JP2000037196A - アンモニア耐性l(+)−乳酸産生能菌およびl(+)−乳酸の生産方法 - Google Patents

アンモニア耐性l(+)−乳酸産生能菌およびl(+)−乳酸の生産方法

Info

Publication number
JP2000037196A
JP2000037196A JP10209713A JP20971398A JP2000037196A JP 2000037196 A JP2000037196 A JP 2000037196A JP 10209713 A JP10209713 A JP 10209713A JP 20971398 A JP20971398 A JP 20971398A JP 2000037196 A JP2000037196 A JP 2000037196A
Authority
JP
Japan
Prior art keywords
lactic acid
rhizopus
strain
ammonia
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10209713A
Other languages
English (en)
Other versions
JP4132253B2 (ja
Inventor
Mitsuyasu Okabe
満康 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Musashino Chemical Laboratory Ltd
Original Assignee
Musashino Chemical Laboratory Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Musashino Chemical Laboratory Ltd filed Critical Musashino Chemical Laboratory Ltd
Priority to JP20971398A priority Critical patent/JP4132253B2/ja
Priority to CN 99119265 priority patent/CN1252244C/zh
Publication of JP2000037196A publication Critical patent/JP2000037196A/ja
Application granted granted Critical
Publication of JP4132253B2 publication Critical patent/JP4132253B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

