JP2005257247A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2005257247A
JP2005257247A JP2004073556A JP2004073556A JP2005257247A JP 2005257247 A JP2005257247 A JP 2005257247A JP 2004073556 A JP2004073556 A JP 2004073556A JP 2004073556 A JP2004073556 A JP 2004073556A JP 2005257247 A JP2005257247 A JP 2005257247A
Authority
JP
Japan
Prior art keywords
cooler
cooling
refrigeration
refrigerant
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004073556A
Other languages
Japanese (ja)
Inventor
Akihiro Noguchi
明裕 野口
Noriaki Sakamoto
則秋 阪本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Consumer Marketing Corp
Toshiba Lifestyle Products and Services Corp
Original Assignee
Toshiba Corp
Toshiba Consumer Marketing Corp
Toshiba Home Appliances Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Consumer Marketing Corp, Toshiba Home Appliances Corp filed Critical Toshiba Corp
Priority to JP2004073556A priority Critical patent/JP2005257247A/en
Publication of JP2005257247A publication Critical patent/JP2005257247A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2511Evaporator distribution valves

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerator capable of reducing power consumption and storing foods in a long term by using a heat pipe in combination for cooling of a cooling chamber, thereby improving the cycle efficiency, further minimizing the load of a cooling chamber cooler to raise the evaporation temperature, and reducing the frost formation quantity to the cooler to keep a constant-temperature and high-humidity atmosphere. <P>SOLUTION: A refrigeration cycle is formed by a two-stage compressor 13, a freezing cooler 9 connected to a refrigerant passage switching valve provided on the outlet side of a condenser through a decompression device, and a decompression device and the cooling cooler 11 provided in parallel to the circuit of the freezing cooler. A suction pipe of the cooling cooler is introduced into the intermediate pressure part of a compressor case, so that the refrigerant is sucked to the high stage-side compression part in combination with the refrigerant sucked from the freezing cooler to the low stage-side compression part, compressed and discharged. A heat pipe cooling plate 15 cooled by the cooling force of the cooling cooler 11 is arranged in a storage space 2 cooled by forcedly circulating the cold air from the cooling cooler by a fan 12. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、二段圧縮式の冷凍サイクルにより冷凍および冷蔵用冷却器への冷媒流入量を制御するととともに、冷蔵室を冷却器とヒートパイプとを併用して冷却するようにした
冷蔵庫に関する。
The present invention relates to a refrigerator that controls the amount of refrigerant flowing into a refrigerator for refrigeration and refrigeration by a two-stage compression refrigeration cycle, and cools a refrigerator compartment by using a cooler and a heat pipe together.

従来、家庭用として普及している冷蔵庫は、−18〜−20℃程度に冷却される冷凍空間と、+1〜+5℃程度に保持する冷蔵や野菜保存空間を有するものが一般的であり、冷凍および冷蔵空間のそれぞれに冷却器を備えたタイプにおいては、冷媒の流路を交互に切り替えることにより前記各冷却空間に配置した冷却器への冷媒流を分配制御し、冷却空間全体の温度や温度差などの負荷に応じて圧縮機を制御している。   Conventionally, refrigerators that are widely used for home use generally have a freezing space that is cooled to about −18 to −20 ° C. and a refrigerator or vegetable storage space that is maintained at about +1 to + 5 ° C. In the type in which each of the refrigeration spaces is equipped with a cooler, the refrigerant flow to the coolers disposed in each cooling space is distributed and controlled by alternately switching the refrigerant flow paths, so that the temperature and temperature of the entire cooling space are controlled. The compressor is controlled according to the load such as the difference.

一方、現在、市場に供されている冷凍冷蔵庫に用いられている冷媒圧縮機は、圧縮機ケース内に単一の圧縮部が存在する、いわゆる一段圧縮方式であるが、近年では、図6に示すように、密閉容器内にモーターと低段圧縮要素(43a)と高段圧縮要素(43b)とを備えた二段圧縮機(43)を設け、高段圧縮要素(43a)からの吐出管(55)に接続した凝縮器(49)の出口側に中間圧用膨張装置(52)を接続し、低段側圧縮要素(43a)の吐出側ならびに高段側圧縮要素(43b)の吸入側と中間圧用吸入パイプ(56)とを連通させて、この中間圧用吸入パイプ(56)と前記中間圧用膨張装置(52)との間に中間圧用蒸発器(41)を接続するとともに、凝縮器(49)の出口側と接続した低圧用膨張装置(51)と二段圧縮機の低段圧縮要素の吸入側(54)との間に低圧用蒸発器(49)を接続してなり、低段圧縮要素(43a)の吐出側と高段圧縮要素(43b)の吸入側とを密閉容器(43c)内に連通させることで、庫内の温度制御の精度を高めるとともに庫内各部の温度の均一化や高効率化、低消費電力化をはかるようにした二段圧縮冷凍冷蔵装置の思想が公開されている(例えば、特許文献1参照)。
特開2001−74325公報
On the other hand, the refrigerant compressor currently used in the refrigerator-freezer on the market is a so-called single-stage compression system in which a single compression unit exists in the compressor case. As shown, a two-stage compressor (43) having a motor, a low-stage compression element (43a), and a high-stage compression element (43b) is provided in a sealed container, and a discharge pipe from the high-stage compression element (43a). An intermediate pressure expansion device (52) is connected to the outlet side of the condenser (49) connected to (55), and the discharge side of the low-stage compression element (43a) and the suction side of the high-stage compression element (43b) An intermediate pressure suction pipe (56) is connected, and an intermediate pressure evaporator (41) is connected between the intermediate pressure suction pipe (56) and the intermediate pressure expansion device (52), and a condenser (49 ) Between the low pressure expansion device (51) connected to the outlet side and the suction side (54) of the low-stage compression element of the two-stage compressor The low-pressure evaporator (49) is connected to the outlet, and the discharge side of the low-stage compression element (43a) and the suction side of the high-stage compression element (43b) are communicated with each other in the sealed container (43c). The idea of a two-stage compression refrigeration system that increases the accuracy of temperature control in the interior and makes the temperature of each part in the cabinet uniform, high efficiency, and low power consumption is disclosed (for example, Patent Document 1). reference).
JP 2001-74325 A

上記特許文献1に記載の冷凍サイクルでは、冷蔵用冷却器である中間圧用蒸発器(41)の蒸発温度を冷凍用冷却器である低圧用蒸発器(49)より高くすることによってサイクル効率を向上が可能となる。しかしながら、この従来技術は貯蔵室内の冷却方式には触れていないため、当然冷蔵空間の雰囲気を高湿度に保持する思想は示されていないが、一般的な冷蔵空間の冷却は、冷却器(41)(49)で生成した冷気をファンによって吹き出し貯蔵空間に循環させて冷却する、いわゆるファンクール冷却方式であることから、上記特許文献1記載の構成によっても、冷気との熱交換によって特に冷蔵室内の貯蔵食品は乾燥が進むことになり、依然として長期保存には満足できる状態にはなかった。   In the refrigeration cycle described in Patent Document 1, cycle efficiency is improved by making the evaporation temperature of the intermediate pressure evaporator (41), which is a refrigeration cooler, higher than the low pressure evaporator (49), which is a refrigeration cooler. Is possible. However, since this prior art does not touch the cooling method in the storage chamber, naturally, the idea of maintaining the atmosphere of the refrigerated space at high humidity is not shown, but cooling of a general refrigerated space is performed by a cooler (41 ) (49) is a so-called fan cool cooling system in which the cool air generated in (49) is circulated and cooled in a blowing storage space by means of a fan. The stored foods of this product will continue to dry and are still not satisfactory for long-term storage.

本発明は上記点を考慮してなされたものであり、冷蔵室の冷却にヒートパイプを併用することにより、サイクル効率を向上させるとともに、冷蔵室冷却器の負荷をさらに小さくして蒸発温度を高くし、冷却器への着霜量を減らして室内を恒温高湿度の雰囲気に保ち、消費電力の低減と食品の長期保存を可能にした冷蔵庫を提供することを目的とする。   The present invention has been made in consideration of the above points, and by using a heat pipe in combination with the cooling of the refrigerating room, the cycle efficiency is improved and the load of the refrigerating room cooler is further reduced to increase the evaporation temperature. The object of the present invention is to provide a refrigerator that reduces the amount of frost on the cooler and keeps the room in a constant temperature and high humidity atmosphere, thereby reducing power consumption and allowing food to be stored for a long time.

上記課題を解決するために本発明の冷蔵庫は、圧縮要素が低段側圧縮部と高段側圧縮部により構成された圧縮機と、この圧縮機から吐出される冷媒を受ける凝縮器の出口側に設けられた冷媒流路切替弁と、この切替弁から減圧装置を介して接続された冷凍用冷却器と、前記冷凍用冷却器の回路と並列に設けた減圧装置と冷蔵用冷却器とから冷凍サイクルを形成し、前記冷蔵用冷却器の吸込み管を前記圧縮機ケースの中間圧部内に導入し、冷凍用冷却器から低段側圧縮部に吸い込まれて圧縮吐出した冷媒と合流させて高段側圧縮部に吸い込み圧縮して吐出させるとともに、前記冷蔵用冷却器で生成される冷気をファンで強制循環させることによって冷却される貯蔵空間に冷蔵用冷却器の冷却力で冷却されるヒートパイプからなる冷却体を配設したことを特徴とするものである。   In order to solve the above problems, a refrigerator according to the present invention includes a compressor in which a compression element is composed of a low-stage compression section and a high-stage compression section, and an outlet side of a condenser that receives refrigerant discharged from the compressor. A refrigerant flow path switching valve provided in the refrigeration unit, a refrigeration cooler connected from the switching valve via a pressure reduction device, a pressure reduction device provided in parallel with the circuit of the refrigeration cooler, and a refrigeration cooler A refrigeration cycle is formed, the suction pipe of the refrigeration cooler is introduced into the intermediate pressure part of the compressor case, and the refrigerant is sucked into the lower stage compression part from the refrigeration cooler and merged with the refrigerant compressed and discharged. A heat pipe that is sucked into the stage-side compression section, compressed and discharged, and cooled by the cooling power of the refrigeration cooler to the storage space cooled by forcibly circulating the cold air generated by the refrigeration cooler with a fan A cooling body consisting of It is characterized in.

この構成によって、冷凍用冷却器と冷蔵用冷却器の双方を各貯蔵空間の冷却に応じた蒸発温度とすることができ、冷凍サイクルの効率向上をはかることができるとともに、ヒートパイプによる直接冷却によって冷蔵室冷却器の負荷をさらに小さくして消費電力を少なくすることができる。また、冷媒の蒸発温度を高くすることで冷蔵用冷却器への着霜量が減少し、冷蔵室内を高湿度に保ち食品鮮度を長期に亙って保持することができる。   With this configuration, both the refrigeration cooler and the refrigeration cooler can be set to an evaporating temperature corresponding to the cooling of each storage space, and the efficiency of the refrigeration cycle can be improved. The load on the refrigerator cooler can be further reduced to reduce power consumption. Further, by increasing the evaporation temperature of the refrigerant, the amount of frost on the refrigeration cooler is reduced, and the freshness of the food can be maintained for a long time while keeping the refrigeration room at a high humidity.

以下、図面に基づき本発明の一実施形態について説明する。図1は、冷蔵庫の縦断面図であり、外箱(2)と内箱(3)との間隙に発泡断熱材(4)を充填した断熱箱体である冷蔵庫本体(1)の内部を貯蔵空間として最上部に冷蔵室(5)、その下方に野菜室(6)、最下部には冷凍室(7)をそれぞれ独立して配置し、この野菜室(6)と冷凍室(7)との間には断熱仕切壁を介して製氷室(8)と図示しない多温度切替室とを左右に併置しており、各貯蔵室の前面開口には各々専用の扉を設けている。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view of a refrigerator, and stores the inside of a refrigerator main body (1) which is a heat insulating box body in which a foam heat insulating material (4) is filled in a gap between an outer box (2) and an inner box (3). As a space, a refrigerator compartment (5) at the top, a vegetable compartment (6) below it, and a freezer compartment (7) at the bottom are arranged independently, respectively. The vegetable compartment (6) and the freezer compartment (7) An ice making chamber (8) and a multi-temperature switching chamber (not shown) are juxtaposed on both sides via a heat insulating partition wall, and a dedicated door is provided at each front opening of each storage chamber.

冷凍室(7)の後部には、冷却器室を設けて冷凍室や製氷室用の冷凍用冷却器(9)および冷却ファン(10)を配置しており、冷蔵室(5)の背面には冷蔵室と野菜室(6)とを冷却する冷蔵温度用の冷却器(11)および冷却ファン(12)を設けて、本体下部の機械室に設置した冷媒圧縮機(13)の駆動により、前記冷却器(9)(11)で冷却された冷気を冷却ファン(10)(12)の回転で各室に送風してそれぞれの貯蔵室を所定温度に冷却制御するものである。   At the rear of the freezing room (7), a cooling room is provided, and a freezing cooler (9) and a cooling fan (10) for the freezing room and ice making room are arranged, and on the back of the freezing room (5). Is equipped with a refrigeration temperature cooler (11) and a cooling fan (12) for cooling the refrigeration room and the vegetable room (6), and by driving a refrigerant compressor (13) installed in the machine room at the bottom of the main body, The cool air cooled by the coolers (9) and (11) is blown to the respective chambers by the rotation of the cooling fans (10) and (12), and the respective storage chambers are controlled to be cooled to a predetermined temperature.

(15)は、冷蔵室(5)を構成する内箱(3)内面の天井壁から背壁に亙って設置したヒートパイプからなる冷却板であって、冷蔵室内を壁面からの熱伝導で直接冷却するものであり、冷蔵室内に収納された貯蔵食品は、前記冷却器(11)と冷却ファン(12)で強制循環される冷気と併せ、このヒートパイプ冷却板(15)によって冷却される。   (15) is a cooling plate composed of heat pipes installed from the ceiling wall to the back wall of the inner box (3) inner surface constituting the refrigerating room (5), and heat conduction from the wall surface to the refrigerating room. The food stored in the refrigerator compartment is cooled directly by the heat pipe cooling plate (15) together with the cold air forcedly circulated by the cooler (11) and the cooling fan (12). .

このヒートパイプ冷却板(15)は、図2に示すように、両端を封止した長尺の銅パイプ内にフロン、アルコールあるいは炭化水素系冷媒などの作動流体を少量封入したヒートパイプ(16)を、熱伝導の良好な薄い金属板(17)の板面に張り付けたものであり、ヒートパイプ(16)の両端において温度差が生じると一端の低温部の熱が他端側に移動してパイプ全体を低温化させるものであり、このヒートパイプ(16)の一端を低温の冷却器(11)に接触させ、あるいはダクト(14)からの冷気吹出口(14a)に位置させることで、パイプ(16)から金属板(17)への熱伝導によってヒートパイプ冷却板(15)を低温化し、冷蔵室(3)内を直接冷却するよう作用する。   As shown in FIG. 2, this heat pipe cooling plate (15) is a heat pipe (16) in which a small amount of working fluid such as chlorofluorocarbon, alcohol or hydrocarbon refrigerant is enclosed in a long copper pipe sealed at both ends. Is attached to the surface of a thin metal plate (17) with good thermal conductivity. When a temperature difference occurs at both ends of the heat pipe (16), the heat of the low temperature part at one end moves to the other end. The temperature of the entire pipe is lowered, and one end of the heat pipe (16) is brought into contact with a low-temperature cooler (11) or placed at the cold air outlet (14a) from the duct (14). The heat pipe cooling plate (15) is cooled by heat conduction from (16) to the metal plate (17), and acts to directly cool the inside of the refrigerator compartment (3).

前記ヒートパイプ冷却板(15)は、図3に示すように、水平部と円弧状部とを連続させて上下方向に亙って蛇行状に形成させたヒートパイプ(16a)(16b)を、それぞれ上下に分離して配置した金属板(17a)(17b)の一面に張り付けてなり、前記上下のヒートパイプ(16a)(16b)は、上下の蛇行形成部の上端同士、および下端同士を接続して閉ループ状にすることで、パイプ内の作動流体を移動し易くしている。このとき、ヒートパイプ(16)は金属板(17)面への接触面を平坦とした断面半円状に形成し、金属板面(17)にロー付けなどの方法で張り付けて固定すれば、金属板面(17)との接触面積を大きくして熱伝導効率を向上させることができる。   As shown in FIG. 3, the heat pipe cooling plate (15) includes heat pipes (16a) and (16b) formed in a meandering manner in the vertical direction by continuing the horizontal portion and the arc-shaped portion. The upper and lower heat pipes (16a) and (16b) are connected to the upper and lower ends of the upper and lower meandering portions, respectively. By making it into a closed loop shape, the working fluid in the pipe is easily moved. At this time, if the heat pipe (16) is formed in a semicircular cross-section with a flat contact surface to the metal plate (17) surface, and is fixed to the metal plate surface (17) by brazing or the like, Heat contact efficiency can be improved by increasing the contact area with the metal plate surface (17).

したがって、例えば、ヒートパイプ冷却板(15)の背面上部を冷蔵用冷却器(11)に当接させておけば、熱移動によりヒートパイプ(16)の作動流体は矢印の方向に循環し、ヒートパイプ冷却板(15)全体を前記冷却器(11)とほぼ同等の温度レベルまで冷却させるものである。   Therefore, for example, if the upper back of the heat pipe cooling plate (15) is in contact with the refrigeration cooler (11), the working fluid in the heat pipe (16) circulates in the direction of the arrow by heat transfer, The entire pipe cooling plate (15) is cooled to a temperature level substantially equal to that of the cooler (11).

なお、ヒートパイプ冷却板(15)は、前記実施例では、薄金属板(17)面にヒートパイプ(16)を張り付ける構造のものについて説明したが、これに限らず、冷媒通路を凹成形したアルミニウムなどの良熱伝導板体を重合して冷却板を形成するいわゆるロールボンド方式のものでもよい。   In the above embodiment, the heat pipe cooling plate (15) is described as having a structure in which the heat pipe (16) is attached to the surface of the thin metal plate (17). A so-called roll bond type in which a cooling plate is formed by polymerizing a good heat conductive plate such as aluminum may be used.

また、天井部のように水平状態にあるヒートパイプ(16)は、適当な傾斜を設けて配設することで内部の作動流体を移動し易くし、冷却性能を向上させることができるものであり、さらに、金属板(17)などの熱伝導シートは、野菜室(6)の両側壁面にまで延設したり、図1に示すように、冷蔵室(5)と野菜室(6)との間の仕切り板(18)としてもよく、このように配設すれば、直接的な熱伝導によって、湿度を保持した状態で野菜室(6)内を有効に冷却することができる。   In addition, the heat pipe (16) in a horizontal state such as a ceiling portion can be arranged with an appropriate inclination so that the working fluid inside can be easily moved and the cooling performance can be improved. Furthermore, the heat conductive sheet such as the metal plate (17) is extended to both side walls of the vegetable compartment (6), or, as shown in FIG. 1, between the refrigerator compartment (5) and the vegetable compartment (6). It is good also as a partition plate (18), and if it arrange | positions in this way, the inside of a vegetable compartment (6) can be cooled effectively in the state holding humidity by direct heat conduction.

そしてまた、ヒートパイプ冷却板(15)を仕切り板(18)として利用した際に、一方の貯蔵室の設定温度が高い場合は、一方の貯蔵室側の面に断熱材(32)を設けてヒートパイプ(16)が熱影響を受けないようにすればよい。   In addition, when the heat pipe cooling plate (15) is used as the partition plate (18) and the set temperature of one storage chamber is high, a heat insulating material (32) is provided on the surface of the one storage chamber. The heat pipe (16) should not be affected by heat.

図4は、上記本発明の冷蔵庫における冷凍サイクルを示す概略図であり、前記圧縮機(13)、凝縮器(19)、冷媒流路の切替装置である三方弁(20)、および並列に接続した前記冷凍用冷却器(9)と、冷蔵用冷却器(11)とを環状に連結して構成しており、前記凝縮器(19)で液化した冷媒は、三方弁(20)を介してそれぞれ減圧装置である冷凍用毛細管(21)および冷蔵用毛細管(22)を経由して冷凍用冷却器(9)あるいは冷蔵用冷却器(11)に供給され、蒸発することで各冷却器を低温化し、冷気ファン(10)(12)による送風循環によって各貯蔵室内を所定の温度に冷却するものである。   FIG. 4 is a schematic diagram showing a refrigeration cycle in the refrigerator of the present invention, wherein the compressor (13), the condenser (19), a three-way valve (20) which is a refrigerant flow switching device, and connected in parallel The refrigeration cooler (9) and the refrigeration cooler (11) are connected in an annular shape, and the refrigerant liquefied by the condenser (19) is passed through the three-way valve (20). Refrigeration cooler (9) or refrigeration cooler (11) is supplied via freezing capillaries (21) and refrigeration capillaries (22), respectively. And each storage chamber is cooled to a predetermined temperature by air circulation by the cold air fans (10) and (12).

蒸発気化した冷媒は、アキュムレータ(23)を介して再び圧縮機(13)に戻るよう構成されており、この冷凍サイクルの冷媒としてはオゾン層の破壊がなく地球温暖化係数も低いイソブタンなどの炭化水素系の冷媒を封入している。   The evaporated refrigerant is returned to the compressor (13) again through the accumulator (23), and the refrigerant of this refrigeration cycle is carbonized such as isobutane with no destruction of the ozone layer and low global warming potential. Encloses a hydrogen-based refrigerant.

冷媒圧縮機(13)は、圧縮要素が低段側圧縮部(13a)と高段側圧縮部(13b)により構成されたレシプロ式の2段圧縮タイプであり、低段側圧縮部(13a)の吸込み口には、前記冷凍用冷却器(9)からアキュムレータ(23)を介して連結した吸込み管(24)の端部を接続しており、圧縮部(13a)で圧縮した冷媒ガスを吐出する吐出口を密閉ケース(13c)内に開口させ、高段側圧縮部(13b)の吐出口は、凝縮器(19)への吐出管(25)に接続している。   The refrigerant compressor (13) is a reciprocating two-stage compression type in which a compression element is composed of a low-stage compression section (13a) and a high-stage compression section (13b), and the low-stage compression section (13a). The suction port is connected to the end of the suction pipe (24) connected via the accumulator (23) from the refrigeration cooler (9), and discharges the refrigerant gas compressed by the compression part (13a). The discharge port to be opened is opened in the sealed case (13c), and the discharge port of the high-stage compression section (13b) is connected to the discharge pipe (25) to the condenser (19).

前記アキュムレータ(23)は、気液を分離し、冷凍用冷却器(9)で蒸発しきれなかった液状冷媒を貯留してガス状冷媒のみを送り出し、圧縮機(13)のシリンダー内に液冷媒が流入することによる支障を防止する作用をおこなうものであり、本実施例では、冷凍用冷却器(9)の後段にのみ設けている。   The accumulator (23) separates gas and liquid, stores the liquid refrigerant that could not be evaporated by the refrigeration cooler (9), sends out only the gaseous refrigerant, and puts the liquid refrigerant into the cylinder of the compressor (13). In this embodiment, it is provided only at the rear stage of the refrigeration cooler (9).

前記冷蔵用冷却器(11)からの吸込み管(26)は密閉ケース(13c)内の中圧段となる空間部に導入するよう接続している。したがって、冷蔵用冷却器(11)からの吸込み冷媒は直接圧縮機のシリンダー内に流入しないため、冷蔵用冷却器(11)の後段にはアキュムレータを設ける必要は特になく、設置する場合は小形のものでよい。そして、冷蔵用冷却器側の吸込み管(26)から吸い込まれた冷媒ガスは、前記低段側圧縮部(13a)の吐出口から吐出される冷媒ガスとともに連通する高段側圧縮部(13b)の吸込み口に吸い込まれ圧縮されるように構成している。   The suction pipe (26) from the refrigeration cooler (11) is connected so as to be introduced into a space portion serving as an intermediate pressure stage in the sealed case (13c). Therefore, since the refrigerant sucked from the refrigeration cooler (11) does not flow directly into the cylinder of the compressor, it is not particularly necessary to provide an accumulator after the refrigeration cooler (11). Things can be used. Then, the refrigerant gas sucked from the suction pipe (26) on the refrigeration cooler side communicates with the refrigerant gas discharged from the discharge port of the low-stage compression section (13a), and the high-stage compression section (13b) It is configured to be sucked into and compressed by the suction port.

三方弁(20)は、圧縮機(13)からの吐出ガスを受ける凝縮器(19)の出口側に設けられて冷凍用冷却器(9)と冷蔵用冷却器(11)側への冷媒流路切り替えとともに流量を制御するものであり、図5に示すように、弁ケース(28)内に冷凍用冷却器(9)側への弁口A(29a)と冷蔵側冷却器(11)への弁口B(29b)とを形成した弁座(29)を設け、弁座(29)に対して弁体(30)をその上部に配置した三方弁である。   The three-way valve (20) is provided on the outlet side of the condenser (19) that receives the discharge gas from the compressor (13), and the refrigerant flows to the refrigeration cooler (9) and the refrigeration cooler (11) side. The flow rate is controlled together with the path switching, and as shown in FIG. 5, in the valve case (28), the valve port A (29a) to the refrigeration cooler (9) side and the refrigeration side cooler (11) This is a three-way valve provided with a valve seat (29) having a valve opening B (29b), and a valve body (30) disposed on the valve seat (29).

弁体(30)は、前記弁口A(29a)およびB(29b)と回転軌跡上でそれぞれ対応するように所定長さに亙って円弧状に延び、回転軸(30c)の中心から回転移動半径を相違させた2箇所の断面V字状の凹溝A(30a)および凹溝B(30b)を所定の端縁形状に成形した厚肉段部(30d)の下面に形成しており、弁座(29)の上面と弁体(30)を密接重合しつつ、上部に設けた図示しないステッピングモータによる0〜85のパルスステップで回転駆動するものである。   The valve body (30) extends in an arc shape over a predetermined length so as to correspond to the valve ports A (29a) and B (29b) on the rotation locus, and rotates from the center of the rotation shaft (30c). The groove A (30a) and the groove B (30b) having two V-shaped cross sections with different moving radii are formed on the lower surface of the thick step (30d) formed into a predetermined edge shape. The upper surface of the valve seat (29) and the valve body (30) are intimately polymerized, and are rotationally driven by 0 to 85 pulse steps by a stepping motor (not shown) provided on the upper portion.

この三方弁(20)は、冷凍サイクル制御信号によるパルス信号で弁体(30)を回転させ、所定のパルス位置で前記弁体の回転半径外側の凹溝A(30a)と弁口A(29a)とが上下に重合し連通した場合には、流入弁口(31)から弁ケース(28)内に流入した冷媒が、凹溝A(30a)の前記厚肉段部(30d)の開放端縁からV字状の凹溝A(30a)内に進入し、凹溝Aと連通する弁口A(29a)から流出して冷凍側毛細管(21)に導入され、冷凍用冷却器(9)で蒸発気化するものである。   The three-way valve (20) rotates the valve body (30) with a pulse signal based on a refrigeration cycle control signal, and the groove A (30a) and the valve port A (29a) outside the rotation radius of the valve body at a predetermined pulse position. ) Are superposed vertically and communicated with each other, the refrigerant flowing into the valve case (28) from the inflow valve port (31) is opened at the open end of the thick-walled step (30d) in the groove A (30a). It enters into the V-shaped groove A (30a) from the edge, flows out from the valve port A (29a) communicating with the groove A, and is introduced into the refrigeration side capillary tube (21). It will evaporate.

