スラリーを生成する。 For example, a full-liquid ice maker described in Patent Document 1 is known as a cooling system for producing an ice slurry. In the ice maker of Patent Document 1, salt water is circulated in an ice maker filled with a liquid refrigerant, and the salt water is cooled by heat exchange between the liquid refrigerant and the salt water to generate an ice slurry.
特開2020-106212号公報Japanese Unexamined Patent Publication No. 2020-106212
 しかしながら、このような特許文献1の製氷機では液冷媒の温度を制御しないため、冷媒の温度が安定せず、安定した冷却特性を発揮することができない。 However, in such an ice maker of Patent Document 1, since the temperature of the liquid refrigerant is not controlled, the temperature of the refrigerant is not stable and stable cooling characteristics cannot be exhibited.
 本発明の目的は、液冷媒の温度を制御し、安定した冷却特性を発揮することができる運転制御方法および冷却システムを提供することにある。 An object of the present invention is to provide an operation control method and a cooling system capable of controlling the temperature of a liquid refrigerant and exhibiting stable cooling characteristics.
 このような目的は、下記の本発明により達成される。 Such an object is achieved by the following invention.
 (1) 液冷媒との熱交換により被冷却媒体を冷却する冷却機を有する冷却システムの運転制御方法であって、
 前記液冷媒に高圧ガス状のガス冷媒を供給することにより、前記冷却機内での前記液冷媒の温度を制御することを特徴とする運転制御方法。
(1) An operation control method for a cooling system having a cooler that cools a medium to be cooled by exchanging heat with a liquid refrigerant.
An operation control method comprising controlling the temperature of the liquid refrigerant in the cooler by supplying a high-pressure gaseous gas refrigerant to the liquid refrigerant.
 (2) 冷媒を圧縮機で圧縮することにより前記ガス冷媒を生成し、
 前記ガス冷媒を凝縮器で凝縮することにより前記液冷媒を生成する上記(1)に記載の運転制御方法。
(2) The gas refrigerant is generated by compressing the refrigerant with a compressor.
The operation control method according to (1) above, wherein the liquid refrigerant is generated by condensing the gas refrigerant with a condenser.
 (3) 前記冷却機内の前記液冷媒の圧力に基づいて前記液冷媒に供給する前記ガス冷媒の量をフィードバック制御する上記(1)または(2)に記載の運転制御方法。 (3) The operation control method according to (1) or (2) above, wherein the amount of the gas refrigerant supplied to the liquid refrigerant is feedback-controlled based on the pressure of the liquid refrigerant in the cooler.
 (4) 前記液冷媒に供給する前記ガス冷媒の量をPID制御により制御する上記(3)に記載の運転制御方法。 (4) The operation control method according to (3) above, wherein the amount of the gas refrigerant supplied to the liquid refrigerant is controlled by PID control.
 (5) 前記液冷媒の温度をTa(℃)とし、前記被冷却媒体の凝固点をTf(℃)としたとき、
 Tf-10℃≦Ta≦Tfの関係を満足するように前記液冷媒の温度を制御する上記(1)から(4)のいずれか1項に記載の運転制御方法。
(5) When the temperature of the liquid refrigerant is Ta (° C) and the freezing point of the medium to be cooled is Tf (° C).
The operation control method according to any one of (1) to (4) above, wherein the temperature of the liquid refrigerant is controlled so as to satisfy the relationship of Tf-10 ° C. ≤ Ta ≤ Tf.
 (6) Tf-10℃≦Ta≦Tfの関係を満足するように前記液冷媒の温度を制御する徐冷モードと、前記徐冷モードよりもTaが低くなるように前記液冷媒の温度を制御する急冷モードと、を有し、
 前記被冷却媒体の温度が閾値以上のときは前記急冷モードで前記液冷媒の温度を制御し、
 前記被冷却媒体の温度が前記閾値未満のときは前記徐冷モードで前記液冷媒の温度を制御する上記(5)に記載の運転制御方法。
(6) A slow cooling mode in which the temperature of the liquid refrigerant is controlled so as to satisfy the relationship of Tf-10 ° C. ≤ Ta ≤ Tf, and a slow cooling mode in which the temperature of the liquid refrigerant is controlled so that Ta is lower than the slow cooling mode. Has a quenching mode, and has
When the temperature of the medium to be cooled is equal to or higher than the threshold value, the temperature of the liquid refrigerant is controlled in the quenching mode.
The operation control method according to (5) above, wherein when the temperature of the medium to be cooled is less than the threshold value, the temperature of the liquid refrigerant is controlled in the slow cooling mode.
 (7) 前記冷却機内の前記液冷媒の量が制御目標となるように、前記冷却機内に供給される前記液冷媒の量を制御する上記(1)から(6)のいずれかに記載の運転制御方法。 (7) The operation according to any one of (1) to (6) above, which controls the amount of the liquid refrigerant supplied into the cooler so that the amount of the liquid refrigerant in the cooler becomes the control target. Control method.
 (8) 前記冷却機内の前記液冷媒の量に基づいて前記冷却機に供給する前記液冷媒の量をフィードバック制御する上記(7)に記載の運転制御方法。 (8) The operation control method according to (7) above, wherein the amount of the liquid refrigerant supplied to the cooler is feedback-controlled based on the amount of the liquid refrigerant in the cooler.
 (9) 前記冷却機に供給する前記液冷媒の量をPID制御により制御する上記(8)に記載の運転制御方法。 (9) The operation control method according to (8) above, wherein the amount of the liquid refrigerant supplied to the cooler is controlled by PID control.
 (10) 冷媒を圧縮して高圧ガス状のガス冷媒とする圧縮機と、
 前記ガス冷媒を凝縮して高圧液状の液冷媒とする凝縮器と、
 前記液冷媒との熱交換により被冷却媒体を冷却する冷却機と、
 前記液冷媒に前記ガス冷媒を供給することにより、前記冷却機内における前記液冷媒の温度を制御する制御装置と、を有することを特徴とする冷却システム。
(10) A compressor that compresses the refrigerant into a high-pressure gaseous gas refrigerant,
A condenser that condenses the gas refrigerant into a high-pressure liquid liquid refrigerant,
A cooler that cools the medium to be cooled by heat exchange with the liquid refrigerant, and
A cooling system comprising: a control device for controlling the temperature of the liquid refrigerant in the cooler by supplying the gas refrigerant to the liquid refrigerant.
 本発明の運転制御方法および冷却システムによれば、液冷媒の温度を制御するため、冷却機内での冷媒の温度が安定し、安定した冷却特性を発揮することができる。特に、液冷媒に高圧ガス状のガス冷媒を供給することにより優れた応答性で液冷媒の温度を制御することができる。 According to the operation control method and the cooling system of the present invention, since the temperature of the liquid refrigerant is controlled, the temperature of the refrigerant in the cooler is stable, and stable cooling characteristics can be exhibited. In particular, by supplying a high-pressure gaseous gas refrigerant to the liquid refrigerant, the temperature of the liquid refrigerant can be controlled with excellent responsiveness.
図1は、第1実施形態に係る冷却システムの全体構成図を示す図である。FIG. 1 is a diagram showing an overall configuration diagram of a cooling system according to the first embodiment. 図2は、冷却機および液面計測器を示す断面図である。FIG. 2 is a cross-sectional view showing a cooler and a liquid level measuring instrument. 図3は、制御装置の制御方法を示すブロック図である。FIG. 3 is a block diagram showing a control method of the control device. 図4は、制御装置の制御方法を示すブロック図である。FIG. 4 is a block diagram showing a control method of the control device. 図5は、第2実施形態に係る冷却システムが有する冷却機および液面計測器を示す断面図である。FIG. 5 is a cross-sectional view showing a cooler and a liquid level measuring instrument included in the cooling system according to the second embodiment.
 以下、本発明の運転制御方法および冷却システムを添付図面に示す実施形態に基づいて詳細に説明する。なお、図2および図5中の紙面上側が鉛直方向上側であり、紙面下側が鉛直方向下側である。 Hereinafter, the operation control method and the cooling system of the present invention will be described in detail based on the embodiments shown in the attached drawings. The upper side of the paper surface in FIGS. 2 and 5 is the upper side in the vertical direction, and the lower side of the paper surface is the lower side in the vertical direction.
 図1に示す冷却システム1は、塩水B(ブライン)を原料として氷スラリーSを連続的に生成するシステムである。氷スラリーSとは、塩水中に微細な氷が混濁したシャーベット状の氷のことをいい、スラリー氷、アイススラリー、スラリーアイス等とも呼ばれる場合がある。 The cooling system 1 shown in FIG. 1 is a system that continuously produces an ice slurry S using salt water B (brine) as a raw material. The ice slurry S refers to sherbet-like ice in which fine ice is turbid in salt water, and may also be referred to as slurry ice, ice slurry, slurry ice, or the like.
 冷却システム1は、圧縮機21と、凝縮器22と、冷却機23(蒸発器)と、液面計測部24と、を有する。また、冷却システム1は、圧縮機21と凝縮器22とを接続する配管251と、凝縮器22と冷却機23とを接続する配管252と、冷却機23と圧縮機21とを接続する配管253と、凝縮器22を経由せずに配管251と配管252とをバイパスする配管254と、を有する。また、冷却システム1は、配管252の途中に設けられた液面調整バルブ26と、配管254の途中に設けられた圧力調整バルブ27と、を有する。これら各要素により、冷媒Rが循環する冷媒回路2が構成される。 The cooling system 1 includes a compressor 21, a condenser 22, a cooler 23 (evaporator), and a liquid level measuring unit 24. Further, the cooling system 1 includes a pipe 251 connecting the compressor 21 and the condenser 22, a pipe 252 connecting the condenser 22 and the cooler 23, and a pipe 253 connecting the cooler 23 and the compressor 21. And a pipe 254 that bypasses the pipe 251 and the pipe 252 without passing through the condenser 22. Further, the cooling system 1 has a liquid level adjusting valve 26 provided in the middle of the pipe 252 and a pressure adjusting valve 27 provided in the middle of the pipe 254. Each of these elements constitutes a refrigerant circuit 2 in which the refrigerant R circulates.