(57)【要約】 【課題】 新規なリゾプス属に属するアンモニア耐性を
有するL(+)−乳酸産生能菌、およびこれを用いた高
収率でL(+)−乳酸を製造する方法を提供する。 【解決手段】 リゾプス・エスピーMK96(Rhizopus
sp.MK96)株をニトロソグアニジンで変異して得られ
たアンモニア耐性を有するL(+)−乳酸産生能菌、特
に、リゾプス・エスピーMK96−1156(Rhizopus
sp.MK96-1156)菌株を使用すること好ましい。 L
(+)−乳酸は、上記菌株を好気的に培養してL(+)
−乳酸を生産することができ、培養液のpHの調整がア
ンモニアの添加によることが好ましい。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、リゾプス属に属す
るアンモニア耐性を有するL(+)−乳酸産生菌および
当該菌を用いてL(+)−乳酸を生産する方法に関し、
より詳細には、親株であるリゾプス・エスピーMK96
(Rhizopus sp.MK96)をニトソログアニジンで変異し
て得られたアンモニア耐性を有するL(+)−乳酸産生
菌、すなわちリゾプス・エスピーMK96−1156自
体、及びこれを用いて好気的な条件においてアンモニア
を中和剤として培養液のpHを調整し、高収率でL
(+)−乳酸を製造する方法に関する。
【0002】
【従来技術】乳酸は、食品添加物として清酒、清涼飲
料、漬物、醤油、製パン、ビールなどの製造に使用さ
れ、また、皮革、繊維、プラスチックなどの工業用に利
用される有用な化合物である。
【0003】現在、発酵法による乳酸の生産には、分裂
菌類に含まれるラクトバシラス(Lactobacillus)、ラ
クトコッカス(Lactococcus)などのいわゆる乳酸菌と
呼ばれる細菌を嫌気的に培養する乳酸発酵が一般的に行
われている。乳酸菌培養は、糖、澱粉などを主原料とし
て、これに酵母エキスなどの栄養源を副原料として加え
た培地が使用されている。これらラクトバシラス(Lact
obacillus)、ラクトコッカス(Lactococcus)などのバ
クテリアによる乳酸発酵は簡単で、しかも乳酸が高収率
で得られるという利点があるが、一般に酵母エキスなど
の副原料は高価であるため、得られるL(+)−乳酸も
高価となる。また、これらのバクテリアは1μm以下程
度の大きさのため培地との分離が容易でなく、培養処理
の作業性が悪い。
【0004】一方、リゾプス属などの糸状菌を用いて炭
酸カルシウムを含む培養液中で、好気的培養により乳酸
を生産する方法がある。糖からの乳酸の収率は70〜8
0%程度であるが、グルコースなどの単糖を炭素源とで
きかつ培地成分として糖以外に少量の無機塩のみの要求
ですむことから、発酵後の培地中の不純物を比較的少な
くできる。例えば、クリストコフ等(L.Kristofikova,
M.Rosenberg, A.Vlnove, J.Sajbidor and M.Certik Fol
ia Microbiol, 36(5), 451-455 (1991))は、リゾプス
・アリズスCCM8109(Rhizopus arrhizus CCM810
9)から、グルコースを炭素源として79g/リットルの
乳酸を生産している。
【0005】また、リゾプス・オリゼNRRL395
(Rhizopus oryzae NRRL395)の菌体を用いて乳酸を生
産する方法もある。例えば、ヤング等により(C. W. Ya
ng, Zhongjing Lu and Geroge T. Tsaso; Applid Bioc
hemistry and Biotechnology vol 51/52 p57-71, 199
5)、当該菌体を好気的条件下で培養し、炭酸カルシウ
ムを添加した培養液で収率78%で乳酸を産生する方法
が開示されている。
【0006】また上記リゾプス属の菌体は集合体(ペレ
ット)となりやすく、簡単に培地と分離できるため発酵
後の培地から乳酸と当該ペレットとの分離精製が容易で
ある。こうしたペレットの利点を利用したものとして、
リゾプス・オリゼNRRL395(Rhizopus oryzae NRR
L395)を用いて、キシロースを炭素源とする液体培養で
菌体ペレットを形成させ、このペレットを用いてグルコ
ースから乳酸を生産させる方法がある。例えば、ソッコ
ル等(C.R.Soccol, B.Marin, M.Raimbault; Appl Micro
biol Biotechnol 41, 286-290 (1991))は、得られた菌
体ペレットを中和剤たる炭酸カルシウムを含有する培養
液中で好気的に発酵培養し約75%の収率で乳酸を得て
いる。この方法によれば、このペレットを炭酸カルシウ
ムを含む培養液中で培養し、炭素源たるグルコースが消
費される毎に新たな培養液で培養することにより、連続
的に乳酸が生産されている。
【0007】この様に、リゾプス属の菌株を好気的に培
養しグルコースやデンプンを原料としてL(+)−乳酸
を生産する場合、乳酸菌を用いる場合と比較して種々の
利点がある。
【0008】
【発明が解決しようとする課題】しかしながら、リゾプ
スによる好気的培養によるL(+)−乳酸の産生は一般
に収率が低く、発酵に7〜10日を要するものが多く乳
酸生産に長持間を要する。このため乳酸菌を用いた嫌気
的発酵に比較して工業的実用性に欠ける。
【0009】また、上記ソッコル等により、リゾプスを
再使用した連続培養も報告されているが、かかる菌株を
使用した場合は、3回目以降で乳酸産生の減退が大きく
なり、これを防ぐため培養液に窒素源として尿素を添加
する必要がある。
【0010】また、一般に乳酸産生菌によるL(+)−
乳酸の生産方法では、生産されたL(+)−乳酸による
生成物阻害を抑制しかつ培養液の酸性度を中和すべく、
炭酸カルシウムや水酸化ナトリウムを中和剤としてL
(+)−乳酸を中和する必要がある。高収率で乳酸を得
る場合、現在知られているリゾプス属による乳酸発酵は
殆どが炭酸カルシウムを中和剤として用いるものであ
り、生成する乳酸カルシウムから乳酸を分離精製するに
は、硫酸を添加して硫酸カルシウムを沈澱分離する方法
を用いる以外になく、大量の硫酸カルシウムを副生する
ため工業的に問題がある。かかる場合、アンモニアを中
和剤に用いて乳酸アンモニウムを得る場合には、アンモ
ニアによる菌体活性阻害により、収率および生産性の面
でも不十分なものとなりやすい。更に、上記ソッコル等
は、生成する酸の中和剤として炭酸カルシウム等を使用
せず、ポリ4−ビニルピロリドン(PVP)樹脂でL
(+)−乳酸を吸着分離しているが、細胞が損傷を受け
るため生産量が低下するという問題点を指摘している。
【0011】また、乳酸は、多糖を含む糖類から菌体内
の諸酵素により産生されるが、使用する菌株自体の栄養
要求性が複雑であれば、培養液中に各種の成分を配合し
なければならず、かかる培養液から乳酸産生菌株が産生
した乳酸を単離することは困難であり、収率よく高純度
の乳酸を製造することは容易でない。また、培養条件に
よっては副生物が生じるため、乳酸の精製段階を簡便に
するには、副生物の発生が少ない培養条件を選択する必
要がある。一方、菌体を効率よく使用するためには乳酸
産生菌体を再使用することが好ましいが、一般に菌株を