一方、同様に回転半径内側の凹溝B(30b)と弁口B(29b)とが連通した場合には、凹溝B(30b)に流入した冷媒は連通する弁口B(29b)から冷蔵側毛細管(22)に流入して冷蔵用冷却器(11)で蒸発する。   On the other hand, when the concave groove B (30b) and the valve port B (29b) on the inner side of the rotation radius communicate with each other, the refrigerant flowing into the concave groove B (30b) is refrigerated from the valve port B (29b) that communicates. It flows into the side capillary (22) and evaporates in the refrigeration cooler (11).

また、冷蔵側である凹溝B(30b)は、V字状溝が回転先端から厚肉段部(30d)の開放端に向かうにしたがってその断面積が随時拡大するように形成されており、弁体(30)の回転によって、最小から最大の流通開口面積となって弁口B(29b)に連通するようにしており、流路の切り替えや流量調整はきめ細かく制御できることから、パルスによる回転制御によって冷媒流量を効率よくリニアに変更することができる。   Further, the concave groove B (30b) on the refrigeration side is formed such that the cross-sectional area thereof is enlarged as needed as the V-shaped groove moves from the rotating tip to the open end of the thick-walled step (30d). By rotating the valve body (30), the minimum and maximum flow opening area is communicated with the valve port B (29b), and the flow control and flow rate adjustment can be finely controlled. Can efficiently change the refrigerant flow rate linearly.

三方弁(20)における弁の開放制御は、冷凍用冷却器(9)と冷蔵側冷却器(11)への弁開口度を双方とも全開、あるいは全閉、および冷凍側弁開口を絞って冷蔵側を全開したり、あるいは冷蔵側の弁開口を絞って冷凍側を全開するなど種々のパターンを選択できるが、本実施例では、冷凍用冷却器(9)と冷蔵用冷却器(11)とを並列に接続しており、冷却制御は冷凍冷蔵側の同時冷却と冷凍側のみ冷却の2通りとしている。   The opening control of the three-way valve (20) is controlled by fully opening the valve opening to the refrigeration cooler (9) and the refrigeration side cooler (11), or by closing the refrigeration side valve opening. Various patterns can be selected, such as fully opening the side or restricting the valve opening on the refrigeration side to fully open the refrigeration side. In this embodiment, the refrigeration cooler (9) and the refrigeration cooler (11) Are connected in parallel, and there are two types of cooling control: simultaneous cooling on the freezer side and cooling only on the freezer side.

そして、冷凍側弁口A(29a)から流出した冷媒は、冷凍室(7)における冷却温度に即した蒸発温度になるよう設定した毛細管(21)を通過し減圧されて冷凍用冷却器(9)において−30℃程度で蒸発し、冷蔵用弁口B(29b)からも同様に、冷蔵室(5)での冷却温度に近似する−1℃程度の蒸発温度になるよう設定した冷蔵用の毛細管(22)に流入し、冷蔵用冷却器(11)に冷媒が送られ蒸発する。   Then, the refrigerant flowing out from the freezing side valve port A (29a) passes through the capillary tube (21) set so as to have an evaporation temperature corresponding to the cooling temperature in the freezing chamber (7), is reduced in pressure, and is cooled in the freezing cooler (9 ) For evaporating at about −30 ° C., and similarly for the refrigerating valve port B (29b), the evaporating temperature is set to be about −1 ° C. which is similar to the cooling temperature in the refrigerating chamber (5). The refrigerant flows into the capillary tube (22) and is sent to the refrigeration cooler (11) to evaporate.

上記の冷媒流制御によって、冷蔵用冷却器(11)の蒸発温度を冷凍側と温度差をつけて高くすることができるとともに、通常運転時における冷蔵空間は、冷蔵室(5)を形成する内箱(3)の天井面から背壁面に亙って配設したヒートパイプ冷却板(15)が広範囲に亙って配設されていることから、冷蔵用冷却器(11)による背面上部の吹出口(14a)からの冷気による冷却と併せて、内箱(3)の天井面と背面を冷却面として冷却作用をおこなうとともに、前述のごとく、冷却運転はほぼ連続的におこなわれるため、−1℃程度の比較的高い冷却温度でもヒートパイプ冷却板(15)による直接的な冷却によって、冷蔵室(5)内をプラス1〜2℃に冷却することができる。   With the refrigerant flow control described above, the evaporation temperature of the refrigeration cooler (11) can be increased with a temperature difference from the freezing side, and the refrigeration space during normal operation forms the refrigeration chamber (5). Since the heat pipe cooling plate (15) arranged from the ceiling surface to the back wall surface of the box (3) is arranged over a wide range, the cooling of the refrigeration cooler (11) In addition to cooling by the cold air from the outlet (14a), the cooling operation is performed with the ceiling surface and the back surface of the inner box (3) as the cooling surfaces, and the cooling operation is performed almost continuously as described above. Even in a relatively high cooling temperature of about ° C., the inside of the refrigerator compartment (5) can be cooled to plus or minus 1 ° C. by direct cooling by the heat pipe cooling plate (15).

このとき、ヒートパイプ冷却板(15)と室内空気との温度差は2度程度ときわめて小さいものであることから、冷却板面(17)は露点温度となることがなく、結露の発生を抑制するとともに、室内空気の乾燥を防止するため、室内を90%以上の高湿度に保つことができる。   At this time, the temperature difference between the heat pipe cooling plate (15) and room air is as small as 2 degrees, so the cooling plate surface (17) does not reach the dew point temperature and suppresses the occurrence of condensation. In addition, in order to prevent the indoor air from being dried, the room can be kept at a high humidity of 90% or more.

なお、高温多湿時における冷蔵室扉の開扉時などヒートパイプ冷却板(15)面に結露が発生する可能性がある場合は、天井部におけるヒートパイプ冷却板(15)を傾斜させて露ガイドとするとともにその下方部に露受け部材を配設するようにすれば、室内に落水させることなく露水を処理することができる。   If there is a possibility of condensation on the surface of the heat pipe cooling plate (15), such as when opening the refrigerator compartment door during high temperature and humidity, tilt the heat pipe cooling plate (15) on the ceiling to guide the dew. In addition, if a dew receiving member is disposed below the dew receiving member, the dew water can be treated without falling into the room.

上記冷却作用により、上部に設けた冷蔵用ファン(12)はトータル的に冷却力を補うとともに、その回転数を通常の冷蔵室の冷却時より小さくして送風量を少なくすることができるものであり、ダクト(14)を介して背面から冷蔵室(5)や低温室に吹き出すことで省電力に貢献するとともに、低い回転数によって送風量が少ないため、食品に強い冷気が直接当たらないので、さらに乾燥することを防ぎ、冷蔵室(5)内の空気を攪拌することで室内の温度差をなくし、冷却温度や湿度変動の少ない恒温高湿の雰囲気を達成して新鮮な状態での長期保存を可能としている。   With the above cooling action, the refrigeration fan (12) provided in the upper part can supplement the cooling power in total and reduce the rotational speed of the refrigeration fan (12) as compared with the cooling time of the normal refrigeration room to reduce the amount of air blown. Yes, it contributes to power saving by blowing out from the back to the refrigerating room (5) and the low temperature room through the duct (14), and since the air volume is low due to the low rotation speed, strong cold air does not directly hit the food. Furthermore, drying is prevented, the air in the refrigerator compartment (5) is agitated, the temperature difference in the room is eliminated, a constant temperature and high humidity atmosphere with little cooling temperature and humidity fluctuation is achieved, and long-term storage in a fresh state Is possible.