 このような冷媒回路2では、圧縮機21の駆動により冷媒Rが圧縮されて高温高圧ガス状となる。圧縮機21で高温高圧ガス状となった冷媒R(以下「ガス冷媒Rg」とも言う)は、配管251を通って凝縮器22に流入し、送風ファン221の作動による空気との熱交換により凝縮・液化して高圧液状となる。凝縮器22で高圧液状となった冷媒R(以下「液冷媒Rl」とも言う)は、配管252を通って冷却機23に流入し、冷却機23内での塩水Bとの熱交換により蒸発・気化して低圧ガス状となる。なお、冷却機23に流入する液冷媒Rlの量は、液面調整バルブ26により調整される。また、圧縮機21で高温高圧ガス状となったガス冷媒Rg(ホットガス)の一部は、配管251に接続された配管254を通って配管252内を流れる液冷媒Rlに供給される。ガス冷媒Rgを液冷媒Rlに供給することにより、冷却機23に流入する液冷媒Rlの圧力(温度)を制御することができる。液冷媒Rlに供給する高ガス冷媒Rgの量は、圧力調整バルブ27により調整される。冷却機23内での塩水Bとの熱交換によって低圧ガス状となった冷媒Rは、配管253を介して圧縮機21に戻され、圧縮機21により圧縮されて再びガス冷媒Rgとなって吐出される。冷媒回路2は、このような熱交換サイクルで冷媒Rを循環させることにより、冷却機23において塩水Bを連続的に冷却する。 In such a refrigerant circuit 2, the refrigerant R is compressed by driving the compressor 21 to form a high-temperature high-pressure gas. The refrigerant R (hereinafter, also referred to as “gas refrigerant Rg”) that has become a high-temperature and high-pressure gas in the compressor 21 flows into the condenser 22 through the pipe 251 and is condensed by heat exchange with air by the operation of the blower fan 221.・ It liquefies and becomes a high-pressure liquid. The high-pressure liquid refrigerant R (hereinafter also referred to as “liquid refrigerant Rl”) in the condenser 22 flows into the cooler 23 through the pipe 252 and evaporates by heat exchange with the salt water B in the cooler 23. It evaporates into a low-pressure gas. The amount of the liquid refrigerant Rl flowing into the cooler 23 is adjusted by the liquid level adjusting valve 26. Further, a part of the gas refrigerant Rg (hot gas) turned into a high-temperature and high-pressure gas by the compressor 21 is supplied to the liquid refrigerant Rl flowing in the pipe 252 through the pipe 254 connected to the pipe 251. By supplying the gas refrigerant Rg to the liquid refrigerant Rl, the pressure (temperature) of the liquid refrigerant Rl flowing into the cooler 23 can be controlled. The amount of the high gas refrigerant Rg supplied to the liquid refrigerant Rl is adjusted by the pressure adjusting valve 27. The refrigerant R, which has become a low-pressure gas due to heat exchange with the salt water B in the cooler 23, is returned to the compressor 21 via the pipe 253, compressed by the compressor 21, and discharged as the gas refrigerant Rg again. Will be done. The refrigerant circuit 2 continuously cools the salt water B in the cooler 23 by circulating the refrigerant R in such a heat exchange cycle.
 冷却システム1の運転中は、液面調整バルブ26によって冷却機23へ供給する液冷媒Rlの量が調整され、冷却機23内の液冷媒Rlの量すなわち液冷媒Rlの液面高さDaが制御目標である目標液面高さDtに保たれる。さらに、圧力調整バルブ27によって冷却機23へ供給される液冷媒Rlの圧力(温度)が調整され、冷却機23内の液冷媒Rlの圧力(温度)が制御目標である目標圧力Pt(目標温度Tt)に保たれる。このように、冷却機23内の液冷媒Rlの量および圧力(温度)を目標値に維持することにより、冷媒Rと塩水Bとの熱交換を所望の条件で安定して行うことができる。そのため、適当な条件で安定して塩水Bを連続冷却することができ、氷スラリーSを効率的に生成することができる。また、生成される氷スラリーSがより均質なものとなり、高品質な氷スラリーSを生成することができる。 During the operation of the cooling system 1, the amount of the liquid refrigerant Rl supplied to the cooler 23 is adjusted by the liquid level adjusting valve 26, and the amount of the liquid refrigerant Rl in the cooler 23, that is, the liquid level height Da of the liquid refrigerant Rl is adjusted. The target liquid level height Dt, which is the control target, is maintained. Further, the pressure (temperature) of the liquid refrigerant Rl supplied to the cooler 23 is adjusted by the pressure adjusting valve 27, and the pressure (temperature) of the liquid refrigerant Rl in the cooler 23 is the control target pressure Pt (target temperature). It is kept at Tt). By maintaining the amount and pressure (temperature) of the liquid refrigerant Rl in the cooler 23 at the target values in this way, heat exchange between the refrigerant R and the salt water B can be stably performed under desired conditions. Therefore, the salt water B can be continuously cooled stably under appropriate conditions, and the ice slurry S can be efficiently produced. In addition, the ice slurry S produced becomes more homogeneous, and high-quality ice slurry S can be produced.
 また、冷却システム1は、塩水Bおよび塩水Bから生成された氷スラリーSを貯留するための貯留タンク31と、塩水Bを循環させるためのポンプ32と、冷却機23に供給される塩水Bの塩分濃度を検出する濃度センサー33と、を有する。また、冷却システム1は、貯留タンク31と冷却機23とを接続する配管341と、冷却機23と貯留タンク31とを接続する配管342と、を有し、配管341の途中にポンプ32が設置され、冷却機23内に濃度センサー33が設置されている。これら各要素により、塩水が循環する塩水循環路3(被冷却媒体循環路)が構成される。ただし、濃度センサー33の配置場所は、冷却機23に供給される塩水Bの塩分濃度を検出することができれば、特に限定されない。 Further, the cooling system 1 includes a storage tank 31 for storing the salt water B and the ice slurry S generated from the salt water B, a pump 32 for circulating the salt water B, and the salt water B supplied to the cooler 23. It has a concentration sensor 33 for detecting a salt concentration, and a concentration sensor 33. Further, the cooling system 1 has a pipe 341 connecting the storage tank 31 and the cooler 23, and a pipe 342 connecting the cooler 23 and the storage tank 31, and a pump 32 is installed in the middle of the pipe 341. The concentration sensor 33 is installed in the cooler 23. Each of these elements constitutes a salt water circulation path 3 (cooled medium circulation path) through which salt water circulates. However, the location of the concentration sensor 33 is not particularly limited as long as it can detect the salt concentration of the salt water B supplied to the cooler 23.
 また、貯留タンク31には、タンク内の塩水Bおよび氷スラリーSを撹拌する撹拌羽根311と、撹拌羽根311を回転させるモーター312と、が設置されている。これにより、貯留タンク31内での氷スラリーSの凝集を抑制することができる。また、貯留タンク31には、タンク内に貯留された氷スラリーSを排出するための排出管313が設置されている。 Further, the storage tank 31 is provided with a stirring blade 311 for stirring the salt water B and the ice slurry S in the tank, and a motor 312 for rotating the stirring blade 311. This makes it possible to suppress the aggregation of the ice slurry S in the storage tank 31. Further, the storage tank 31 is provided with a discharge pipe 313 for discharging the ice slurry S stored in the tank.
 冷却システム1の運転中は、ポンプ32の駆動により貯留タンク31内の塩水Bが配管341を通って冷却機23に供給される。冷却機23内に供給された塩水Bは、冷却機23内の液冷媒Rlとの熱交換により冷却される。冷却機23で冷却された塩水Bは、配管342を通って貯留タンク31に戻され、再び配管341を通って冷却機23に供給される。また、冷却により生成された氷スラリーSは、貯留タンク31に貯留される。塩水循環路3は、このような塩水循環サイクルを繰り返すことにより、氷スラリーSを連続的に生成する。 During the operation of the cooling system 1, the salt water B in the storage tank 31 is supplied to the cooler 23 through the pipe 341 by driving the pump 32. The salt water B supplied into the cooler 23 is cooled by heat exchange with the liquid refrigerant Rl in the cooler 23. The salt water B cooled by the cooler 23 is returned to the storage tank 31 through the pipe 342, and is supplied to the cooler 23 again through the pipe 341. Further, the ice slurry S generated by cooling is stored in the storage tank 31. The salt water circulation path 3 continuously produces the ice slurry S by repeating such a salt water circulation cycle.
 また、冷却システム1は、冷却システム1の各部の駆動を制御する制御装置4を有する。制御装置4は、例えば、コンピューターから構成され、情報を処理するプロセッサーと、プロセッサーに通信可能に接続されたメモリーと、を有する。メモリーには冷却システム1の運転に必要な各種プログラムが保存されている。プロセッサーは、メモリーに記憶された各種プログラム等を読み込んで実行する。これにより、以下に説明するような冷却システム1の運転が実現される。 Further, the cooling system 1 has a control device 4 that controls the drive of each part of the cooling system 1. The control device 4 includes, for example, a processor composed of a computer and processing information, and a memory communicably connected to the processor. Various programs necessary for operating the cooling system 1 are stored in the memory. The processor reads and executes various programs and the like stored in the memory. As a result, the operation of the cooling system 1 as described below is realized.
 次に、冷却機23について説明する。図2に示すように、冷却機23は、メイン蒸発器231と、サブ蒸発器235と、メイン蒸発器231内の液冷媒Rlの圧力を検出する圧力センサー239と、を有する。そして、メイン蒸発器231の下端部に配管252が接続され、サブ蒸発器235の上端部に配管253が接続されている。凝縮器22で高圧液状となった液冷媒Rlは、配管252を通ってメイン蒸発器231に供給される。メイン蒸発器231で塩水Bとの熱交換により蒸発・気化した低圧ガス状の冷媒Rは、サブ蒸発器235から配管253を通って圧縮機21に戻される。 Next, the cooler 23 will be described. As shown in FIG. 2, the cooler 23 includes a main evaporator 231, a sub-evaporator 235, and a pressure sensor 239 that detects the pressure of the liquid refrigerant Rl in the main evaporator 231. The pipe 252 is connected to the lower end of the main evaporator 231 and the pipe 253 is connected to the upper end of the sub-evaporator 235. The liquid refrigerant Rl, which has become a high-pressure liquid in the condenser 22, is supplied to the main evaporator 231 through the pipe 252. The low-pressure gaseous refrigerant R evaporated and vaporized by heat exchange with the salt water B in the main evaporator 231 is returned from the sub-evaporator 235 to the compressor 21 through the pipe 253.
 メイン蒸発器231は、外管232と、外管232の内側に同軸的に配置された内管233と、を有する。外管232および内管233は、それぞれ、両端が閉止した円管である。ただし、外管232および内管233は、それぞれ、円管に限定されない。また、外管232および内管233は、立てて設置され、軸が鉛直方向を向く。つまり、メイン蒸発器231は、竪置き型二重管式蒸発器である。 The main evaporator 231 has an outer pipe 232 and an inner pipe 233 coaxially arranged inside the outer pipe 232. The outer pipe 232 and the inner pipe 233 are circular pipes whose ends are closed, respectively. However, the outer pipe 232 and the inner pipe 233 are not limited to circular pipes, respectively. Further, the outer pipe 232 and the inner pipe 233 are installed upright, and the shaft faces in the vertical direction. That is, the main evaporator 231 is a vertical double-tube evaporator.