再使用すると栄養要求性を十分に満たすことが困難で、
乳酸産生能が低下する場合が多い。このため、再使用に
強い菌株を選択する必要がある。
【0012】
【課題を解決するための手段】本発明は上記課題に鑑
み、リゾプス・エスピーMK96(Rhizopus
sp.MK96)をニトロソグアニジンで変異して得
られたアンモニア耐性を有するL(+)−乳酸産生能菌
を提供するものである。
【0013】また、リゾプス・エスピーMK96−11
56(Rhizopus sp.MK96ー1156)
菌株を提供するものである。
【0014】また、前記菌株を好気的に培養してL
(+)−乳酸を生産する方法を提供するものである。
【0015】また、培養液のpHの調整がアンモニアの
添加によることを特徴とする前記L(+)−乳酸を生産
する方法を提供するものである。
【0016】また、前記好気的培養が、空気または酸素
の導入により連続的に、新たな培養液毎に回分式に、ま
たは新たな培養液を供給し半回分式に培養することを特
徴とする前記のL(+)−乳酸を生産する方法を提供す
るものである。
【0017】また、前記好気的培養が回分式に行われる
場合において、前培養することなく菌体を再使用し回分
式に培養することを特徴とする前記L(+)−乳酸を生
産する方法を提供するものである。
【0018】また、前記好気的培養が、通気撹拌型バイ
オリアクターまたは気泡塔型バイオリアクターにより行
われることを特徴とする前記L(+)−乳酸を生産する
方法を提供するものである。
【0019】また、リゾプス・エスピーMK96(Rhiz
opus sp.MK96)を提供するものである。
【0020】
【発明の実施の形態】本発明では、リゾプスに属しアン
モニア耐性を有するL(+)−乳酸生産菌であればいず
れも使用できる。リゾプスに属する乳酸発酵能を有する
微生物としては、例えば、リゾプス・アリズス(Rhizop
us arrhizus)、リゾプス・デレマ(Rhizopus delema
r)、リゾプス・ジャバニクス(Rhizopus javanicu
s)、クロネ(Rhizopus nigricans)、リゾプス・オリ
ゼ(Rhizopus oryzae)、クモノスカビ(リゾプス)(R
hizopus stolonifer)等が挙げられ、これらの中でもリ
ゾプス・オリゼ(Rhizopus oryzae)やリゾプス・アリ
ズス(Rhizopus arrhizus)が好ましい。L(+)−乳
酸産生能が高いからである。これらのリゾプス属に属す
る乳酸発酵能を有する菌類は、ペレット状、塊状で培養
できるからである。
【0021】本発明で使用するL(+)−乳酸生産菌
は、更にアンモニア耐性を有することが必要である。こ
の様な菌株として、本発明者らによって新たに土壌から
分離された親株リゾプス・エスピーMK96(Rhizopus
sp.MK96)を以下に述べる方法で突然変異して得られ
た変異株リゾプス・エスピーMK96−1156(Rhiz
opus sp.MK96−1156)菌株がある。即ち、本発明者
は上記目的を解決すべく、アンモニア耐性を有するL
(+)−乳酸産生菌の取得を目的として新たに自然界か
らL(+)−乳酸を生産するリゾプス属の菌体を分離
し、変異処理によりアンモニア耐性を付与し、高いL
(+)−乳酸産生能を示す菌株を得るに至った。これに
よりアンモニアを中和剤として用いた場合にも、収率の
低下を招くことなくL(+)−乳酸を産生させることが
できるからである。
【0022】(1) 親株の1次スクリーニング 水田土壌から採取した試料1gを5mlの滅菌蒸留水に
懸濁し、試料原液を調製した。これを適当に希釈した最
終希釈液を0.1mlづつコンラージ棒を用いて、L
(+)−乳酸を含む表1に示すポテト寒天培地の分離用
寒天培地に塗布した。接種後24℃の恒温槽中で培養
し、3日目位から発達してくるコロニーを白金耳を用い
て釣り上げ表1に示す組成の斜面培養寒天培地に移植し
た。土壌試料1点について約50株、土壌試料100点
について実施し、合計約3500のカビと推定される菌
株を分離した。これらの菌株のうち、斜面培養寒天培地
での菌の形態がリゾプス属に近いと思われる菌株を80
0本選択し、一次スクリーニング通過株とした。なお表
1に示す各寒天培地の組成は、蒸留水1リットル中のg
数を示す。
【0023】
【表1】
【0024】(2) 試験管振盪培養による2次スクリ
ーニング 10mlの表2に示す前培養培地に、前記斜面培養寒天
培地上の胞子を1白金耳接種し、試験管振盪培養装置で
2日間培養した。この前培養培地1mlを表2に示す生
産培地10mlを入れた試験管に接種し、前培養と同様
の方法で1日間振盪培養した。その後、炭酸カルシウム
を1g添加し、更に2日間振盪培養した。培養上澄につ
いてバーカーサマーソン法でL(+)−乳酸を比色定量
した。1次スクリーニング通過株800株全てについて
L(+)−乳酸蓄積量を調べたところ、静岡県藤枝市付
近の水田から採取した土壌サンプルから得た菌株がその
中で最も高いL(+)−乳酸蓄積量を示すことが判明
し、本菌株をリゾプス・エスピーMK96(Rhizopus s
p.MK96)と命名した。
【0025】
【表2】
【0026】(3) リゾプス・エスピーMK96の菌
学的特徴 本菌株の菌学的性質を以下に述べる。
【0027】(a)形態的特徴;ポテト寒天培地で24
℃で生育したリゾプス・エスピーMK96株の形態学的
特徴は、以下の通りである。
【0028】イ)胞子(sporangium)に中軸がある。
【0029】ロ)胞子嚢のみを形成し、球形である。
【0030】ハ)胞子嚢柄(sporangiophore)は蒼白色
である。
【0031】ニ)仮根(Rhizoid)と走出根(stolon)
がある。
【0032】ホ)胞子嚢柄は仮根の基部から生じてい
る。
【0033】ヘ)胞子嚢も菌糸層もよく発達している。
【0034】(b)生理学的特徴;表3に示すツアペッ
ク(Czapek)培地を用いて本菌の生育に与える培地温度
並びに初発pHの影響を調べた。結果を表4〜7に示
す。
【0035】
【表3】
【0036】
【表4】
【0037】
【表5】
【0038】
【表6】
【0039】
【表7】
【0040】(4)同定 以上の形態学的ならびに生理学的特徴から本菌(リゾプ
ス・エスピーMK96株)の菌学的同定を試みた。チシ
ャ等の分類基準(Zycha,H.,Siepmann and G.Limmemann:
Mucorales,lehre(1969))に従い、本菌の胞子嚢形態が
球形または扁球形であること、多胞子からなること、中
軸があることから、本菌は明らかにムコラッセ(Mukora
ceae)(ケカビ)科の接合菌であるとした。またヘセル
チン(Hesseltine)およびエリス(Ellis)らの提案し
たムコラッセ(Mucoraceae)目の検索に従い、本菌の胞
子嚢がアポフィーゼを備えていること、胞子嚢柄は、葡
萄菌糸より生じ、仮根を伴い、かつ菌糸の仮根形成部よ
り直立していることから本菌は、リゾプス(Rhizopus)
(クモノスカビ)に属するものとした。
【0041】リゾプス属は現在15種報告されている
が、イヌイ等(Inui,T.,Takeda,Y.andIizuka,H.,Taxono
mical studies on genus Rhizopus, The Journal of G
eneral and Applied Microbiology, 11,1-121(1965))
が提案した検索表に従い、本菌に近縁していると思われ
るリゾプス・オリゼ・ウェント・アンド・プリンセン・
ゲーリングス(Rhizopus oryzae Went and Prinsen-Gee
rlings)と対比しながら本菌の詳細な同定を行った。
【0042】本菌は、形態学的特徴およびツアペック培
地での生理学的特徴などから判断して、リゾプス・オリ
ゼ・ウェント・アンド・プリンセン・ゲーリングス株に
極めて近縁の菌株と思われた。しかし、表8で示したご
とくL(+)−乳酸の生産量がリゾプス・オリゼ(Rhiz
opus oryzae)のタイプカルチャーに比較して4倍近く
高い。この結果、本菌は新規な菌株であるとみなし、リ
ゾプス・エスピーMK96(Rhizopus sp.MK96)株と
命名した。リゾプス・エスピーMK96(Rhizopus s
p.MK96)は、以下に述べる有用な変異株リゾプス・エス
ピーMK96−1156菌株の親株として有用である。
なお、この菌株は、工業技術院微生物工業技術研究所に
微工研菌寄託第902号(FERM P−16876)
として寄託されている。
【0043】
【表8】
【0044】(5) リゾプス・エスピーMK96菌株
の突然変異処理によるアンモニア耐性を有するL(+)
−乳酸産生菌の誘導 ニトロソグアニジン(NTG)変異;上記リゾプス・エ
スピーMK96菌株を、表1で示した組成を有する斜面
培養寒天培地で24℃、10日間培養した。斜面に滅菌
水5mlを添加しよく胞子をかきとった後、この胞子懸
濁水をガーゼで包んだ綿の層を通過させ、胞子編を除い
た液を遠心分離して胞子のみを集めた。これをトリス−
マレート懸濁液に懸濁し、NTGを1mg/mlとなる
ように添加した後、胞子懸濁液を2.5時間、150分
間、24℃で振盪した。その後、遠心分離した胞子に滅
菌水5mlを加えて再び遠心分離を行った。この操作を
2回行い、胞子を完全に洗浄した後、L(+)−乳酸ア
ンモニウムの濃度勾配が0〜100g/lとなるように
作成した寒天培地(ペトリ皿)に塗布して24℃、3日
間培養を行った(濃度勾配プレート培養法、Science,11
6,46-48(1952))。次いで、L(+)−乳酸アンモニウ
ム濃度が比較的高い部分に生育してきたコロニーを釣菌
して24℃で10日間培養した。
【0045】(6) L(+)−乳酸高生産菌の選別 上記(5)で得た変異株を表2で示した生産培地10m
lを含む試験管に1白金耳接種して、試験管振盪培養装
置で35℃で1日間培養後、滅菌した炭酸カルシウム1
gを添加し、更に2日間培養した。培養上澄中のL
(+)−乳酸をバーカーエマーソン法で比色定量した。
菌株中フラスコ培養しL(+)−乳酸の生産量が比較的
高い菌株を10株選別し、後述する実施例1で示したジ
ャーファーメンターでアンモニアで中和する方法で比較
培養し、その中で最もL(+)−乳酸生産量が高かった
菌株をリゾプス・エスピーMK96−1156(Rhizop
us sp.MK96-1156)とした。この菌株は、工業技術院微
生物工業技術研究所に微工研菌寄託第903号(FER
M P−16877)として寄託されている。
【0046】(7) L(+)−乳酸の生産方法 本発明においてはアンモニア耐性を有するL(+)−乳
酸産生能菌を用いて好気的培養によりL(+)−乳酸を
産生させる。本発明で分離されたリゾプス・エスピーM
K96−1156菌株の胞子または菌糸を用いて、栄養
源含有培地に接種して好気的に増殖させることによって
L(+)−乳酸を生産することができる。
【0047】本発明においてはアンモニア耐性を有する
L(+)−乳酸産生能菌を分離育成し、これを通気撹拌
型もしくは気泡塔型バイオリアクターで好気的に回分、
半回分または連続培養することにより、さらには、菌体
の再利用を伴う反復回分培養を行うことによりL(+)
−乳酸を収率よく、しかも効率的に生産することができ
る。以下、L(+)−乳酸の製造方法を説明する。
【0048】アンモニア耐性を有するL(+)−乳酸産
生能菌の栄養源としては、通常使用される例えば炭水化
物、窒素源、無機物などの同化できる栄養源を使用でき
る。例えば炭素源としては、コーンスターチ、コーンミ
ール、デンプン、デキストリン、麦芽、ブドウ糖、グリ
セリン、シュクロース、糖蜜等が単独で又は混合物とし
て用いられる。窒素源としては、硫酸アンモニウム、硝
酸ナトリウム、大豆粉、コーンスティープリカー、グル
テンミール、肉エキス、脂肉骨粉、酵母エキス、乾燥酵
母、綿実粉、ペプトン、小麦胚芽、魚粉、ミートミー
ル、脱脂米糠、脱脂肉骨粉、麦芽エキス、コーングルテ
ンミール等の無機又は有機の窒素源を単独で又は混合物
として使用できる。無機塩としては、炭酸カルシウム、
塩化ナトリウム、塩化カリウム、硫酸マグネシウム、臭
化ナトリウム、ホウ酸ナトリウム又はリン酸第一カリウ
ム、硫酸亜鉛、硫酸マグネシウム等の各種無機塩が単独
でまたは混合物として使用できる。また、必要に応じ
て、鉄、マンガン、亜鉛、コバルト、モリブデン酸等の
重金属を微量添加することもできる。その他L(+)−
乳酸を生産するものであれば、いずれの栄養源も使用で
き公知のカビの培養材料いずれも使用できる。また、加
熱滅菌時および培養中における発泡を押さえるため、大
豆油、亜麻仁油などの植物油、オクタデカノール等の高
級アルコール類、各種シリコン等の消泡剤を添加しても
よい。上記のごとき栄養源の配合割合は、特に制限され
るものではなく、広範囲に亘って変えることができ、使
用する条件によって最適の栄養源の組成および配合割合
は、簡単な小規模実験によって容易に決定することがで
きる。
【0049】また、栄養培地は、培養に先立ち滅菌後の
pHが5〜7前後になるように水酸化ナトリウムの水溶
液、アンモニア水またはアンモニアガスを用いてpHを
調整することが好ましい。
【0050】また、本発明に係るリゾプス属に属するの
アンモニア耐性を有するL(+)−乳酸産生菌の胞子の
植菌の方法としては、特に限定されるものでなく、通
常、上記胞子を以下に液体中に懸濁し、この懸濁液体を
そのまま発酵用の液体培地に接種するなどして植菌する
方法などを用いることができる。
【0051】上記胞子の懸濁方法としては、例えば、寒
天斜面培地上に生育し、該胞子を形成しているリゾプス
属のアンモニア耐性を有するL(+)−乳酸生成菌の菌
体に液体を加えてミキシングする方法などを用いること
ができる。なお上記液体としては、通常、無菌水が用い
られるが、さらに生化学領域で使用されるものとして、
例えば、トゥイーン80などのトゥイーン系界面活性
剤、トリトンXシリーズなどのトリトン系界面活性剤、
アシルソルビタンなどを少量(例えば、液体全体に対
し、0.01重量%程度)添加した無菌水を用いること
もできる。これにより効果的に胞子を無菌水中に分散す
ることができ均質な懸濁液を得ることができるものであ
る。
【0052】かかる栄養培地での本菌株の培養は原則的
には、一般のカビによるL(+)−乳酸の製造において
通常使用されている液体培養に準じて行うことができ
る。液体培養の場合は、静置培養、撹拌培養、振盪培養
又は通気培養などのいずれを実施してもよい。本発明で
は、特に振盪培養、深部通気撹拌培養が好ましい。培養
においては、好気的な培養が好ましく、酸素または純酸
素の導入量は、0.05〜3.0vvmであることが好
ましく、より好ましくは0.2〜1.0vvmである。
この様な条件を満たすものとして培養装置に特に制限は
ないが、空気または純酸素あるは両者の混合気体を通気
しながら撹拌型リアクターあるいは気泡塔型リアクター
のいずれかで培養することが好ましい。特に、気泡塔型
リアクターは、菌糸が撹拌翼にからみつくことがなく、
菌糸自体の破損を防止できる点でも優れている。
【0053】更に、培養操作としては、空気または酸素
の導入により連続的に、新たな培養液毎に回分式に、ま
たは新たな培養液を供給し半回分式に培養してもよい。
更に、回分式に行われる場合に菌体を再使用することも
できる。
【0054】培養温度は、本菌株の増殖が実質的に阻害
されずL(+)−乳酸を生産しうる範囲であれば特に制
限されるものではないが、一般に20〜40℃、好まし
くは35〜40℃の範囲内の温度が好適である。
【0055】また、培養時間はグルコース等の炭水化物
源の消費やL(+)−乳酸の生産の時間的推移、リアク
ターの種類などにより総合的に判断すればよい。特に本
発明のリゾプス・エスピーMK96−1156は、 L
(+)−乳酸産生活性に優れるため、例えば回分式で実
施する場合には、20〜100時間、より好ましくは2
0〜80時間、更には30〜50時間でも十分なL
(+)−乳酸量を得ることができる。その一方、当該L
(+)−乳酸菌は連続によってもL(+)−乳酸産生活
の低下が少ないため、回分式、半回分式での再使用や連
続的使用も可能である。連続使用する場合には、当該菌
のL(+)−乳酸産生活性を経時的に調べ、適宜培養時
間を調整することができる。
【0056】また、培地のpHは4〜8の範囲が好まし
く、より好適には5〜7の範囲である。この範囲での産
生に優れるからである。この目的のため培地を滅菌する
前に炭酸カルシウムを添加するかあるいは培養中にpH
センサーおよびpHコントローラーを用いて水酸化ナト
リウム水溶液またはアンモニア水又はアンモニアガスな
どを添加し、自動的に適切なpHの値に維持することが
好ましい。特に、本発明ではアンモニア水又はアンモニ
アガスの導入によりpHを調整することが好ましい。こ
の理由は以下の通りである。
【0057】即ち、大規模に生産を行う場合には、L
(+)−乳酸発酵では炭酸カルシウムを使用することが
一般的であるが、培養液から遊離のL(+)−乳酸を分
離精製する際に非常に困難をもたらす場合が多い。炭酸
カルシウムを中和剤として用いた場合、生成したL
(+)−乳酸がL(+)−乳酸カルシウムの形態をなす
ため、遊離のL(+)−乳酸を生産する場合には硫酸を
添加して難溶性の硫酸カルシウムを生成させ分離する必
要が生じる。従って、大量生産により大量に生じた硫酸
カルシウムを処理するため、膨大な労力と経費とが必要
となる。
【0058】一方、アンモニア水またはアンモニアガス
を中和剤として用いた場合には、生成したL(+)−乳
酸はアンモニウム塩の形態をとる。このL(+)−乳酸
アンモニウム塩は、バイポーラ電気透析により遊離のL
(+)−乳酸を生ずると共に、同時に発生したアンモニ
アを回収して発酵に再利用することもできる。また、ブ
タノール等のアルコールを添加してL(+)−乳酸アン
モニウムを直接エステル化し、L(+)−乳酸エステル
を得ると同時にアンモニアを回収し発酵に再利用するこ
ともできる。更に、計算量の硫酸を添加して肥料として
有用な硫酸アンモニウムを生成させ、L(+)−乳酸を
抽出などで分離する方法等が可能であり、アンモニア処
理に多様性がある。
【0059】アンモニアは一般に微生物の増殖に対して
阻害的に働き、アンモニアの濃度が一定以上であれば殆
ど増殖が阻害される。しかし本発明で使用するリゾプス
属に属する乳酸産生菌は、アンモニア耐性を有するL
(+)−乳酸産生菌であり、アンモニア存在下において
も優れたL(+)−乳酸産生能を発揮する。従って、こ
れによりL(+)−乳酸の収率よく生産しうると共に、
生じた塩類の処理、 L(+)−乳酸の分離精製等を含
むその後の処理を容易にすることができるのである。
【0060】
【実施例】以下、実施例をもって本発明を説明するが、
本発明はこれらに制限されるものではない。なお、
「%」は「重量%」を示す。
【0061】実施例1;L(+)−乳酸の回分発酵生産
(通気撹拌型リアクター) リゾプス・エスピーMK96−1156を表1に示す斜
面培養寒天培地で培養し、次いで胞子を採取した。胞子
濃度が10個/mlとなるように表9に示す前培養
培地100mlを入れた500ml容三角フラスコに接
種した。これを30℃でロータリーシェイカー(回転数
170rpm、回転半径2cm)で15時間培養した。
【0062】次いで、表9に示す生産培地1.5リット
ルを入れた2.5リットルジャーファーメンター(丸菱
バイオエンジ(株)、東京)に、前記前培養液を培地量
の10%(v/v)となるように添加した。これを、回
転数300rpm、通気量0.5vvm、培養温度35
℃で通気撹拌培養した。培養開始直後から、pHを5.
5に維持するために10%のアンモニア水をpHコント
ローラーにより添加した。発酵経過を表10に示す。
【0063】前培養液を接種した後24時間位から糖の
活発な消費が始まり、これと平行してL(+)−乳酸の
生産が始まった。72時間でグルコースが完全に消失
し、76g/リットル(終了時培地量1.64リット
ル)のL(+)−乳酸が生産された。この時のL(+)
−乳酸の生産量は25g/リットル/日であり、L
(+)−乳酸の生成収率は仕込みグルコース基準で6
9.2%を越える。これはアンモニア中和によるL
(+)−乳酸の生産として極めて高収率であった。
【0064】
【表9】
【0065】
【表10】
【0066】比較例1 リゾプス・エスピーMK96−1156菌株の親株であ
るリゾプス・エスピーMK96菌株を用いて、実施例1
と同じ培養条件でジャーファーメンターを用いて培養を
行った。その結果を表11に示した。
【0067】表11からもわかるように、リゾプス・エ
スピーMK96菌株は、培養開始後の72時間後におい
てもL(+)−乳酸の蓄積量はリゾプス・エスピーMK
96−1156の50%以下であり、30g/リット
ル、最終液量1.54リットルのL(+)−乳酸を蓄積
したのみであった。仕込みグルコース基準の生産収率
は、72時間後に25.7%であった。この比較例から
みてもリゾプス・エスピーMK96−1156菌株は、
L(+)−乳酸の生産菌として非常に優れていることが
わかった。
【0068】
【表11】
【0069】比較例2 リゾプス・エスピーMK96−1156に代えてリゾプ
ス・オリゼ NRRL395を使用した以外は、実施例
1と同様に操作した。147時間時の最終液量は1.5
0リットルであり、収率は44.2%であった。結果を
表12に示す。
【0070】表12から、従来菌株であるリゾプス・オ
リゼ NRRL395と比較すると、本リゾプス・エス
ピーMK96−1156菌株によるL(+)−乳酸産生
は極めて収率の高い乳酸産生菌であることが判明した。
【0071】
【表12】
【0072】実施例2;L(+)−乳酸の気泡塔型リア
クターでの回分生産 リゾプス・エスピーMK96−1156を表1に示す組
成の斜面培養寒天培地で培養し、次いで胞子を採取し
た。胞子濃度が10個/mlとなるように表9に示
す前培養培地100mlを入れた500ml容三角フラ
スコに接種した。これを30℃でロータリーシェイカー
(回転数170rpm、回転半径2cm)で15時間培
養した。
【0073】次いで、表9で示す生産培地1.5リット
ルを入れた2.5リットル気泡塔型リアクターに前記前
培養液を培地量の10%(v/v)となるように添加し
た。通気量は、1.0vvm、培養温度35℃で通気の
みの培養を行った。培養開始直後から、pH5.5に維
持するため10%のアンモニア水をpHコントローラー
により添加した。表13に培養経過を示す。
【0074】表13からもわかるように、実施例1で示
した通気撹拌型リアクターに比較してL(+)−乳酸の
生産速度が大きく、50時間では81g/リットル(終
了時培地量1.72リットル)を蓄積し、仕込みグルコ
ースあたりの生産収率は、77.4%であった。発酵槽
の製作コスト、ランニングコスト並びにスケールアップ
の容易さ等を総合すると気泡塔型リアクターが優れた。
【0075】
【表13】
【0076】実施例3;L(+)−乳酸の反復回分発酵
生産(気泡塔型リアクター) 実施例2と同じ方法で、100リットル容の大型気泡塔
型リアクターによる反復回分培養を行った。1回目の生
産培地仕込量は65リットルとした。なおpH調整は2
8%のアンモニア水で行った。表14に示すように培養
開始後2日目に炭素源であるグルコースが完全に消失し
ていることを確認してから、通気を停止し、生成した菌
糸塊をリアクター底部に沈降させた。次いで上澄を抜き
出し、菌糸塊を含む沈澱部を約10リットルとした。新
たに滅菌した生産培地を入れて全量を65リットルとし
再び通気を行って培養を再開した。この反復回分培養を
最初を含めて9回繰り返した。
【0077】表14からわかるように1回分の回分培養
に必要な日数は回を経るに従って短くなり、2回目から
6回目までは1.5日間、7回目以降は2日で培養が終
了した。結局15.5日間で、9回の反復回分培養を行
った。通常の回分培養では、発酵に2.5日、リアクタ
ーの洗浄その他に0.5日かかるため、15.5日で
は、約5回の回分生産しか行えない。これに比し、本発
明にかかるリゾプス・エスピーMK96−1156菌株
は9回の反復回分培養にも優れた生産性を示し、これに
より既存の方法に比較して概ね1.5倍の乳酸生産性を
示し、極めて高収率であった。なお、本反復回分培養で
は前培養は最初の一回だけよいため、従来の回分培養に
おいて毎回前培養液を調製しなければならないことと比
較すると、労務コストを大幅に減少させることができ
た。
【0078】
【表14】
【0079】実施例4;L(+)−乳酸の気泡塔型リア
クターでの回分生産 生産培地として、実施例2で使用した組成に更にコーン
ミール1g/リットルを添加した以外は、全く同様に操
作して気泡塔型リアクターによる発酵を行った。36時
間時の最終液量は1.65リットルであり、収率は8
1.6%であった。結果を表15に示す。生産速度が大
幅に改善されると共に高い生産収率を得ることができ
た。
【0080】
【表15】
【0081】
【発明の効果】本発明によれば、アンモニア耐性を有す
るL(+)−乳酸産生菌が提供される。かかる菌株を使
用して好気的培養により、収率よくL(+)−乳酸を生
産することができる。また、アンモニアを培地中に添加
することにより、中和剤又は生成物阻害を除去すること
ができ、しかもアンモニアによるL(+)−乳酸産生能
の低下を生ずることなく収率よくL(+)−乳酸を生産
することができる。当該菌株の反復回分発酵は、前培養
が1回ですむため、生産時間が短縮されしかも収率が高
い。
【0082】上記L(+)−乳酸の製造方法により、比
較的安価にL(+)−乳酸を得ることができるため、食
品添加物として清酒、清涼飲料、漬物、醤油、製パン、
ビールなどの製造に使用され、また、工業用として皮
革、繊維、プラスチックなどの製造に幅広く利用でき
る。
【手続補正書】
【提出日】平成11年7月27日(1999.7.2
7)
【手続補正1】
【補正対象書類名】明細書
【補正対象項目名】0042
【補正方法】変更
【補正内容】
【0042】本菌は、形態学的特徴およびツアペック培
地での生理学的特徴などから判断して、リゾプス・オリ
ゼ・ウェント・アンド・プリンセン・ゲーリングス株に
極めて近縁の菌株と思われた。しかし、表8で示したご
とくL(+)−乳酸の生産量がリゾプス・オリゼ(Rhiz
opus oryzae)のタイプカルチャーに比較して4倍近く
高い。この結果、本菌は新規な菌株であるとみなし、リ
ゾプス・エスピーMK96(Rhizopus sp.MK96)株と
命名した。リゾプス・エスピーMK96(Rhizopus s
p.MK96)は、以下に述べる有用な変異株リゾプス・エス
ピーMK96−1156菌株の親株として有用である。
なお、この菌株は、工業技術院微生物工業技術研究所に
微工研菌寄託第902号(FERM P−16876)
として寄託され、該寄託は、ブタペスト条約に基づく寄
託に切り換えられて受託番号FERM BP−6776
として同所に保管されている。
【補正の内容】
【手続補正2】
【補正対象書類名】明細書
【補正対象項目名】0045
【補正方法】変更
【補正内容】
【0045】(6) L(+)−乳酸高生産菌の選別 上記(5)で得た変異株を表2で示した生産培地10m
lを含む試験管に1白金耳接種して、試験管振盪培養装
置で35℃で1日間培養後、滅菌した炭酸カルシウム1
gを添加し、更に2日間培養した。培養上澄中のL
(+)−乳酸をバーカーエマーソン法で比色定量した。
菌株中フラスコ培養しL(+)−乳酸の生産量が比較的
高い菌株を10株選別し、後述する実施例1で示したジ
ャーファーメンターでアンモニアで中和する方法で比較
培養し、その中で最もL(+)−乳酸生産量が高かった
菌株をリゾプス・エスピーMK96−1156(Rhizop
us sp.MK96-1156)とした。この菌株は、工業技術院微
生物工業技術研究所に微工研菌寄託第903号(FER
M P−16877)として寄託され、該寄託は、ブタ
ペスト条約に基づく寄託に切り換えられて受託番号FE
RM BP−6777として同所に保管されている。
【書類名】 受託番号変更届
【整理番号】 98P0359
【提出日】 平成11年07月27日(19
99.07.27)
【旧寄託機関の名称】 通商産業省工業技術院生命工学
工業技術研究所
【旧受託番号】 FERM P− 16876
【新寄託機関の名称】 通商産業省工業技術院生命工学
工業技術研究所
【新受託番号】 FERM BP− 6776
【旧寄託機関の名称】 通商産業省工業技術院生命工学
工業技術研究所
【旧受託番号】 FERM P− 16877
【新寄託機関の名称】 通商産業省工業技術院生命工学
工業技術研究所
【新受託番号】 FERM BP− 6777
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C12R 1:845)

Claims (8)

    【特許請求の範囲】
  1. 【請求項1】 リゾプス・エスピーMK96(Rhizopus
    sp.MK96)株をニトロソグアニジンで変異して得られ
    たアンモニア耐性を有するL(+)−乳酸産生能菌。
  2. 【請求項2】 リゾプス・エスピーMK96−1156
    (Rhizopus sp.MK96-1156)菌株。
  3. 【請求項3】 請求項1または2記載の菌株を好気的に
    培養してL(+)−乳酸を生産する方法。
  4. 【請求項4】 培養液のpHの調整がアンモニアの添加
    によることを特徴とする請求項3記載のL(+)−乳酸
    を生産する方法。
  5. 【請求項5】 前記好気的培養が、空気または酸素の導
    入により連続的に、新たな培養液毎に回分式に、または
    新たな培養液を供給し半回分式に培養することを特徴と
    する請求項4記載のL(+)−乳酸を生産する方法。
  6. 【請求項6】 前記好気的培養が回分式に行われる場合
    において、前培養することなく菌体を再使用し回分式に
    培養することを特徴とする5記載のL(+)−乳酸を生
    産する方法。
  7. 【請求項7】 前記好気的培養が、通気撹拌型バイオリ
    アクターまたは気泡塔型バイオリアクターにより行われ
    ることを特徴とする請求項6記載のL(+)−乳酸を生
    産する方法。
  8. 【請求項8】 リゾプス・エスピーMK96(Rhizopus
    sp.MK96)。
JP20971398A 1998-07-24 1998-07-24 アンモニア耐性l(+)−乳酸産生能菌およびl(+)−乳酸の生産方法 Expired - Fee Related JP4132253B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP20971398A JP4132253B2 (ja) 1998-07-24 1998-07-24 アンモニア耐性l(+)−乳酸産生能菌およびl(+)−乳酸の生産方法
CN 99119265 CN1252244C (zh) 1998-07-24 1999-07-24 耐氨性的l(+)-产乳酸菌及生产l(+)-乳酸的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20971398A JP4132253B2 (ja) 1998-07-24 1998-07-24 アンモニア耐性l(+)−乳酸産生能菌およびl(+)−乳酸の生産方法

Publications (2)

Publication Number Publication Date
JP2000037196A true JP2000037196A (ja) 2000-02-08
JP4132253B2 JP4132253B2 (ja) 2008-08-13

Family

ID=16577423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20971398A Expired - Fee Related JP4132253B2 (ja) 1998-07-24 1998-07-24 アンモニア耐性l(+)−乳酸産生能菌およびl(+)−乳酸の生産方法

Country Status (2)

Country Link
JP (1) JP4132253B2 (ja)
CN (1) CN1252244C (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005026349A1 (ja) * 2003-09-17 2005-03-24 Mitsubishi Chemical Corporation 非アミノ有機酸の製造方法
JP2006246846A (ja) * 2005-03-14 2006-09-21 Musashino Chemical Laboratory Ltd 乳酸の製造方法
US7763447B2 (en) 2003-08-28 2010-07-27 Ajinomoto Co., Inc. Method of producing succinic acid with bacterium comprising a modified fumarate reductase gene or a modified succinate dehydrogenase gene
US7829316B2 (en) 2005-10-18 2010-11-09 Ajinomoto Co., Inc. Process for production of succinic acid
US7833763B2 (en) 2003-07-09 2010-11-16 Mitsubishi Chemical Corporation Method for producing organic acid
US7972823B2 (en) 2004-05-20 2011-07-05 Ajinomoto Co., Inc. Succinic acid-producing bacterium and process for producing succinic acid
US7993888B2 (en) 2006-02-24 2011-08-09 Mitsubishi Chemical Corporation Bacterium having enhanced 2-oxoglutarate dehydrogenase activity
WO2013157398A1 (ja) * 2012-04-19 2013-10-24 花王株式会社 乳酸の製造方法
WO2017110970A1 (ja) * 2015-12-24 2017-06-29 花王株式会社 有機酸の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1332035C (zh) * 2003-07-03 2007-08-15 新疆威仕达生物工程股份有限公司 补料发酵生产l-乳酸的工艺

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7833763B2 (en) 2003-07-09 2010-11-16 Mitsubishi Chemical Corporation Method for producing organic acid
US7763447B2 (en) 2003-08-28 2010-07-27 Ajinomoto Co., Inc. Method of producing succinic acid with bacterium comprising a modified fumarate reductase gene or a modified succinate dehydrogenase gene
WO2005026349A1 (ja) * 2003-09-17 2005-03-24 Mitsubishi Chemical Corporation 非アミノ有機酸の製造方法
US7563606B2 (en) 2003-09-17 2009-07-21 Mitsubishi Chemical Corporation Method for producing non-amino organic acid
US7972823B2 (en) 2004-05-20 2011-07-05 Ajinomoto Co., Inc. Succinic acid-producing bacterium and process for producing succinic acid
JP2006246846A (ja) * 2005-03-14 2006-09-21 Musashino Chemical Laboratory Ltd 乳酸の製造方法
US7829316B2 (en) 2005-10-18 2010-11-09 Ajinomoto Co., Inc. Process for production of succinic acid
US7993888B2 (en) 2006-02-24 2011-08-09 Mitsubishi Chemical Corporation Bacterium having enhanced 2-oxoglutarate dehydrogenase activity
WO2013157398A1 (ja) * 2012-04-19 2013-10-24 花王株式会社 乳酸の製造方法
JP2013236624A (ja) * 2012-04-19 2013-11-28 Kao Corp 乳酸の製造方法
WO2017110970A1 (ja) * 2015-12-24 2017-06-29 花王株式会社 有機酸の製造方法
US20190300915A1 (en) * 2015-12-24 2019-10-03 Kao Corporation Method for producing organic acid
US10865428B2 (en) 2015-12-24 2020-12-15 Kao Corporation Method for producing organic acid

Also Published As

Publication number Publication date
JP4132253B2 (ja) 2008-08-13
CN1254016A (zh) 2000-05-24
CN1252244C (zh) 2006-04-19

Similar Documents

Publication Publication Date Title
CN100351386C (zh) 用化学上确定的培养基以工业规模发酵生产有价值的化合物
Taskin et al. Efficient production of l-lactic acid from chicken feather protein hydrolysate and sugar beet molasses by the newly isolated Rhizopus oryzae TS-61
RU2520870C1 (ru) Штамм бактерий rhodococcus aetherivorans bkm ac-2610d - продуцент нитрилгидратазы, способ его культивирования и способ получения акриламида
Anastassiadis et al. Continuous gluconic acid production by isolated yeast-like mould strains of Aureobasidium pullulans
CN102796673A (zh) 一株阿魏酸酯酶生产菌株及应用该菌株生产阿魏酸酯酶的方法
CA1168999A (en) Method for preparing 2,5-diketo-d-gluconic acid
CN101535467A (zh) 左旋内酯水解酶产生菌及其用于制备手性羟基酸的方法
CN108342437B (zh) 一种利用构巢曲霉发酵高产棘白菌素b的方法
JP4132253B2 (ja) アンモニア耐性l(+)−乳酸産生能菌およびl(+)−乳酸の生産方法
CN106834190A (zh) 用豌豆蛋白废水发酵生产聚谷氨酸的培养基、菌株及方法
CN106867937A (zh) 用豌豆蛋白废水液体发酵生产纳豆枯草芽孢杆菌菌剂的菌株、方法及应用
CN110564580A (zh) 一种微生物共培养发酵生产含有吡咯喹啉醌食醋的方法
WO2010103548A2 (en) Improved method for producing lactic acid and derivative thereof
EA037039B1 (ru) Штамм гетеротрофных бактерий klebsiella pneumonia 1-17 - ассоциант для получения микробной белковой массы
KR101261002B1 (ko) 스테노트로포모나스 나이트리트리더센스 균주 및 그 균주를 이용한 고수율의 하이드록시 지방산의 제조방법
RU2080382C1 (ru) Штамм бактерий clostridium acetobutylicum-продуцент н-бутилового спирта и ацетона
CA1302931C (en) Preparation of pyruvic acid
CN114410529B (zh) 巨大芽胞杆菌固态高密度发酵的培养基及培养方法
JP2009148212A (ja) マンニトールの発酵製造方法及びその実施に用いる微生物
CN1332035C (zh) 补料发酵生产l-乳酸的工艺
RU2180689C2 (ru) Консорциум штаммов бактерий rhodococcus erythropolis и дрожжей saccharomycopsis fibuligera - продуцент белка на питательной среде, содержащей спиртовую барду и зерносырье
CN111718919A (zh) 一种酯化酶生产用培养基及酯化酶粗酶制剂的制备方法
KR100289326B1 (ko) 신규한엔테로코커스에스피.알케이와이1에의한푸마르산으로부터숙신산제조
US5962286A (en) Process for the production of gluconic acid with a strain of Aureobasidium pullulans (de bary) Arnaud
JP3600803B2 (ja) マンニトール生成菌株カンジダ・マグノリア及びこれを使用したマンニトールの発酵製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20071217

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20071220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees