JP4380905B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP4380905B2
JP4380905B2 JP2000312891A JP2000312891A JP4380905B2 JP 4380905 B2 JP4380905 B2 JP 4380905B2 JP 2000312891 A JP2000312891 A JP 2000312891A JP 2000312891 A JP2000312891 A JP 2000312891A JP 4380905 B2 JP4380905 B2 JP 4380905B2
Authority
JP
Japan
Prior art keywords
refrigerant
refrigerator
evaporator
compartment
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000312891A
Other languages
Japanese (ja)
Other versions
JP2002122374A (en
Inventor
覚 長谷川
宏 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2000312891A priority Critical patent/JP4380905B2/en
Publication of JP2002122374A publication Critical patent/JP2002122374A/en
Application granted granted Critical
Publication of JP4380905B2 publication Critical patent/JP4380905B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2511Evaporator distribution valves

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は複数個の蒸発器をもつ冷凍サイクルを備えた冷蔵庫に関するものである。
【0002】
【従来の技術】
従来のこの種の冷蔵庫は、例えば特開平10−47827号公報に示されるように、冷蔵室と冷凍室をもち、前記各々の部屋には室温感知のための冷蔵室温度感知装置と冷凍室温度感知装置を設け、圧縮機と、前記圧縮機に並列に接続された複数個の蒸発器と、前記各々の蒸発器に対応して設けられた絞り装置と、凝縮器と、冷媒流路とを備えて冷凍サイクルを構成し、前記蒸発器には冷蔵室用蒸発器と冷凍室用蒸発器とがあり、前記蒸発器の各々を冷却するための冷蔵室用ファンと冷凍室用ファンをもち、前記凝縮器の少なくとも一部を冷却する凝縮器用ファンを設け、前記冷凍サイクルの冷蔵室用蒸発器につながる絞り装置と前記凝縮器との間に分岐弁を設け、前記冷蔵室用ファンと冷凍室用ファンを交互に運転させ、前記冷蔵室用ファンの運転に同期して前記分岐弁を開閉させ、前記冷蔵室の冷却運転時は前記冷凍室の冷却運転時に比較して冷凍能力を減少させるものがある。
【0003】
【発明が解決しようとする課題】
前記のような冷蔵庫では、冷蔵室と冷凍室が同時に設定温度以上になったとき(例えば:新たに貯蔵品を冷蔵室と冷凍室に同時に多量に入れて双方の室温があがる。)、優先されていない前記貯蔵室(例えば:冷蔵室)に貯蔵されている貯蔵品の鮮度が低下するという課題や、各室が個別で冷却される為エネルギー消費量が高くなるという課題があった。
【0004】
【課題を解決するための手段】
本発明の冷蔵庫は前記のような課題を解決したもので、冷蔵室と、冷凍室と、冷媒が流通する冷媒流路と、冷媒の流通により冷凍サイクルを運転する圧縮機と、前記圧縮機の吐出側に接続される凝縮器と、前記凝縮器の吐出側と前記圧縮機の吸込側の間に配されるとともに前記冷蔵室及び前記冷凍室の内で前記冷蔵室のみに流入する冷気を生成する冷蔵室用蒸発器と、前記凝縮器の吐出側と前記圧縮機の吸込側の間に前記冷蔵室用蒸発器と並列に配されるとともに前記冷蔵室及び前記冷凍室の内で前記冷凍室のみに流入する冷気を生成する冷凍室用蒸発器と、前記冷蔵室用蒸発器に対応して設けられる第1絞り装置と、前記冷凍室用蒸発器に対応して設けられる第2絞り装置と、前記凝縮器の吐出側で分岐される前記冷媒流路の分岐点に配される分岐弁とを備え、
前記分岐弁は、チャンバーの底面に設けられて第1絞り装置に接続される第1出口部と、第1出口部を開閉するニードルと、前記チャンバーの側面に設けられて冷媒が流入する入口部と、前記チャンバーの側面に設けられて前記ニードルにより第1出口部を閉じた際に液冷媒内に前記ニードルの一部が埋没することにより液面が上昇した液冷媒によって常に覆われるとともに第1出口部を開いた際に下降する液冷媒の液面よりも上方に配される第2出口部とを有して、第1出口部を開いて前記冷蔵室用蒸発器及び前記冷凍室用蒸発器に冷媒を供給する状態と第1出口部を閉じて前記冷凍室用蒸発器のみに冷媒を供給する状態とに切り替え、
前記分岐弁から前記冷蔵室用蒸発器及び前記冷凍室用蒸発器に冷媒を供給する際に、第1絞り装置に送り出す冷媒が液冷媒を主体として第2絞り装置に送り出す冷媒がガス冷媒を主体とするとともに、第1絞り装置の減圧量を第2絞り装置の減圧量よりも小さくしたことを特徴とするものである。
【0012】
また本発明の冷蔵庫は、前記凝縮器と前記分岐弁の間に第3絞り装置を設けたことを特徴とするものである。
【0013】
また本発明の冷蔵庫は、第3絞り装置によって第1絞り装置または第2絞り装置を兼ねたことを特徴とするものである。
【0014】
【発明の実施の形態】
以下、本発明の冷蔵庫の実施の形態を図面とともに説明する。
【0015】
図1は本発明の冷蔵庫のブロック説明図、図2は本発明の冷蔵庫のチェックバルブの説明図、図3は本発明の冷蔵庫の三方弁の説明図である。
【0016】
図1において、1は圧縮機、2は凝縮器、3は冷凍室用蒸発器4につながる冷凍室用絞り装置、5は分岐弁、6は冷蔵室用蒸発器7につながる冷蔵室用絞り装置、8は前記凝縮器2の少なくとも一部を冷却するための凝縮器用ファン、9は前記冷凍室用蒸発器4で冷却された冷気を冷凍室10に送り出すための冷凍室用ファン、11は前記冷蔵室用蒸発器7で冷却された冷気を冷蔵室12に送り出すための冷蔵室用ファン、13は冷凍室温度感知装置、14は冷蔵室温度感知装置である。
【0017】
なお、冷凍室用絞り装置3と冷凍室用蒸発器4、冷蔵室用絞り装置6と冷蔵室用蒸発器7は並列に接続されており、分岐弁5は前記冷凍室用絞り装置3、前記冷蔵室用絞り装置6の各々の絞り装置と前記凝縮器2との間に設けられており、圧縮機1、凝縮器2、分岐弁5、冷凍室用絞り装置3、冷凍室用蒸発器4、冷蔵室用絞り装置6、冷蔵室用蒸発器7は冷凍サイクルを形成している。
【0018】
そして、冷凍室10と冷蔵室12がともに設定温度(例えば:設定温度:冷凍室10=−18℃、冷蔵室12=5℃)より高いとき、冷凍室温度感知装置13や冷蔵室温度感知装置14が室温を感知し、制御装置(不図示)にて圧縮機1が運転され、凝縮器2で液化された冷媒の内の一部が、開かれた分岐弁5から冷凍室用絞り装置3を通り冷凍室用蒸発器4で蒸発しながら周囲の空気から熱を奪って流れ、また、凝縮器2で液化された冷媒の内の一部が、開かれた分岐弁5から冷蔵室用絞り装置6を通り冷蔵室用蒸発器7で蒸発しながら周囲の空気から熱を奪って流れ、気化状態で圧縮機1に戻り、一連の冷凍サイクルとなる。
【0019】
また、このとき、凝縮器用ファン8や冷凍室用ファン9や冷蔵室用ファン11も同期して運転され、凝縮器用ファン8は凝縮器2を冷却し冷媒の液化を助け、冷凍室用ファン9や冷蔵室用ファン11は各々冷凍室10や冷蔵室12に冷凍室用蒸発器4や冷蔵室用蒸発器7で冷却された冷気を送り、冷凍室10や冷蔵室12を所定の室温にまで冷却することになる。そのため、冷凍室10や冷蔵室12に同時に多くの貯蔵品を新に貯蔵しても、即座に冷却され、貯蔵品の劣化を防止できる。
【0020】
なお、冷蔵室12が所定の室温(例えば:3℃)になると、分岐弁5の冷蔵室用絞り装置6側出口が閉じられ、冷蔵室用蒸発器7に冷媒が流れ込まなくなる。そして、所定の時間が経過した後、冷蔵室用ファン11は停止される。
【0021】
また、この時冷凍室10が所定の温度(例えば:−18℃)になっていないと、圧縮機1や凝縮器用ファン8や冷凍室用ファン9の運転は継続され、圧縮機1の冷凍能力は制御装置(不図示)にて所定値まで下げられ、同時に凝縮器用ファン8もその能力に応じた回転数に下げられる。そのため、効率よく圧縮機1や凝縮器用ファン8が運転されエネルギーの省力化につながる。
【0022】
なお、前記で冷蔵室用ファン11の運転が所定の回転数に下げられ、運転が継続されるようにしておくと、冷蔵室12内の冷気撹拌に役立ち、さらには、冷蔵室用蒸発器7が霜付き状態になっている場合、冷蔵室12内の冷気により前記冷蔵室用蒸発器7の除霜に役立ち、また、前記除霜により冷蔵室12内の加湿にも役立つ。
【0023】
また、冷蔵室12が設定された所定の室温(例えば:5℃)より高くなり、そのとき、冷凍室10は設定された所定の室温(例えば:−18℃)以下のときは、冷凍室温度感知装置13や冷蔵室温度感知装置14が各々の室温を感知し、その感知温度に基づき、制御装置(不図示)にて圧縮機1の冷凍能力を必要能力に応じて、冷凍室10と冷蔵室12とがともに設定温度(例えば:設定温度:冷凍室10=−18℃、冷蔵室12=5℃)より高く冷凍室10と冷蔵室12を同時に冷却するときよりは低い能力で運転され、凝縮器用ファン8や冷凍室用ファン9の回転数もそれに応じて制御装置(不図示)にて下げられて運転されるため、効率よく圧縮機1や凝縮器用ファン8や冷凍室用ファン9が運転されエネルギーの省力化につながる。
【0024】
そして、このとき、前記冷凍室10が必要以上の過冷却状態(例えば:−21℃以下の温度)になることを防ぐため、冷凍室温度感知装置13による冷凍室向けの切替温度を高くなる(例えば:切替温度=−21℃から−19℃にあげる。)ように、制御装置(不図示)の設定が、前記各々の室温に基づき、変わるようにしておき、冷凍室温度感知装置13や冷蔵室温度感知装置14の感知状態に基づき、制御装置(不図示)にて圧縮機1の冷凍能力を必要能力に応じて、前記のような冷凍室10と冷蔵室12を同時に冷却するときよりは切り替えられて低い能力で運転され、凝縮器用ファン8や冷凍室用ファン9の回転数もそれに応じて制御装置(不図示)にて切り替えられて下げられ運転されるようにしておく。
【0025】
前記により、前記冷凍室10が必要以上に冷却(過冷却)されずに、適度に外部からの熱の侵入に対して冷却状態が維持でき、また、圧縮機1のON−OFFの回数も増えず、そのため、圧縮機1の起動時に多量に必要とする消費電力の増加もなく、消費電力が少なく効率よく冷蔵室12や冷凍室10を冷却することができ、さらに効率よく圧縮機1や凝縮器用ファン8や冷凍室用ファン9が運転され、いっそうエネルギーの省力化につながる。
【0026】
なお、このとき圧縮機の冷凍能力を変える手段として圧縮機電動機の回転数を減らしそれに連動して動くピストンの冷媒圧縮回数減により冷凍サイクル内の冷媒循環量を減らす方法や冷凍室用絞り装置3及び冷蔵室用絞り装置6を可変型絞り弁や開閉弁と数種類の状態に合わせたキャピラリーチューブとの組み合わせの切替式絞り装置を少なくとも一部に含む絞り装置にして、それらの状態に合った冷媒流や圧力差とする絞り状態(例えば:圧縮機1の低下能力に応じて、冷凍室用絞り装置3や冷蔵室用絞り装置6を絞る。)にしてもよい。
【0027】
図2において、本図は分岐弁5の役目をするチェックバルブ15の概略図であり、出口開閉のためのニードル15aを含む電磁弁機構15bをもち、入口15cと2個所の出口15d、15eを備えている。また、前記入口15cと出口15dは同じ側にあり、上に出口15dを下に入口15cを配置しており、残りの出口15eは前記入口15cより低い位置にあり、前記電磁弁機構15bの通電によるニードル15aの移動により、前記出口15eは開閉可能となっている。
【0028】
また、チェックバルブ15の入口15cは前記凝縮器2と、出口15dは冷凍室用絞り装置3と、出口15eは冷蔵室用絞り装置6と各々つながっている。そして、冷凍室10と冷蔵室12がともに設定温度(例えば:設定温度:冷凍室10=−18℃、冷蔵室12=5℃)より高いときは、冷凍室温度感知装置13や冷蔵室温度感知装置14が室温を感知し、制御装置(不図示)にてチェックバルブ15の電磁弁機構15bに通電されニードル15aが上方に移動して、出口15eは開放される。
【0029】
そして、圧縮機1が運転され、凝縮器2で液化された冷媒が、チェックバルブ15の入口15cからチャンバー15f内に流れ込み、その後、出口15dから流れ出し、冷凍室用絞り装置3や冷凍室用蒸発器4で膨張・乾燥気化しながら周囲の空気から熱を奪って流れ、また、凝縮器2で液化された冷媒が、チェックバルブ15の入口15cからチャンバー15f内に流れ込み、その後、開かれたチェックバルブ15の出口15eから流れ出し、冷蔵室用絞り装置6や冷蔵室用蒸発器7で膨張・乾燥気化しながら周囲の空気から熱を奪って流れ、気化した状態で冷媒が圧縮機1に戻ることとなる。
【0030】
なお、このとき、チェックバルブ15のチャンバー15f内では冷媒が気液分離し、上方にガス冷媒を主体とする冷媒が、また下方に液冷媒を主体とする冷媒が存在するようにチャンバー15f内の容積が設定されている。
【0031】
そして、前記出口15dは上方のガス冷媒を主体とする冷媒の領域に位置し、前記出口15eは下方の液冷媒を主体とする冷媒の領域に位置しているため、冷凍室用絞り装置3を通り冷凍室用蒸発器4へ流れる冷媒は、ガス冷媒を主体とする冷媒となり、冷蔵室用絞り装置6を通り冷蔵室用蒸発器7へ流れる冷媒は、液冷媒を主体とする冷媒となるため、冷蔵室用絞り装置6の絞り量は冷凍室用絞り装置3の絞り量より少な目に絞り、減圧量においては冷蔵室用絞り装置6のほうが冷凍室用絞り装置3より、より小さい減圧量に設定されていても、前記出口15dや出口15eから前記冷凍室用絞り装置3や冷蔵室用絞り装置6へ各々設定どおりの安定した冷媒流が得られることになる。
【0032】
なお、前記で、冷凍室用絞り装置3を通り冷凍室用蒸発器4へ流れる前記出口15dでの冷媒が、湿りガス冷媒のみであるときは、その冷却能力は低下するが、冷媒流の安定はより確実なものとなり、冷凍室用絞り装置3を通り冷凍室用蒸発器4へ流れる前記出口15dでの冷媒が、気液冷媒でありその液体比が大きい冷媒となると、その冷凍能力は向上するが冷媒流の不安定さは増す。そして、冷媒流が不安定になる場合は、冷蔵室用絞り装置6の絞り量と冷凍室用絞り装置3の絞り量の差を少なくして、冷媒流の安定化を図るようにすればよい。
【0033】
また、所定の絞り装置(例えば:キャピラリーチューブ)を通過する流体が液体と気体の場合では、同じ体積が所定時間に通過するときの流体抵抗は、その粘性の影響から液体が前記絞り装置を通過する場合のほうが大きくなるため、冷蔵室用絞り装置6と冷凍室用絞り装置3を同時に冷媒が流れるとき、前記双方の絞り装置を液冷媒が流れる場合よりは、冷蔵室用絞り装置6のみに液冷媒が流れ、他方の冷凍室用絞り装置3はガス冷媒が流れる場合のほうが、冷蔵室用絞り装置6と冷凍室用絞り装置3の合成の流体抵抗は低くなる。
【0034】
そのため、冷蔵室用絞り装置6と冷凍室用絞り装置3を同時に液冷媒を主体とする冷媒が流れる場合に比べ、冷蔵室用絞り装置6のみに液冷媒を主体とする冷媒が流れ、他方の冷凍室用絞り装置3はガス冷媒を主体とする冷媒が流れる場合のほうが合成の流体抵抗は低くなるため蒸発温度は高くバランスし、これにより冷蔵室用蒸発器7の蒸発温度が安定した冷媒流の状態を保ちながら高く設定できることになる。
【0035】
また、冷蔵室用絞り装置6側に液冷媒を主体とする冷媒が流れるため、冷蔵室用蒸発器7側の冷力は高く保持でき、冷蔵室用蒸発器7側の蒸発器能力が大きくなる。
【0036】
そして、チェックバルブ15本体を適度に傾斜させたりして、液冷媒を主体とする冷媒面と出口15dとの高さ関係を調整することにより、出口15eから冷蔵室用絞り装置6を通り冷蔵室用蒸発器7へ流れる冷媒は、液冷媒を主体とする冷媒であり、前記出口15dから冷凍室用絞り装置3に流れる冷媒は、ガス冷媒を主体とする冷媒となるように設定でき、各々に流れる冷媒の気液比を適度に調整したものとなり、冷凍室用蒸発器4と冷蔵室用蒸発器7を同時に冷媒が安定して流れる前記各々の蒸発器の最適な冷力状態を保つ冷凍サイクルが得られる。
【0037】
なお、前記各々の出口の位置は、その設定条件にあわせ、液冷媒を主体とする冷媒面に対し、適度な位置に設定すればよい。なお、本図においては、液冷媒を主体とする冷媒面が適度の位置にあり、チェックバルブ15は傾斜させる必要がない状態で、必要設定条件となっているときの例である。