 また、メイン蒸発器231は、満液式の蒸発器であり、外管232と内管233との間のスペースのほぼ全部が液冷媒Rlで満たされる。なお、以下では当該スペースを「冷媒貯留部234」とも言う。一方、塩水Bは、内管233内を流れる。そのため、内管233の壁面を介して塩水Bと液冷媒Rlとの熱交換が行われる。満液式のメイン蒸発器231では、液冷媒Rlが内管233の外周面に直に接するため、従来技術で述べた乾式と比べて高い仕事効率を発揮でき、液冷媒Rlと塩水Bとの熱交換効率を高めることができる。そのため、氷スラリーSを効率的に生成することができる。 Further, the main evaporator 231 is a full-liquid evaporator, and almost the entire space between the outer pipe 232 and the inner pipe 233 is filled with the liquid refrigerant Rl. In the following, the space will also be referred to as "refrigerant storage unit 234". On the other hand, the salt water B flows in the inner pipe 233. Therefore, heat exchange between the salt water B and the liquid refrigerant Rl is performed through the wall surface of the inner pipe 233. In the full-liquid type main evaporator 231, since the liquid refrigerant Rl is in direct contact with the outer peripheral surface of the inner pipe 233, higher work efficiency can be exhibited as compared with the dry type described in the prior art, and the liquid refrigerant Rl and the salt water B can be combined. The heat exchange efficiency can be increased. Therefore, the ice slurry S can be efficiently generated.
 液冷媒Rlと塩水Bとの熱交換効率を高めるために、内管233は、鉄、銅、アルミニウム、チタン、ステンレス鋼等、機械的強度に優れかつ熱伝導率の高い材料で構成することが好ましい。また、液冷媒Rlと塩水Bとの熱交換効率を高めるために、内管233は、機械的強度を保てる限りにおいてなるべく薄肉であることが好ましい。 In order to improve the heat exchange efficiency between the liquid refrigerant Rl and the salt water B, the inner pipe 233 may be made of a material having excellent mechanical strength and high thermal conductivity, such as iron, copper, aluminum, titanium, and stainless steel. preferable. Further, in order to increase the heat exchange efficiency between the liquid refrigerant Rl and the salt water B, the inner pipe 233 is preferably as thin as possible as long as the mechanical strength can be maintained.
 サブ蒸発器235は、メイン蒸発器231と水平方向に並んで設置されている。サブ蒸発器235は、両端が閉止された円管である。また、サブ蒸発器235は、立てて設置され、その軸が鉛直方向を向く。このようなサブ蒸発器235は、一対の配管236を介して冷媒貯留部234に接続されている。そのため、冷媒貯留部234に供給された液冷媒Rlは、これら配管236を通ってサブ蒸発器235にも供給される。なお、サブ蒸発器235と冷媒貯留部234の圧力(内圧)は互いに等しく、サブ蒸発器235内の液冷媒Rlの液面高さは、冷媒貯留部234内の液冷媒Rlの液面高さと等しい。 The sub-evaporator 235 is installed side by side with the main evaporator 231 in the horizontal direction. The sub-evaporator 235 is a circular tube with both ends closed. Further, the sub-evaporator 235 is installed upright, and its axis faces in the vertical direction. Such a sub-evaporator 235 is connected to the refrigerant storage unit 234 via a pair of pipes 236. Therefore, the liquid refrigerant Rl supplied to the refrigerant storage unit 234 is also supplied to the sub-evaporator 235 through these pipes 236. The pressures (internal pressures) of the sub-evaporator 235 and the refrigerant storage unit 234 are equal to each other, and the liquid level height of the liquid refrigerant Rl in the sub-evaporator 235 is the same as the liquid level height of the liquid refrigerant Rl in the refrigerant storage unit 234. equal.
 また、サブ蒸発器235の下端は、メイン蒸発器231の下端よりも鉛直方向上側に位置する。そのため、例えば、下端がメイン蒸発器231の下端と同じ高さの場合やメイン蒸発器231の下端よりも鉛直方向下側に位置する場合と比べて、サブ蒸発器235内の液冷媒Rlの量を少なくすることができる。その結果、冷媒Rの使用量を削減することができる。また、サブ蒸発器235は、メイン蒸発器231よりも縦に長く、その上端がメイン蒸発器231の上端よりも鉛直方向上側に位置する。そのため、サブ蒸発器235内には、液冷媒Rlの上方に位置するスペース237が形成される。後述するように、当該スペース237には除湿部材238が配置される。 Further, the lower end of the sub-evaporator 235 is located above the lower end of the main evaporator 231 in the vertical direction. Therefore, for example, the amount of the liquid refrigerant Rl in the sub-evaporator 235 is higher than the case where the lower end is at the same height as the lower end of the main evaporator 231 or the lower end is located below the lower end of the main evaporator 231 in the vertical direction. Can be reduced. As a result, the amount of the refrigerant R used can be reduced. Further, the sub-evaporator 235 is vertically longer than the main evaporator 231 and its upper end is located vertically above the upper end of the main evaporator 231. Therefore, a space 237 located above the liquid refrigerant Rl is formed in the sub-evaporator 235. As will be described later, a dehumidifying member 238 is arranged in the space 237.
 ここで、メイン蒸発器231での塩水Bとの熱交換により蒸発・気化した冷媒Rは、サブ蒸発器235の上端部から配管253を通って圧縮機21に戻される。この際、冷却機23で蒸発しきれずに液体(湿気)を含んだ状態の冷媒Rが圧縮機21に戻されると、液圧縮による急激なシリンダー内圧上昇によって圧縮機21が故障する原因となる。そこで、サブ蒸発器235のスペース237内には気化した冷媒Rに含まれる液体(湿気)を除去するための除湿部材238が配置されている。 Here, the refrigerant R evaporated and vaporized by heat exchange with the salt water B in the main evaporator 231 is returned to the compressor 21 from the upper end of the sub-evaporator 235 through the pipe 253. At this time, if the refrigerant R in a state of containing liquid (moisture) that cannot be completely evaporated by the cooler 23 is returned to the compressor 21, the compressor 21 may fail due to a sudden increase in the cylinder internal pressure due to the liquid compression. Therefore, a dehumidifying member 238 for removing the liquid (humidity) contained in the vaporized refrigerant R is arranged in the space 237 of the sub-evaporator 235.
 除湿部材238は、多数の貫通孔が形成された傘状をなす。このような除湿部材238では貫通孔が冷媒Rの通路となる。気化した冷媒Rは、液面から配管253に向けて上昇する途中で除湿部材238と接触し、当該接触により冷媒Rに含まれる液体(湿気)が除去され、より乾燥した状態の冷媒Rが圧縮機21に戻される。これにより、上述のような圧縮機21の故障を防ぐことができる。図2の構成では、除湿部材238を鉛直方向に複数並べることにより、除湿効果を向上させている。なお、塩水Bとの熱交換により冷媒Rがほぼ完全に蒸発し、十分に乾いたガス状の冷媒Rが圧縮機21に戻る場合等には除湿部材238を省略してもよい。また、例えば、除湿部材238では乾燥が不十分となる場合等、除湿部材238に替えてまたは加えて、配管253の途中に過熱器を配置し、過熱器で冷媒Rを加熱してから圧縮機21に戻す構成としてもよい。 The dehumidifying member 238 has an umbrella shape with a large number of through holes formed. In such a dehumidifying member 238, the through hole serves as a passage for the refrigerant R. The vaporized refrigerant R comes into contact with the dehumidifying member 238 while rising from the liquid surface toward the pipe 253, and the liquid (humidity) contained in the refrigerant R is removed by the contact, and the drier refrigerant R is compressed. It is returned to the machine 21. This makes it possible to prevent the compressor 21 from failing as described above. In the configuration of FIG. 2, a plurality of dehumidifying members 238 are arranged in the vertical direction to improve the dehumidifying effect. The dehumidifying member 238 may be omitted when the refrigerant R is almost completely evaporated by heat exchange with the salt water B and the sufficiently dry gaseous refrigerant R returns to the compressor 21. Further, for example, when the dehumidifying member 238 is insufficiently dried, a superheater is arranged in the middle of the pipe 253 in place of or in addition to the dehumidifying member 238, and the refrigerant R is heated by the superheater before the compressor. It may be configured to return to 21.
 次に、液面計測部24について説明する。図2に示すように、液面計測部24は、冷媒貯留管241と、液面検出センサー242と、を有する。冷媒貯留管241は、サブ蒸発器235と水平方向に並んで設置されている。また、冷媒貯留管241は、立てて設置され、その軸が鉛直方向を向く。また、冷媒貯留管241は、一対の配管243を介してサブ蒸発器235と接続されている。そのため、冷媒貯留部234に供給された液冷媒Rlは、サブ蒸発器235を介して冷媒貯留管241にも供給される。 Next, the liquid level measuring unit 24 will be described. As shown in FIG. 2, the liquid level measuring unit 24 includes a refrigerant storage pipe 241 and a liquid level detection sensor 242. The refrigerant storage pipe 241 is installed side by side with the sub-evaporator 235 in the horizontal direction. Further, the refrigerant storage pipe 241 is installed upright, and its axis faces in the vertical direction. Further, the refrigerant storage pipe 241 is connected to the sub-evaporator 235 via a pair of pipes 243. Therefore, the liquid refrigerant Rl supplied to the refrigerant storage unit 234 is also supplied to the refrigerant storage pipe 241 via the sub-evaporator 235.
 冷媒貯留管241、サブ蒸発器235および冷媒貯留部234内の圧力(内圧)は、互いに等しい。そのため、図2中の鎖線で示すように、冷媒貯留管241、サブ蒸発器235および冷媒貯留部234内の液冷媒Rlの液面高さが互いに等しい。したがって、冷媒貯留管241内の液冷媒Rlの液面高さを検出することにより、冷媒貯留部234内の液冷媒Rlの液面高さを検出することができる。そこで、冷媒貯留管241に液面検出センサー242を設置し、液面検出センサー242によって冷媒貯留管241内の液冷媒Rlの液面高さを検出することにより、冷媒貯留部234内の液冷媒Rlの液面高さを検出する構成となっている。このように、冷媒貯留部234と異なる場所に液面検出センサー242を設置することにより、液冷媒Rlと塩水Bとの熱交換を阻害することなく、冷媒貯留部234内の液冷媒Rlの液面高さを検出することができる。ただし、液面計測部24の構成としては、冷媒貯留部234内の液冷媒Rlの液面高さを検出することができれば、特に限定されない。 The pressures (internal pressures) in the refrigerant storage pipe 241 and the sub-evaporator 235 and the refrigerant storage unit 234 are equal to each other. Therefore, as shown by the chain line in FIG. 2, the liquid level heights of the liquid refrigerants Rl in the refrigerant storage pipe 241 and the sub-evaporator 235 and the refrigerant storage unit 234 are equal to each other. Therefore, by detecting the liquid level height of the liquid refrigerant Rl in the refrigerant storage pipe 241, it is possible to detect the liquid level height of the liquid refrigerant Rl in the refrigerant storage unit 234. Therefore, a liquid level detection sensor 242 is installed in the refrigerant storage pipe 241, and the liquid level of the liquid refrigerant Rl in the refrigerant storage pipe 241 is detected by the liquid level detection sensor 242, whereby the liquid refrigerant in the refrigerant storage unit 234 is detected. It is configured to detect the liquid level height of Rl. By installing the liquid level detection sensor 242 at a location different from the refrigerant storage unit 234 in this way, the liquid of the liquid refrigerant Rl in the refrigerant storage unit 234 is not hindered from heat exchange between the liquid refrigerant Rl and the salt water B. The surface height can be detected. However, the configuration of the liquid level measuring unit 24 is not particularly limited as long as the liquid level height of the liquid refrigerant Rl in the refrigerant storage unit 234 can be detected.
