JP2000028671A - Insulation detector - Google Patents

Insulation detector

Info

Publication number
JP2000028671A
JP2000028671A JP10207230A JP20723098A JP2000028671A JP 2000028671 A JP2000028671 A JP 2000028671A JP 10207230 A JP10207230 A JP 10207230A JP 20723098 A JP20723098 A JP 20723098A JP 2000028671 A JP2000028671 A JP 2000028671A
Authority
JP
Japan
Prior art keywords
phase
insulation
circuit
ground
leakage current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10207230A
Other languages
Japanese (ja)
Inventor
Tatsu Yonezawa
龍 米澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP10207230A priority Critical patent/JP2000028671A/en
Publication of JP2000028671A publication Critical patent/JP2000028671A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Testing Relating To Insulation (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an insulation detector where a device configuration is simpler than an igr insulation detector (a current component caused by the unbalance of insulation resistance against ground), manufacturing cost is made low, and the insulation deterioration of an electric path to be monitored can be detected accurately. SOLUTION: An insulation detector is provided with power supply terminals 10T and 10S for receiving power supply from a T-phase electric circuit 2T and an S-phase electric circuit 2S, a ground terminal 10E that is connected to a ground line 8 of a Type 3 installation construction, a differential amplifier 17 for outputting the differential voltage between the power supply terminal 10T and the grounding terminal 10E being connected to the T-phase electric circuit, and a CPU 22 for detecting insulation deterioration based on the value of the vector sum by performing the discrete Fourier transformation of a leakage current i0 and a voltage signal from the differential amplifier 17 and extracting only the vector component, that is in phase with the reference vector from the leakage current vector with the voltage signal as a reference vector. By obtaining only a current component (igr) caused by the unbalance of the vector component that is in phase with the reference vector is obtained from a leakage current vector, only the current component (igr) caused by the unbalance of the insulation resistance against the ground can be obtained so that the leakage current i0 is detected without being affected by the leakage current component (igc) caused by the unbalance of the capacitance against the ground.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、単相3線式電路の
絶縁劣化を検出するための絶縁検出器に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulation detector for detecting insulation deterioration of a single-phase three-wire circuit.

【0002】[0002]

【従来の技術】従来、絶縁検出器には、監視対象電路の
漏れ電流が第二種接地工事の接地線に環流してくる性質
を利用して、この漏れ電流(i0 )を常時計測し,所定
の変化が生じたとき異常検知信号を発するi0 絶縁検出
器がある。図6は従来のi0 絶縁検出器の構成を示した
ものであり、監視対象電路である単相3線式電路の中線
(S相線)を接地している第二種接地工事の接地線61
に漏れ電流検出用の変流器(CT)62を装着し、検出
される漏れ電流i0 を増幅整流回路63で増幅整流し、
警報判定回路64に出力している。警報判定回路64
は、増幅整流回路63からの検出電流値を警報値設定回
路65に予め設定されている注意レベル警報値(15m
A)及び警戒レベル警報値(50mA)と比較し、電流
値が注意レベル警報値以上の場合は注意警報用の表示ラ
ンプを、警戒レベル警報値以上の場合は警戒警報用の表
示ランプをそれぞれ点灯させるとともに、監視結果を自
動伝送する発信器又は通報器に警報信号を出力する。i
0 絶縁検出器は、監視対象電路の対地静電容量C1 、C
2 が常時小さい場合に適用されるものであり、絶縁低下
が生じた場合、監視対象電路の漏れ電流i0は大きくな
る。したがって、図6においては、第二種接地工事の接
地線61に流れる漏れ電流i0 の大きさを常時計測する
ことによって、監視対象電路の絶縁低下を検出できる。
2. Description of the Related Art Conventionally, an insulation detector constantly measures this leakage current (i0) by utilizing the property that the leakage current of an electric circuit to be monitored flows back to a ground wire of a second-class grounding work. There is an i0 insulation detector that emits an abnormality detection signal when a predetermined change occurs. FIG. 6 shows a configuration of a conventional i0 insulation detector, and is a grounding wire of a second-class grounding construction in which a middle line (S-phase wire) of a single-phase three-wire circuit, which is a circuit to be monitored, is grounded. 61
A current transformer (CT) 62 for detecting a leakage current is attached to the power supply, and the detected leakage current i0 is amplified and rectified by an amplification rectifier circuit 63.
The signal is output to the alarm determination circuit 64. Alarm judgment circuit 64
Is a warning level alarm value (15 m) preset in the alarm value setting circuit 65 from the detected current value from the amplification rectifier circuit 63.
A) and the warning level warning value (50 mA) are compared. When the current value is higher than the warning level warning value, the warning warning display lamp is lit, and when the current value is higher than the warning level warning value, the warning warning display lamp is lit. At the same time, an alarm signal is output to a transmitter or a transmitter that automatically transmits the monitoring result. i
0 The insulation detector detects the capacitances C1, C
This is applied when 2 is always small, and when insulation is reduced, the leakage current i0 of the monitored circuit becomes large. Therefore, in FIG. 6, by always measuring the magnitude of the leakage current i0 flowing through the ground wire 61 of the second-class grounding work, it is possible to detect a decrease in the insulation of the electric circuit to be monitored.

【0003】しかし、交流電路における漏れ電流i0
は、対地絶縁抵抗Rg1 、Rg2 に基づく電流成分igr
(=ig1+ig2)と対地静電容量C1 、C2 に基づく電
流成分igc(=ic1+ic2)とからなるため、単に漏れ
電流i0 の変化だけでは絶縁監視ができない場合があ
る。つまり、このi0 絶縁検出器では、漏れ電流i0 の
変化が対地絶縁抵抗Rg1 、Rg2 不均衡に因るもの
か、対地静電容量C1 、C2の不均衡に因るものかを区
別できないため、対地静電容量C1 、C2 の不均衡によ
る漏れ電流i0 の増大を絶縁低下として誤検出する可能
性がある。そこで、このような不具合に対処するため
に、監視対象電路と大地の問に商用周波数(例えば50
Hz)と異なる低い周波数(例えば10Hz)の交流を
監視用信号として第二種接地工事の接地線に流し、対地
インピーダンスを通して第二種接地工事の接地線に還流
する監視用信号を分離検出することにより、対地絶縁抵
抗に基づく電流成分igrのみを常時計測するようになし
たigr絶縁検出器が使用される。
However, the leakage current i0 in the AC circuit is
Is the current component igr based on the ground insulation resistances Rg1 and Rg2.
(= Ig1 + ig2) and the current component igc (= ic1 + ic2) based on the ground capacitances C1 and C2, so that insulation monitoring may not be possible simply by changing the leakage current i0. In other words, the i0 insulation detector cannot distinguish whether the change in the leakage current i0 is due to the imbalance between the ground insulation resistances Rg1 and Rg2 or the imbalance between the ground capacitances C1 and C2. An increase in the leakage current i0 due to an imbalance between the capacitances C1 and C2 may be erroneously detected as a decrease in insulation. Therefore, in order to deal with such a problem, the commercial frequency (for example, 50
Hz) and a low frequency (for example, 10 Hz) different from that of the second type grounding work is sent to the ground line of the second-class grounding work as a monitoring signal, and the monitoring signal flowing back to the second grounding work through the ground impedance is separated and detected. Thus, an igr insulation detector that constantly measures only the current component igr based on the ground insulation resistance is used.

【0004】図7はigr絶縁検出器の構成を示したもの
であり、第二種設置工事の接地線71に注入トランス7
2を設け、注入トランス72に内蔵した発振器73によ
り接地線71を通じて変圧器二次側(低圧側)の監視対
象電路に低周波の監視用信号を商用電流に重畳して注入
し、監視対象電路から第二種接地工事の接地線71に還
流してくる漏れ電流i0 を検出用変流器(CT)74に
より検出し、増幅器75で増幅した後、濾波器76によ
り監視用信号成分を分離抽出し、更にこの信号成分を同
期検波回路77にて発振器73の信号で同期検波して警
報判定回路78に出力している。警報判定回路78は、
入力された監視用信号の電流値を警報値設定回路79に
予め設定されている注意レベル警報値(15mA)及び
警戒レベル警報値(50mA)と比較し、電流値が注意
レベル警報値以上の場合は注意警報用の表示ランプを、
警戒レベル警報値以上の場合は警戒警報用の表示ランプ
をそれぞれ点灯させるとともに、監視結果を自動伝送す
る発信器又は通報器に警報信号を出力する。igr絶縁検
出器では、商用電流に注入する監視用信号の位相などを
制御することにより、対地絶縁抵抗Rg1 、Rg3 の不
平衡に因る電流成分igrと対地静電容量C1 、C3 の不
平衡に因る電流成分igcとを区別できるので、漏れ電流
i0のうち対地絶縁抵抗Rg1 、Rg3 の不平衡に因る
電流成分igrのみを常時計測して高精度の絶縁監視を行
うことができる。しかし、監視対象電路の対地静電容量
C1 、C3 が大きく、絶縁低下のない健全な電路の場合
は、漏れ電流i0 に含まれる対地静電容量C1 、C3 の
不平衡に因る電流成分igcの割合が対地絶縁抵抗Rg1
、Rg3 の不平衡に因る電流成分igrのそれに比べて
著しく大きいため、濾波器76や同期検波回路77を用
いても対地絶縁抵抗Rg1 、Rg3 の不平衡に因る電流
成分igrのみを抽出することが難しくなり、検出誤差が
大きくなる傾向がある。これを防ぐために、静電容量抑
圧回路を設けて無効分を抑圧している。
FIG. 7 shows the configuration of an igr insulation detector.
2, a low frequency monitoring signal is superimposed on a commercial current and injected into a monitoring target electric circuit on the transformer secondary side (low voltage side) through a ground line 71 by an oscillator 73 incorporated in the injection transformer 72, and the monitoring target electric circuit is provided. , A leakage current i0 returning to the ground line 71 of the second-class grounding work is detected by a current transformer (CT) 74 for detection, amplified by an amplifier 75, and then separated and extracted by a filter 76 for a monitoring signal component. Further, this signal component is synchronously detected by the signal of the oscillator 73 by the synchronous detection circuit 77 and output to the alarm determination circuit 78. The alarm determination circuit 78
When the current value of the input monitoring signal is compared with the warning level warning value (15 mA) and the warning level warning value (50 mA) preset in the warning value setting circuit 79, and the current value is equal to or higher than the warning level warning value Is a warning lamp,
When the alarm level is equal to or higher than the alarm level alarm value, the alarm lamp is turned on, and an alarm signal is output to a transmitter or an alarm device that automatically transmits the monitoring result. The igr insulation detector controls the phase and the like of the monitoring signal injected into the commercial current to control the current component igr due to the unbalance between the ground insulation resistances Rg1 and Rg3 and the unbalance between the ground capacitances C1 and C3. Since the current component igc can be distinguished from the current component igc, only the current component igr of the leakage current i0 due to the imbalance between the ground insulation resistances Rg1 and Rg3 can be constantly measured to perform high-precision insulation monitoring. However, in the case of a sound circuit without large insulation capacitances C1 and C3 and no insulation deterioration in the monitored circuit, the current component igc of the current component igc due to the unbalance of the ground capacitances C1 and C3 included in the leakage current i0. The ratio is the ground insulation resistance Rg1
, Rg3, the current component igr is significantly larger than that of the current component igr, so that only the current component igr caused by the imbalance between the ground insulation resistances Rg1 and Rg3 is extracted by using the filter 76 and the synchronous detection circuit 77. And the detection error tends to increase. To prevent this, a capacitance suppressing circuit is provided to suppress the ineffective component.

【0005】[0005]

【発明が解決しようとする課題】上記のように、igr絶
縁検出器では、商用周波数と異なる周波数の監視用信号
を接地線74を通して商用電流に注入し、対地インピー
ダンスを通して接地線74に還流する監視用信号を分離
抽出して検出することにより、漏れ電流i0 うち対地絶
縁抵抗Rg1 、Rg3 の不均衡に因る電流成分igrのみ
を常時計測できるため、i0 絶縁検出器と比較して高精
度の絶縁監視が可能である。しかし、igr絶縁検出器
は、低周波の監視用信号を商用電流に重畳して注入する
ための注入トランス72、監視対象電路の漏れ電流i0
から監視用信号成分を分離抽出するための濾波器76、
分離抽出した監視用信号成分を同期検波する同期検波回
路77、監視対象電路の対地静電容量C1 、C3 に因る
無効成分を抑圧するための静電容量抑圧回路等を備える
必要があるため、i0 絶縁検出器よりも構成や制御方式
が複雑であり、製造コストが高いという欠点がある。一
方、i0 絶縁検出器は、igr絶縁検出器よりも構成及び
制御方式が簡単であり、製造コストが安いという利点は
あるものの、前述したように、対地絶縁抵抗Rg1 、R
g2 の不平衡に因る漏れ電流i0 の変化と、対地静電容
量C1 、C2の不平衡に因る漏れ電流i0 とを区別でき
ないため、対地静電容量C1 、C2 の不平衡に因る漏れ
電流i0 の増大を絶縁劣化として誤検出する可能性があ
り、検出精度が悪いという欠点がある。本発明は上記事
情の下に創案されたものであり、その目的は、igr絶縁
検出器より装置構成が簡単で製造コストが安く、かつ監
視対象電路の絶縁劣化を高精度に検出できる絶縁検出器
を提供することにある。
As described above, in the igr insulation detector, a monitor signal having a frequency different from the commercial frequency is injected into the commercial current through the ground line 74, and the monitor signal is returned to the ground line 74 through the ground impedance. Since the current signal igr due to the imbalance between the ground insulation resistances Rg1 and Rg3 of the leakage current i0 can be constantly measured by separately extracting and detecting the signal for use, the insulation with higher accuracy than the i0 insulation detector is obtained. Monitoring is possible. However, the igr insulation detector includes an injection transformer 72 for superposing and injecting a low-frequency monitoring signal on a commercial current, and a leakage current i0 of a monitored circuit.
A filter 76 for separating and extracting a monitoring signal component from the
It is necessary to include a synchronous detection circuit 77 for synchronously detecting the separated and extracted monitoring signal component, a capacitance suppressing circuit for suppressing an ineffective component caused by ground capacitances C1 and C3 of the monitored circuit, and the like. The structure and control method are more complicated than the i0 insulation detector, and the manufacturing cost is high. On the other hand, the i0 insulation detector is simpler in configuration and control method than the igr insulation detector, and has the advantage of lower manufacturing cost. However, as described above, the ground insulation resistances Rg1 and Rg1
Since the change in the leakage current i0 due to the unbalance of g2 and the leakage current i0 due to the unbalance between the ground capacitances C1 and C2 cannot be distinguished, the leakage due to the unbalance between the ground capacitances C1 and C2 cannot be distinguished. There is a possibility that an increase in the current i0 may be erroneously detected as insulation deterioration, and the detection accuracy is poor. The present invention has been made in view of the above circumstances, and has as its object to provide an insulation detector which has a simpler device configuration than the igr insulation detector, has a lower manufacturing cost, and can detect insulation deterioration of a monitored circuit with high accuracy. Is to provide.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、請求項1記載の発明は、配電用変圧器二次側中性点
を第二種接地工事の接地線で接地するとともに前記変圧
器二次側中性点からS相電路を引き出し、その外側のR
相電路及びT相電路とともに3線で負荷に電力供給する
配電線の絶縁劣化を、前記第二種接地工事の接地線に流
れる漏れ電流i0 に基づいて検出する絶縁検出器におい
て、R相電路又はT相電路とS相電路とから電力供給を
受けるための一対の電源端子と、第3種設置工事の接地
線に接続された接地端子と、R相電路又はT相電路に接
続された側の前記電源端子と前記接地端子との間の差電
圧を出力する差動増幅器と、前記漏れ電流i0 と前記差
動増幅器からの電圧信号とをそれぞれ離散フーリエ変換
し、電圧信号を基準ベクトルとしたときの漏れ電流ベク
トルから基準ベクトルと同相のベクトル成分のみ抽出し
てそのベクトル和を求め、その値に基づいて絶縁劣化を
検出する演算処理部とを備えたことを特徴とする。ま
た、請求項2記載の発明は、請求項1記載の絶縁検出器
において、前記演算処理部が前記ベクトル和が複素平面
上において実軸の正側の領域に在るか否かによって、R
相電路とT相電路のどちら側に絶縁劣化が生じたのかを
判断することを特徴としている。
According to a first aspect of the present invention, a neutral point for a secondary side of a power distribution transformer is grounded by a grounding wire of a second-class grounding construction. The S-phase electrical circuit is pulled out from the neutral point on the secondary side of the
An insulation detector for detecting deterioration of insulation of a distribution line that supplies power to a load with three wires together with a three-phase circuit and a T-phase circuit based on a leakage current i0 flowing through a ground line of the second-class grounding work. A pair of power terminals for receiving power supply from the T-phase circuit and the S-phase circuit, a ground terminal connected to the ground wire of the third kind installation work, and a side connected to the R-phase circuit or the T-phase circuit. When a differential amplifier that outputs a differential voltage between the power supply terminal and the ground terminal, and discrete Fourier transform of the leakage current i0 and the voltage signal from the differential amplifier, and the voltage signal is used as a reference vector. And an arithmetic processing unit for extracting only a vector component having the same phase as the reference vector from the leakage current vector, obtaining a vector sum thereof, and detecting insulation deterioration based on the value. According to a second aspect of the present invention, in the insulation detector according to the first aspect, the arithmetic processing unit determines whether or not the vector sum is on a positive side area of a real axis on a complex plane.
It is characterized in that it is determined on which side of the phase circuit or the T-phase circuit the insulation deterioration has occurred.

【0007】上記のように、請求項1の発明では、漏れ
電流i0 と、差動増幅器からの電圧信号すなわち第3種
設置工事の接地線とR相電路又はT相電路との間の差電
圧とをそれぞれ離散フーリエ変換し、電圧信号を基準ベ
クトルとしたときの漏れ電流ベクトルから基準ベクトル
と同相のベクトル成分のみ抽出してそのベクトル和を求
める構成としたことにより、漏れ電流ベクトルから対地
絶縁抵抗の不平衡に起因する電流成分(igr)のみ抽出
できるので、対地静電容量の不平衡に起因する漏れ電流
成分(igc)の影響を全く受けずに漏れ電流i0 (ig
r)を検出することができ、監視対象電路の絶縁劣化を
高精度に検出することができる。また、漏れ電流i0 と
上記差電圧の信号を検出して、それぞれ離散フーリエ変
換することにより、両信号の基本波成分のみを測定して
絶縁劣化を検出できるので、信頼性良く検出を行うこと
ができる。また、漏れ電流i0 から対地絶縁抵抗の不平
衡に起因する電流成分(igr)のみ抽出するために、監
視用信号注入用の注入トランスや漏れ電流i0 から監視
用信号成分を分離抽出する濾波器などを用いる必要がな
いので、igr絶縁検出器よりも装置構成を簡単にでき、
製造コストが安くなる。また、請求項2記載のように、
R相電路とT相電路のどちら側に絶縁劣化が生じたのか
を判断できる機能を持たせることで、絶縁劣化の発生箇
所を特定し易くなるので、絶縁性復旧作業を早期に実施
できる。
As described above, according to the first aspect of the present invention, the leakage current i0 and the voltage signal from the differential amplifier, that is, the difference voltage between the ground line of the third type installation work and the R-phase circuit or the T-phase circuit are set. And a discrete Fourier transform, and extracting only the vector component having the same phase as the reference vector from the leakage current vector when the voltage signal is used as the reference vector, and calculating the vector sum thereof. Since only the current component (igr) caused by the imbalance of the ground can be extracted, the leakage current i0 (ig) is not affected at all by the leak current component (igc) caused by the imbalance of the ground capacitance.
r) can be detected, and insulation deterioration of the electric circuit to be monitored can be detected with high accuracy. Further, by detecting the signal of the leakage current i0 and the signal of the above-mentioned difference voltage and performing discrete Fourier transform, respectively, it is possible to measure only the fundamental wave component of both signals and detect the insulation deterioration, so that the detection can be performed with high reliability. it can. Also, in order to extract only the current component (igr) caused by the imbalance of the ground insulation resistance from the leakage current i0, an injection transformer for injecting a monitoring signal, a filter for separating and extracting the monitoring signal component from the leakage current i0, etc. Because it is not necessary to use the device, the device configuration can be simplified compared to the igr insulation detector.
Manufacturing costs are reduced. Also, as described in claim 2,
By providing a function that can determine which side of the R-phase circuit and the T-phase circuit has caused the insulation deterioration, it becomes easier to specify the location where the insulation deterioration has occurred, so that the insulation restoration work can be performed early.

【0008】[0008]

【発明の実施の形態】以下、添付図面に示した実施の形
態により本発明の詳細を説明する。図1は本発明の実施
の形態の一例を示す概略回路図である。符号1は配電用
変圧器、符号2は監視対象電路である単相3線式の配電
線、3は配電線2の絶縁レベルの異常を検出するために
設けられた本発明に係る絶縁検出器である。同図に示す
配電系では、変圧器1の二次側(低圧側)中性点2Pを
第2種接地工事の接地線4を介して接地し、そこから配
電線2の中性電路であるS相電路2Sを引き出し、この
S相電路2Sとその両外側のR相及びT相電路2R、2
Tの3線で負荷に電力供給を行っている。絶縁検出器3
は、配電線2のS相電路2S及びT相電路2Tに接続さ
れた一対の分岐線5S、5Tを介して配電線2から電力
(AC100V)の供給を受けている。符号6は、分岐
線5S、5Tと絶縁検出器3の電源端子10S、10T
から引き出された電源線7S、7Tとを接続している接
続器(コンセント)である。接続器6には、電源端子6
S、6Tと接地端子6Eとが設けられている。接続器6
の接地端子6Eは第3種接地工事用の接地線8を介して
接地されており、この接地端子6Eには、絶縁検出器3
の接地端子10Eから引き出された接地線9が接続され
ている。絶縁検出器3の内部には、AC/DC電源1
1、増幅回路12、第一ローパスフィルタ(LPF)1
3、第一A/D変換器14、分圧回路15、接点切替器
16、差動増幅器17、第二ローパスフィルタ(LP
F)18、第二A/D変換器19、A/D変換タイミン
グ制御回路20、クロック回路21、CPU22、RO
M23、等が設けられている。 AC/DC電源11
は、配電線2から分岐線5S、5T、電源線7S、7T
などを経て電源端子10S、10Tに供給される交流電
力を直流に変換するとともに、所定電圧に抑制して絶縁
検出器3内の各種IC回路へ電力を供給する。 増幅回
路12は、第二種接地工事の接地線4に装着した検出用
変流器(CT)24により検出された漏れ電流i0 を増
幅して第一LPF13へ出力する。第一LPF13は、
増幅回路12からの入力電流のうち所定の周波数以下
(例えば50Hz以下)の電流成分のみ通過させて第一
A/D変換器14へ供給する。第一A/D変換器14
は、第一LPF13から入力された信号をデジタル信号
に変換してCPU22へ供給する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the embodiments shown in the accompanying drawings. FIG. 1 is a schematic circuit diagram showing an example of an embodiment of the present invention. Reference numeral 1 denotes a distribution transformer, reference numeral 2 denotes a single-phase three-wire distribution line that is an electric circuit to be monitored, and reference numeral 3 denotes an insulation detector according to the present invention provided to detect an abnormality in the insulation level of the distribution line 2. It is. In the power distribution system shown in the figure, the secondary side (low voltage side) neutral point 2P of the transformer 1 is grounded via the grounding wire 4 of the second-class grounding work, and from there, the neutral line of the distribution line 2 is provided. The S-phase circuit 2S is drawn out, and the S-phase circuit 2S and the R-phase and T-phase circuits 2R,
Power is supplied to the load by three lines T. Insulation detector 3
Is supplied with power (100 VAC) from the distribution line 2 via a pair of branch lines 5S, 5T connected to the S-phase electric circuit 2S and the T-phase electric circuit 2T of the distribution line 2. Reference numeral 6 denotes branch lines 5S and 5T and power supply terminals 10S and 10T of the insulation detector 3.
It is a connector (outlet) that connects the power supply lines 7S and 7T drawn from the power supply line. The connector 6 has a power terminal 6
S, 6T and a ground terminal 6E are provided. Connector 6
The grounding terminal 6E is grounded via a grounding wire 8 for the third-class grounding work.
Is connected to the ground wire 9 drawn from the ground terminal 10E. An AC / DC power supply 1 is provided inside the insulation detector 3.
1, amplification circuit 12, first low-pass filter (LPF) 1
3, the first A / D converter 14, the voltage dividing circuit 15, the contact switch 16, the differential amplifier 17, the second low-pass filter (LP
F) 18, second A / D converter 19, A / D conversion timing control circuit 20, clock circuit 21, CPU 22, RO
M23, etc. are provided. AC / DC power supply 11
Are branch lines 5S, 5T, power supply lines 7S, 7T from the distribution line 2.
The AC power supplied to the power supply terminals 10S and 10T is converted into a direct current, and the power is suppressed to a predetermined voltage to supply power to various IC circuits in the insulation detector 3. The amplification circuit 12 amplifies the leakage current i0 detected by the detection current transformer (CT) 24 attached to the ground wire 4 of the second-class grounding work, and outputs it to the first LPF 13. The first LPF 13 is
The input current from the amplifier circuit 12 is supplied to the first A / D converter 14 by passing only a current component having a predetermined frequency or less (for example, 50 Hz or less). First A / D converter 14
Converts the signal input from the first LPF 13 into a digital signal and supplies the digital signal to the CPU 22.

【0009】一方、分圧回路15は、AC/DC電源1
1とともに絶縁検出器3の電源端子10S、10Tに接
続されており、配電線2のS相電路2S及びT相電路2
Tからの2つの供給電圧をそれぞれ所定値以下に下げて
接点切替器16へ出力している。接点切替器16は、C
PU22からの制御信号によって作動し、分圧回路15
からの2つの出力の一方を選択して差動増幅器17へ入
力すべく接点を切り替える。差動増幅器17には、接点
切替器16により選択された分圧回路15の一方の出力
電圧と、接地端子10Eの電圧(第3種接地電圧)E3
とが入力される。差動増幅器17は、分圧回路15から
出力される電源端子10S、10Tの電圧と接地端子1
0Eの電圧E3 との電圧差を増幅して、第二LPF18
へ出力する。第二LPF18は、差動増幅器17からの
電流のうち所定の周波数以下(例えば50Hz以下)の
電流成分のみ通過させて第二A/D変換器19へ供給す
る。第二A/D変換器19は、第二LPF18から入力
された信号をデジタル信号に変換してCPU22へ供給
する。第一及び第二A/D変換器14、19は、それぞ
れA/D変換タイミング制御回路20からの制御信号に
より、互いにタイミングを一致させてサンプリングを行
う。CPU22は、この絶縁検出器3の主制御装置であ
り、クロック回路21より供給されるクロック信号に同
期して動作する。ROM23にはCPU22が実行する
プログラムが書き込まれており、CPU22はこのプロ
グラムに従って、第一A/D変換器14、接点切替器1
6、第二A/D変換器19、A/D変換タイミング制御
回路20等を制御しつつ配電線2の絶縁状態を監視し、
その結果を出力ポート24より出力する。出力ポート2
4には監視結果を自動伝送する従来同様の発信器又は通
報器が接続されている。
On the other hand, the voltage dividing circuit 15
1 and the power terminals 10S and 10T of the insulation detector 3, and the S-phase circuit 2S and the T-phase circuit 2 of the distribution line 2.
The two supply voltages from T are each reduced to a predetermined value or less and output to the contact switch 16. The contact switch 16 is C
The voltage dividing circuit 15 is operated by a control signal from the PU 22.
The contact is switched so that one of the two outputs from is selected and input to the differential amplifier 17. The differential amplifier 17 has one output voltage of the voltage dividing circuit 15 selected by the contact switch 16 and the voltage (third-class ground voltage) E3 of the ground terminal 10E.
Is input. The differential amplifier 17 is connected between the voltage of the power supply terminals 10S and 10T output from the voltage dividing circuit 15 and the ground terminal 1
The voltage difference from the voltage E3 of the second LPF 18 is amplified.
Output to The second LPF 18 allows the current from the differential amplifier 17 to pass only a current component having a predetermined frequency or lower (for example, 50 Hz or lower) and supplies the current to the second A / D converter 19. The second A / D converter 19 converts the signal input from the second LPF 18 into a digital signal and supplies the digital signal to the CPU 22. The first and second A / D converters 14 and 19 perform sampling at the same timing with each other according to a control signal from the A / D conversion timing control circuit 20. The CPU 22 is a main control device of the insulation detector 3 and operates in synchronization with a clock signal supplied from the clock circuit 21. A program executed by the CPU 22 is written in the ROM 23, and the CPU 22 executes the first A / D converter 14 and the contact switch 1 according to the program.
6, monitoring the insulation state of the distribution line 2 while controlling the second A / D converter 19, the A / D conversion timing control circuit 20, etc.
The result is output from the output port 24. Output port 2
4 is connected to a conventional transmitter or notifier for automatically transmitting the monitoring result.

【0010】以下、上記絶縁検出器3の動作を説明す
る。絶縁検出器3は、電源線7S、7T及び接地線9を
接続器6の電源端子6S、6T及び接地端子6Eにそれ
ぞれ接続し、第二種接地工事の接地線4に検出用変流器
24を取り付けて増幅回路12と接続した後、図示しな
い操作パネルの電源スイッチがオンされることにより動
作を開始する。その際、CPU22は、初期設定処理と
して、先ず、接点切替器16により分圧回路15との接
点を順次切り替え、配電線2のS相電路2S及びT相電
路2Tから分圧回路15を経て供給される2つの電圧を
一方ずつ差動増幅器17に入力する。これにより、差動
増幅器17からS相電路2Sの電圧と第3種接地電圧E
3 との差電圧、及びT相電路2Tの電圧と第3種接地電
圧E3 との差電圧が順次出力され、それぞれの信号が第
二LPF18、第二A/D変換器19を経てCPU22
へ供給される。CPU22は、両信号を比較し、接点切
替器16により差電圧が大きい方の接点を選択する。こ
の場合、配電線2のS相電路2Sは第二種接地工事の接
地線4により接地されているため、S相電路2Sの電圧
と第3種接地電圧E3 との差電圧は極小さいので、分圧
回路15のT相側の接点が選択される。すなわち、接点
切替器16は分岐線5が変圧器1の二次側電路の2S及
び2Tに接続されている場合であっても、また、2S及
び2Rに接続されている場合であっても、信号を入力す
ることができるよう利便性を考慮して設けられたもので
ある。上記初期設定処理を行った後、CPU22は、第
二種接地工事の接地線4に装着した検出用変流器24に
より検出され、増幅回路12、第一LPF13、及び第
一A/D変換器14を経て入力される漏れ電流i0 の値
と、配電線2から電力線7T及び接地線9を通じて供給
され、分圧回路15、差動増幅器17、第二LPF1
8、第二A/D変換器19を経て入力される単相電圧、
すなわちT相電路2Tの電圧と第3種接地電圧E3 との
差電圧の値とに基づき、以下に説明する動作により絶縁
劣化の検出を行う。
Hereinafter, the operation of the insulation detector 3 will be described. The insulation detector 3 connects the power lines 7S, 7T and the ground line 9 to the power terminals 6S, 6T and the ground terminal 6E of the connector 6, respectively, and connects the detection current transformer 24 to the ground line 4 of the second-class grounding. Is attached and connected to the amplifier circuit 12, the operation is started by turning on a power switch of an operation panel (not shown). At that time, as an initial setting process, the CPU 22 first switches the contacts with the voltage dividing circuit 15 sequentially by the contact switch 16 and supplies the contacts from the S-phase circuit 2S and the T-phase circuit 2T of the distribution line 2 via the voltage dividing circuit 15. These two voltages are input to the differential amplifier 17 one by one. As a result, the voltage of the S-phase circuit 2S and the third-class ground voltage E
3 and the difference voltage between the voltage of the T-phase circuit 2T and the third type ground voltage E3 are sequentially output, and the respective signals are passed through the second LPF 18 and the second A / D converter 19 to the CPU 22.
Supplied to The CPU 22 compares the two signals, and selects the contact having the larger difference voltage by the contact switch 16. In this case, since the S-phase circuit 2S of the distribution line 2 is grounded by the ground wire 4 of the second-class grounding work, the difference voltage between the voltage of the S-phase circuit 2S and the third-class ground voltage E3 is extremely small. The contact on the T-phase side of the voltage dividing circuit 15 is selected. That is, the contact switch 16 is connected to the branch line 5 regardless of whether the branch line 5 is connected to the secondary side circuit 2S and 2T of the transformer 1 or to the case where the branch line 5 is connected to 2S and 2R. It is provided in consideration of convenience so that a signal can be input. After performing the initial setting process, the CPU 22 detects the current by the detection current transformer 24 attached to the ground wire 4 of the second-class grounding work, and detects the amplification circuit 12, the first LPF 13, and the first A / D converter. 14 and the value of the leakage current i0 supplied from the distribution line 2 through the power line 7T and the ground line 9, the voltage dividing circuit 15, the differential amplifier 17, and the second LPF 1
8, a single-phase voltage input through the second A / D converter 19,
That is, based on the value of the difference voltage between the voltage of the T-phase electric circuit 2T and the third type ground voltage E3, insulation deterioration is detected by the operation described below.

【0011】図2に示す波形図により漏れ電流i0 と上
記差電圧のサンプリング動作及びCPU22の動作につ
いて説明する。ここでは第一及び第二A/D変換器1
4、19でA/D変換が同時に行われると仮定する。図
示のように信号周波数を50Hzとし、1周期T毎に8
回サンプリングを行うものとすると、1周期Tの時間
長、すなわち20ms長の時間窓を設けて、その中にお
けるサンプリング値に対して、下記の式(1)により離
散フーリエ変換(DFT)演算を行うことにより、信号
周波数の実効値と位相を求めることができる。
The sampling operation of the leakage current i0 and the difference voltage and the operation of the CPU 22 will be described with reference to the waveform diagram shown in FIG. Here, the first and second A / D converters 1
Assume that the A / D conversion is performed simultaneously at 4,19. As shown in the figure, the signal frequency is set to 50 Hz, and 8
If sampling is performed once, a time window of one cycle T, that is, a time window of 20 ms is provided, and a discrete Fourier transform (DFT) operation is performed on the sampled value in the time window by the following equation (1). Thus, the effective value and phase of the signal frequency can be obtained.

【0012】[0012]

【数1】 CPU22は上記離散フーリエ変換を漏れ電流i0 と差
電圧の両信号に対して行う。そして、図2の(A)→
(B)→(C)のように、1サンプリング周期の時間長
ずつ窓を推移させていく。ここで、電圧信号(差電圧)
のサンプリングデータを基準ベクトルとして、i0 ベク
トルを考えると、図3のように表すことができる。な
お、添え字<vtl>は、ベクトル量であることを示す。こ
の図は、 i0<vtl>=igr<vtl> +igc<vtl> なるベクトル加算式を図示したものであり、この式の右
辺第1項、第2項は、図1中に示した記号を用いると、
各々、 igr<vtl> =ig1<vtl> +ig2<vtl> igc<vtl> =ic1<vtl> +ic2<vtl> と表される。したがって、図1中の漏れ電流i0 は、 i0<vtl>=ig1<vtl> +ig2<vtl> +ic1<vtl> +ic2
<vtl> なるベクトル加算式で表される。
(Equation 1) The CPU 22 performs the discrete Fourier transform on both the leakage current i0 and the difference voltage signal. Then, FIG. 2A →
As shown in (B) → (C), the window is shifted by the time length of one sampling cycle. Here, the voltage signal (difference voltage)
Considering the i0 vector using the sampling data of (i) as a reference vector, it can be expressed as shown in FIG. Note that the subscript <vtl> indicates a vector quantity. This figure illustrates a vector addition formula of i0 <vtl> = igr <vtl> + igc <vtl>, and the first and second terms on the right side of the formula use the symbols shown in FIG. When,
Each is expressed as igr <vtl> = ig1 <vtl> + ig2 <vtl> igc <vtl> = ic1 <vtl> + ic2 <vtl>. Therefore, the leakage current i0 in FIG. 1 is i0 <vtl> = ig1 <vtl> + ig2 <vtl> + ic1 <vtl> + ic2
<vtl> is a vector addition expression.

【0013】i0 絶縁検出器の場合、ig1<vtl> とig2
<vtl> 及びic1<vtl> とic2<vtl>は、それぞれのベク
トルの向きが互いに180゜異なるため、これらが互い
に打ち消し合ってしまい、これらの不平衡分だけしかi
0<vtl>として検出されないことになる。しかし、不平衡
分はR相及びT相電路2R、2Tの対地静電容量C1 、
C2 に起因して発生するため、単相電圧ベクトルとは位
相が異なる。したがって、i0<vtl>よりigr<vtl> のみ
取り出せば、igc<vtl> の影響は避けることができる。
そこで、上記CPU22は、上記初期設定処理を行った
後、漏れ電流i0 と上記差電圧の信号を検出して両信号
をそれぞれ離散フーリエ変換し、電圧信号を基準ベクト
ルとしたときのi0<vtl>から基準ベクトルと同相のベク
トル成分のみ抽出し、その和を漏れ電流i0<vtl>成分と
し、その値に基づいて監視対象電路である配電線2の絶
縁劣化を検出する。
In the case of the i0 insulation detector, ig1 <vtl> and ig2
<vtl> and ic1 <vtl> and ic2 <vtl> cancel each other out because the directions of their vectors are different from each other by 180 °.
It will not be detected as 0 <vtl>. However, the unbalanced component is the ground capacitance C1 of the R-phase and T-phase circuits 2R and 2T,
Since it occurs due to C2, it has a different phase from the single-phase voltage vector. Therefore, if only igr <vtl> is extracted from i0 <vtl>, the influence of igc <vtl> can be avoided.
Therefore, after performing the initial setting process, the CPU 22 detects a signal of the leakage current i0 and the signal of the difference voltage, performs a discrete Fourier transform on both signals, and obtains i0 <vtl> when the voltage signal is used as a reference vector. , A vector component having the same phase as that of the reference vector is extracted, the sum of the extracted components is used as a leakage current i0 <vtl> component, and based on the value, the insulation deterioration of the distribution line 2, which is the electric circuit to be monitored, is detected.

【0014】このように、第2種接地工事の接地線4に
流れる漏れ電流i0 をベクトル量i0<vtl>として扱い、
i0<vtl>から対地絶縁抵抗Rg1 、Rg2 に起因する電
流成分igr<vtl> のみ抽出して絶縁劣化を検出すること
により、対地静電容量C1 、C2 に起因する漏れ電流成
分igcの影響を全く受けずに漏れ電流i0 (igr)を検
出することが可能となるので、監視対象電路の絶縁劣化
を高精度に検出することができる。また、漏れ電流i0
と上記差電圧の信号を検出して、それぞれ離散フーリエ
変換することにより、両信号の基本波成分のみを測定し
て絶縁劣化を検出できるので、信頼性良く検出を行うこ
とができる。つまり、信号の周波数が高くなればそれだ
け、その信号の高周波成分の影響でインピーダンスが下
がるため、対地絶縁抵抗Rg1 、Rg2 が見かけ上減少
し、対地絶縁抵抗Rg1 、Rg2 の不平衡に起因する電
流成分igrの測定誤差が増大するが、信号の基本波成分
のみを測定することにより正確な測定値が得られる。こ
れに対し、従来のi0 絶縁検出器では漏れ電流i0 のス
カラー量のみに基づいて監視対象電路の絶縁劣化を検出
していたので、監視対象電路の対地絶縁容量C1 、C2
の不平衡に起因する漏れ電流i0 の増大を絶縁劣化とし
て誤検出する可能性があった。
As described above, the leakage current i0 flowing through the ground line 4 of the second-class grounding work is treated as a vector amount i0 <vtl>,
By extracting only the current components igr <vtl> caused by the ground insulation resistances Rg1 and Rg2 from i0 <vtl> and detecting insulation deterioration, the influence of the leakage current components Igc caused by the ground capacitances C1 and C2 is completely eliminated. Since it is possible to detect the leakage current i0 (igr) without receiving it, it is possible to detect the insulation deterioration of the monitored circuit with high accuracy. Also, the leakage current i0
By performing the discrete Fourier transform by detecting the signal of the differential voltage and the differential voltage, the insulation deterioration can be detected by measuring only the fundamental wave component of both signals, so that the detection can be performed with high reliability. In other words, the higher the frequency of the signal, the lower the impedance due to the effect of the high-frequency component of the signal, so that the ground insulation resistances Rg1 and Rg2 apparently decrease, and the current component due to the unbalance between the ground insulation resistances Rg1 and Rg2. Although the measurement error of igr increases, an accurate measurement value can be obtained by measuring only the fundamental component of the signal. On the other hand, in the conventional i0 insulation detector, the insulation deterioration of the monitored circuit is detected based only on the scalar amount of the leakage current i0.
There is a possibility that an increase in the leakage current i0 due to the unbalance of the above is erroneously detected as insulation deterioration.

【0015】また、本発明によれば、基準ベクトルとな
る電圧信号と、対地絶縁抵抗Rg1、Rg2 の不平衡に
起因する電流成分igr<vtl> の位相を比較することによ
り、単相3線式の配電線2のR相電路2RとT相電路2
Tのどちら側で絶縁劣化が生じたのかを判断することが
できる。すなわち、図4に示す複素平面において、対地
絶縁抵抗Rg1 、Rg2 の不平衡に起因する電流成分i
grのベクトルが実軸の正側の領域にあれば、絶縁検出
器3に電源を供給している側の電路、すなわちこの例の
場合T相電路2T側で絶縁劣化が発生したと判断でき、
電流成分igrのベクトルが実軸の負側の領域にあれ
ば、絶縁検出器3に参照電流を供給している側と反対側
の電路、すなわちこの例の場合R相電路2R側で絶縁劣
化が発生したと判断できる。なお、上記実施の形態で
は、配電線2のS相電路2S及びT相電路2Tから絶縁
検出器3の電源の供給を受けているが、S相電路2S及
びR相電路2Rから電源供給するようにしてもよい。そ
の場合、電流成分igrのベクトルが実軸の正側の領域
にあれば、R相電路2R側で絶縁劣化が発生したと判断
できる。また、上記実施の形態では、漏れ電流i0 と電
圧信号をそれぞれ専用のA/D変換器14、19を用い
てデジタル信号に変換しているが、例えば、図5に示す
ように、i0 信号と電圧信号をマルチプレクサ31で多
重化した後、サンプル・アンド・ホールド回路32を介
して交互にA/D変換器33に入力すれば、1つのA/
D変換器33で2つの信号をデジタル信号に変換するこ
とができる。但し、この場合、i0 信号と電圧信号のサ
ンプリングタイミングが一致しないため、i0 信号と電
圧信号を離散フーリエ変換した後、時間補正を行って両
値を時間的に整合させる必要がある。
Further, according to the present invention, by comparing the phase of a voltage signal serving as a reference vector with the phase of a current component igr <vtl> caused by imbalance between ground insulation resistances Rg1 and Rg2, a single-phase three-wire system is obtained. R-phase circuit 2R and T-phase circuit 2 of distribution line 2
It is possible to determine on which side of T the insulation degradation has occurred. That is, in the complex plane shown in FIG. 4, the current component i due to the unbalance between the ground insulation resistances Rg1 and Rg2 is obtained.
If the gr vector is in the positive region of the real axis, it can be determined that insulation deterioration has occurred on the electric circuit on the side that supplies power to the insulation detector 3, that is, on the T-phase electric circuit 2T in this example.
If the vector of the current component igr is in the negative side region of the real axis, insulation degradation occurs on the side of the circuit opposite to the side supplying the reference current to the insulation detector 3, that is, in this example, on the side of the R-phase circuit 2R. It can be determined that it has occurred. In the above embodiment, the power of the insulation detector 3 is supplied from the S-phase electric circuit 2S and the T-phase electric circuit 2T of the distribution line 2, but the power is supplied from the S-phase electric circuit 2S and the R-phase electric circuit 2R. It may be. In this case, if the vector of the current component igr is in the positive region of the real axis, it can be determined that insulation deterioration has occurred on the R-phase electric circuit 2R side. Further, in the above-described embodiment, the leakage current i0 and the voltage signal are converted into digital signals using dedicated A / D converters 14 and 19, respectively. For example, as shown in FIG. After the voltage signal is multiplexed by the multiplexer 31 and then alternately input to the A / D converter 33 via the sample and hold circuit 32, one A / D
The D converter 33 can convert the two signals into digital signals. However, in this case, since the sampling timing of the i0 signal and the voltage signal do not coincide with each other, it is necessary to perform a discrete Fourier transform on the i0 signal and the voltage signal, and then perform time correction to temporally match the two values.

【0016】[0016]

【発明の効果】以上説明したように、本発明によれば以
下のような優れた効果を発揮できる。請求項1に記載の
発明に係る絶縁検出器は、対地静電容量の不平衡に起因
する漏れ電流成分の影響を全く受けずに、対地絶縁抵抗
の不平衡に起因する漏れ電流成分のみ検出することがで
きるので、従来のi0 絶縁検出器よりも監視対象電路の
絶縁劣化を高精度に検出することができ、且つ、漏れ電
流から対地絶縁抵抗の不平衡に起因する電流成分のみを
抽出するために、igr絶縁検出器のように監視用信号注
入用の注入トランスや漏れ電流から監視用信号成分を分
離抽出する濾波器などを用いる必要がないので、igr絶
縁検出器よりも装置構成を簡単にでき、製造コストが安
くなる。また、請求項2に記載の発明では、請求項1の
絶縁検出器に、R相電路とT相電路のどちら側に絶縁劣
化が生じたのかを判断できる機能を持たせたことによ
り、絶縁劣化の発生箇所を特定し易くなるので、絶縁性
復旧作業を早期実施できるようになる。
As described above, according to the present invention, the following excellent effects can be exhibited. The insulation detector according to the first aspect of the present invention detects only the leakage current component caused by the imbalance of the ground insulation resistance without being affected by the leakage current component caused by the imbalance of the ground capacitance. Because it is possible to detect the insulation deterioration of the electric circuit to be monitored more accurately than the conventional i0 insulation detector, and to extract only the current component due to the unbalance of the ground insulation resistance from the leakage current. In addition, since it is not necessary to use an injection transformer for injecting a monitoring signal or a filter for separating and extracting a monitoring signal component from leakage current as in the case of the igr insulation detector, the device configuration is simpler than that of the igr insulation detector. Production cost is reduced. According to the second aspect of the present invention, the insulation detector of the first aspect is provided with a function of determining which side of the R-phase circuit and the T-phase circuit has the insulation deterioration. Since it is easy to identify the location where the occurrence of the insulation has occurred, the insulation restoration work can be performed at an early stage.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の一例を示す概略回路図で
ある。
FIG. 1 is a schematic circuit diagram illustrating an example of an embodiment of the present invention.

【図2】本発明の実施の形態における信号サンプリング
動作の説明図である。
FIG. 2 is an explanatory diagram of a signal sampling operation in the embodiment of the present invention.

【図3】漏れ電流ベクトル(i0<vtl>)と、対地絶縁抵
抗の不平衡に起因する電流成分ベクトル(igr<vtl> )
及び対地静電容量の不平衡に起因する漏れ電流成分ベク
トル(igc<vtl> )との関係を示した説明図である。
FIG. 3 is a diagram showing a leakage current vector (i0 <vtl>) and a current component vector (igr <vtl>) resulting from an imbalance in insulation resistance to ground.
FIG. 4 is an explanatory diagram showing a relationship between a leakage current component vector (igc <vtl>) caused by an imbalance in ground capacitance.

【図4】R相電路とT相電路のどちら側で絶縁劣化が生
じたかを判断する際の判断基準の説明図である。
FIG. 4 is an explanatory diagram of a criterion for determining which side of an R-phase circuit or a T-phase circuit has caused insulation deterioration.

【図5】本発明の別の実施の形態を示す要部回路図であ
る。
FIG. 5 is a main part circuit diagram showing another embodiment of the present invention.

【図6】従来のi0 絶縁検出器の概略回路図である。FIG. 6 is a schematic circuit diagram of a conventional i0 insulation detector.

【図7】igr絶縁検出器の概略回路図である。FIG. 7 is a schematic circuit diagram of an igr insulation detector.

【符号の説明】[Explanation of symbols]

1 配電用変圧器、2 単相3線式の配電線、2P 中
性点、2S S相電路、2R R相電路、2T T相電
路、3 絶縁検出器、4 第2種接地工事の接地線、5
S 分岐線、5T 分岐線、6 接続器、6E 接地端
子、6S 電源端子、6T 電源端子、7S 電源線、
7T 電源線、8 第3種接地工事用の接地線、9 接
地線、10E 接地端子、10S 電源端子、10T
電源端子、11 AC/DC電源、12 増幅回路、1
3 第一ローパスフィルタ、14第一A/D変換器、1
5 分圧回路、16 接点切替器、17 差動増幅器、
18 第二ローパスフィルタ、19 第二A/D変換
器、20 A/D変換タイミング制御回路、21 クロ
ック回路、22 CPU、23 ROM。
1 Distribution transformer, 2 single-phase three-wire distribution line, 2P neutral point, 2S S-phase circuit, 2R R-phase circuit, 2T T-phase circuit, 3 Insulation detector, 4 Grounding wire for second-class grounding , 5
S branch line, 5T branch line, 6 connector, 6E ground terminal, 6S power terminal, 6T power terminal, 7S power line,
7T power line, 8 ground wire for 3rd class grounding, 9 ground wire, 10E ground terminal, 10S power terminal, 10T
Power supply terminal, 11 AC / DC power supply, 12 amplifier circuit, 1
3 first low-pass filter, 14 first A / D converter, 1
5 voltage divider circuit, 16 contact switches, 17 differential amplifier,
18 second low-pass filter, 19 second A / D converter, 20 A / D conversion timing control circuit, 21 clock circuit, 22 CPU, 23 ROM.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 配電用変圧器二次側中性点を第二種接地
工事の接地線で接地するとともに前記変圧器二次側中性
点からS相電路を引き出し、その外側のR相電路及びT
相電路とともに3線で負荷に電力供給する単相3線式の
配電線の絶縁劣化を、前記第二種接地工事の接地線に流
れる漏れ電流に基づいて検出する絶縁検出器であって、 R相電路又はT相電路とS相電路とから電力供給を受け
るための一対の電源端子と、 第3種設置工事の接地線に接続された接地端子と、 R相電路又はT相電路に接続された側の前記電源端子と
前記接地端子との間の差電圧を出力する差動増幅器と、 前記漏れ電流と前記差動増幅器からの電圧信号とをそれ
ぞれ離散フーリエ変換し、電圧信号を基準ベクトルとし
たときの漏れ電流ベクトルから基準ベクトルと同相のベ
クトル成分のみを抽出してそのベクトル和を求め、その
値に基づいて絶縁劣化を検出する演算処理部とを備えた
ことを特徴とする絶縁検出器。
1. A secondary side neutral point of a distribution transformer is grounded by a ground wire of a second-class grounding construction, an S-phase electrical path is drawn out from the transformer secondary-side neutral point, and an R-phase electrical path outside of the S-phase electrical path. And T
An insulation detector for detecting insulation deterioration of a single-phase three-wire distribution line that supplies power to a load with three wires together with a phase electric circuit based on a leakage current flowing through a ground wire of the second-class grounding work, A pair of power terminals for receiving power supply from the phase or T-phase circuit and the S-phase circuit, a ground terminal connected to the ground wire of the type 3 installation work, and a connection to the R-phase circuit or the T-phase circuit. A differential amplifier that outputs a differential voltage between the power terminal and the ground terminal on the other side, discrete Fourier transforms the leakage current and the voltage signal from the differential amplifier, and converts the voltage signal to a reference vector. And an arithmetic processing unit for extracting only a vector component having the same phase as the reference vector from the leakage current vector obtained when the sum is obtained, obtaining a sum of the vectors, and detecting insulation deterioration based on the value. .
【請求項2】 前記演算処理部は、前記ベクトル和が複
素平面上において実軸の正側の領域に在るか否かによっ
て、R相電路とT相電路のどちら側に絶縁劣化が生じた
のかを検知することを特徴とする請求項1記載の絶縁検
出器。
2. The arithmetic processing unit determines whether the R-phase circuit or the T-phase circuit has insulation degradation depending on whether or not the vector sum is on the positive side of the real axis on a complex plane. The insulation detector according to claim 1, wherein the insulation detector detects whether or not there is a difference.
JP10207230A 1998-07-07 1998-07-07 Insulation detector Pending JP2000028671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10207230A JP2000028671A (en) 1998-07-07 1998-07-07 Insulation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10207230A JP2000028671A (en) 1998-07-07 1998-07-07 Insulation detector

Publications (1)

Publication Number Publication Date
JP2000028671A true JP2000028671A (en) 2000-01-28

Family

ID=16536401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10207230A Pending JP2000028671A (en) 1998-07-07 1998-07-07 Insulation detector

Country Status (1)

Country Link
JP (1) JP2000028671A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002337686A (en) * 2001-05-17 2002-11-27 East Japan Railway Co Insulated track circuit ground receiving device and train control device
JP2006071341A (en) * 2004-08-31 2006-03-16 Toshiba Corp Insulation monitoring device and method of electric installation
JP2009300158A (en) * 2008-06-11 2009-12-24 Midori Anzen Co Ltd Insulation monitoring device
JP2009300157A (en) * 2008-06-11 2009-12-24 Midori Anzen Co Ltd Insulation monitoring device
JP2010038787A (en) * 2008-08-06 2010-02-18 Midori Anzen Co Ltd Insulation monitoring device
JP2010038786A (en) * 2008-08-06 2010-02-18 Midori Anzen Co Ltd Insulation monitoring device
JP2010066162A (en) * 2008-09-11 2010-03-25 Midori Anzen Co Ltd Insulation monitoring apparatus
WO2010100998A1 (en) * 2009-03-05 2010-09-10 三菱電機株式会社 Device for detecting insulation degradation
CN103439583A (en) * 2013-06-28 2013-12-11 陕西海泰电子有限责任公司 Distributed cable tester
JP2014512164A (en) * 2011-04-15 2014-05-19 エスエムエー ソーラー テクノロジー アーゲー Method and apparatus for determining error current component in differential current
WO2016047057A1 (en) * 2014-09-26 2016-03-31 タナシン電機株式会社 Leakage current calculation device and leakage current calculation method
JP2018021812A (en) * 2016-08-03 2018-02-08 共立電気計器株式會社 Device and method for measuring leakage current
CN110927459A (en) * 2019-12-03 2020-03-27 广州天赋人财光电科技有限公司 Cross-phase convolution noise reduction method of discrete signal sequence and Fourier basis

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002337686A (en) * 2001-05-17 2002-11-27 East Japan Railway Co Insulated track circuit ground receiving device and train control device
JP2006071341A (en) * 2004-08-31 2006-03-16 Toshiba Corp Insulation monitoring device and method of electric installation
JP4599120B2 (en) * 2004-08-31 2010-12-15 株式会社東芝 Electrical installation insulation monitoring device and method
JP2009300158A (en) * 2008-06-11 2009-12-24 Midori Anzen Co Ltd Insulation monitoring device
JP2009300157A (en) * 2008-06-11 2009-12-24 Midori Anzen Co Ltd Insulation monitoring device
JP2010038787A (en) * 2008-08-06 2010-02-18 Midori Anzen Co Ltd Insulation monitoring device
JP2010038786A (en) * 2008-08-06 2010-02-18 Midori Anzen Co Ltd Insulation monitoring device
JP2010066162A (en) * 2008-09-11 2010-03-25 Midori Anzen Co Ltd Insulation monitoring apparatus
US9335380B2 (en) 2009-03-05 2016-05-10 Mitsubishi Electric Corporation Device for detecting insulation degradation
WO2010100998A1 (en) * 2009-03-05 2010-09-10 三菱電機株式会社 Device for detecting insulation degradation
JP5220182B2 (en) * 2009-03-05 2013-06-26 三菱電機株式会社 Insulation deterioration detector
JP2014512164A (en) * 2011-04-15 2014-05-19 エスエムエー ソーラー テクノロジー アーゲー Method and apparatus for determining error current component in differential current
CN103439583A (en) * 2013-06-28 2013-12-11 陕西海泰电子有限责任公司 Distributed cable tester
WO2016047057A1 (en) * 2014-09-26 2016-03-31 タナシン電機株式会社 Leakage current calculation device and leakage current calculation method
TWI557412B (en) * 2014-09-26 2016-11-11 Tanashin Denki Co Leakage current calculation device and leakage current calculation method
CN107209217A (en) * 2014-09-26 2017-09-26 德利信电机株式会社 Leakage current calculating apparatus and leakage current calculation method
EP3199959A4 (en) * 2014-09-26 2018-06-06 Tanashin Denki Co., Ltd. Leakage current calculation device and leakage current calculation method
CN107209217B (en) * 2014-09-26 2018-11-30 德利信电机株式会社 Leakage current calculating apparatus and leakage current calculation method
US10145886B2 (en) 2014-09-26 2018-12-04 Tanashin Denki Co., Ltd. Leakage current calculation device and leakage current calculation method
JP2018021812A (en) * 2016-08-03 2018-02-08 共立電気計器株式會社 Device and method for measuring leakage current
CN110927459A (en) * 2019-12-03 2020-03-27 广州天赋人财光电科技有限公司 Cross-phase convolution noise reduction method of discrete signal sequence and Fourier basis
CN110927459B (en) * 2019-12-03 2021-10-01 广州天赋人财光电科技有限公司 Cross-phase convolution noise reduction method of discrete signal sequence and Fourier basis

Similar Documents

Publication Publication Date Title
KR100896091B1 (en) Measuring instrument for a resistive electric leakage current
US7750663B2 (en) Method and apparatus for testing an electronic motor
JP2000028671A (en) Insulation detector
US20100131215A1 (en) Insulation monitoring system &amp; insulation detecting method for electric power supply system
DK2902793T3 (en) Method and device for offline testing of electric motors
EP2211437A2 (en) Earth leakage tester, earth leakage circuit breaker equipped with the same, circuit breaker, and insulation monitor
JP3355905B2 (en) Insulation monitoring system
WO2016191337A1 (en) Method and apparatus to commission voltage sensors and branch circuit current sensors for branch circuit monitoring systems
JP2001215247A (en) Leakage current measuring instrument
JPH0945537A (en) Monitoring device for insulating state of high-voltage apparatus
KR20080071259A (en) Measurement device of leakage current ohmic value on power line and method thereof
KR20090069153A (en) Measurement device of leakage current ohmic value on power line and method thereof
JPH1078461A (en) Measuring method for insulation resistance
JPH104623A (en) Ground fault detection circuit and ground fault detection method
JPH07311231A (en) Insulation monitoring system by superimposing high frequency in high-voltage distribution equipment
JP3545886B2 (en) Insulation resistance measuring device
JP3964538B2 (en) Impedance measuring device
JP6788259B2 (en) Loop impedance acquisition method and loop impedance tester
JP3009323B2 (en) Power cable insulation diagnostic device
JP5439033B2 (en) Insulation monitoring equipment test equipment
JPH05297038A (en) Grounding-resistance testing instrument
JP6778515B2 (en) Impedance measuring device and impedance measuring method
JP3546396B2 (en) Ground fault discriminator in high voltage distribution system
JPH0381671A (en) Insulation diagnostic device without power interruption
JP3640474B2 (en) Uninterruptible insulation resistance measuring device