【0038】
そのため、前記チェックバルブ15において液冷媒を主体とする冷媒とガス冷媒を主体とする冷媒に分離させ、サイクル設定条件にあわせ、前記分岐弁の複数の出口の各々を液冷媒を主体とする冷媒側かガス冷媒を主体とする冷媒側の何れかもしくはその近くに位置させておくと、各々に流れる冷媒の気液比を適度に調整したものとなり、複数個の蒸発器を同時に冷媒が安定して流れる前記各々の蒸発器の最適な冷力状態を保つ冷凍サイクルが得られることになる。
【0039】
なお、前記のようなチェックバルブ15本体の調整状態でチェックバルブ15を冷蔵庫本体に固定するようにしておくとよいことになる。
【0040】
また、前記で凝縮器2と分岐弁5であるチェックバルブ15の間に、共通の絞り装置(不図示)を設けて、ある程度減圧しておくと、凝縮器2で液化された冷媒が、前記共通の絞り装置を通過して気液冷媒となり、前記チェックバルブ15のチャンバー15f内では冷媒が気液分離し、上方にガス冷媒を主体とする冷媒が、下方に液冷媒を主体とする冷媒がいっそう存在しやすくなる。
【0041】
そして、前記チェックバルブ15はニードル15aにて出口15eを閉じたとき、液冷媒を主体とする冷媒内に前記ニードル15aの一部が埋没することになり、そのため、ニードル15aの埋没体積にて液冷媒を主体とする前記冷媒の液面が上昇し、出口15dを液冷媒を主体とする冷媒にて冷凍サイクル運転の間つねに覆うようにしておくと、冷凍室用絞り装置3には常に液冷媒を主体とする冷媒が出口15dから流れ出し、冷凍室用蒸発器4側の蒸発器能力を常に大きく保つことができ、冷凍室用蒸発器4の冷却能力の向上となる。
【0042】
さらに、ニードル15aにて出口15eが閉じられたときの、ニードル15aと出口15eとの領域以外の領域で、前記入口15cを設けても、前記同様の効果は得られる。
【0043】
図3において、本図は分岐弁5の役目をする三方弁16の概略図であり、出口開閉のためのボール16aを含む開閉弁機構16bをもち、入口16cと2個所の出口16d、16eを備えている。そして、ボール16aには下方からコイルバネ(不図示)等にて上方に持ち上げる力が常にかかっている。
【0044】
また、前記入口16c、出口16d、16eは同じ側にあり、開閉弁機構16bが略水平方向で回転(回転軸は三方弁16の左右方向で中央を上下に通る軸となる。)することにより、前記ボール16aが出口16e上を上下し、出口16eを前記ボール16aで開け閉めして、前記出口16eは開閉可能となっている。
【0045】
また、三方弁16の入口16cは前記凝縮器2と、出口16dは冷凍室用絞り装置3と、出口16eは冷蔵室用絞り装置6と各々つながっている。なお、本図においては、ボール16aは出口16eの上方にのみ設けてあるが、出口16dの上方にも同様のボール等を設け、開閉可能としてもよい。
【0046】
そして、冷凍室10と冷蔵室12がともに設定温度(例えば:設定温度:冷凍室10=−18℃、冷蔵室12=5℃)より高いときは、冷凍室温度感知装置13や冷蔵室温度感知装置14が室温を感知し、制御装置(不図示)にて三方弁16の開閉弁機構16bが略水平方向で回転することによりボール16aが上方に移動して、出口16eは図3のように開放される。
【0047】
そして、圧縮機1が運転され、凝縮器2で液化された冷媒が、三方弁16の出口16dから冷凍室用絞り装置3を通り冷凍室用蒸発器4で膨張・乾燥気化しながら周囲の空気から熱を奪って流れ、また、凝縮器2で液化された冷媒が、開かれた三方弁16の出口16eから冷蔵室用絞り装置6を通り冷蔵室用蒸発器7で膨張・乾燥気化しながら周囲の空気から熱を奪って流れ、気化した状態で冷媒が圧縮機1に戻ることとなる。
【0048】
なお、このとき、三方弁16のチャンバー16f内では冷媒が気液分離し、上方にガス冷媒を主体とする冷媒が、また下方に液冷媒を主体とする冷媒が存在するようにチャンバー16f内の容積が設定されている。
【0049】
そして、前記出口16dは上方のガス冷媒を主体とする冷媒の領域に位置し、前記出口16eは下方の液冷媒を主体とする冷媒の領域に位置しているため、冷凍室用絞り装置3を通り冷凍室用蒸発器4へ流れる冷媒は、ガス冷媒を主体とする冷媒となり、冷蔵室用絞り装置6を通り冷蔵室用蒸発器7へ流れる冷媒は、液冷媒を主体とする冷媒となるため、冷蔵室用絞り装置6の絞り量は冷凍室用絞り装置3の絞り量より少な目に絞り、減圧量においては冷蔵室用絞り装置6のほうが冷凍室用絞り装置3より、より小さい減圧量に設定されていても、前記出口16dや出口16eから前記冷凍室用絞り装置3や冷蔵室用絞り装置6へ各々設定どおりの安定した冷媒流が得られることになる。
【0050】
また、前記で、冷凍室用絞り装置3を通り冷凍室用蒸発器4へ流れる前記出口16dでの冷媒が、湿りガス冷媒のみであるときや、冷凍室用絞り装置3を通り冷凍室用蒸発器4へ流れる前記出口16dでの冷媒が、気液冷媒でありその液体比が大きい冷媒となるときや、冷蔵室用絞り装置6のみに液冷媒を主体とする冷媒が流れ、他方の冷凍室用絞り装置3はガス冷媒を主体とする冷媒が流れる場合の特性は、前記チェックバルブを使用のときと同様となる。
【0051】
そして、図3のような三方弁16本体を適度に傾斜させて、液冷媒を主体とする冷媒面と出口16dとの高さ関係を調整することにより、前記出口16dから冷凍室用絞り装置3に流れるガス冷媒を主体とする冷媒の気液比を調整し、冷凍室用蒸発器4と冷蔵室用蒸発器7を同時に冷媒が安定して流れる前記各々の蒸発器の最適な冷力の状態を保つ冷凍サイクルが得られ、その三方弁16本体の傾斜状態で冷蔵庫本体に固定するようにしておくとよい。
【0052】
なお、前記で凝縮器2と分岐弁5である三方弁16の間に、共通の絞り装置(不図示)を設けて、ある程度減圧しておくと、図2のチェックバルブ15のときと同様に、凝縮器2で液化された冷媒が、前記共通の絞り装置を通過して気液冷媒となり、前記三方弁16のチャンバー16f内では冷媒が気液分離し、上方にガス冷媒を主体とする冷媒が、下方に液冷媒を主体とする冷媒がいっそう存在しやすくなる。
【0053】
また、前記で出口16dと出口16eの高さの差は1.5mm以上あれば、気液分離による前記効果は充分得られ、図3のような三方弁16で、開閉弁機構16bの回転軸を垂直にしたとき、出口16dと出口16eの位置が水平位置にある構造の場合、具体的には、前記出口16dと出口16eの水平方向の間隔が8.5mmであり、前記三方弁16の開閉弁機構16bの回転軸が15°傾くように三方弁16全体を傾け、前記出口16dより出口16eが、垂直方向で約2.2mm程度低く図3のように設定すると、前記効果はさらに確実に安定して得られ、量産性に富む冷蔵庫となる。
【0054】
そして、前記三方弁16の入口16cを側方に設けても前記同様の効果は得られ、さらに、チェックバルブ15の出口15dに相当する位置に、前記三方弁16の出口16dを設けても、前記同様の効果は得られる。
【0055】
さらに、前記チェックバルブ15や三方弁16等の分岐弁5の傾斜角を、復数値(例えば:12°、15°、17°等)設定固定できるようにして、量産上の冷凍サイクル上のバラツキ(絞り装置、蒸発器、凝縮器、圧縮機、冷媒充填量等の組み合せ上のバラツキ)に対応するようにしておくと、サイクル上微調整のできる、さらに安定した冷却状態をもつ高効率の冷蔵庫が得られる。
【0056】
また、共通の絞り装置(不図示)を設けたとき、前記共通の絞り装置が所定の専用の絞り装置(例えば:冷蔵室用絞り装置)と同等の絞り量に設定すると、前記専用の絞り装置が省略でき、冷凍サイクルが簡略化でき、加工性、品質信頼性、コスト性が向上する。
【0057】
なお、前記は、冷凍室用蒸発器4と冷蔵室用蒸発器7の蒸発器が備わった冷凍サイクルの例であるが、前記各々の蒸発器と同様に、他に複数個の蒸発器を設け、それら蒸発器の設定に応じた絞り装置をそれぞれ設け、前記分岐弁5であるチェックバルブ15や三方弁16の出口で、設定条件にあった出口に、前記各々の絞り装置を接続すると、冷媒流の気液混合比を変えることにより、冷凍能力を変化させることができるなど、前記同様の効果が得られることは明白である。
【0058】
【発明の効果】
本発明の冷蔵庫は前記のような構成であるから、本発明によれば、冷蔵室や冷凍室等を設けたとき、冷蔵室も冷凍室もその他の貯蔵室もその負荷変動に応じて最適の冷却効果が得られ、エネルギーロスの少ない高効率の冷凍サイクルをもった冷蔵庫が得られる。しかも、冷凍室用蒸発器や冷蔵室用蒸発器等の複数の蒸発器に、安定して同時に冷媒を流すことのできる、前記各々の蒸発器の最適な冷力状態を保つ冷凍サイクルが得られる。
【図面の簡単な説明】
【図1】本発明の冷蔵庫のブロック説明図である。
【図2】本発明の冷蔵庫のチェックバルブの説明図である。
【図3】本発明の冷蔵庫の三方弁の説明図である。
【符号の説明】
1 圧縮機
2 凝縮器
3 冷凍室用絞り装置
4 冷凍室用蒸発器
5 分岐弁
6 冷蔵室用絞り装置
7 冷蔵室用蒸発器
10 冷凍室
12 冷蔵室
15 チェックバルブ
15a ニードル
15d 出口(開放出口)
15e 出口(開閉出口)
16 三方弁
16d 出口
16e 出口
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigerator having a refrigeration cycle having a plurality of evaporators.
[0002]
[Prior art]
A conventional refrigerator of this type has a refrigerator compartment and a freezer compartment as disclosed in, for example, Japanese Patent Application Laid-Open No. 10-47827, and each room has a refrigerator compartment temperature sensing device and a freezer compartment temperature detector. A sensing device; a compressor; a plurality of evaporators connected in parallel to the compressor; a throttling device provided corresponding to each of the evaporators; a condenser; and a refrigerant flow path. Comprising a refrigeration cycle, and the evaporator includes a refrigerator for a refrigerator compartment and an evaporator for a refrigerator compartment, and has a refrigerator compartment fan and a refrigerator compartment fan for cooling each of the evaporators, A condenser fan for cooling at least a part of the condenser is provided, and a branch valve is provided between the condensing device connected to the evaporator for the refrigerator compartment of the refrigeration cycle and the condenser, and the refrigerator fan and the freezer compartment The fans for the refrigerator are operated alternately to Synchronization with the operation to open and close the branch valve, during the cooling operation of the refrigerating chamber there is to reduce the cooling capacity as compared to during the cooling operation of the freezing chamber.
[0003]
[Problems to be solved by the invention]
In the refrigerator as described above, when the refrigerator compartment and the freezer compartment simultaneously reach the set temperature or higher (for example: a new amount of stored items are simultaneously put in the refrigerator compartment and the freezer compartment, and the room temperature of both is raised). There is a problem that the freshness of the stored items stored in the storage room (for example: refrigerated room) not being reduced, and a problem that energy consumption is increased because each room is individually cooled.
[0004]
[Means for Solving the Problems]
The refrigerator of the present invention solves the above-described problems, and includes a refrigerator compartment, a freezer compartment, a refrigerant passage through which a refrigerant flows, a compressor that operates a refrigeration cycle by the circulation of the refrigerant, and the compressor. A condenser connected to the discharge side, and arranged between the discharge side of the condenser and the suction side of the compressor, and generates cold air that flows only into the refrigerating room within the refrigerating room and the freezing room A refrigerating room evaporator, and a refrigerating room disposed between the discharge side of the condenser and the suction side of the compressor in parallel with the refrigerating room evaporator and within the refrigerating room and the freezing room. A freezer compartment evaporator that generates cold air flowing into the refrigerator, a first throttle device provided corresponding to the refrigerator refrigerator, and a second throttle device provided corresponding to the freezer evaporator , Arranged at the branch point of the refrigerant flow path branched at the discharge side of the condenser And a that branch valve,
The branch valve is provided on the bottom surface of the chamber and connected to the first throttling device, a needle that opens and closes the first outlet portion, and an inlet portion that is provided on a side surface of the chamber and into which the refrigerant flows. When the first outlet portion is closed by the needle and is provided on the side surface of the chamber, the liquid surface is always covered by the liquid refrigerant whose liquid level has risen due to part of the needle being buried in the liquid refrigerant. A second outlet portion disposed above the liquid level of the liquid refrigerant that descends when the outlet portion is opened, and the first outlet portion is opened to evaporate the refrigerator compartment and the freezer compartment. Switching between a state in which the refrigerant is supplied to the refrigerator and a state in which the first outlet is closed and the refrigerant is supplied only to the freezer evaporator,
When the refrigerant is supplied from the branch valve to the refrigerator for the refrigerator compartment and the evaporator for the freezer compartment, the refrigerant sent out to the first throttling device is mainly liquid refrigerant and the refrigerant sent out to the second throttling device is mainly gas refrigerant. In addition, the pressure reducing amount of the first throttle device is smaller than the pressure reducing amount of the second throttle device .
[0012]
The refrigerator of the present invention is characterized in that a third expansion device is provided between the condenser and the branch valve .
[0013]
The refrigerator of the present invention is characterized in that the third diaphragm device also serves as the first diaphragm device or the second diaphragm device .
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the refrigerator of the present invention will be described with reference to the drawings.
[0015]
FIG. 1 is a block diagram of the refrigerator of the present invention, FIG. 2 is a diagram of a check valve of the refrigerator of the present invention, and FIG. 3 is a diagram of a three-way valve of the refrigerator of the present invention.
[0016]
In FIG. 1, 1 is a compressor, 2 is a condenser, 3 is a freezer compartment throttle device connected to the freezer evaporator 4, 5 is a branch valve, and 6 is a refrigerator compartment throttle device connected to the refrigerator evaporator 7. , 8 is a condenser fan for cooling at least a part of the condenser 2, 9 is a freezer compartment fan for sending cold air cooled by the freezer evaporator 4 to the freezer compartment 10, A refrigerating room fan for sending out the cold air cooled by the refrigerating room evaporator 7 to the refrigerating room 12, 13 is a freezer temperature sensing device, and 14 is a refrigerating room temperature sensing device.
[0017]
The freezer compartment throttle device 3 and the freezer compartment evaporator 4, the refrigerator compartment throttle device 6 and the refrigerator compartment evaporator 7 are connected in parallel, and the branch valve 5 includes the freezer compartment throttle device 3, It is provided between each condensing device of the refrigerating chamber expansion device 6 and the condenser 2, and includes a compressor 1, a condenser 2, a branch valve 5, a freezing chamber expansion device 3, and a freezing chamber evaporator 4. The refrigerator 6 for the refrigerator compartment and the evaporator 7 for the refrigerator compartment form a refrigeration cycle.
[0018]
When both the freezer compartment 10 and the refrigerator compartment 12 are higher than a set temperature (for example: set temperature: freezer compartment 10 = −18 ° C., refrigerator compartment 12 = 5 ° C.), the freezer compartment temperature sensing device 13 and the refrigerator compartment temperature sensing device. 14 senses the room temperature, the compressor 1 is operated by a control device (not shown), and a part of the refrigerant liquefied by the condenser 2 is opened from the opened branch valve 5 to the freezing chamber expansion device 3. The refrigerant flows away from the surrounding air while evaporating in the freezer evaporator 4, and a part of the refrigerant liquefied in the condenser 2 is opened from the open branch valve 5 to the refrigerator compartment throttle. Heat flows from the surrounding air while evaporating in the refrigerator 7 for the refrigerator compartment through the apparatus 6 and flows back to the compressor 1 in a vaporized state to form a series of refrigeration cycles.
[0019]
At this time, the condenser fan 8, the freezer compartment fan 9, and the refrigerator compartment fan 11 are also operated in synchronization. The condenser fan 8 cools the condenser 2 and helps liquefy the refrigerant. The refrigeration room fan 11 sends cold air cooled by the refrigeration room evaporator 4 and the refrigeration room evaporator 7 to the freezing room 10 and the refrigeration room 12, respectively, and the freezing room 10 and the refrigeration room 12 are brought to a predetermined room temperature. It will cool. Therefore, even if a large number of stored items are newly stored in the freezer compartment 10 or the refrigerator compartment 12 at the same time, the stored items are immediately cooled and deterioration of the stored items can be prevented.
[0020]
When the refrigerator compartment 12 reaches a predetermined room temperature (for example, 3 ° C.), the outlet of the branch valve 5 on the side of the refrigerator for the refrigerator compartment 6 is closed, and the refrigerant does not flow into the evaporator 7 for the refrigerator compartment. And after predetermined time passes, the fan 11 for refrigerator compartments is stopped.
[0021]
At this time, if the freezer compartment 10 is not at a predetermined temperature (for example, −18 ° C.), the operation of the compressor 1, the condenser fan 8 and the freezer compartment fan 9 is continued. Is reduced to a predetermined value by a control device (not shown), and at the same time, the condenser fan 8 is also lowered to the number of rotations corresponding to the capacity. Therefore, the compressor 1 and the condenser fan 8 are operated efficiently, leading to energy saving.
[0022]
If the operation of the refrigerating room fan 11 is reduced to a predetermined number of rotations and the operation is continued as described above, it is useful for stirring the cool air in the refrigerating room 12, and further, the refrigerating room evaporator 7 is used. Is in a frosted state, it is useful for defrosting the evaporator 7 for refrigeration room by the cool air in the refrigeration room 12, and also for humidifying the refrigeration room 12 by the defrosting.
[0023]
In addition, when the refrigerator compartment 12 is higher than a predetermined room temperature (for example: 5 ° C.) and the freezer compartment 10 is below the predetermined room temperature (for example: −18 ° C.), the freezer temperature The sensing device 13 and the refrigerating room temperature sensing device 14 sense the respective room temperature, and based on the sensed temperature, the control device (not shown) sets the refrigerating capacity of the compressor 1 according to the necessary capacity. Both of the chambers 12 are operated with a higher capacity than the set temperature (for example: set temperature: freezer room 10 = −18 ° C., refrigerator room 12 = 5 ° C.) and lower capacity than when the freezer room 10 and the refrigerator room 12 are cooled simultaneously, Since the rotation speed of the condenser fan 8 and the freezer compartment fan 9 is also lowered and operated by a control device (not shown) accordingly, the compressor 1, the condenser fan 8 and the freezer compartment fan 9 are efficiently operated. Operation will lead to energy savings.