 なお、冷媒貯留管241は、両端が閉止された円管であり、その長さおよび径がサブ蒸発器235よりも小さい。このように、冷媒貯留管241をサブ蒸発器235よりも小さくすることにより、冷媒貯留管241内の液冷媒Rlの量を少なくすることができる。その結果、冷媒Rの使用量を削減することができる。 The refrigerant storage pipe 241 is a circular pipe with both ends closed, and its length and diameter are smaller than those of the sub-evaporator 235. By making the refrigerant storage pipe 241 smaller than the sub-evaporator 235 in this way, the amount of the liquid refrigerant Rl in the refrigerant storage pipe 241 can be reduced. As a result, the amount of the refrigerant R used can be reduced.
 次に、液面調整バルブ26について説明する。液面調整バルブ26は、メイン蒸発器231への液冷媒Rlの供給量を制御するためのバルブであり、メイン蒸発器231の上流側に設置されている。液面調整バルブ26は、ON/OFFのみならず、0~100%の開度で多段階または無段階に調整可能である。液面調整バルブ26の駆動は、制御装置4により制御される。 Next, the liquid level adjusting valve 26 will be described. The liquid level adjusting valve 26 is a valve for controlling the supply amount of the liquid refrigerant Rl to the main evaporator 231 and is installed on the upstream side of the main evaporator 231. The liquid level adjusting valve 26 can be adjusted not only on / off but also in multiple steps or steplessly with an opening degree of 0 to 100%. The drive of the liquid level adjusting valve 26 is controlled by the control device 4.
 制御装置4は、冷却システム1の運転中、液面検出センサー242の出力が示す冷媒貯留部234内の液冷媒Rlの液面高さDaと、制御目標である目標液面高さDtと、を一致させるフィードバック制御を実行する。これにより、冷媒貯留部234内の液冷媒Rlの液面高さDaを目標液面高さDtに保つことができ(目標液面高さDtとの乖離を抑制することができ)、液冷媒Rlと塩水Bとの熱交換を所望の条件で安定して行うことができる。そのため、氷スラリーSを安定的かつ効率的に生成することができる。また、生成される氷スラリーSがより均質なものとなり、高品質な氷スラリーSを生成することができる。 During the operation of the cooling system 1, the control device 4 determines the liquid level height Da of the liquid refrigerant Rl in the refrigerant storage unit 234 indicated by the output of the liquid level detection sensor 242, the target liquid level height Dt which is the control target, and the target liquid level height Dt. Perform feedback control to match. As a result, the liquid level height Da of the liquid refrigerant Rl in the refrigerant storage unit 234 can be maintained at the target liquid level height Dt (difference from the target liquid level height Dt can be suppressed), and the liquid refrigerant can be suppressed. The heat exchange between Rl and the salt water B can be stably performed under desired conditions. Therefore, the ice slurry S can be stably and efficiently produced. In addition, the ice slurry S produced becomes more homogeneous, and high-quality ice slurry S can be produced.
 特に、制御装置4は、図3に示すように、アナログ制御、特にPID制御によって液面調整バルブ26の駆動を制御する。具体的には、制御装置4は、液面高さDaと目標液面高さDtとの偏差De、偏差Deの積分および偏差Deの微分を使用して液面高さDaについてのPID制御を実行する。なお、図3において、比例ゲインKpp、積分ゲインKpi、微分ゲインKpdを示す。PID制御によれば、単純なON/OFF制御と比べて液冷媒Rlの液面高さDaの変動が低減され、液面高さDaが安定する。したがって、液冷媒Rlと塩水Bとの熱交換を所望の条件でより安定して行うことができる。そのため、氷スラリーSを安定的かつ効率的に生成することができる。また、生成される氷スラリーSがより均質なものとなり、高品質な氷スラリーSを生成することができる。ただし、液面調整バルブ26の制御方法は、特に限定されず、例えば、P制御、PI制御等の他のアナログ制御であってもよいし、デジタル制御であってもよい。 In particular, as shown in FIG. 3, the control device 4 controls the drive of the liquid level adjusting valve 26 by analog control, particularly PID control. Specifically, the control device 4 controls the PID for the liquid level height Da by using the deviation De between the liquid level height Da and the target liquid level Dt, the integral of the deviation De, and the derivative of the deviation De. Run. Note that FIG. 3 shows the proportional gain Kpp, the integrated gain Kpi, and the differential gain Kpd. According to the PID control, the fluctuation of the liquid level height Da of the liquid refrigerant Rl is reduced and the liquid level height Da is stabilized as compared with the simple ON / OFF control. Therefore, heat exchange between the liquid refrigerant Rl and the salt water B can be performed more stably under desired conditions. Therefore, the ice slurry S can be stably and efficiently produced. In addition, the ice slurry S produced becomes more homogeneous, and high-quality ice slurry S can be produced. However, the control method of the liquid level adjusting valve 26 is not particularly limited, and may be, for example, other analog control such as P control or PI control, or may be digital control.
 次に、圧力調整バルブ27について説明する。圧力調整バルブ27は、メイン蒸発器231内の液冷媒Rlの圧力を制御するためのバルブであり、メイン蒸発器231の上流側に設置されている。高温高圧ガス状のガス冷媒Rgを高圧液状の液冷媒Rlに供給することにより冷媒貯留部234に流入する液冷媒Rlの圧力を高めることができ、圧力調整バルブ27でガス冷媒Rgの供給量を調整することにより、冷媒貯留部234内の液冷媒Rlの圧力を制御することができる。このような制御方法によれば、簡単な構成で、冷媒貯留部234内の液冷媒Rlの圧力を制御することができる。 Next, the pressure adjusting valve 27 will be described. The pressure adjusting valve 27 is a valve for controlling the pressure of the liquid refrigerant Rl in the main evaporator 231 and is installed on the upstream side of the main evaporator 231. By supplying the high-temperature high-pressure gaseous gas refrigerant Rg to the high-pressure liquid liquid refrigerant Rl, the pressure of the liquid refrigerant Rl flowing into the refrigerant storage unit 234 can be increased, and the supply amount of the gas refrigerant Rg can be increased by the pressure adjusting valve 27. By adjusting, the pressure of the liquid refrigerant Rl in the refrigerant storage unit 234 can be controlled. According to such a control method, the pressure of the liquid refrigerant Rl in the refrigerant storage unit 234 can be controlled with a simple configuration.
 このような圧力調整バルブ27は、ON/OFFのみならず、0~100%の開度で多段階または無段階に調整可能である。圧力調整バルブ27の駆動は、制御装置4により制御される。制御装置4は、冷却システム1の運転中、圧力センサー239の出力が示す冷媒貯留部234内の液冷媒Rlの圧力Paと、制御目標である目標圧力Ptと、を一致させるフィードバック制御を実行する。 Such a pressure adjusting valve 27 can be adjusted not only on / off but also in multiple steps or steplessly with an opening degree of 0 to 100%. The drive of the pressure adjusting valve 27 is controlled by the control device 4. During the operation of the cooling system 1, the control device 4 executes feedback control for matching the pressure Pa of the liquid refrigerant Rl in the refrigerant storage unit 234 indicated by the output of the pressure sensor 239 with the target pressure Pt, which is the control target. ..
 ここで、液冷媒Rlの温度は、その圧力に比例する。したがって、液冷媒Rlの圧力を制御することは、液冷媒Rlの温度を制御することと同意である。そのため、このようなフィードバック制御を実行することにより、冷媒貯留部234内の液冷媒Rlの温度Taを目標温度Ttに保つことができ(目標温度Ttとの乖離を抑制することができ)、液冷媒Rlと塩水Bとの熱交換を所望の条件で安定して行うことができる。そのため、氷スラリーSを安定的かつ効率的に生成することができる。また、生成される氷スラリーSがより均質なものとなり、高品質な氷スラリーSを生成することができる。 Here, the temperature of the liquid refrigerant Rl is proportional to its pressure. Therefore, controlling the pressure of the liquid refrigerant Rl is synonymous with controlling the temperature of the liquid refrigerant Rl. Therefore, by executing such feedback control, the temperature Ta of the liquid refrigerant Rl in the refrigerant storage unit 234 can be maintained at the target temperature Tt (difference from the target temperature Tt can be suppressed), and the liquid can be suppressed. The heat exchange between the refrigerant Rl and the salt water B can be stably performed under desired conditions. Therefore, the ice slurry S can be stably and efficiently produced. In addition, the ice slurry S produced becomes more homogeneous, and high-quality ice slurry S can be produced.
 ここで、目標温度Tt(液冷媒Rlの温度Ta)と、メイン蒸発器231に供給される塩水Bの凝固点Tf(氷点)と、の関係について説明する。目標温度Ttが低いほど、つまり、冷媒貯留部234内の液冷媒Rlが低温であるほど、液冷媒Rlの仕事量が大きくなり、塩水Bをより短時間で冷却することができる。しかしながら、塩水Bが凝固点Tf付近まで冷却された状態においては、目標温度Ttと凝固点Tfの温度差ΔTが大きすぎるとメイン蒸発器231内で塩水Bが凍結し、内管233の内壁に氷が付着するおそれが高くなる。内管233の内壁に氷が付着して成長を続けると、内管233内の容積が次第に小さくなり、それに合わせて塩水Bの冷却効率が次第に低下し、最終的には内管233が塞がって塩水Bの循環が不能となる。 Here, the relationship between the target temperature Tt (temperature Ta of the liquid refrigerant Rl) and the freezing point Tf (freezing point) of the salt water B supplied to the main evaporator 231 will be described. The lower the target temperature Tt, that is, the lower the temperature of the liquid refrigerant Rl in the refrigerant storage unit 234, the greater the workload of the liquid refrigerant Rl, and the salt water B can be cooled in a shorter time. However, in a state where the salt water B is cooled to the vicinity of the freezing point Tf, if the temperature difference ΔT between the target temperature Tt and the freezing point Tf is too large, the salt water B freezes in the main evaporator 231 and ice forms on the inner wall of the inner pipe 233. The risk of adhesion increases. When ice adheres to the inner wall of the inner pipe 233 and continues to grow, the volume inside the inner pipe 233 gradually decreases, and the cooling efficiency of the salt water B gradually decreases accordingly, and finally the inner pipe 233 is blocked. The circulation of salt water B becomes impossible.
 このように、内管233の内壁に氷が付着し易い条件で運転する場合は、例えば、内管233内に、内管233の内壁に付着した氷を削り取るための回転ブレード等を設置したり、また、内管233の内壁に付着した氷を解かすための作業(デフロスト)を定期的に行ったりする必要がある。これらは、装置構成の煩雑化および高コスト化を招いたり、氷スラリーSの生成効率を悪化させたりする原因となる。また、塩水Bの安定した冷却が阻害され、不均質な氷スラリーSが生成され易くなる。 In this way, when operating under conditions where ice easily adheres to the inner wall of the inner pipe 233, for example, a rotating blade or the like for scraping off the ice adhering to the inner wall of the inner pipe 233 may be installed in the inner pipe 233. In addition, it is necessary to periodically perform work (defrost) for melting the ice adhering to the inner wall of the inner pipe 233. These cause the apparatus configuration to be complicated and costly, and the efficiency of producing the ice slurry S to be deteriorated. In addition, stable cooling of the salt water B is hindered, and an inhomogeneous ice slurry S is likely to be generated.
 そこで、塩水Bが凝固点Tf付近まで冷却された状態においては、温度差ΔTが大きくなり過ぎないように目標温度Ttを設定することが好ましい。具体的には、Tf-10℃≦Tt≦Tfであることが好ましく、Tf-10℃≦Tt≦Tf-3℃であることがより好ましく、Tf-10℃≦Tt≦Tf-5℃であることがさらに好ましい。つまり、Tf-10℃≦Ta≦Tfの関係を満足するように液冷媒Rlの温度を制御することが好ましく、Tf-8℃≦Ta≦Tf-3℃の関係を満足するように液冷媒Rlの温度を制御することがより好ましく、Tf-7℃≦Ta≦Tf-5℃の関係を満足するように液冷媒Rlの温度を制御することがさらに好ましい。 Therefore, when the salt water B is cooled to the vicinity of the freezing point Tf, it is preferable to set the target temperature Tt so that the temperature difference ΔT does not become too large. Specifically, Tf-10 ° C.≤Tt≤Tf is preferable, Tf-10 ° C.≤Tt≤Tf-3 ° C. is more preferable, and Tf-10 ° C.≤Tt≤Tf-5 ° C. is more preferable. Is even more preferable. That is, it is preferable to control the temperature of the liquid refrigerant Rl so as to satisfy the relationship of Tf-10 ° C.≤Ta≤Tf, and the liquid refrigerant Rl so as to satisfy the relationship of Tf-8 ° C.≤Ta≤Tf-3 ° C. It is more preferable to control the temperature of the liquid refrigerant Rl, and it is further preferable to control the temperature of the liquid refrigerant Rl so as to satisfy the relationship of Tf-7 ° C ≤ Ta ≤ Tf-5 ° C.
 温度差ΔTをこのような範囲とすることにより、塩水Bの凍結を抑制しつつ、より大きな温度差で塩水Bを冷却することができる。そのため、内管233の内壁に氷が付着し難くなり、長時間にわたって安定して氷スラリーSを連続生成することができる。なお、冷却システム1では、仕事効率の高い満液式のメイン蒸発器231を用いているため、温度差ΔTを小さくても高い仕事量を確保することができ、塩水Bを十分な速度で冷却することが可能となる。つまり、満液式のメイン蒸発器231を用いるからこそ小さい温度差ΔTによる運転が実現される。また、冷却システム1によれば、液冷媒Rlの温度をち密にコントロールすることができるため、温度差ΔTを精度よく制御することができる。 By setting the temperature difference ΔT in such a range, it is possible to cool the salt water B with a larger temperature difference while suppressing freezing of the salt water B. Therefore, it becomes difficult for ice to adhere to the inner wall of the inner tube 233, and the ice slurry S can be stably generated for a long period of time. Since the cooling system 1 uses a full-liquid main evaporator 231 with high work efficiency, a high work amount can be secured even if the temperature difference ΔT is small, and the salt water B is cooled at a sufficient speed. It becomes possible to do. That is, the operation with a small temperature difference ΔT is realized because the full-liquid main evaporator 231 is used. Further, according to the cooling system 1, since the temperature of the liquid refrigerant Rl can be closely controlled, the temperature difference ΔT can be controlled accurately.
 制御装置4による圧力調整バルブ27の駆動制御の説明に戻る。塩水Bの凝固点Tfは、塩分濃度で定まるため、塩水Bの塩分濃度が分かれば塩水Bの凝固点Tfが求まる。そこで、制御装置4は、まず、濃度センサー33の出力が示す冷却機23内の塩水Bの塩分濃度から塩水Bの凝固点Tfを求める。次に、制御装置4は、温度差ΔTが所定値となるように液冷媒Rlの目標温度Ttを設定する。次に、制御装置4は、設定した目標温度Ttに対応する液冷媒Rlの圧力を求め、これを目標圧力Ptとして設定する。 Return to the explanation of the drive control of the pressure adjustment valve 27 by the control device 4. Since the freezing point Tf of the salt water B is determined by the salt concentration, the freezing point Tf of the salt water B can be obtained if the salt concentration of the salt water B is known. Therefore, the control device 4 first obtains the freezing point Tf of the salt water B from the salt concentration of the salt water B in the cooler 23 indicated by the output of the concentration sensor 33. Next, the control device 4 sets the target temperature Tt of the liquid refrigerant Rl so that the temperature difference ΔT becomes a predetermined value. Next, the control device 4 obtains the pressure of the liquid refrigerant Rl corresponding to the set target temperature Tt, and sets this as the target pressure Pt.
 制御装置4は、アナログ制御、特にPID制御によって圧力調整バルブ27の駆動を制御する。具体的には、制御装置4は、図4に示すように、圧力Paと目標圧力Ptとの偏差Pe、偏差Peの積分および偏差Peの微分を使用して圧力PaについてのPID制御を実行する。図4において、比例ゲインKpp、積分ゲインKpi、微分ゲインKpdを示す。PID制御によれば、単純なON/OFF制御と比べて冷媒Rの圧力Paの変動が低減され、圧力Paが安定する。したがって、液冷媒Rlと塩水Bとの熱交換を所望の条件でより安定して行うことができる。そのため、氷スラリーSを安定的かつ効率的に生成することができる。また、生成される氷スラリーSがより均質なものとなり、高品質な氷スラリーSを生成することができる。ただし、圧力調整バルブ27の制御方法は、特に限定されず、例えば、P制御、PI制御等の他のアナログ制御であってもよいし、デジタル制御であってもよい。 The control device 4 controls the drive of the pressure adjusting valve 27 by analog control, particularly PID control. Specifically, as shown in FIG. 4, the control device 4 executes PID control for the pressure Pa by using the deviation Pe between the pressure Pa and the target pressure Pt, the integral of the deviation Pe, and the derivative of the deviation Pe. .. FIG. 4 shows the proportional gain Kpp, the integrated gain Kpi, and the differential gain Kpd. According to the PID control, the fluctuation of the pressure Pa of the refrigerant R is reduced and the pressure Pa is stabilized as compared with the simple ON / OFF control. Therefore, heat exchange between the liquid refrigerant Rl and the salt water B can be performed more stably under desired conditions. Therefore, the ice slurry S can be stably and efficiently produced. In addition, the ice slurry S produced becomes more homogeneous, and high-quality ice slurry S can be produced. However, the control method of the pressure adjusting valve 27 is not particularly limited, and may be, for example, other analog control such as P control or PI control, or may be digital control.
 ここで、制御装置4は、冷却機23内での塩水Bの凍結(内管233への氷の付着)を抑制しつつ、効率的に塩水Bを冷却するために複数の圧力制御モードを有する。本実施形態では、複数の圧力制御モードとして、急冷モードM1と徐冷モードM2とを有する。徐冷モードM2は、前述した制御モードであり、Tf-10℃≦Ta≦Tfとなるように圧力調整バルブ27の駆動を制御するモードである。一方、急冷モードM1は、徐冷モードM2よりも温度Taを低くし、より大きな温度差ΔTとなるように圧力調整バルブ27の駆動を制御するモードである。したがって、急冷モードM1の方が徐冷モードM2よりも液冷媒Rlの仕事量が大きく塩水Bの冷却能力が高い。 Here, the control device 4 has a plurality of pressure control modes in order to efficiently cool the salt water B while suppressing freezing of the salt water B (adhesion of ice to the inner pipe 233) in the cooler 23. .. In the present embodiment, as a plurality of pressure control modes, a quenching mode M1 and a slow cooling mode M2 are provided. The slow cooling mode M2 is the control mode described above, and is a mode in which the drive of the pressure adjusting valve 27 is controlled so that Tf −10 ° C. ≦ Ta ≦ Tf. On the other hand, the quenching mode M1 is a mode in which the temperature Ta is lower than that of the slow cooling mode M2, and the drive of the pressure adjusting valve 27 is controlled so as to have a larger temperature difference ΔT. Therefore, the quenching mode M1 has a larger work load of the liquid refrigerant Rl than the slow cooling mode M2, and the cooling capacity of the salt water B is higher.
 制御装置4は、凝固点Tf以上の温度を閾値SHとし、塩水Bの温度が閾値SH以上では急冷モードM1で圧力調整バルブ27の駆動を制御し、塩水Bの温度が閾値SH未満では徐冷モードM2で圧力調整バルブ27の駆動を制御する。これにより、塩水Bが凍結するおそれが低い状態では急冷モードM1で塩水Bを短時間で冷却し、塩水Bの温度が凝固点Tfに近づき凍結するおそれが高くなってきたら徐冷モードM2で塩水Bを穏やかに安定して冷却することができる。このように、急冷モードM1と徐冷モードM2とを切り替えることにより、塩水Bの凍結を抑制しつつ、できるだけ大きい温度差(凍結しないぎりぎりの温度差)で塩水Bを冷却することができる。そのため、内管233内への氷の付着を抑制しつつ、より短時間で塩水Bを冷却することができる。そのため、氷スラリーSの生成効率が向上する。 The control device 4 sets the temperature above the freezing point Tf as the threshold value SH, controls the drive of the pressure adjusting valve 27 in the quenching mode M1 when the temperature of the salt water B is above the threshold value SH, and slow-cools mode when the temperature of the salt water B is less than the threshold value SH. The drive of the pressure adjusting valve 27 is controlled by M2. As a result, when the risk of freezing of the salt water B is low, the salt water B is cooled in a short time in the quenching mode M1, and when the temperature of the salt water B approaches the freezing point Tf and the risk of freezing increases, the salt water B is cooled in the slow cooling mode M2. Can be cooled gently and stably. In this way, by switching between the quenching mode M1 and the slow cooling mode M2, the salt water B can be cooled with the largest possible temperature difference (the temperature difference just before freezing) while suppressing the freezing of the salt water B. Therefore, the salt water B can be cooled in a shorter time while suppressing the adhesion of ice into the inner pipe 233. Therefore, the production efficiency of the ice slurry S is improved.
 閾値SHとしては、特に限定されず、各部の性能によっても異なるが、例えば、凝固点Tfよりも0℃~7℃高い温度とすることが好ましく、凝固点Tfよりも3℃~5℃高い温度とすることがより好ましい。これにより、塩水Bの凍結を抑制しつつ、急冷モードM1で塩水Bをより低温まで冷却することができるため、塩水Bをより短時間で冷却することができ、氷スラリーSの生成効率が向上する。なお、制御装置4は、急冷モードM1および徐冷モードM2以外の駆動モードを有していてもよい。また、制御装置4は、徐冷モードM2だけを有していてもよい。 The threshold value SH is not particularly limited and varies depending on the performance of each part, but for example, the temperature is preferably 0 ° C. to 7 ° C. higher than the freezing point Tf and 3 ° C. to 5 ° C. higher than the freezing point Tf. Is more preferable. As a result, the salt water B can be cooled to a lower temperature in the quenching mode M1 while suppressing the freezing of the salt water B, so that the salt water B can be cooled in a shorter time and the production efficiency of the ice slurry S is improved. do. The control device 4 may have a drive mode other than the quenching mode M1 and the slow cooling mode M2. Further, the control device 4 may have only the slow cooling mode M2.
 以上、冷却システム1について説明した。このような冷却システム1を用いれば、例えば、海水を原料とした氷スラリーSを連続的に生成することができる。このため、冷却システム1を例えば漁船や漁港等に設置し、冷却システム1で生成した氷スラリーSを鮮魚の保冷等に利用することができる。この場合、鮮魚の保冷のために消費された氷スラリーSの量に見合う量の新たな海水が図示しない補給ポンプにより貯留タンク31に補給される構成とすればよい。氷スラリーSによれば鮮魚を傷付けることなく長時間保冷することが可能となる。 The cooling system 1 has been described above. By using such a cooling system 1, for example, an ice slurry S made from seawater can be continuously generated. Therefore, the cooling system 1 can be installed in, for example, a fishing boat or a fishing port, and the ice slurry S generated by the cooling system 1 can be used for keeping fresh fish cold. In this case, the storage tank 31 may be replenished with fresh seawater in an amount commensurate with the amount of ice slurry S consumed for keeping the fresh fish cold by a replenishment pump (not shown). According to the ice slurry S, it is possible to keep the fresh fish cold for a long time without damaging it.
 <第2実施形態>
 本実施形態は、内管233内に撹拌装置5を設置したこと以外は、前述した第1実施形態と同様である。なお、以下の説明では、本実施形態に関し、前述した実施形態との相違点を中心に説明し、同様の事項に関してはその説明を省略する。また、図5において、前述した実施形態と同様の構成については、同一符号を付している。
<Second Embodiment>
This embodiment is the same as the first embodiment described above, except that the stirring device 5 is installed in the inner pipe 233. In the following description, the present embodiment will be mainly described with respect to the differences from the above-described embodiment, and the description thereof will be omitted for the same matters. Further, in FIG. 5, the same reference numerals are given to the same configurations as those of the above-described embodiment.
 図5に示すように、本実施形態の冷却システム1は、前述した第1実施形態の構成に加えて、冷却機23内の塩水Bを撹拌する撹拌装置5を有する。撹拌装置5は、内管233の中心軸に沿って配置された回転軸51と、回転軸51を回転させるモーター52と、回転軸51に固定された複数の羽根53と、を有する。また、各羽根53は、その先端が内管233の内周面に接触している。回転軸51を回転させると羽根53が回転し、内管233内を流れる塩水Bに渦巻状の対流が生じる。そのため、液冷媒Rlと塩水Bとの熱交換効率が高まり、塩水Bをより効率的に冷却することができる。また、内管233の内周面に氷が付着しても、羽根53によってその氷を掻き取ることができる。そのため、内管233の内周面での氷の成長が抑えられ、氷スラリーSの生成効率の低下を抑制することができる。 As shown in FIG. 5, the cooling system 1 of the present embodiment has a stirring device 5 for stirring the salt water B in the cooler 23, in addition to the configuration of the first embodiment described above. The stirring device 5 has a rotating shaft 51 arranged along the central axis of the inner pipe 233, a motor 52 for rotating the rotating shaft 51, and a plurality of blades 53 fixed to the rotating shaft 51. Further, the tip of each blade 53 is in contact with the inner peripheral surface of the inner pipe 233. When the rotation shaft 51 is rotated, the blades 53 rotate, and spiral convection occurs in the salt water B flowing in the inner pipe 233. Therefore, the heat exchange efficiency between the liquid refrigerant Rl and the salt water B is increased, and the salt water B can be cooled more efficiently. Further, even if ice adheres to the inner peripheral surface of the inner pipe 233, the ice can be scraped off by the blade 53. Therefore, the growth of ice on the inner peripheral surface of the inner tube 233 can be suppressed, and the decrease in the production efficiency of the ice slurry S can be suppressed.
 なお、撹拌装置5の構成は、これに限定されず、例えば、各羽根53は、内管233の内周面と非接触であってもよい。各羽根53と内周面とを非接触とすることにより、内管233や羽根53の寸法精度が要求されないため、装置構成がより簡単となる。 The configuration of the stirring device 5 is not limited to this, and for example, each blade 53 may be non-contact with the inner peripheral surface of the inner pipe 233. By making each blade 53 and the inner peripheral surface non-contact, the dimensional accuracy of the inner pipe 233 and the blade 53 is not required, so that the device configuration becomes simpler.
 以上、本発明の運転制御方法および冷却システムについて、図示の実施形態に基づいて説明したが、本発明はこれに限定されるものではない。例えば、各部の構成は、同様の機能を発揮する任意の構成のものに置換することができ、また、任意の構成を付加することもできる。また、各実施形態を適宜組み合わせてもよい。 Although the operation control method and the cooling system of the present invention have been described above based on the illustrated embodiment, the present invention is not limited thereto. For example, the configuration of each part can be replaced with an arbitrary configuration that exhibits the same function, or an arbitrary configuration can be added. Moreover, you may combine each embodiment as appropriate.
 なお、前述した実施形態では、被冷却媒体として塩水Bを用いたが、被冷却媒体としては、これに限定されない。例えば、各種飲料水や塩化カルシウム水溶液等の各種水溶液であってもよい。また、冷却システム1は、氷スラリーSを生成する用途に限定されず、例えば、液体、特に、水、清涼飲料水、牛乳、果実ジュース、野菜ジュース、アルコール飲料等の各種飲料水を未凍結のまま冷却することに用いてもよい。つまり、冷却システム1は、冷却システムとして用いられてもよい。また、冷却システム1は、目的の装置や試料を冷却するためのチラー(冷却水循環装置)として用いられてもよい。 In the above-described embodiment, the salt water B is used as the cooling medium, but the cooling medium is not limited to this. For example, it may be various aqueous solutions such as various drinking waters and calcium chloride aqueous solutions. Further, the cooling system 1 is not limited to the application for producing the ice slurry S, and for example, liquids, particularly water, soft drinks, milk, fruit juices, vegetable juices, alcoholic drinks and other various drinking waters are unfrozen. It may be used for cooling as it is. That is, the cooling system 1 may be used as a cooling system. Further, the cooling system 1 may be used as a chiller (cooling water circulation device) for cooling a target device or sample.
 以上のように、液冷媒R1との熱交換により被冷却媒体としての塩水Bを冷却する冷却機23を有する冷却システム1の運転制御方法は、液冷媒Rlに高圧ガス状のガス冷媒Rgを供給することにより、冷却機21内での液冷媒R1の温度を制御する。そのため、冷媒貯留部234内の液冷媒Rlの温度Taを目標温度Ttに保つことができ(目標温度Ttとの乖離を抑制することができ)、液冷媒Rlと塩水Bとの熱交換を所望の条件で安定して行うことができる。これにより、氷スラリーSを安定的かつ効率的に生成することができる。また、生成される氷スラリーSがより均質なものとなり、高品質な氷スラリーSを生成することができる。したがって、その産業上の利用可能性は大きい。 As described above, the operation control method of the cooling system 1 having the cooler 23 for cooling the salt water B as the cooling medium by heat exchange with the liquid refrigerant R1 supplies the liquid refrigerant Rl with the high-pressure gaseous gas refrigerant Rg. By doing so, the temperature of the liquid refrigerant R1 in the cooler 21 is controlled. Therefore, the temperature Ta of the liquid refrigerant Rl in the refrigerant storage unit 234 can be maintained at the target temperature Tt (difference from the target temperature Tt can be suppressed), and heat exchange between the liquid refrigerant Rl and the salt water B is desired. It can be performed stably under the conditions of. Thereby, the ice slurry S can be stably and efficiently produced. In addition, the ice slurry S produced becomes more homogeneous, and high-quality ice slurry S can be produced. Therefore, its industrial applicability is great.
 1…冷却システム、2…冷媒回路、21…圧縮機、22…凝縮器、221…送風ファン、23…冷却機、231…メイン蒸発器、232…外管、233…内管、234…冷媒貯留部、235…サブ蒸発器、236…配管、237…スペース、238…除湿部材、239…圧力センサー、24…液面計測部、241…冷媒貯留管、242…液面検出センサー、243…配管、251…配管、252…配管、253…配管、254…配管、26…液面調整バルブ、27…圧力調整バルブ、3…塩水循環路、31…貯留タンク、311…撹拌羽根、312…モーター、313…排出管、32…ポンプ、33…濃度センサー、341…配管、342…配管、4…制御装置、5…撹拌装置、51…回転軸、52…モーター、53…羽根、B…塩水、Da…液面高さ、De…偏差、Dt…目標液面高さ、Kpd…微分ゲイン、Kpi…積分ゲイン、Kpp…比例ゲイン、Pa…圧力、Pe…偏差、Pt…目標圧力、R…冷媒、Rg…ガス冷媒、Rl…液冷媒、S…氷スラリー 1 ... Cooling system, 2 ... Refrigerator circuit, 21 ... Compressor, 22 ... Condenser, 221 ... Blower fan, 23 ... Cooler, 231 ... Main evaporator, 232 ... Outer pipe, 233 ... Inner pipe, 234 ... Refrigerator storage Department, 235 ... Sub-evaporator, 236 ... Piping, 237 ... Space, 238 ... Dehumidifying member, 239 ... Pressure sensor, 24 ... Liquid level measuring unit, 241 ... Refrigerator storage pipe, 242 ... Liquid level detection sensor, 243 ... Piping, 251 ... Piping, 252 ... Piping, 253 ... Piping, 254 ... Piping, 26 ... Liquid level adjusting valve, 27 ... Pressure adjusting valve, 3 ... Salt water circulation path, 31 ... Storage tank, 311 ... Stirring blade, 312 ... Motor, 313 ... Discharge pipe, 32 ... Pump, 33 ... Concentration sensor, 341 ... Piping, 342 ... Piping, 4 ... Control device, 5 ... Stirring device, 51 ... Rotating shaft, 52 ... Motor, 53 ... Blade, B ... Salt water, Da ... Liquid level height, De ... deviation, Dt ... target liquid level height, Kpd ... differential gain, Kpi ... integrated gain, Kpp ... proportional gain, Pa ... pressure, Pe ... deviation, Pt ... target pressure, R ... refrigerant, Rg ... Gas piping, Rl ... Liquid piping, S ... Ice slurry

Claims (10)

  1.  液冷媒との熱交換により被冷却媒体を冷却する冷却機を有する冷却システムの運転制御方法であって、
     前記液冷媒に高圧ガス状のガス冷媒を供給することにより、前記冷却機内での前記液冷媒の温度を制御することを特徴とする運転制御方法。
    It is an operation control method of a cooling system having a cooler that cools a medium to be cooled by heat exchange with a liquid refrigerant.
    An operation control method comprising controlling the temperature of the liquid refrigerant in the cooler by supplying a high-pressure gaseous gas refrigerant to the liquid refrigerant.
  2.  冷媒を圧縮機で圧縮することにより前記ガス冷媒を生成し、
     前記ガス冷媒を凝縮器で凝縮することにより前記液冷媒を生成する請求項1に記載の運転制御方法。
    The gas refrigerant is generated by compressing the refrigerant with a compressor.
    The operation control method according to claim 1, wherein the liquid refrigerant is generated by condensing the gas refrigerant with a condenser.
  3.  前記冷却機内の前記液冷媒の圧力に基づいて前記液冷媒に供給する前記ガス冷媒の量をフィードバック制御する請求項1または2に記載の運転制御方法。 The operation control method according to claim 1 or 2, wherein the amount of the gas refrigerant supplied to the liquid refrigerant is feedback-controlled based on the pressure of the liquid refrigerant in the cooler.
  4.  前記液冷媒に供給する前記ガス冷媒の量をPID制御により制御する請求項3に記載の運転制御方法。 The operation control method according to claim 3, wherein the amount of the gas refrigerant supplied to the liquid refrigerant is controlled by PID control.
  5.  前記液冷媒の温度をTa(℃)とし、前記被冷却媒体の凝固点をTf(℃)としたとき、
     Tf-10℃≦Ta≦Tfの関係を満足するように前記液冷媒の温度を制御する請求項1から4のいずれか1項に記載の運転制御方法。
    When the temperature of the liquid refrigerant is Ta (° C) and the freezing point of the medium to be cooled is Tf (° C),
    The operation control method according to any one of claims 1 to 4, wherein the temperature of the liquid refrigerant is controlled so as to satisfy the relationship of Tf-10 ° C.≤Ta≤Tf.
  6.  Tf-10℃≦Ta≦Tfの関係を満足するように前記液冷媒の温度を制御する徐冷モードと、前記徐冷モードよりもTaが低くなるように前記液冷媒の温度を制御する急冷モードと、を有し、
     前記被冷却媒体の温度が閾値以上のときは前記急冷モードで前記液冷媒の温度を制御し、
     前記被冷却媒体の温度が前記閾値未満のときは前記徐冷モードで前記液冷媒の温度を制御する請求項5に記載の運転制御方法。
    A slow cooling mode in which the temperature of the liquid refrigerant is controlled so as to satisfy the relationship of Tf-10 ° C. ≤ Ta ≤ Tf, and a quenching mode in which the temperature of the liquid refrigerant is controlled so that Ta is lower than the slow cooling mode. And have
    When the temperature of the medium to be cooled is equal to or higher than the threshold value, the temperature of the liquid refrigerant is controlled in the quenching mode.
    The operation control method according to claim 5, wherein when the temperature of the medium to be cooled is less than the threshold value, the temperature of the liquid refrigerant is controlled in the slow cooling mode.
  7.  前記冷却機内の前記液冷媒の量が制御目標となるように、前記冷却機内に供給される前記液冷媒の量を制御する請求項1から6のいずれか1項に記載の運転制御方法。 The operation control method according to any one of claims 1 to 6, wherein the amount of the liquid refrigerant supplied into the cooler is controlled so that the amount of the liquid refrigerant in the cooler becomes a control target.
  8.  前記冷却機内の前記液冷媒の量に基づいて前記冷却機に供給する前記液冷媒の量をフィードバック制御する請求項7に記載の運転制御方法。 The operation control method according to claim 7, wherein the amount of the liquid refrigerant supplied to the cooler is feedback-controlled based on the amount of the liquid refrigerant in the cooler.
  9.  前記冷却機に供給する前記液冷媒の量をPID制御により制御する請求項8に記載の運転制御方法。 The operation control method according to claim 8, wherein the amount of the liquid refrigerant supplied to the cooler is controlled by PID control.
  10.  冷媒を圧縮して高圧ガス状のガス冷媒とする圧縮機と、
     前記ガス冷媒を凝縮して高圧液状の液冷媒とする凝縮器と、
     前記液冷媒との熱交換により被冷却媒体を冷却する冷却機と、
     前記液冷媒に前記ガス冷媒を供給することにより、前記冷却機内における前記液冷媒の温度を制御する制御装置と、を有することを特徴とする冷却システム。
    A compressor that compresses the refrigerant into a high-pressure gaseous gas refrigerant,
    A condenser that condenses the gas refrigerant into a high-pressure liquid liquid refrigerant,
    A cooler that cools the medium to be cooled by heat exchange with the liquid refrigerant, and
    A cooling system comprising: a control device for controlling the temperature of the liquid refrigerant in the cooler by supplying the gas refrigerant to the liquid refrigerant.
PCT/JP2021/046894 2020-12-25 2021-12-19 Operation control method and cooling system WO2022138520A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-216144 2020-12-25
JP2020216144A JP2022101826A (en) 2020-12-25 2020-12-25 Operation control method and cooling system

Publications (1)

Publication Number Publication Date
WO2022138520A1 true WO2022138520A1 (en) 2022-06-30

Family

ID=82157863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046894 WO2022138520A1 (en) 2020-12-25 2021-12-19 Operation control method and cooling system

Country Status (2)

Country Link
JP (1) JP2022101826A (en)
WO (1) WO2022138520A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04251176A (en) * 1990-12-29 1992-09-07 Daikin Ind Ltd Ice making device
JP2000055495A (en) * 1998-08-05 2000-02-25 Sanyo Electric Co Ltd Air conditioner provided with ice heat storage tank
JP2001033109A (en) * 1999-07-21 2001-02-09 Daikin Ind Ltd Refrigerator
JP2004148966A (en) * 2002-10-30 2004-05-27 Denso Corp Refrigeration cycle apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04251176A (en) * 1990-12-29 1992-09-07 Daikin Ind Ltd Ice making device
JP2000055495A (en) * 1998-08-05 2000-02-25 Sanyo Electric Co Ltd Air conditioner provided with ice heat storage tank
JP2001033109A (en) * 1999-07-21 2001-02-09 Daikin Ind Ltd Refrigerator
JP2004148966A (en) * 2002-10-30 2004-05-27 Denso Corp Refrigeration cycle apparatus

Also Published As

Publication number Publication date
JP2022101826A (en) 2022-07-07

Similar Documents

Publication Publication Date Title
JP4289427B2 (en) Refrigeration equipment
AU2006232550B2 (en) Refrigeration system and method for beverage dispenser
JP3864989B1 (en) Refrigeration equipment
JP5304942B2 (en) Container refrigeration equipment
JP6540872B1 (en) Ice making system
WO2019138779A1 (en) Ice making system
JP6627959B1 (en) Ice making system and ice making method
US20040187514A1 (en) Refrigeration system and method for beverage dispenser
WO2022138520A1 (en) Operation control method and cooling system
JP6199363B2 (en) Ice making equipment
CN111602015B (en) Ice making system and method for controlling evaporating temperature of same
JP6536061B2 (en) Cooling system
KR101573383B1 (en) Control method of ice maker
CN110906627A (en) Instant freezing chamber control method and refrigerator
US20220057130A1 (en) Method for controlling operation of ice-making machine
JP3888814B2 (en) Ice making cooling system
JP2005164070A (en) Refrigerator
CN110940131A (en) Instant freezing chamber control method and refrigerator
JP2005257247A (en) Refrigerator
CN110906619A (en) Instant freezing chamber control method and refrigerator
JP2024078818A (en) Cooling device and cooling method
CN110953798A (en) Instant freezing chamber control method and refrigerator
CN110701860A (en) Instant freezing chamber control method and refrigerator
CN110953793A (en) Instant freezing chamber control method and refrigerator
JP2005140483A (en) Refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910665

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910665

Country of ref document: EP

Kind code of ref document: A1