また、前記冷蔵用冷却器(11)は、冷蔵室(5)背面に配置したことにより、冷却器から被冷却空間までの距離を短くして冷蔵室(5)に導入するための風路損失をなくすことができるとともに、前記のごとく、天井面や側壁に設けた冷却板(15)からの直冷式による冷気の自然流下と相俟って、冷却板(15)などの冷却体と室内空気温度との少ない温度差によって、比較的高温度の冷却器温度であっても結露することなく室内冷却に寄与させることができる。   In addition, the refrigeration cooler (11) is disposed on the back of the refrigerating room (5), so that the air path loss for introducing the refrigerating room (5) by reducing the distance from the cooler to the space to be cooled. In combination with the natural flow of cold air directly from the cooling plate (15) provided on the ceiling or side wall as described above, the cooling body such as the cooling plate (15) and the room Due to a small temperature difference from the air temperature, it is possible to contribute to indoor cooling without condensation even at a relatively high cooler temperature.

さらに、冷蔵用冷却器(11)や壁面のヒートパイプ冷却板(15)には着霜や結露が殆ど発生しないため、定期的な除霜を不要とするとともに、露付きによって貯蔵食品が濡れることによる劣化を防止することができるものであり、通常の冷却運転に際しては、冷蔵室(5)や冷凍室(7)に設けた図示しない温度センサーによる検知温度と、冷蔵および冷凍室それぞれの室内設定温度と、その時点の圧縮機(13)や冷却ファン(10)(12)の回転数などの運転状態とから補正計算をおこない、貯蔵室内の熱負荷によって圧縮機の冷凍能力を可変させることにより、冷凍サイクルを連続運転状態で、高温側である冷蔵室(5)や野菜室(6)などの冷蔵空間、および低温側である冷凍室(7)や温度切替室など冷凍空間の各々を独立して所定の設定温度に冷却保持するものである。   In addition, the refrigeration cooler (11) and the heat pipe cooling plate (15) on the wall surface hardly cause frost or condensation, so that periodic defrosting is unnecessary and stored food gets wet due to dew. In normal cooling operation, the temperature detected by a temperature sensor (not shown) provided in the refrigerator compartment (5) or the freezer compartment (7) and the indoor settings of the refrigerator compartment and the freezer compartment are provided. By making a correction calculation from the temperature and the operating conditions such as the compressor (13) and cooling fan (10) (12) at that time, and changing the compressor's refrigeration capacity according to the heat load in the storage room In the continuous operation of the refrigeration cycle, the refrigerator compartment (5) and vegetable compartment (6) on the high temperature side and the refrigerator compartment (7) and temperature switching room on the low temperature side are independent of each other. And set The temperature is kept cooled.

次に冷凍サイクルの動作について説明する。電源投入によって圧縮機(13)が駆動されると、圧縮され高温高圧となった冷媒ガスは吐出管(25)から凝縮器(19)に吐出されて三方弁(20)に至る。三方弁(20)は前記のように種々のパターン設定が可能であるが、前記電源投入の際には、冷蔵室(5)、冷凍室(7)とも未冷却の状態であるので、弁口A(29a)、B(29b)は全開状態になり、冷媒は冷凍用の毛細管(21)、冷蔵用の毛細管(22)で減圧されて冷凍用冷却器(9)および壁面冷却板(15)のパイプ(16)および冷蔵用冷却器(11)にそれぞれ流入する。   Next, the operation of the refrigeration cycle will be described. When the compressor (13) is driven by turning on the power, the refrigerant gas that has been compressed and becomes high-temperature and high-pressure is discharged from the discharge pipe (25) to the condenser (19) and reaches the three-way valve (20). The three-way valve (20) can be set in various patterns as described above, but when the power is turned on, both the refrigerator compartment (5) and the freezer compartment (7) are in an uncooled state. A (29a) and B (29b) are fully opened, and the refrigerant is decompressed by the freezing capillary (21) and the refrigeration capillary (22), and the freezing cooler (9) and the wall surface cooling plate (15) Respectively flows into the pipe (16) and the refrigeration cooler (11).

冷蔵用冷却器(11)に流入した冷媒は−1℃で蒸発し、冷却ファン(12)の回転による冷気の送風によって冷蔵室(5)内の空気温度を1℃程度に冷却する。また、冷蔵用冷却器(11)に一端を接触させたヒートパイプ冷却板(15)はその熱影響を受けて低温化し、熱伝導による冷気の降下によって直接冷蔵室(5)内を冷却する。そして、冷蔵室(5)内を循環した冷気は下方の野菜室(6)に流入し、高湿度を保持したまま冷蔵室よりやや高い温度で室内を冷却する。   The refrigerant that has flowed into the refrigeration cooler (11) evaporates at -1 ° C, and the air temperature in the refrigeration chamber (5) is cooled to about 1 ° C by blowing cool air by the rotation of the cooling fan (12). Further, the heat pipe cooling plate (15) whose one end is brought into contact with the refrigeration cooler (11) is lowered in temperature under the influence of the heat, and the inside of the refrigeration chamber (5) is directly cooled by a drop of cold air due to heat conduction. Then, the cold air circulated in the refrigerator compartment (5) flows into the lower vegetable compartment (6), and cools the room at a slightly higher temperature than the refrigerator compartment while maintaining high humidity.

三方弁(20)から分流した他方の冷媒は、冷蔵用毛細管(22)より絞り率の大きな第2の毛細管(21)を経て冷凍用冷却器(9)に至り、−30℃程度の低温度で蒸発し、冷却ファン(10)によって冷凍室(7)および製氷室(8)などの冷凍空間を−18℃以下の冷凍温度に冷却するものであるが、このとき、前記のように蒸発温度差をつけるための毛細管抵抗により、抵抗の少ない冷蔵用冷却器(11)への冷媒の片流れをなくすため、三方弁(20)は冷媒の流れやすい冷蔵側への冷媒流量をやや絞るようにして冷凍冷蔵双方への冷媒流量をバランスよく保持するように制御する。   The other refrigerant divided from the three-way valve (20) reaches the refrigeration cooler (9) through the second capillary tube (21) having a larger squeezing ratio than the refrigeration capillary tube (22), and has a low temperature of about −30 ° C. The freezing space such as the freezing room (7) and the ice making room (8) is cooled to a freezing temperature of −18 ° C. or less by the cooling fan (10). In order to eliminate the one-way flow of refrigerant to the refrigeration cooler (11) with low resistance by the capillary resistance for making a difference, the three-way valve (20) is designed to slightly restrict the refrigerant flow rate to the refrigeration side where the refrigerant flows easily. Control is performed so that the refrigerant flow rate to both the refrigerator and freezer is maintained in a well-balanced manner.

そして、冷凍用冷却器(9)からの冷媒はアキュムレータ(23)に流入し、万一冷却器中で蒸発しきれなかった液冷媒が残っている場合はアキュムレータ(23)内部に貯留され、ガス冷媒のみが吸込み管(24)から圧縮機(13)の低段側圧縮部(13a)に吸い込まれる。また、冷蔵用冷却器(11)で蒸発した冷媒は、吸込み管(26)を経由して前記圧縮機(13)の中間圧となっている密閉ケース(13c)内に導入される。   The refrigerant from the refrigeration cooler (9) flows into the accumulator (23). If liquid refrigerant that could not be evaporated in the cooler remains, it is stored in the accumulator (23) Only the refrigerant is sucked from the suction pipe (24) into the lower stage compression section (13a) of the compressor (13). Further, the refrigerant evaporated in the refrigeration cooler (11) is introduced into the sealed case (13c), which is at an intermediate pressure of the compressor (13), through the suction pipe (26).

冷凍用冷却器(9)で蒸発して圧縮機(13)の低段側圧縮部(13a)に吸い込まれ、再び圧縮されて吐出口からケース(13c)内に吐出された冷媒ガスと冷蔵用冷却器(11)から密閉ケース(13c)の中圧段部に流入した冷媒ガスとは合流して高段側圧縮部(13b)に吸い込まれ、圧縮されて吐出管(25)に吐出され、凝縮器(19)に導かれる冷凍サイクルを形成する。   Refrigerant gas and refrigeration for evaporating in the refrigeration cooler (9), sucked into the lower stage compression section (13a) of the compressor (13), compressed again and discharged into the case (13c) from the discharge port The refrigerant gas that has flowed from the cooler (11) into the intermediate pressure step portion of the sealed case (13c) merges and is sucked into the high-stage compression portion (13b), compressed, and discharged to the discharge pipe (25). Forming a refrigeration cycle led to the condenser (19).

したがって、上記構成によれば、従来のように、冷凍用冷却器の圧力に制限されて蒸発温度の差が設けられない場合に比べ、冷蔵用冷却器(11)からの吸込み管(26)を直接圧縮機ケース(13c)内の中圧段部に接続させることで、冷蔵用冷却器(11)の蒸発温度を室内冷却温度に近似させて高くすることができ、圧縮機入力を小さくすることができる。 さらに、ヒートパイプ冷却板(15)との併用によって冷蔵室(5)は周囲壁面から直接冷却されることになって冷却力が増大するとともに、冷蔵用冷却器(11)の負荷はさらに小さくなり、サイクル効率を上げることができるため、消費電力を低減することができるものである。   Therefore, according to the above configuration, the suction pipe (26) from the refrigeration cooler (11) is reduced as compared with the conventional case where the difference in evaporation temperature is not limited due to the pressure of the refrigeration cooler. By directly connecting to the intermediate pressure stage in the compressor case (13c), the evaporation temperature of the refrigeration cooler (11) can be increased to approximate the room cooling temperature, and the compressor input can be reduced. Can do. Furthermore, the combined use with the heat pipe cooling plate (15) causes the refrigerator compartment (5) to be directly cooled from the surrounding wall surface, increasing the cooling power and further reducing the load on the refrigerator for cooling (11). Since the cycle efficiency can be increased, the power consumption can be reduced.

また、ヒートパイプ冷却板(15)による直接冷却によって、冷蔵用冷却器(11)の蒸発温度をさらに上昇させて冷蔵空間との温度差を少なくすることができ、さらに、冷蔵用ファン(12)の回転数を低くして食品への強い冷気の当たりを防ぐことで、冷却器(11)に付着する霜の量を少なくするとともに、冷蔵空間内の乾燥を防いで湿度を高く保ち、食品鮮度を長期に亙って保持することができるものである。   In addition, the direct cooling by the heat pipe cooling plate (15) can further increase the evaporation temperature of the refrigeration cooler (11) to reduce the temperature difference from the refrigeration space, and the refrigeration fan (12) Reduces the number of frost that adheres to the cooler (11) by reducing the number of revolutions of the product to prevent strong cold air from hitting the food. Can be held for a long time.

なお、上記実施例における二段圧縮機(13)は、圧縮機ケース(13c)内の圧力を中間圧としたもので説明したが、これに限らず、特に図示しないが、低圧ケースとして冷凍用冷却器からの吸込み管を圧縮機ケース内空間に連通させ、冷蔵用冷却器からの吸込み管は低段側圧縮部の吐出口と高段側圧縮部の吸込口との連結部に接続するようにしてもよい。また同様に、高圧ケースとして、冷凍用冷却器からの吸込み管を低段側圧縮部の吸込み口に接続するとともに、冷蔵用冷却器からの吸込み管は低段側圧縮部の吐出口と高段側圧縮部の吸込口との連結部に接続し、高段側圧縮部からの吐出ガスを高圧ケース内から凝縮器への吐出管へ吐出するようにしてもよい。   The two-stage compressor (13) in the above embodiment has been described with the pressure in the compressor case (13c) being an intermediate pressure. However, the invention is not limited to this. The suction pipe from the cooler is communicated with the space inside the compressor case, and the suction pipe from the refrigeration cooler is connected to the connection part between the discharge port of the low-stage compression unit and the suction port of the high-stage compression unit. It may be. Similarly, as a high-pressure case, the suction pipe from the refrigeration cooler is connected to the suction port of the low-stage compression unit, and the suction pipe from the refrigeration cooler is connected to the discharge port of the low-stage compression unit and the high stage. You may make it connect to the connection part with the suction inlet of a side compression part, and may discharge the discharge gas from a high stage side compression part from the inside of a high pressure case to the discharge pipe to a condenser.

本発明によれば、二段圧縮式冷凍サイクルとヒートパイプ冷却板との併用構成により、サイクル効率を向上した冷蔵庫に利用することができる。   ADVANTAGE OF THE INVENTION According to this invention, it can utilize for the refrigerator which improved cycle efficiency by the combined structure of a two-stage compression refrigerating cycle and a heat pipe cooling plate.

本発明の1実施形態を示す冷蔵庫の縦断面図である。It is a longitudinal cross-sectional view of the refrigerator which shows one Embodiment of this invention. 図1の冷蔵室におけるヒートパイプ冷却板の断面図である。It is sectional drawing of the heat pipe cooling plate in the refrigerator compartment of FIG. 図2のヒートパイプ冷却板の正面図である。It is a front view of the heat pipe cooling plate of FIG. 図1における冷蔵庫の冷凍サイクル図である。It is a refrigerating cycle figure of the refrigerator in FIG. 図4における三方弁の要部の詳細を示す平面図である。It is a top view which shows the detail of the principal part of the three-way valve in FIG. 従来の冷蔵庫の冷凍サイクル図である。It is a freezing cycle figure of the conventional refrigerator.

符号の説明Explanation of symbols

1 冷蔵庫本体 2 外箱 3 内箱
4 断熱材 5 冷蔵室 6 野菜室
7 冷凍室 8 製氷室 9 冷凍用冷却器
10 冷凍用ファン 11 冷蔵用冷却器 12 冷蔵用ファン
13 二段圧縮機 13a 低段圧縮部 13b 高段圧縮部
13c 密閉ケース 14 ダクト 14a 冷気吹出口
15 ヒートパイプ冷却板 16 ヒートパイプ 17 金属板
18 仕切り板 19 凝縮器 20 三方弁
21 冷凍用毛細管 22 冷蔵用毛細管 23 アキュムレータ
24 冷凍側吸込み管 25 吐出管 26 冷蔵側吸込み管
28 弁ケース 29 弁座 29a 冷凍側弁口A
29b 冷蔵側弁口B 30 弁体 30a 冷凍側凹溝A
30b 冷蔵側凹溝B 30c 回転軸 30d 厚肉段部
31 流入弁口 32 断熱材
DESCRIPTION OF SYMBOLS 1 Refrigerator main body 2 Outer box 3 Inner box 4 Heat insulating material 5 Refrigeration room 6 Vegetable room 7 Freezer room 8 Ice making room 9 Refrigeration cooler
10 Refrigeration fan 11 Refrigeration cooler 12 Refrigeration fan
13 Two-stage compressor 13a Low-stage compressor 13b High-stage compressor
13c Airtight case 14 Duct 14a Cold air outlet
15 Heat pipe cooling plate 16 Heat pipe 17 Metal plate
18 Partition plate 19 Condenser 20 Three-way valve
21 Capillary tube for refrigeration 22 Capillary tube for refrigeration 23 Accumulator
24 Refrigeration side suction pipe 25 Discharge pipe 26 Refrigeration side suction pipe
28 Valve case 29 Valve seat 29a Refrigeration side valve port A
29b Refrigeration side valve port B 30 Disc 30a Freezing side groove A
30b Refrigerated groove B 30c Rotating shaft 30d Thick step
31 Inlet valve port 32 Insulation

Claims (3)

圧縮要素が低段側圧縮部と高段側圧縮部により構成された圧縮機と、この圧縮機から吐出される冷媒を受ける凝縮器の出口側に設けられた冷媒流路切替弁と、この切替弁から減圧装置を介して接続された冷凍用冷却器と、前記冷凍用冷却器の回路と並列に設けた減圧装置と冷蔵用冷却器とから冷凍サイクルを形成し、前記冷蔵用冷却器の吸込み管を前記圧縮機ケースの中間圧部内に導入し、冷凍用冷却器から低段側圧縮部に吸い込まれて圧縮吐出した冷媒と合流させて高段側圧縮部に吸い込み圧縮して吐出させるとともに、前記冷蔵用冷却器で生成される冷気をファンで強制循環させることによって冷却される貯蔵空間に冷蔵用冷却器の冷却力で冷却されるヒートパイプからなる冷却体を配設したことを特徴とする冷蔵庫。   A compressor in which the compression element is composed of a low-stage compression unit and a high-stage compression unit, a refrigerant flow switching valve provided on the outlet side of the condenser that receives the refrigerant discharged from the compressor, and the switching A refrigeration cooler connected from a valve via a decompression device, a decompression device provided in parallel with the circuit of the refrigeration cooler, and a refrigeration cooler to form a refrigeration cycle, and suction of the refrigeration cooler A pipe is introduced into the intermediate pressure part of the compressor case, and the refrigerant that has been sucked into the low-stage side compression part from the refrigeration cooler and merged with the compressed and discharged refrigerant is sucked into the high-stage side compression part and compressed and discharged. A cooling body comprising a heat pipe cooled by the cooling power of the refrigeration cooler is disposed in a storage space cooled by forcibly circulating cold air generated by the refrigeration cooler with a fan. refrigerator. 上下に分離したヒートパイプにおける作動流体の流路をそれぞれ水平部と円弧部とを連続させて上下方向に亙る蛇行状に形成し、上下の蛇行形成部の上端同士、および下端同士を接続して閉ループ状にしたことを特徴とする請求項1記載の冷蔵庫。   The flow path of the working fluid in the heat pipe separated vertically is formed in a meandering manner in which the horizontal part and the circular arc part are continuous, and the upper end and the lower end of the upper and lower meandering parts are connected to each other. 2. The refrigerator according to claim 1, wherein the refrigerator has a closed loop shape. 良熱伝導体シートの一面にヒートパイプを配置して形成した冷却板の一端を冷却器に接触させて冷蔵室内面における天井部および側壁部に配設したことを特徴とする請求項1記載の冷蔵庫。
The end of a cooling plate formed by arranging a heat pipe on one surface of the good heat conductor sheet is brought into contact with the cooler and disposed on the ceiling and side walls of the refrigerator compartment surface. refrigerator.
JP2004073556A 2004-03-15 2004-03-15 Refrigerator Pending JP2005257247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004073556A JP2005257247A (en) 2004-03-15 2004-03-15 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004073556A JP2005257247A (en) 2004-03-15 2004-03-15 Refrigerator

Publications (1)

Publication Number Publication Date
JP2005257247A true JP2005257247A (en) 2005-09-22

Family

ID=35083137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004073556A Pending JP2005257247A (en) 2004-03-15 2004-03-15 Refrigerator

Country Status (1)

Country Link
JP (1) JP2005257247A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9121641B2 (en) 2012-04-02 2015-09-01 Whirlpool Corporation Retrofittable thermal storage for air conditioning systems
US9188369B2 (en) 2012-04-02 2015-11-17 Whirlpool Corporation Fin-coil design for a dual suction air conditioning unit
CN107677029A (en) * 2017-09-15 2018-02-09 合肥华凌股份有限公司 Humidity method of discrimination and system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9121641B2 (en) 2012-04-02 2015-09-01 Whirlpool Corporation Retrofittable thermal storage for air conditioning systems
US9188369B2 (en) 2012-04-02 2015-11-17 Whirlpool Corporation Fin-coil design for a dual suction air conditioning unit
US9863674B2 (en) 2012-04-02 2018-01-09 Whirlpool Corporation Fin-coil design for dual suction air conditioning unit
CN107677029A (en) * 2017-09-15 2018-02-09 合肥华凌股份有限公司 Humidity method of discrimination and system

Similar Documents

Publication Publication Date Title
TWI257472B (en) Refrigerator
US6935127B2 (en) Refrigerator
JP6687384B2 (en) refrigerator
KR20030062212A (en) Refrigerator
JP4867758B2 (en) refrigerator
JP2011099645A (en) Refrigerator
CN102997558A (en) Refrigerator
JPH11173729A (en) Refrigerator
JP2007093112A (en) Cooling storage
JP4206792B2 (en) refrigerator
JP4654539B2 (en) refrigerator
JP2001124453A (en) Refrigerator
KR101651328B1 (en) Refrigerator and control method the same
JPH1047826A (en) Freezing refrigerator
JP3639426B2 (en) refrigerator
JP2005257247A (en) Refrigerator
JP2017026210A (en) refrigerator
JP5931329B2 (en) refrigerator
JP2005180719A (en) Refrigerator
JP2004317069A (en) Refrigerator
JP3404313B2 (en) refrigerator
JP2005134080A (en) Refrigerator
JP2005140483A (en) Refrigerator
JP4380905B2 (en) refrigerator
JP2005098605A (en) Refrigerator