[0024]
At this time, in order to prevent the freezing room 10 from being in an excessively cooled state (for example, a temperature of −21 ° C. or lower) more than necessary, the switching temperature for the freezing room by the freezing room temperature sensing device 13 is increased ( For example: switching temperature = -21 ° C. to −19 ° C.) The setting of the control device (not shown) is changed based on the respective room temperatures, and the freezer temperature sensor 13 or refrigeration is set. Rather than when the freezing room 10 and the refrigerating room 12 are simultaneously cooled according to the required capacity of the compressor 1 based on the sensing state of the room temperature sensing device 14 according to the necessary capacity. It is switched and is operated with a low capacity, and the rotation speed of the condenser fan 8 and the freezer compartment fan 9 is also switched and lowered by a control device (not shown) accordingly.
[0025]
As a result, the freezing chamber 10 is not cooled (supercooled) more than necessary, and the cooling state can be appropriately maintained against the intrusion of heat from the outside, and the number of ON-OFF times of the compressor 1 is increased. For this reason, there is no increase in power consumption required when starting up the compressor 1, the power consumption is low, and the refrigerator compartment 12 and the freezer compartment 10 can be efficiently cooled. The machine fan 8 and the freezer fan 9 are operated, which leads to further energy saving.
[0026]
At this time, as a means for changing the refrigeration capacity of the compressor, a method of reducing the number of rotations of the compressor motor and reducing the number of refrigerant compressions of the piston that moves in conjunction with it reduces the refrigerant circulation amount in the refrigeration cycle, or the freezing chamber throttling device 3 Further, the refrigerator for the refrigerator compartment 6 is a throttle device including at least a part of a switchable throttle device in which a variable throttle valve, an on-off valve, and a capillary tube adapted to several states are combined, and a refrigerant suitable for those states The throttle state may be a flow or pressure difference (for example, the freezing room throttling device 3 or the refrigerating room throttling device 6 is throttling in accordance with the lowering ability of the compressor 1).
[0027]
In FIG. 2, this figure is a schematic view of the check valve 15 serving as the branch valve 5, which has an electromagnetic valve mechanism 15b including a needle 15a for opening and closing the outlet, and has an inlet 15c and two outlets 15d and 15e. I have. In addition, the inlet 15c and the outlet 15d are on the same side, the outlet 15d is disposed above the outlet 15d, and the remaining outlet 15e is positioned lower than the inlet 15c, and the solenoid valve mechanism 15b is energized. Due to the movement of the needle 15a, the outlet 15e can be opened and closed.
[0028]
Further, the inlet 15c of the check valve 15 is connected to the condenser 2, the outlet 15d is connected to the freezing chamber expansion device 3, and the outlet 15e is connected to the refrigerating chamber expansion device 6. When both the freezer compartment 10 and the refrigerator compartment 12 are higher than a set temperature (for example: set temperature: freezer compartment 10 = −18 ° C., refrigerator compartment 12 = 5 ° C.), the freezer compartment temperature sensing device 13 and the refrigerator compartment temperature sensor The device 14 senses the room temperature, and a control device (not shown) energizes the electromagnetic valve mechanism 15b of the check valve 15 to move the needle 15a upward and open the outlet 15e.
[0029]
Then, the compressor 1 is operated, and the refrigerant liquefied by the condenser 2 flows into the chamber 15f from the inlet 15c of the check valve 15, and then flows out from the outlet 15d to evaporate the freezer expansion device 3 and the freezer compartment. Heat is taken from the surrounding air while expanding and drying in the vessel 4, and the refrigerant liquefied in the condenser 2 flows into the chamber 15 f from the inlet 15 c of the check valve 15 and then opened. The refrigerant flows out from the outlet 15e of the valve 15, flows away from the surrounding air while being expanded and dried and vaporized in the refrigerator for the refrigerator compartment 6 and the evaporator for the refrigerator compartment 7, and the refrigerant returns to the compressor 1 in the vaporized state. It becomes.
[0030]
At this time, the refrigerant is separated into gas and liquid in the chamber 15f of the check valve 15, the refrigerant mainly composed of gas refrigerant is present above, and the refrigerant mainly composed of liquid refrigerant is present below. The volume is set.
[0031]
The outlet 15d is located in the refrigerant region mainly composed of the upper gas refrigerant, and the outlet 15e is located in the refrigerant region mainly composed of the lower liquid refrigerant. The refrigerant flowing through the freezer compartment evaporator 4 is mainly composed of a gas refrigerant, and the refrigerant flowing through the refrigerator compartment evaporator 7 through the refrigerator compartment evaporator 7 is mainly composed of liquid refrigerant. The squeezing amount of the refrigerating room squeezing device 6 is reduced to a smaller amount than the squeezing amount of the freezing room squeezing device 3. Even if it is set, a stable refrigerant flow as set can be obtained from the outlet 15d and the outlet 15e to the freezing chamber expansion device 3 and the refrigerating chamber expansion device 6, respectively.
[0032]
In the above, when the refrigerant at the outlet 15d flowing through the freezer expansion device 3 to the freezer evaporator 4 is only a wet gas refrigerant, the cooling capacity is lowered, but the refrigerant flow is stable. When the refrigerant at the outlet 15d flowing through the freezing chamber expansion device 3 to the freezing chamber evaporator 4 is a gas-liquid refrigerant and has a large liquid ratio, the refrigerating capacity is improved. However, the instability of the refrigerant flow increases. When the refrigerant flow becomes unstable, the difference between the amount of restriction of the refrigerating room expansion device 6 and the amount of expansion of the freezing room expansion device 3 may be reduced to stabilize the refrigerant flow. .
[0033]
In addition, when the fluid passing through a predetermined throttle device (for example: capillary tube) is liquid and gas, the fluid resistance when the same volume passes for a predetermined time is that the liquid passes through the throttle device due to the influence of its viscosity. Therefore, when the refrigerant flows through the refrigerating chamber expansion device 6 and the freezing chamber expansion device 3 at the same time, only the refrigerating chamber expansion device 6 is used rather than the liquid refrigerant flowing through both the expansion devices. When the liquid refrigerant flows and the other freezing chamber expansion device 3 flows with gas refrigerant, the combined fluid resistance of the refrigerating chamber expansion device 6 and the freezing chamber expansion device 3 becomes lower.
[0034]
Therefore, compared with the case where the refrigerant mainly composed of liquid refrigerant flows through the refrigerating room expansion apparatus 6 and the freezing room expansion apparatus 3 simultaneously, the refrigerant mainly composed of liquid refrigerant flows only in the refrigerating room expansion apparatus 6, and the other In the freezer compartment throttle device 3, when the refrigerant mainly composed of a gas refrigerant flows, the combined fluid resistance is lower, and the evaporation temperature is balanced to a higher level. As a result, the refrigerant flow in which the evaporation temperature of the refrigerator compartment evaporator 7 is stable. It can be set high while maintaining the state.
[0035]
Further, since the refrigerant mainly composed of liquid refrigerant flows to the refrigerating room expansion device 6 side, the cooling power on the refrigerating room evaporator 7 side can be kept high, and the evaporator capacity on the refrigerating room evaporator 7 side is increased. .
[0036]
Then, the check valve 15 main body is appropriately tilted to adjust the height relationship between the refrigerant surface mainly composed of liquid refrigerant and the outlet 15d, thereby passing through the refrigerator for the refrigerator compartment 6 from the outlet 15e. The refrigerant flowing to the evaporator 7 is a refrigerant mainly composed of liquid refrigerant, and the refrigerant flowing from the outlet 15d to the freezing chamber expansion device 3 can be set to be a refrigerant mainly composed of gas refrigerant. A refrigerating cycle in which the gas-liquid ratio of the flowing refrigerant is appropriately adjusted, and the refrigerants stably flow through the freezer compartment evaporator 4 and the refrigerator compartment evaporator 7 at the same time and maintain the optimum cooling state of each of the evaporators. Is obtained.
[0037]
In addition, what is necessary is just to set the position of each said outlet in the moderate position with respect to the refrigerant | coolant surface which mainly has a liquid refrigerant according to the setting conditions. In this figure, the refrigerant surface mainly composed of liquid refrigerant is at an appropriate position, and the check valve 15 does not need to be inclined, and is an example when the necessary setting conditions are satisfied.
[0038]
Therefore, the check valve 15 is separated into a refrigerant mainly composed of liquid refrigerant and a refrigerant mainly composed of gas refrigerant, and in accordance with cycle setting conditions, each of the plurality of outlets of the branch valve has a refrigerant side mainly composed of liquid refrigerant. If it is located at or near one of the refrigerant sides mainly composed of gas refrigerant, the gas-liquid ratio of the refrigerant flowing through each of them will be adjusted appropriately. A refrigeration cycle will be obtained that maintains the optimum cooling power for each of the flowing evaporators.
[0039]
In addition, it is good to fix the check valve 15 to the refrigerator main body in the adjusted state of the check valve 15 main body as described above.
[0040]
If a common throttle device (not shown) is provided between the condenser 2 and the check valve 15 which is the branch valve 5 and the pressure is reduced to some extent, the refrigerant liquefied in the condenser 2 is The refrigerant passes through a common throttle device to become a gas-liquid refrigerant. In the chamber 15f of the check valve 15, the refrigerant is gas-liquid separated. A refrigerant mainly composed of a gas refrigerant is located above, and a refrigerant mainly composed of a liquid refrigerant is located below. It becomes easier to exist.
[0041]
When the check valve 15 closes the outlet 15e with the needle 15a, a part of the needle 15a is buried in a refrigerant mainly composed of a liquid refrigerant. If the liquid level of the refrigerant mainly composed of the refrigerant rises and the outlet 15d is always covered with the refrigerant mainly composed of the liquid refrigerant during the refrigeration cycle operation, the freezing chamber expansion device 3 always has the liquid refrigerant. Thus, the refrigerant mainly flows out from the outlet 15d, and the evaporator capacity on the freezer compartment evaporator 4 side can always be kept large, and the cooling capacity of the freezer compartment evaporator 4 is improved.
[0042]
Furthermore, even if the inlet 15c is provided in a region other than the region of the needle 15a and the outlet 15e when the outlet 15e is closed by the needle 15a, the same effect as described above can be obtained.
[0043]
In FIG. 3, this figure is a schematic view of a three-way valve 16 serving as the branch valve 5, which has an opening / closing valve mechanism 16b including a ball 16a for opening / closing the outlet, and has an inlet 16c and two outlets 16d, 16e. I have. The ball 16a is always subjected to a force that is lifted upward from below by a coil spring (not shown) or the like.
[0044]
Further, the inlet 16c and the outlets 16d, 16e are on the same side, and the on-off valve mechanism 16b rotates in a substantially horizontal direction (the rotation axis is an axis passing through the center in the left-right direction of the three-way valve 16). The ball 16a moves up and down on the outlet 16e, and the outlet 16e is opened and closed by the ball 16a, so that the outlet 16e can be opened and closed.
[0045]
Further, the inlet 16c of the three-way valve 16 is connected to the condenser 2, the outlet 16d is connected to the freezing chamber expansion device 3, and the outlet 16e is connected to the refrigerating chamber expansion device 6. In this figure, the ball 16a is provided only above the outlet 16e, but a similar ball or the like may be provided above the outlet 16d so as to be openable and closable.
[0046]
When both the freezer compartment 10 and the refrigerator compartment 12 are higher than a set temperature (for example: set temperature: freezer compartment 10 = −18 ° C., refrigerator compartment 12 = 5 ° C.), the freezer compartment temperature sensing device 13 and the refrigerator compartment temperature sensor The device 14 senses the room temperature, and the control device (not shown) rotates the on-off valve mechanism 16b of the three-way valve 16 in a substantially horizontal direction, whereby the ball 16a moves upward, and the outlet 16e is as shown in FIG. Opened.
[0047]
Then, the compressor 1 is operated, and the refrigerant liquefied in the condenser 2 passes through the freezing chamber expansion device 3 from the outlet 16d of the three-way valve 16 and is expanded and dried and vaporized in the freezing chamber evaporator 4. Then, the refrigerant liquefied by the condenser 2 flows from the outlet 16e of the opened three-way valve 16 through the refrigerating room expansion device 6 and is expanded and dried by the refrigerating room evaporator 7. Heat flows away from the surrounding air, and the refrigerant returns to the compressor 1 in a vaporized state.
[0048]
At this time, the refrigerant is separated into gas and liquid in the chamber 16f of the three-way valve 16, and the refrigerant mainly composed of gas refrigerant is present above and the refrigerant mainly composed of liquid refrigerant is present below. The volume is set.
[0049]
The outlet 16d is located in the refrigerant region mainly composed of the upper gas refrigerant, and the outlet 16e is located in the refrigerant region mainly composed of the lower liquid refrigerant. The refrigerant flowing through the freezer compartment evaporator 4 is mainly composed of a gas refrigerant, and the refrigerant flowing through the refrigerator compartment evaporator 7 through the refrigerator compartment evaporator 7 is mainly composed of liquid refrigerant. The squeezing amount of the refrigerating room squeezing device 6 is reduced to a smaller amount than the squeezing amount of the freezing room squeezing device 3. Even if it is set, a stable refrigerant flow as set can be obtained from the outlet 16d and the outlet 16e to the freezing chamber expansion device 3 and the refrigerating chamber expansion device 6, respectively.
[0050]
In addition, when the refrigerant at the outlet 16d flowing through the freezing chamber expansion device 3 to the freezing chamber evaporator 4 is only the wet gas refrigerant, the freezing chamber evaporation is performed through the freezing chamber expansion device 3. When the refrigerant at the outlet 16d flowing into the container 4 is a gas-liquid refrigerant and has a large liquid ratio, or the refrigerant mainly composed of liquid refrigerant flows only in the refrigerating chamber expansion device 6, and the other freezer compartment The characteristics of the throttle device 3 when a refrigerant mainly composed of a gas refrigerant flows are the same as when the check valve is used.
[0051]
Then, the three-way valve 16 main body as shown in FIG. 3 is appropriately inclined to adjust the height relationship between the refrigerant surface mainly composed of liquid refrigerant and the outlet 16d, whereby the freezer compartment expansion device 3 is provided from the outlet 16d. The gas-liquid ratio of the refrigerant mainly composed of the gas refrigerant flowing in the refrigerant is adjusted, and the optimal cooling power state of each of the evaporators in which the refrigerant stably flows through the freezer compartment evaporator 4 and the refrigerator compartment evaporator 7 simultaneously. The refrigeration cycle that keeps the temperature is obtained, and the three-way valve 16 main body is inclined and fixed to the refrigerator main body.
[0052]
If a common throttle device (not shown) is provided between the condenser 2 and the three-way valve 16 serving as the branch valve 5 and the pressure is reduced to some extent, the same as with the check valve 15 in FIG. The refrigerant liquefied in the condenser 2 passes through the common throttle device and becomes a gas-liquid refrigerant. The refrigerant is gas-liquid separated in the chamber 16f of the three-way valve 16, and the refrigerant mainly composed of a gas refrigerant is provided above. However, a refrigerant mainly composed of a liquid refrigerant is more likely to exist below.
[0053]
In addition, if the difference in height between the outlet 16d and the outlet 16e is 1.5 mm or more, the above-mentioned effect due to gas-liquid separation can be obtained sufficiently. The three-way valve 16 as shown in FIG. In the case of a structure in which the positions of the outlet 16d and the outlet 16e are in the horizontal position, specifically, the horizontal interval between the outlet 16d and the outlet 16e is 8.5 mm, and the three-way valve 16 If the three-way valve 16 is inclined so that the rotation axis of the on-off valve mechanism 16b is inclined by 15 °, and the outlet 16e is set to be approximately 2.2 mm lower than the outlet 16d in the vertical direction as shown in FIG. Therefore, the refrigerator can be obtained stably and has high productivity.
[0054]
The same effect can be obtained even if the inlet 16c of the three-way valve 16 is provided on the side, and further, the outlet 16d of the three-way valve 16 can be provided at a position corresponding to the outlet 15d of the check valve 15. The same effect as above can be obtained.
[0055]
Further, the inclination angle of the branch valve 5 such as the check valve 15 or the three-way valve 16 can be set to a fixed value (for example, 12 °, 15 °, 17 °, etc.), so that variations in the refrigeration cycle in mass production can be achieved. High-efficiency refrigerator with more stable cooling state that can be fine-tuned on the cycle by adapting to (combination in combination of throttling device, evaporator, condenser, compressor, refrigerant charge amount, etc.) Is obtained.
[0056]
Further, when a common throttle device (not shown) is provided, if the common throttle device is set to a throttle amount equivalent to a predetermined dedicated throttle device (for example, a refrigerator compartment throttle device), the dedicated throttle device Can be omitted, the refrigeration cycle can be simplified, and workability, quality reliability, and cost are improved.
[0057]
The above is an example of a refrigeration cycle provided with an evaporator for a freezer compartment 4 and an evaporator for a refrigerator compartment 7, but a plurality of other evaporators are provided in the same manner as each of the evaporators. When the respective throttle devices are connected to the outlets of the check valve 15 and the three-way valve 16 which are the branch valves 5 and the outlets satisfying the setting conditions, It is obvious that the same effect as described above can be obtained by changing the gas-liquid mixing ratio of the flow, such that the refrigeration capacity can be changed.
[0058]
【The invention's effect】
Since the refrigerator of the present invention is configured as described above, according to the present invention, when a refrigerator compartment, a freezer compartment, etc. are provided, the refrigerator compartment, the freezer compartment, and the other storage compartments are optimal according to their load fluctuations. A cooling effect is obtained, and a refrigerator having a highly efficient refrigeration cycle with little energy loss is obtained. Moreover, it is possible to obtain a refrigeration cycle capable of stably flowing refrigerant simultaneously to a plurality of evaporators such as a freezer evaporator and a refrigerator refrigerator and maintaining the optimum cooling power state of each evaporator. .
[Brief description of the drawings]
FIG. 1 is an explanatory block diagram of a refrigerator according to the present invention.
FIG. 2 is an explanatory diagram of a check valve of the refrigerator of the present invention.
FIG. 3 is an explanatory diagram of a three-way valve of the refrigerator of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Compressor 2 Condenser 3 Freezer compartment throttle device 4 Freezer compartment evaporator 5 Branch valve 6 Refrigerator compartment throttle device 7 Refrigerator compartment evaporator 10 Freezer compartment 12 Refrigerator compartment 15 Check valve 15a Needle 15d Exit (open outlet)
15e Exit (open / close exit)
16 Three-way valve 16d Outlet 16e Outlet

Claims (3)

冷蔵室と、冷凍室と、冷媒が流通する冷媒流路と、冷媒の流通により冷凍サイクルを運転する圧縮機と、前記圧縮機の吐出側に接続される凝縮器と、前記凝縮器の吐出側と前記圧縮機の吸込側の間に配されるとともに前記冷蔵室及び前記冷凍室の内で前記冷蔵室のみに流入する冷気を生成する冷蔵室用蒸発器と、前記凝縮器の吐出側と前記圧縮機の吸込側の間に前記冷蔵室用蒸発器と並列に配されるとともに前記冷蔵室及び前記冷凍室の内で前記冷凍室のみに流入する冷気を生成する冷凍室用蒸発器と、前記冷蔵室用蒸発器に対応して設けられる第1絞り装置と、前記冷凍室用蒸発器に対応して設けられる第2絞り装置と、前記凝縮器の吐出側で分岐される前記冷媒流路の分岐点に配される分岐弁とを備え、
前記分岐弁は、チャンバーの底面に設けられて第1絞り装置に接続される第1出口部と、第1出口部を開閉するニードルと、前記チャンバーの側面に設けられて冷媒が流入する入口部と、前記チャンバーの側面に設けられて前記ニードルにより第1出口部を閉じた際に液冷媒内に前記ニードルの一部が埋没することにより液面が上昇した液冷媒によって常に覆われるとともに第1出口部を開いた際に下降する液冷媒の液面よりも上方に配される第2出口部とを有して、第1出口部を開いて前記冷蔵室用蒸発器及び前記冷凍室用蒸発器に冷媒を供給する状態と第1出口部を閉じて前記冷凍室用蒸発器のみに冷媒を供給する状態とに切り替え、
前記分岐弁から前記冷蔵室用蒸発器及び前記冷凍室用蒸発器に冷媒を供給する際に、第1絞り装置に送り出す冷媒が液冷媒を主体として第2絞り装置に送り出す冷媒がガス冷媒を主体とするとともに、第1絞り装置の減圧量を第2絞り装置の減圧量よりも小さくしたことを特徴とする冷蔵庫。
A refrigerating room, a freezing room, a refrigerant flow path through which a refrigerant flows, a compressor that operates a refrigeration cycle by the circulation of the refrigerant, a condenser connected to a discharge side of the compressor, and a discharge side of the condenser And an evaporator for a refrigerating chamber that is arranged between the suction side of the compressor and that generates cold air that flows only into the refrigerating chamber among the refrigerating chamber and the freezing chamber, the discharge side of the condenser, and the A freezer compartment evaporator that is arranged in parallel with the refrigerating compartment evaporator between the suction sides of the compressor and that generates cold air that flows only into the freezer compartment within the refrigerating compartment and the freezer compartment, and A first throttle device provided corresponding to the refrigerator for the refrigerator compartment, a second throttle device provided corresponding to the evaporator for the freezer compartment, and the refrigerant flow path branched on the discharge side of the condenser A branch valve arranged at the branch point,
The branch valve is provided on the bottom surface of the chamber and connected to the first throttling device, a needle that opens and closes the first outlet portion, and an inlet portion that is provided on a side surface of the chamber and into which the refrigerant flows. When the first outlet portion is closed by the needle and is provided on the side surface of the chamber, the liquid surface is always covered by the liquid refrigerant whose liquid level has risen due to part of the needle being buried in the liquid refrigerant. A second outlet portion disposed above the liquid level of the liquid refrigerant that descends when the outlet portion is opened, and the first outlet portion is opened to evaporate the refrigerator compartment and the freezer compartment. Switching between a state in which the refrigerant is supplied to the refrigerator and a state in which the first outlet is closed and the refrigerant is supplied only to the freezer evaporator,
When the refrigerant is supplied from the branch valve to the refrigerator for the refrigerator compartment and the evaporator for the freezer compartment, the refrigerant sent out to the first throttling device is mainly liquid refrigerant and the refrigerant sent out to the second throttling device is mainly gas refrigerant. And a decompression amount of the first throttling device smaller than that of the second throttling device .
前記凝縮器と前記分岐弁の間に第3絞り装置を設けたことを特徴とする請求項1に記載の冷蔵庫。The refrigerator according to claim 1 , wherein a third expansion device is provided between the condenser and the branch valve . 第3絞り装置によって第1絞り装置または第2絞り装置を兼ねたことを特徴とする請求項2に記載の冷蔵庫。 The refrigerator according to claim 2, wherein the third diaphragm device also serves as the first diaphragm device or the second diaphragm device .
JP2000312891A 2000-10-13 2000-10-13 refrigerator Expired - Fee Related JP4380905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000312891A JP4380905B2 (en) 2000-10-13 2000-10-13 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000312891A JP4380905B2 (en) 2000-10-13 2000-10-13 refrigerator

Publications (2)

Publication Number Publication Date
JP2002122374A JP2002122374A (en) 2002-04-26
JP4380905B2 true JP4380905B2 (en) 2009-12-09

Family

ID=18792392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000312891A Expired - Fee Related JP4380905B2 (en) 2000-10-13 2000-10-13 refrigerator

Country Status (1)

Country Link
JP (1) JP4380905B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3158275A4 (en) * 2014-06-19 2018-01-03 LG Electronics Inc. Refrigerator

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010119591A1 (en) 2009-04-17 2010-10-21 シャープ株式会社 Freezer-refrigerator and cooling storage unit
CN110398111B (en) * 2019-08-28 2023-08-25 长虹美菱股份有限公司 Accurate humidifying device of air-cooled refrigerator and control method thereof
CN110398112B (en) * 2019-08-30 2023-09-15 长虹美菱股份有限公司 Accurate humidity-adjusting chamber of air-cooled refrigerator and control method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3158275A4 (en) * 2014-06-19 2018-01-03 LG Electronics Inc. Refrigerator
US10041716B2 (en) 2014-06-19 2018-08-07 Lg Electronics Inc. Refrigerator

Also Published As

Publication number Publication date
JP2002122374A (en) 2002-04-26

Similar Documents

Publication Publication Date Title
US6935127B2 (en) Refrigerator
JP4954484B2 (en) Cooling storage
TWI257472B (en) Refrigerator
EP3093588B1 (en) Refrigerator and method for controlling a refrigerator
US9857103B2 (en) Refrigerator having a condensation loop between a receiver and an evaporator
KR20030062212A (en) Refrigerator
KR20170067559A (en) A refrigerator and a method for controlling the same
JP4178646B2 (en) refrigerator
JP3515920B2 (en) refrigerator
JP4380905B2 (en) refrigerator
JPH11148761A (en) Refrigerator
KR101651328B1 (en) Refrigerator and control method the same
JPH1047826A (en) Freezing refrigerator
JPH07103588A (en) Freezer-refrigerator
JP2005156108A (en) Refrigerator
KR20210069360A (en) Refrigerator and method for controlling the same
JP3710353B2 (en) refrigerator
KR20220093973A (en) Refrigerator and control method thereof
JP3404313B2 (en) refrigerator
KR20210069363A (en) Refrigerator and method for controlling the same
JP2005134080A (en) Refrigerator
JP4175847B2 (en) refrigerator
KR100249195B1 (en) Refrigerator
JP2005257247A (en) Refrigerator
JP2005140483A (en) Refrigerator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060407

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070111

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070219

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090604

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees