JP2000034534A5 - - Google Patents

Download PDF

Info

Publication number
JP2000034534A5
JP2000034534A5 JP1998198406A JP19840698A JP2000034534A5 JP 2000034534 A5 JP2000034534 A5 JP 2000034534A5 JP 1998198406 A JP1998198406 A JP 1998198406A JP 19840698 A JP19840698 A JP 19840698A JP 2000034534 A5 JP2000034534 A5 JP 2000034534A5
Authority
JP
Japan
Prior art keywords
less
treatment
aluminum alloy
zinc phosphate
ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1998198406A
Other languages
Japanese (ja)
Other versions
JP2000034534A (en
JP4060952B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP19840698A priority Critical patent/JP4060952B2/en
Priority claimed from JP19840698A external-priority patent/JP4060952B2/en
Publication of JP2000034534A publication Critical patent/JP2000034534A/en
Publication of JP2000034534A5 publication Critical patent/JP2000034534A5/ja
Application granted granted Critical
Publication of JP4060952B2 publication Critical patent/JP4060952B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【書類名】 明細書
【発明の名称】 化成処理性に優れた成形加工用アルミニウム合金板の製造方法および該製造方法により得られる輸送機器部材
【特許請求の範囲】
【請求項1】 Si:0.5〜1.5%(質量%、以下同じ)、Mg:0.2〜1.0%、Zn:0.05%以上0.3%未満を含有し、不純物としてのFeを0.5%以下、Cuを0.01%以下に制限し、残部Alおよび不純物からなるアルミニウム合金の鋳塊をDC鋳塊により造塊し、常法に従って熱間圧延、冷間圧延および溶体化処理を行い、120℃以下の温度域に焼入れを行った後、焼入れ後60分以内に40〜120℃の温度で50時間以下の時間熱処理を施すことを特徴とする化成処理性に優れた成形加工用アルミニウム合金の製造方法。
【請求項2】 前記熱処理を施した後、さらに180〜260℃の温度で60秒以下の時間熱処理することを特徴とする請求項1記載の化成処理性に優れた成形加工用アルミニウム合金の製造方法。
【請求項3】 Si:0.5〜1.5%、Mg:0.2〜1.0%、Zn:0.05%以上0.3%未満を含有し、不純物としてのFeを0.5%以下、Cuを0.01%以下に制限し、残部Alおよび不純物からなるアルミニウム合金の鋳塊をDC鋳造により造塊し、常法に従って熱間圧延、冷間圧延および溶体化処理を行い、焼入れ後、180〜260℃の温度で60秒以下の時間熱処理を施すことを特徴とする化成処理性に優れた成形加工用アルミニウム合金の製造方法。
【請求項4】 前記アルミニウム合金が、さらに、Mn:0.3%以下(0%を含まず、以下同じ)、Cr:0.3%以下、V:0.2%以下、Zr:0.15%以下の1種または2種以上を含有することを特徴とする請求項1〜3のいずれかに記載の化成処理性に優れた成形加工用アルミニウム合金の製造方法。
【請求項5】 前記アルミニウム合金が、さらに、Ti:0.1%以下、B:50ppm以下の1種または2種を含有することを特徴とする請求項1〜4のいずれかに記載の化成処理性に優れた成形加工用アルミニウム合金の製造方法。
【請求項6】 請求項1〜5のいずれかに記載の方法で製造したアルミニウム合金板を、F濃度350〜800ppmを含む処理液中でリン酸亜鉛処理することを特徴とする化成処理性に優れた成形加工用アルミニウム合金の製造方法。
【請求項7】 請求項1〜5のいずれかに記載の方法で得られたアルミニウム合金板からなる輸送機器部材。
【発明の詳細な説明】
【0001】
【発明の属する技術分野】
本発明は、化成処理性に優れた成形加工用アルミニウム合金、とくに自動車用部材など輸送機器用部材として好適に使用できるアルミニウム合金、および該製造方法により得られる輸送機器部材に関する。
【0002】
【従来の技術】
自動車など輸送機器軽量化の観点から、各種のアルミニウム合金材の使用が試みられており、とくに、自動車用外板については、成形性、形状凍結性、耐デント性、耐食性や、プレス成形において肌荒れ、リジングマークなどが生じない製品面質が要求され、このような特性を満足させるため、Al−Mg系(5000系)合金、Al−Mg−Si系(6000系)合金を中心として多くの自動車外板用アルミニウム合金の開発が行われており、このうち6000系合金は上記の特性をバランス良く満足させることができる合金材として注目されている。
【0003】
しかしながら、6000系アルミニウム合金には、リン酸亜鉛処理性が劣るという問題点がある。通常、自動車車体の組立てにおいては、鋼板とアルミニウム合金板とを併用し、成形加工した鋼板とアルミニウム合金板からなる車体パーツをスポット溶接した後、全体をリン酸亜鉛処理による塗装下地処理を施し、塗装が行われる。この場合、アルミニウム合金材も鋼板と同様にリン酸亜鉛処理が施されるが、リン酸亜鉛処理性がわるいと塗膜の密着性が不十分となり易く、耐食性とくに耐糸錆性が劣る。
【0004】
リン酸亜鉛処理性を改善して塗膜の密着性を上げ、耐糸錆性を向上させた6000系アルミニウム合金として、Mg:0.1〜1.5 %、Si:0.3〜2.5 %、Zn:0.3%以上0.5 %未満、Cu:0.5%以下を含有し、さらに、Fe:0.5%以下、Mn:0.8%以下、Cr:0.3%以下、Zr:0.2%以下、V:0.2%以下の1種または2種以上を含有し、残部Alおよび不可避的不純物からなるアルミニウム合金が提案されている(特開平6−60366号公報)が、このアルミニウム合金においても厳しい腐食環境下での耐糸錆性は必ずしも十分ではない。
【0005】
【発明が解決しようとする課題】
本発明は、輸送機器とくに自動車用アルミニウム合金における上記従来の問題点を解消した6000系アルミニウム合金を得るために、自動車用アルミニウム合金として提案されている従来の6000系アルミニウム合金の諸特性を再検討するとともに、自動車外板として要求される上記の特性と成分組成との関係についてさらに見直し、検討を行った結果としてなされたものであり、その目的は、リン酸亜鉛処理による化成処理性に優れ、耐食性とくに耐糸錆性が良好であり、塗装焼付け処理による強度向上および耐デント性の改善も可能であり、自動車用など輸送機器用として適した化成処理性に優れた成形加工用アルミニウム合金の製造方法ならびに輸送機器部材を提供することにある。
【0006】
【課題を解決するための手段】
上記の目的を達成するための本発明の請求項1による化成処理性に優れた成形加工用アルミニウム合金の製造方法は、Si:0.5〜1.5%、Mg:0.2〜1.0%、Zn:0.05%以上0.3%未満を含有し、不純物としてのFeを0.5%以下、Cuを0.01%以下に制限し、残部Alおよび不純物からなるアルミニウム合金の鋳塊をDC鋳塊により造塊し、常法に従って熱間圧延、冷間圧延および溶体化処理を行い、120℃以下の温度域に焼入れを行った後、焼入れ後60分以内に40〜120℃の温度で50時間以下の時間熱処理を施すことを特徴とする。
【0007】
請求項2による化成処理性に優れた成形加工用アルミニウム合金の製造方法は、請求項1において、前記熱処理を施した後、さらに180〜260℃の温度で60秒以下の時間熱処理することを特徴とする。
【0008】
請求項3による化成処理性に優れた成形加工用アルミニウム合金の製造方法は、Si:0.5〜1.5%、Mg:0.2〜1.0%、Zn:0.05%以上0.3%未満を含有し、不純物としてのFeを0.5%以下、Cuを0.01%以下に制限し、残部Alおよび不純物からなるアルミニウム合金の鋳塊をDC鋳造により造塊し、常法に従って熱間圧延、冷間圧延および溶体化処理を行い、焼入れ後、180〜260℃の温度で60秒以下の時間熱処理を施すことを特徴とする。
【0009】
請求項4による化成処理性に優れた成形加工用アルミニウム合金の製造方法は、請求項1〜3のいずれかにおいて、前記アルミニウム合金が、さらに、Mn:0.3%以下、Cr:0.3%以下、V:0.2%以下、Zr:0.15%以下の1種または2種以上を含有することを特徴とする。
【0010】
請求項5による化成処理性に優れた成形加工用アルミニウム合金の製造方法は、請求項1〜4のいずれかにおいて、前記アルミニウム合金が、さらに、Ti:0.1%以下、B:50ppm以下の1種または2種を含有することを特徴とする。
【0011】
請求項6による化成処理性に優れた成形加工用アルミニウム合金の製造方法は、請求項1〜5のいずれかに記載の方法で製造したアルミニウム合金板を、F濃度350〜800ppmを含む処理液中でリン酸亜鉛処理することを特徴とする。
【0012】
請求項7による輸送機器部材は、請求項1〜5のいずれかに記載の方法で得られる化成処理性に優れた成形加工用アルミニウム合金板からなることを特徴とする。
【0011】
本発明における合金成分の意義およびその限定理由について説明する。
(1)必須成分
Siは、MgとともにMg2 Siを形成して、強度を高め、塗装焼付けによる強度向上効果(BH性)を与える。Siの好ましい含有範囲は0.5 〜1.5 %であり、0.5 %未満では塗装焼付け時のBH性が十分に得られず、1.5 %を越えて含有すると耐力が高くなって、プレス成形性、形状凍結性(プレス成形時にプレス型の形状が正確に出ること)が劣り、塗装後の耐食性も低下する。Siのさらに好ましい含有量は、0.8 〜1.3 %の範囲である。
【0012】
Mgは、SiとともにMg2 Siを形成して、強度を高め、塗装焼付けによるBH性を与えるために機能する。好ましい含有範囲は0.2 〜1.0 %であり、0.2 %未満では塗装焼付け時のBH性が十分に得られず、1.0 %を越えると溶体化処理後または最終熱処理後の耐力が高くなり成形性、形状凍結性が低下する。Mgのさらに好ましい含有範囲は0.3 〜0.7 %である。
【0013】
Znは、リン酸亜鉛処理性を改善し、糸錆の防止に役立つ元素である。また、BH性の向上にも寄与する。Znの好ましい含有量は0.05%以上0.3 %未満の範囲であり、0.05%未満ではその効果が小さく、0.3 %以上含有すると材料の耐食性が低下し、耐糸錆性が劣化する。また、室温時効により耐力が上昇するため、塗装焼付け時の耐力上昇量が低下し、成形性、形状凍結性もわるくなる。Znのさらに好ましい含有範囲は0.1 〜0.25%である。
【0014】
(選択成分)
Mn、Crは、結晶粒を微細化し、成形加工時の肌荒れを防止するために有効に機能する。Mn、Crの好ましい含有量は、ともに0.3 %以下(0%を含まない)、さらに好ましくは0.02〜0.3 %の範囲である。0.02%未満ではその効果が小さく、0.3 %を越えて含有すると粗大な金属間化合物が生成し易くなり、成形性が低下する。
【0015】
V、Zrも、結晶粒を微細化し、成形加工時の肌荒れを防止するために有効に機能する。VおよびZrの好ましい含有量は、それぞれ0.2 %以下および0.15%以下(ともに0%を含まない)、さらに好ましくは、それぞれ0.02〜0.2 %および0.02〜0.15%の範囲である。0.02%未満ではその効果が小さく、それぞれ0.2 %および0.15%を越えて含有すると粗大な金属間化合物が生成し易くなり、成形性が低下する。
【0016】
Tiは、鋳塊組織を微細化し、成形性を向上させる。Tiの好ましい含有量は0.1 %以下(0%を含まない)、さらに好ましくは0.005 〜0.1 %の範囲であり、0.005 %未満ではその効果が小さく、0.1 %を越えると、粗大な金属間化合物が生じ成形性が低下し易くなる。
【0017】
Bは、鋳塊組織を微細化し、成形性を向上させる。Bの好ましい含有量は50ppm以下(0ppmを含まない)、さらに好ましくは1 〜50ppmの範囲であり、1 ppm未満ではその効果が小さく、50ppmを越えると、粗大な金属間化合物が生じ成形性が低下し易くなる。
【0018】
(不純物の制限)
Cuは、耐食性を劣化させる元素であるから0.01%以下に制限する。Feは、成形性を低下させる元素であるから0.5 %以下、好ましは0.3%以下に制限する。
【0019】
【発明の実施の形態】
本発明の化成処理性に優れた成形加工用アルミニウム合金は、通常のDC鋳造により造塊し、常法に従って均質化処理、熱間圧延、冷間圧延を行い、ついで、溶体化処理、焼入れを実施した後、熱処理を施すことにより製造される。
【0020】
好ましい製造条件について説明すると、鋳塊の均質化処理は、500℃以上の温度で行うのが好ましく、500℃未満の温度で均質化処理した場合には、鋳塊偏析の除去や組織の均質化が十分でなく、また強度向上に寄与するMg2 Si成分の固溶が不十分となって成形性を低下させることがある。
【0021】
冷間圧延は、30%以上の加工度で行うことが望ましい。加工度が30%未満では、続いて行われる溶体化処理後の結晶粒が粗大となり、肌荒れが生じ易くなる。熱間圧延組織の分解も不十分となり易く、成形性の点で好ましくない。
【0022】
溶体化処理は、500℃以上の温度で行うのが好ましい。500℃未満の温度で溶体化処理を行った場合には、析出物の固溶が不十分となって十分な強度、成形性が得られない場合があり、所望の強度、成形性を得るために、長時間の処理が必要となり工業上好ましくない。保持時間は60秒以下が望ましく、60秒を越えると生産性の点で好ましくない。
【0023】
溶体化処理後、焼入れを行う。焼入れ時の冷却速度はとくに規定しないが、好ましくは5℃/秒以上とする。焼入れ後の熱処理における第1の実施態様は、合金材を120℃以下の温度域に焼入れを行った後、焼入れ後、60分以内に、40〜120℃で50時間以下の時間熱処理(第1段階の熱処理)を行うことにより塗装焼付け硬化性を向上させるものである。40℃未満の温度では塗装焼付け硬化性(BH性)の向上効果が十分でなく、120℃を越える温度または50時間を越える時間では、成形性やBH性が低下することがある。
【0024】
第2の実施態様は、上記の第1段階の熱処理後、さらに180〜260℃の温度域で60秒以下の時間保持する第2段階の熱処理を行う。また、第3の実施態様においては、第1段階の熱処理を行うことなしに、焼入れ後、直接第2段階の熱処理を施す。
【0025】
上記の工程により製造されたアルミニウム合金板については、自動車用鋼板に一般的に使用されているリン酸亜鉛処理液(処理液中のF- 濃度:350ppm程度)を適用してリン酸亜鉛処理を行うことにより優れた化成処理性が得られるが、さらに優れた化成処理性と塗装工程での塗膜密着性を得るためには、F- 濃度が350〜800ppmのリン酸亜鉛処理液を用いてリン酸亜鉛処理を行うのが好ましい。F- 濃度が800ppmを越えると、リン酸亜鉛皮膜が不均一となり密着性が低下し易くなる。
【0026】
【実施例】
以下、本発明の実施例を比較例と対比して説明する。
実施例1
DC鋳造により、表1に示す組成を有するアルミニウム合金を造塊し、鋳塊の鋳肌部を表面切削した。ついで、550℃で8時間の均質化処理を行い、420℃の温度まで降温して熱間圧延を開始し、厚さ4.5mmまで圧延した。熱間圧延の終了温度は280℃であった。つぎに、冷間圧延を行って、厚さ1mmの板材とした後、560℃で20秒の溶体化処理を行い、20℃の水中に焼入れし、焼入れ後10分以内に、100℃の温度で4時間の熱処理を施した。
【0027】
得られた板材を試験材として、引張試験およびエリクセン試験を行った。また、JIS Z2371による塩水噴霧試験を3か月行い、試験前後の重量変化かから耐食性を評価した。つぎに、プレス加工のシュミレートとして2%の塑性変形を行った後、リン酸亜鉛処理(処理液:pH2.5〜3.5、F- 濃度500ppm)を施し、通常の自動車用部材の塗装工程に従って電着塗装、中塗り、上塗りによる塗装を行い、170℃で20分焼付け処理した。
【0028】
塗装後の試験材について、引張試験を行うとともに、試験材にアルミニウム合金の素地まで達するクロスカットを施し、JIS Z2371による塩水噴霧試験を24時間実施した後、50℃で95%の湿潤雰囲気において2000時間放置し、クロスカット部より発生した最大糸錆長さを測定した。これらの試験結果を表2に示す、なお、リン酸亜鉛皮膜量は処理前後の重量変化から求めた。
【0029】
表2にみられるように、本発明に従う試験材はいずれも、成形加工性に優れ、エリクセン試験において10mmを越える成形高さを示した。塗装焼付け処理後のBH性も優れている。リン酸亜鉛処理においても十分な皮膜の生成が認められた。最大糸錆長さも2mm未満で優れた耐糸錆性を示し、素材の耐食性も優れている。
【0030】
【表1】

Figure 2000034534
【0031】
【表2】
Figure 2000034534
【0032】
比較例1
DC鋳造により、表3に示す組成を有するアルミニウム合金を造塊し、鋳塊の鋳肌部を表面切削した。ついで、550℃で8時間の均質化処理を行い、以下、実施例1と同じ条件で熱間圧延、冷間圧延を行って厚さ1mmの板材とした後、実施例1と同様、560℃で20秒の溶体化処理を行い、20℃の水中に焼入れし、焼入れ後10分以内に、100℃の温度で4時間の熱処理を施した。
【0033】
得られた板材を試験材として、実施例1と同じ方法で、素材の特性、素材の耐食性、塗装後の特性を評価した。結果を表4に示す。なお、表3において、本発明の条件を外れたものには下線を付した。表4に示すように、試験材No.8はZn含有量が多いため、塗装後の耐糸錆性、素材の耐食性が劣る。試験材No.9はZn量が多過ぎるため、耐糸錆性、素材の耐食性が劣るとともに成形性がわるい。
【0034】
試験材No.10はZn量が少ないため、リン酸亜鉛処理性が劣っている。試験材No.11はSi含有量が多いため成形性が劣る。試験材No.12はCu量が多いため、塗装後の耐糸錆性および素材の耐食性が良くない。試験材No.13はMg含有量が少ないため、機械的性質が劣る。
【0035】
【表3】
Figure 2000034534
【0036】
【表4】
Figure 2000034534
【0037】
実施例2、比較例2
実施例1の試験材No.1(板素材)のリン酸亜鉛処理において、リン酸亜鉛処理液中のF- 濃度を表5に示すように変えて処理した後、実施例1と同じ方法でリン酸亜鉛皮膜量を測定し、また、実施例1と同様にして、塗装、焼付け処理を行い、実施例1と同じ方法で耐糸錆性を評価した。結果を表5に示す。
【0038】
【表5】
Figure 2000034534
【0039】
表5に示すように、F- 濃度が350ppmおよび500ppmのリン酸亜鉛処理液中で化成処理を行った試験材No.14、15は、F- 濃度が300ppmのリン酸亜鉛処理液中で化成処理した試験材No.17に比べて、塗装下地として十分なリン酸亜鉛皮膜が確実に生成して、塗装後優れた耐糸錆性を示した。試験材No.16はF- 濃度が低いため、リン酸亜鉛皮膜量が少なく耐糸錆性もやや劣っている。試験材No.18は、リン酸亜鉛処理液中のF- 濃度が高過ぎるため、リン酸亜鉛皮膜が不均一で剥離し易く、耐糸錆性がやや良くない。
【0040】
実施例3
実施例1の試験材No.1およびNo.5の鋳塊を、540℃で12時間均質化処理して、460℃の温度で熱間圧延を開始し、熱間圧延終了温度を250℃として厚さ4.0mmまで圧延した。ついで冷間圧延を行い、厚さ1mmの板材とした後、560℃で20秒の溶体化処理を行い、表6に示す条件で焼入れを行い、さらに熱処理を施した。
【0041】
得られた板材を試験材として、引張試験を行い耐力を測定した。また、プレス加工のシュミレートとして2%の引張変形を行った後、実施例1と同じ方法で塗装処理を行い、170℃で20分の条件で焼付け処理を行い、耐力を測定した。測定結果を表6に示す。表6にみられるように、本発明に従う試験材はいずれも、塗装後の耐力が高く、優れたBH性を示した。
【0042】
塗装前の板材(素材)について、処理液中のF- 濃度を400ppmとして、リン酸亜鉛処理を行い、処理前後の重量変化からリン酸亜鉛皮膜量を測定した ところ、試験材(鋳塊)No.1による試験材は0.6〜0.7g/m2 、試験材(鋳塊)No.5による試験材は0.8〜0.9g/m2 であり、いずれも良好な結果を示した。
【0043】
また、JIS Z2371に従って塩水噴霧試験を3か月行い、試験前後における重量変化から耐食性を評価したところ、重量減少が、試験材(鋳塊)No.1による試験材では1.8〜2.6g/m2 (評価◎に相当)、試験材(鋳塊)No.5による試験材では3.7〜4.2g/m2 (評価○に相当)であり、いずれも良好な結果を示した。
【0044】
【表6】
Figure 2000034534
【0045】
比較例3
実施例1の試験材No.1およびNo.5の鋳塊を、実施例3と同じ条件により、均質化処理、熱間圧延、冷間圧延し、厚さ1mmの板材とした後、560℃で20秒の溶体化処理を行い、表6に示す条件で焼入れを行い、さらに熱処理を施した。
【0046】
得られた板材を試験材として、実施例3と同じ方法により、塗装処理を行い、塗装後の耐力を測定し、素材の耐力と比較した。結果を表7に示す。なお、表7において、本発明の条件を外れたものには下線を付した。表7に示すように、本発明の条件を外れた処理を行った試験材はいずれも塗装、焼付け後の耐力が低く、BH性が十分でない。
【0047】
【表7】
Figure 2000034534
【0048】
【発明の効果】
本発明によれば、リン酸亜鉛処理による化成処理性に優れ、耐食性とくに耐糸錆性が良好であり、BH性に優れた成形加工用アルミニウム合金の製造方法ならびに輸送機器部材が提供される。本発明によるアルミニウム合金は、自動車用フード、フェンダー、トランクリッド、ルーフ、ドアなどの部材としてとくに好適に使用される。 [Document name] Statement
[Title of Invention] Aluminum alloy for molding processing having excellent chemical conversion processabilityA plate manufacturing method and a transportation equipment member obtained by the manufacturing method.
[Claims]
1. Si: 0.5 to 1.5% (mass%, the same applies hereinafter), Mg: 0.2 to 1.0%, Zn: 0.05% or more and less than 0.3%. Fe as an impurity is 0.5% or less, Cu0.01Ingots of aluminum alloy consisting of the balance Al and impurities are ingot by DC ingots, and hot rolling, cold rolling and quenching treatment are performed according to a conventional method to bring them to a temperature range of 120 ° C. or lower. After quenching, an aluminum alloy for molding processing having excellent chemical conversion processability is performed within 60 minutes after quenching at a temperature of 40 to 120 ° C. for 50 hours or less.BoardManufacturing method.
2. The aluminum alloy for molding processing according to claim 1, further comprising heat treatment at a temperature of 180 to 260 ° C. for a time of 60 seconds or less after the heat treatment.BoardManufacturing method.
3. Si: 0.5 to 1.5%, Mg: 0.2 to 1.0%, Zn: 0.05% or more and less than 0.3%, and Fe as an impurity is 0. 5% or less, Cu0.01The ingot of an aluminum alloy consisting of the balance Al and impurities is ingot by DC casting, hot-rolled, cold-rolled and solution-treated according to a conventional method, and after quenching, the temperature is 180 to 260 ° C. Aluminum alloy for molding with excellent chemical conversion, which is characterized by being heat-treated at a temperature for 60 seconds or less.BoardManufacturing method.
4. The aluminum alloy further contains Mn: 0.3% or less (excluding 0%, the same applies hereinafter), Cr: 0.3% or less, V: 0.2% or less, Zr: 0. The aluminum alloy for molding processing, which is excellent in chemical conversion processability according to any one of claims 1 to 3, which contains 1 type or 2 or more types of 15% or less.BoardManufacturing method.
5. The chemical conversion according to claim 1, wherein the aluminum alloy further contains one or two types of Ti: 0.1% or less and B: 50 ppm or less. Aluminum alloy for molding with excellent workabilityBoardManufacturing method.
6. An aluminum alloy plate manufactured by the method according to any one of claims 1 to 5 is used in an F.Aluminum alloy for molding processing with excellent chemical conversion treatment, which is characterized by zinc phosphate treatment in a treatment liquid containing a concentration of 350 to 800 ppm.BoardManufacturing method.
7. Obtained by the method according to any one of claims 1 to 5.A transportation equipment member made of an aluminum alloy plate.
Description: TECHNICAL FIELD [Detailed description of the invention]
[0001]
[Technical field to which the invention belongs]
The present invention is an aluminum alloy for molding processing having excellent chemical conversion processability.BoardAluminum alloys that can be suitably used as parts for transportation equipment such as parts for automobiles.Board,andObtained by the manufacturing methodRegarding transportation equipment parts.
0002.
[Conventional technology]
Attempts have been made to use various aluminum alloy materials from the viewpoint of reducing the weight of transportation equipment such as automobiles. In particular, for automobile outer panels, moldability, shape freeze resistance, dent resistance, corrosion resistance, and rough skin in press molding have been attempted. , Product surface quality that does not cause rigging marks, etc. is required, and in order to satisfy such characteristics, many automobiles, mainly Al-Mg-based (5000 series) alloys and Al-Mg-Si-based (6000 series) alloys. Aluminum alloys for outer panels are being developed, and of these, 6000 series alloys are attracting attention as alloy materials that can satisfy the above characteristics in a well-balanced manner.
0003
However, the 6000 series aluminum alloy has a problem that the zinc phosphate treatability is inferior. Normally, in the assembly of an automobile body, a steel plate and an aluminum alloy plate are used in combination, and after spot welding the body parts composed of the molded steel plate and the aluminum alloy plate, the entire body is subjected to a coating base treatment by zinc phosphate treatment. Painting is done. In this case, the aluminum alloy material is also treated with zinc phosphate in the same manner as the steel sheet, but if the zinc phosphate treatment property is poor, the adhesion of the coating film tends to be insufficient, and the corrosion resistance, particularly the thread rust resistance is inferior.
0004
As a 6000 series aluminum alloy with improved zinc phosphate treatability, improved coating adhesion, and improved thread rust resistance, Mg: 0.1 to 1.5%, Si: 0.3 to 2.5%, Zn: 0.3% or more One or two types containing less than 0.5%, Cu: 0.5% or less, Fe: 0.5% or less, Mn: 0.8% or less, Cr: 0.3% or less, Zr: 0.2% or less, V: 0.2% or less An aluminum alloy containing the above and composed of the balance Al and unavoidable impurities has been proposed (Japanese Patent Laid-Open No. 6-60366), but even with this aluminum alloy, the thread rust resistance under a severe corrosion environment is not always sufficient. Absent.
0005
[Problems to be Solved by the Invention]
The present invention reexamines various characteristics of the conventional 6000 series aluminum alloy proposed as an automobile aluminum alloy in order to obtain a 6000 series aluminum alloy that solves the above-mentioned conventional problems in transportation equipment, particularly an automobile aluminum alloy. At the same time, it was made as a result of further reviewing and examining the relationship between the above-mentioned characteristics required for automobile outer panels and the component composition, and its purpose is to be excellent in chemical conversion treatment by zinc phosphate treatment. Corrosion resistance, especially thread rust resistance is good, strength can be improved and dent resistance can be improved by paint baking treatment, and aluminum alloy for molding processing with excellent chemical conversion treatment suitable for transportation equipment such as automobiles.BoardThe purpose is to provide a manufacturing method for the above and transportation equipment parts.
0006
[Means for solving problems]
An aluminum alloy for molding processing having excellent chemical conversion processability according to claim 1 of the present invention for achieving the above object.BoardThe production method of is: Si: 0.5 to 1.5%, Mg: 0.2 to 1.0%, Zn: 0.05% or more and less than 0.3%, and Fe as an impurity is 0. 5% or less, Cu0.01Ingots of aluminum alloy consisting of the balance Al and impurities are ingot by DC ingots, and hot-rolled, cold-rolled and melt-quenched according to a conventional method to bring them to a temperature range of 120 ° C. or less. After quenching, heat treatment is performed at a temperature of 40 to 120 ° C. for 50 hours or less within 60 minutes after quenching.
0007
Aluminum alloy for molding processing having excellent chemical conversion processability according to claim 2.BoardThe method according to claim 1 is characterized in that, after the heat treatment, the heat treatment is further performed at a temperature of 180 to 260 ° C. for a time of 60 seconds or less.
0008
Aluminum alloy for molding processing having excellent chemical conversion processability according to claim 3.BoardThe production method of is: Si: 0.5 to 1.5%, Mg: 0.2 to 1.0%, Zn: 0.05% or more and less than 0.3%, and Fe as an impurity is 0. 5% or less, Cu0.01The ingot of an aluminum alloy consisting of the balance Al and impurities is ingot by DC casting, hot-rolled, cold-rolled and solution-treated according to a conventional method, and after quenching, the temperature is 180 to 260 ° C. It is characterized in that it is subjected to heat treatment at a temperature of 60 seconds or less.
0009
Aluminum alloy for molding processing having excellent chemical conversion processability according to claim 4.BoardAccording to any one of claims 1 to 3, the aluminum alloy further contains Mn: 0.3% or less, Cr: 0.3% or less, V: 0.2% or less, Zr: 0. It is characterized by containing 1 type or 2 or more types of 15% or less.
0010
Aluminum alloy for molding processing having excellent chemical conversion processability according to claim 5.BoardThe method for producing the above is characterized in that, in any one of claims 1 to 4, the aluminum alloy further contains one or two kinds of Ti: 0.1% or less and B: 50 ppm or less.
0011
Aluminum alloy for molding processing having excellent chemical conversion processability according to claim 6.BoardThe method for manufacturing the aluminum alloy plate manufactured by the method according to any one of claims 1 to 5 is as follows.It is characterized by being treated with zinc phosphate in a treatment liquid containing a concentration of 350 to 800 ppm.
0012
The transportation equipment member according to claim 7 isObtained by the method according to any one of claims 1 to 5.It is characterized by being made of an aluminum alloy plate for molding processing having excellent chemical conversion processability.
0011
The significance of the alloy component in the present invention and the reason for its limitation will be described.
(1) Essential ingredients
Si, along with Mg, Mg2Si is formed to increase the strength and give the effect of improving the strength (BH property) by baking the paint. The preferable content range of Si is 0.5 to 1.5%. If it is less than 0.5%, sufficient BH property at the time of coating baking cannot be obtained, and if it is contained more than 1.5%, the yield strength becomes high, and press moldability and shape freezing property are obtained. (The shape of the press mold is accurately formed during press molding) is inferior, and the corrosion resistance after painting is also reduced. A more preferred content of Si is in the range of 0.8 to 1.3%.
0012
Mg, along with Si, Mg2It functions to form Si, increase the strength, and give BH property by paint baking. The preferable content range is 0.2 to 1.0%, and if it is less than 0.2%, the BH property at the time of coating baking is not sufficiently obtained, and if it exceeds 1.0%, the proof stress after the solution treatment or the final heat treatment becomes high, and the formability and shape Freezing property is reduced. A more preferable content range of Mg is 0.3 to 0.7%.
0013
Zn is an element that improves zinc phosphate treatability and helps prevent thread rust. It also contributes to the improvement of BH property. The preferable content of Zn is in the range of 0.05% or more and less than 0.3%, the effect is small when it is less than 0.05%, and the corrosion resistance of the material is lowered and the thread rust resistance is deteriorated when the content is 0.3% or more. In addition, since the proof stress increases due to aging at room temperature, the amount of increase in proof stress during coating baking decreases, and the moldability and shape freezing property also deteriorate. A more preferable content range of Zn is 0.1 to 0.25%.
0014.
(Selective ingredient)
Mn and Cr function effectively to refine the crystal grains and prevent rough skin during molding. The preferable contents of Mn and Cr are both 0.3% or less (not including 0%), more preferably 0.02 to 0.3%. If it is less than 0.02%, the effect is small, and if it is more than 0.3%, coarse intermetallic compounds are likely to be formed, and the moldability is lowered.
0015.
V and Zr also function effectively to refine the crystal grains and prevent rough skin during molding. The preferred contents of V and Zr are 0.2% or less and 0.15% or less (both do not contain 0%), more preferably 0.02 to 0.2% and 0.02 to 0.15%, respectively. If it is less than 0.02%, the effect is small, and if it is contained in excess of 0.2% and 0.15%, respectively, coarse intermetallic compounds are likely to be formed, and the moldability is lowered.
0016.
Ti refines the ingot structure and improves moldability. The preferred content of Ti is 0.1% or less (not including 0%), more preferably in the range of 0.005 to 0.1%, less than 0.005% has a small effect, and above 0.1%, coarse intermetallic compounds As a result, the moldability tends to decrease.
[0017]
B refines the ingot structure and improves moldability. The preferable content of B is 50 ppm or less (not including 0 ppm), more preferably in the range of 1 to 50 ppm, the effect is small when it is less than 1 ppm, and when it exceeds 50 ppm, a coarse intermetallic compound is generated and the moldability is improved. It tends to decrease.
0018
(Limitation of impurities)
Because Cu is an element that deteriorates corrosion resistance0.01Limit to% or less. Since Fe is an element that lowers moldability, it is limited to 0.5% or less, and preferably 0.3% or less.
0019
BEST MODE FOR CARRYING OUT THE INVENTION
The aluminum alloy for molding processing having excellent chemical conversion treatment property of the present invention is ingot by ordinary DC casting, homogenized, hot-rolled, and cold-rolled according to a conventional method, followed by solution treatment and quenching. After that, it is manufactured by subjecting it to heat treatment.
0020
Explaining the preferable production conditions, the ingot homogenization treatment is preferably performed at a temperature of 500 ° C. or higher, and when the homogenization treatment is performed at a temperature lower than 500 ° C., the ingot segregation is removed and the structure is homogenized. Is not enough, and Mg contributes to the improvement of strength.2The solid solution of the Si component may be insufficient and the moldability may be lowered.
0021.
Cold rolling is preferably performed at a workability of 30% or more. If the degree of processing is less than 30%, the crystal grains after the subsequent solution treatment become coarse and rough skin is likely to occur. Decomposition of the hot-rolled structure tends to be insufficient, which is not preferable in terms of moldability.
0022.
The solution treatment is preferably carried out at a temperature of 500 ° C. or higher. When the solution treatment is performed at a temperature of less than 500 ° C., the solid solution of the precipitate may be insufficient and sufficient strength and moldability may not be obtained. In addition, long-term treatment is required, which is industrially unfavorable. The holding time is preferably 60 seconds or less, and more than 60 seconds is not preferable in terms of productivity.
[0023]
After solution treatment, quenching is performed. The cooling rate at the time of quenching is not particularly specified, but is preferably 5 ° C./sec or more. The first embodiment of the heat treatment after quenching is to heat-treat the alloy material in a temperature range of 120 ° C. or lower, and then heat-treat the alloy material at 40 to 120 ° C. for 50 hours or less within 60 minutes after quenching (first). By performing stepwise heat treatment), the paint quenching curability is improved. If the temperature is less than 40 ° C., the effect of improving the coating baking curability (BH property) is not sufficient, and if the temperature exceeds 120 ° C. or the time exceeds 50 hours, the moldability and BH property may decrease.
0024
In the second embodiment, after the above-mentioned first-stage heat treatment, a second-stage heat treatment is further performed in a temperature range of 180 to 260 ° C. for a time of 60 seconds or less. Further, in the third embodiment, the second stage heat treatment is directly performed after quenching without performing the first stage heat treatment.
0025
Regarding the aluminum alloy plate manufactured by the above process, the zinc phosphate treatment liquid (F in the treatment liquid) generally used for steel sheets for automobiles is used.---Excellent chemical conversion treatment can be obtained by applying zinc phosphate treatment (concentration: about 350 ppm), but in order to obtain even better chemical conversion treatment and coating film adhesion in the coating process, F---It is preferable to carry out the zinc phosphate treatment with a zinc phosphate treatment solution having a concentration of 350 to 800 ppm. F---If the concentration exceeds 800 ppm, the zinc phosphate film becomes non-uniform and the adhesion tends to decrease.
0026
【Example】
Hereinafter, examples of the present invention will be described in comparison with Comparative Examples.
Example 1
An aluminum alloy having the composition shown in Table 1 was ingot by DC casting, and the surface of the ingot was cut on the surface. Then, the homogenization treatment was carried out at 550 ° C. for 8 hours, the temperature was lowered to 420 ° C., hot rolling was started, and the roll was rolled to a thickness of 4.5 mm. The end temperature of hot rolling was 280 ° C. Next, cold rolling is performed to obtain a plate material having a thickness of 1 mm, followed by solution heat treatment at 560 ° C. for 20 seconds, quenching in water at 20 ° C., and within 10 minutes after quenching, the temperature is 100 ° C. Heat-treated for 4 hours.
[0027]
A tensile test and an Eriksen test were carried out using the obtained plate material as a test material. In addition, a salt spray test by JIS Z2371 was carried out for 3 months, and the corrosion resistance was evaluated from the weight change before and after the test. Next, after plastic deformation of 2% as a simulation of press working, zinc phosphate treatment (treatment liquid: pH 2.5 to 3.5, F)---A concentration of 500 ppm) was applied, and electrodeposition coating, intermediate coating, and top coating were performed according to a normal coating process for automobile members, and the coating process was performed at 170 ° C. for 20 minutes.
[0028]
After the test material after painting is subjected to a tensile test, the test material is cross-cut to reach the base of the aluminum alloy, and a salt spray test by JIS Z2371 is carried out for 24 hours, then 2000 at 50 ° C. in a 95% moist atmosphere. After leaving it for a while, the maximum thread rust length generated from the cross-cut portion was measured. The results of these tests are shown in Table 2. The amount of zinc phosphate film was determined from the weight change before and after the treatment.
[0029]
As can be seen in Table 2, all the test materials according to the present invention were excellent in molding processability and showed a molding height of more than 10 mm in the Eriksen test. The BH property after the paint baking process is also excellent. Sufficient film formation was also observed in the zinc phosphate treatment. The maximum thread rust length is less than 2 mm, showing excellent thread rust resistance, and the material also has excellent corrosion resistance.
[0030]
[Table 1]
Figure 2000034534
0031
[Table 2]
Figure 2000034534
[0032]
Comparative Example 1
An aluminum alloy having the composition shown in Table 3 was ingot by DC casting, and the surface of the ingot was cut on the surface. Then, homogenization treatment was performed at 550 ° C. for 8 hours, and then hot rolling and cold rolling were performed under the same conditions as in Example 1 to obtain a plate material having a thickness of 1 mm, and then, as in Example 1, 560 ° C. After 20 seconds of solution treatment, quenching in water at 20 ° C., and within 10 minutes after quenching, heat treatment was performed at a temperature of 100 ° C. for 4 hours.
0033
Using the obtained plate material as a test material, the characteristics of the material, the corrosion resistance of the material, and the characteristics after painting were evaluated by the same method as in Example 1. The results are shown in Table 4. In Table 3, those outside the conditions of the present invention are underlined. As shown in Table 4, the test material No. Since 8 has a high Zn content, the thread rust resistance after painting and the corrosion resistance of the material are inferior. Test material No. Since the amount of Zn in No. 9 is too large, the thread rust resistance and the corrosion resistance of the material are inferior, and the moldability is poor.
0034
Test material No. Since the amount of Zn in No. 10 is small, the zinc phosphate treatability is inferior. Test material No. No. 11 has a high Si content and is therefore inferior in moldability. Test material No. Since No. 12 has a large amount of Cu, the thread rust resistance after painting and the corrosion resistance of the material are not good. Test material No. Since the Mg content of No. 13 is low, the mechanical properties of No. 13 are inferior.
0035.
[Table 3]
Figure 2000034534
0036
[Table 4]
Figure 2000034534
0037
Example 2, Comparative Example 2
Test material No. of Example 1. In the zinc phosphate treatment of 1 (plate material), F in the zinc phosphate treatment liquid---After the treatment was performed by changing the concentration as shown in Table 5, the amount of zinc phosphate film was measured by the same method as in Example 1, and the coating and baking treatment were performed in the same manner as in Example 1. The thread rust resistance was evaluated by the same method as above. The results are shown in Table 5.
[0038]
[Table 5]
Figure 2000034534
[0039]
As shown in Table 5, F---Test material No. 1 which was subjected to chemical conversion treatment in zinc phosphate treatment liquids having concentrations of 350 ppm and 500 ppm. 14 and 15 are F---Test material No. that was chemically treated in a zinc phosphate treatment solution having a concentration of 300 ppm. Compared with No. 17, a sufficient zinc phosphate film was surely formed as a coating base, and excellent thread rust resistance was exhibited after coating. Test material No. 16 is F---Since the concentration is low, the amount of zinc phosphate film is small and the thread rust resistance is slightly inferior. Test material No. Reference numeral 18 is F in the zinc phosphate treatment solution.---Since the concentration is too high, the zinc phosphate film is non-uniform and easily peeled off, and the thread rust resistance is not good.
0040
Example 3
Test material No. of Example 1. 1 and No. The ingot of No. 5 was homogenized at 540 ° C. for 12 hours, hot rolling was started at a temperature of 460 ° C., and the hot rolling end temperature was set to 250 ° C., and the ingot was rolled to a thickness of 4.0 mm. Then, cold rolling was performed to obtain a plate material having a thickness of 1 mm, followed by solution treatment at 560 ° C. for 20 seconds, quenching under the conditions shown in Table 6, and further heat treatment.
[0041]
Using the obtained plate material as a test material, a tensile test was performed to measure the proof stress. Further, after performing tensile deformation of 2% as a simulation of press working, painting treatment was performed in the same manner as in Example 1, and baking treatment was performed at 170 ° C. for 20 minutes to measure the proof stress. The measurement results are shown in Table 6. As can be seen in Table 6, all the test materials according to the present invention had high proof stress after painting and showed excellent BH properties.
[0042]
Regarding the plate material (material) before painting, F in the treatment liquid---Zinc phosphate treatment was performed at a concentration of 400 ppm, and the amount of zinc phosphate film was measured from the weight change before and after the treatment. Test material according to 1 is 0.6 to 0.7 g / m2, Test material (ingot) No. Test material according to 5 is 0.8 to 0.9 g / m2All showed good results.
[0043]
In addition, a salt spray test was conducted for 3 months in accordance with JIS Z2371, and the corrosion resistance was evaluated from the weight change before and after the test. For the test material according to 1, 1.8 to 2.6 g / m2(Equivalent to evaluation ◎), test material (ingot) No. For the test material according to 5, 3.7 to 4.2 g / m2(Equivalent to evaluation ○), and all showed good results.
[0044]
[Table 6]
Figure 2000034534
0045
Comparative Example 3
Test material No. of Example 1. 1 and No. The ingot of No. 5 was homogenized, hot-rolled, and cold-rolled under the same conditions as in Example 3 to obtain a plate having a thickness of 1 mm, and then subjected to solution treatment at 560 ° C. for 20 seconds. It was hardened under the conditions shown in (1) and further heat-treated.
[0046]
Using the obtained plate material as a test material, a coating treatment was performed by the same method as in Example 3, and the proof stress after coating was measured and compared with the proof stress of the material. The results are shown in Table 7. In Table 7, those outside the conditions of the present invention are underlined. As shown in Table 7, all the test materials subjected to the treatments that do not meet the conditions of the present invention have low proof stress after painting and baking, and have insufficient BH properties.
[0047]
[Table 7]
Figure 2000034534
0048
【Effect of the invention】
According to the present invention, an aluminum alloy for molding processing, which is excellent in chemical conversion treatment by zinc phosphate treatment, has good corrosion resistance, particularly good thread rust resistance, and is excellent in BH property.BoardManufacturing methods and transportation equipment components are provided. Aluminum alloy according to the present inventionBoardIs particularly preferably used as a member for automobile hoods, fenders, trunk lids, roofs, doors and the like.

JP19840698A 1998-07-14 1998-07-14 Method of manufacturing aluminum alloy sheet for forming process excellent in chemical conversion processability and transportation equipment member obtained by the manufacturing method Expired - Fee Related JP4060952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19840698A JP4060952B2 (en) 1998-07-14 1998-07-14 Method of manufacturing aluminum alloy sheet for forming process excellent in chemical conversion processability and transportation equipment member obtained by the manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19840698A JP4060952B2 (en) 1998-07-14 1998-07-14 Method of manufacturing aluminum alloy sheet for forming process excellent in chemical conversion processability and transportation equipment member obtained by the manufacturing method

Publications (3)

Publication Number Publication Date
JP2000034534A JP2000034534A (en) 2000-02-02
JP2000034534A5 true JP2000034534A5 (en) 2005-10-27
JP4060952B2 JP4060952B2 (en) 2008-03-12

Family

ID=16390606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19840698A Expired - Fee Related JP4060952B2 (en) 1998-07-14 1998-07-14 Method of manufacturing aluminum alloy sheet for forming process excellent in chemical conversion processability and transportation equipment member obtained by the manufacturing method

Country Status (1)

Country Link
JP (1) JP4060952B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4829412B2 (en) * 2001-02-23 2011-12-07 株式会社神戸製鋼所 Aluminum alloy material with excellent yarn rust resistance
CN114807688B (en) * 2022-04-13 2023-10-13 中铝瑞闽股份有限公司 6-series aluminum alloy plate strip with high durability for automobile body and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2823797B2 (en) Manufacturing method of aluminum alloy sheet for forming
US20100294400A1 (en) Method for producing a steel component by hot forming and steel component produced by hot forming
EP3622096B1 (en) Method of manufacturing an al-si-mg alloy rolled sheet product with excellent formability
CN102498229A (en) Almgsi strip for applications having high plasticity requirements
JP3590685B2 (en) Manufacturing method of aluminum alloy sheet for automobile outer panel
JP3563323B2 (en) Aluminum alloy plate excellent in thread rust resistance and method for producing the same
JPH08199278A (en) Aluminum alloy sheet excellent in press formability and baking finish hardenability and its production
JP2006241548A (en) Al-Mg-Si ALLOY SHEET SUPERIOR IN BENDABILITY, MANUFACTURING METHOD THEREFOR, AND AUTOMOTIVE SKIN PLATE OBTAINED FROM THE SHEET
JP2003105471A (en) Aluminum alloy sheet, and production method therefor
JP2003105472A (en) Aluminum alloy sheet, and production method therefor
JPH09137243A (en) Aluminum alloy sheet excellent in bendability after press forming and its production
JP4171141B2 (en) Aluminum alloy material with excellent yarn rust resistance
JP4175818B2 (en) Aluminum alloy plate excellent in formability and paint bake hardenability and method for producing the same
JPH06340940A (en) Aluminum alloy sheet excellent in press formability and baking hardenability and its production
JP4060952B2 (en) Method of manufacturing aluminum alloy sheet for forming process excellent in chemical conversion processability and transportation equipment member obtained by the manufacturing method
JP3749627B2 (en) Al alloy plate with excellent press formability
JP2000034534A5 (en)
JP3618807B2 (en) Aluminum alloy hollow shape having excellent bending workability and method for producing the shape
JP4386393B2 (en) Aluminum alloy sheet for transport aircraft with excellent corrosion resistance
JPH10237576A (en) Aluminum alloy sheet excellent in formability, baking finish hardenability, chemical conversion treatment property, and corrosion resistance and its production
JPH0480979B2 (en)
JP2513559B2 (en) Manufacturing method of aluminum alloy plate with excellent mold galling resistance, scratch resistance and corrosion resistance
JPH0660366B2 (en) Aluminum alloy sheet for zinc phosphate treatment and method for producing the same
JP3442699B2 (en) Cleaning method of aluminum alloy material with excellent thread rust resistance
JPH10310835A (en) Aluminum alloy sheet excellent in strength, stretcher strain mark resistance and bendability and its production