JP2018021812A - Device and method for measuring leakage current - Google Patents

Device and method for measuring leakage current Download PDF

Info

Publication number
JP2018021812A
JP2018021812A JP2016152610A JP2016152610A JP2018021812A JP 2018021812 A JP2018021812 A JP 2018021812A JP 2016152610 A JP2016152610 A JP 2016152610A JP 2016152610 A JP2016152610 A JP 2016152610A JP 2018021812 A JP2018021812 A JP 2018021812A
Authority
JP
Japan
Prior art keywords
leakage current
phase
distribution line
measured
phase voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016152610A
Other languages
Japanese (ja)
Inventor
直樹 弓山
Naoki Yumiyama
直樹 弓山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoritsu Electrical Instr Works Ltd
Kyoritsu Electrical Instruments Works Ltd
Original Assignee
Kyoritsu Electrical Instr Works Ltd
Kyoritsu Electrical Instruments Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoritsu Electrical Instr Works Ltd, Kyoritsu Electrical Instruments Works Ltd filed Critical Kyoritsu Electrical Instr Works Ltd
Priority to JP2016152610A priority Critical patent/JP2018021812A/en
Priority to KR1020170047149A priority patent/KR20180015566A/en
Publication of JP2018021812A publication Critical patent/JP2018021812A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/025Measuring very high resistances, e.g. isolation resistances, i.e. megohm-meters

Abstract

PROBLEM TO BE SOLVED: To provide a leakage current measurement device which can easily and accurately detect a leakage current flowing in a measurement target electric wire without being affected by noise, for example.SOLUTION: Processing means 13 of a leakage current measurement device 1 obtains an analysis window width from a phase voltage U supplied from voltage detection means 11, converts the width into phase voltage waveform data Du, converts a voltage signal Ui supplied from current detection means 12 into current waveform data Di, Fourier-transforms the data, determines a fundamental real part Uand an imaginary part Uof the phase voltage waveform data Du and a fundamental real part Ioand an imaginary part Ioof the current waveform data Di, and calculates the following expression (1). [mathematical expression 1]SELECTED DRAWING: Figure 1

Description

本発明は、ホット側L相と接地側N相から成る単相2線式の配電線を被測定配電線とし、この被測定配電線における絶縁抵抗の漏れ電流Iorを測定する漏れ電流測定方法およびこの方法を適用した漏れ電流測定装置に関する。   The present invention relates to a leakage current measuring method for measuring a leakage current Ior of an insulation resistance in a measured distribution line by using a single-phase two-wire distribution line consisting of a hot side L phase and a ground side N phase as a measured distribution line, and The present invention relates to a leakage current measuring apparatus to which this method is applied.

配電系統では、漏電火災防止のために絶縁状態を定期的に測定している。配電系統の絶縁状態を検査するとき、従来は、停電させてケーブルや設備の絶縁抵抗測定を行う方法が一般的に広く用いられていた。   In the distribution system, the insulation state is regularly measured to prevent leakage fire. Conventionally, when inspecting the insulation state of a power distribution system, a method of measuring the insulation resistance of a cable or facility after a power failure has been widely used.

しかし、停電が許されない配電設備や連続運転を必要とする工場等においては、このような方法で絶縁状態を検査することはできない。このため、活線状態でも配電線の漏れ電流を測定できるリークテスタ等が用いられる場合がある。しかし、リークテスタ等により漏れ電流を測定する場合、その測定原理に起因して、測定された漏れ電流(合成漏れ電流Io)には、配電系統の電圧印加部分と接地部分との間に通常存在する対地静電容量を流れる電流の影響分によるもの(無効漏れ電流Ioc)が多く含まれることとなり、本来求めたい絶縁抵抗の漏れ電流(有効漏れ電流Ior)のみを正確に測定できるものではなかった。   However, the insulation state cannot be inspected by such a method in a distribution facility where a power failure is not permitted or a factory requiring continuous operation. For this reason, a leak tester or the like that can measure the leakage current of the distribution line even in a live line state may be used. However, when the leakage current is measured by a leak tester or the like, due to the measurement principle, the measured leakage current (synthetic leakage current Io) usually exists between the voltage application portion and the ground portion of the distribution system. A large amount (invalid leakage current Ioc) due to the influence of the current flowing through the ground capacitance was included, and it was not possible to accurately measure only the leakage current (effective leakage current Ior) of the insulation resistance originally desired.

更に、近時の配電系統には、整流回路を伴うLED照明や産業用モータの可変速装置等の負荷装置が接続されている場合もあり、これらLED照明による高調波や産業用モータの可変速装置から発生するインバータノイズ等は、合成漏れ電流Ioに常に重畳されてしまうため、これも誤差要因になってしまう。   Furthermore, load devices such as LED lighting with rectifier circuits and variable speed devices for industrial motors may be connected to recent power distribution systems. Inverter noise or the like generated from the apparatus is always superimposed on the combined leakage current Io, which also causes an error.

そこで、フィルタ回路(ローパスフィルタ)を用いて合成漏れ電流Ioに重畳されてしまう高調波やインバータノイズ等を除去する漏れ電流測定装置が提案されている(例えば、特許文献1および特許文献2を参照)。   Therefore, a leakage current measuring device has been proposed that uses a filter circuit (low-pass filter) to remove harmonics and inverter noise that are superimposed on the combined leakage current Io (see, for example, Patent Document 1 and Patent Document 2). ).

また、フーリエ変換処理を用いて基本波成分と高調波成分、または二種類の高調波成分の組み合わせ演算により、合成漏れ電流Ioから絶縁抵抗の漏れ電流Iorをベクトル合成によって直接演算する漏れ電流測定方法により正確な漏れ電流を求めて、漏れ電流を監視する漏れ電流監視装置が提案されている(例えば、特許文献3を参照)。   Also, a leakage current measuring method that directly calculates the leakage current Ior of the insulation resistance from the combined leakage current Io by vector synthesis by the combined calculation of the fundamental wave component and the harmonic component or two types of harmonic components using Fourier transform processing. Has proposed a leakage current monitoring device that obtains a more accurate leakage current and monitors the leakage current (see, for example, Patent Document 3).

或いは、フーリエ変換処理を用いて電圧基本波成分と漏れ電流基本波成分との相対位相と、漏れ電流基本波成分との組み合わせ演算により、合成漏れ電流Ioから絶縁抵抗の漏れ電流Iorをベクトル合成によって演算する漏れ電流検出方法が提案されている(例えば、特許文献4を参照)。   Alternatively, the combination of the relative phase of the voltage fundamental wave component and the leakage current fundamental wave component and the leakage current fundamental wave component using Fourier transform processing, and the vector synthesis of the leakage current Ior of the insulation resistance from the combined leakage current Io A leakage current detection method to be calculated has been proposed (see, for example, Patent Document 4).

特開2001−215247号公報JP 2001-215247 A 特許第3996119号公報Japanese Patent No. 3996119 特許第4167872号公報Japanese Patent No. 4167872 特開2010−190645号公報JP 2010-190645 A

しかしながら、特許文献1および特許文献2に記載された漏れ電流測定装置においては、遮断周波数帯域外の周波数成分を減衰させる構成であるため、合成漏れ電流Ioに重畳されている高調波やノイズ成分が電源周波数帯域(基本波周波数帯域)に近い周波数であった場合、完全には取り除けないので、必ずしも正確な絶縁抵抗の漏れ電流Iorを測定できるとは言えない。   However, since the leakage current measuring devices described in Patent Literature 1 and Patent Literature 2 are configured to attenuate frequency components outside the cutoff frequency band, harmonics and noise components superimposed on the combined leakage current Io are not present. When the frequency is close to the power supply frequency band (fundamental frequency band), it cannot be completely removed, and thus it cannot be said that the accurate leakage current Ior of the insulation resistance can be measured.

また、特許文献3や特許文献4に記載された漏れ電流測定装置では、絶縁抵抗の漏れ電流Iorをベクトル合成により算出するために、概して複雑な演算処理が必要であり、演算負荷が大きい。   In addition, in the leakage current measuring devices described in Patent Document 3 and Patent Document 4, in order to calculate the leakage current Ior of the insulation resistance by vector synthesis, generally complicated calculation processing is necessary, and the calculation load is large.

そこで、本発明は、LED用照明による高調波や産業用モータの可変速装置から発生するインバータノイズ等の影響を受けること無く、被測定配電線に流れる絶縁抵抗の漏れ電流Iorを正確かつ容易に求められる漏れ電流測定方法および漏れ電流測定装置の提供を目的とする。   Therefore, the present invention accurately and easily determines the leakage current Ior of the insulation resistance flowing in the distribution line to be measured without being affected by harmonics from LED lighting or inverter noise generated from a variable speed device of an industrial motor. It is an object of the present invention to provide a required leakage current measuring method and leakage current measuring apparatus.

上記の課題を解決するために、請求項1に係る発明は、ホット側L相と接地側N相から成る単相2線式の配電線を被測定配電線とし、この被測定配電線における絶縁抵抗の漏れ電流Iorを測定する漏れ電流測定方法であって、前記被測定配電線のN相とL相間の相電圧Uを検出する電圧検出工程と、前記被測定配電線に流れる合成漏れ電流Ioを検出する電流検出工程と、前記相電圧Uから解析ウインドウ幅を求めると共に、フーリエ変換を用いて、前記相電圧Uの基本波実数部U1rと虚数部U1i、並びに前記合成漏れ電流Ioの基本波実数部Io1rと虚数部Io1iとを求める第1演算工程と、下式(1)に基づいて、前記絶縁抵抗の漏れ電流Iorを求める第2演算工程と、を行うことを特徴とする。

Figure 2018021812
In order to solve the above-described problems, the invention according to claim 1 is directed to a single-phase two-wire distribution line including a hot side L phase and a ground side N phase as a measured distribution line, and insulation in the measured distribution line. A leakage current measuring method for measuring a leakage current Ior of a resistance, a voltage detecting step for detecting a phase voltage U between an N phase and an L phase of the distribution line to be measured, and a combined leakage current Io flowing through the distribution line to be measured A current detection step for detecting the phase voltage U, an analysis window width is obtained from the phase voltage U, and the fundamental real part U 1r and imaginary part U 1i of the phase voltage U and the combined leakage current Io of the phase voltage U are obtained using Fourier transform. A first calculation step for obtaining a fundamental wave real part Io 1r and an imaginary part Io 1i and a second calculation step for obtaining a leakage current Ior of the insulation resistance based on the following equation (1) are performed: To do.
Figure 2018021812

また、請求項2に係る発明は、ホット側L相と接地側N相から成る単相2線式の配電線を被測定配電線とし、この被測定配電線における絶縁抵抗の漏れ電流Iorを測定する漏れ電流測定装置であって、前記被測定配電線のN相とL相間の相電圧Uを検出する電圧検出手段と、前記被測定配電線に流れる合成漏れ電流Ioを検出する電流検出手段と、前記相電圧Uから解析ウインドウ幅を求めると共に、フーリエ変換を用いて、前記相電圧Uの基本波実数部U1rと虚数部U1i、並びに前記合成漏れ電流Ioの基本波実数部Io1rと虚数部Io1iとを求める第1演算処理と、下式(1)に基づいて前記絶縁抵抗の漏れ電流Iorを求める第2演算処理を行う処理手段と、を備えることを特徴とする。

Figure 2018021812
Further, in the invention according to claim 2, a single-phase two-wire distribution line composed of a hot side L phase and a ground side N phase is used as a measurement distribution line, and a leakage current Ior of an insulation resistance in the measurement distribution line is measured. A leakage current measuring device that detects a phase voltage U between the N phase and the L phase of the distribution line to be measured, and a current detection unit that detects a combined leakage current Io flowing through the distribution line to be measured. The analysis window width is obtained from the phase voltage U, and the fundamental wave real part U 1r and the imaginary part U 1i of the phase voltage U and the fundamental wave real part Io 1r of the combined leakage current Io are obtained using Fourier transform. And processing means for performing a first calculation process for obtaining an imaginary part Io 1i and a second calculation process for obtaining a leakage current Ior of the insulation resistance based on the following equation (1).
Figure 2018021812

また、請求項3に係る発明は、前記請求項2に記載の漏れ電流測定装置において、前記処理手段は、前記測定した漏れ電流Iorと予め規定された絶縁状態判別規格値とを比較して、前記被測定配電線についての絶縁状態を判別する判別処理を行うことを特徴とする。   The invention according to claim 3 is the leakage current measuring device according to claim 2, wherein the processing means compares the measured leakage current Ior with a predetermined insulation state determination standard value, A discrimination process for discriminating an insulation state of the distribution line to be measured is performed.

請求項1に係る漏れ電流測定方法および請求項2に係る漏れ電流測定装置によれば、電源周波数帯域(基本波周波数帯域)に近いノイズであるLED用照明による高調波や、産業用モータの可変速装置から発生するインバータノイズ等が常に合成漏れ電流Ioへ重畳された状態であっても、被測定配電線のN相とL相間の相電圧Uからフーリエ変換の解析ウインドウ幅を求めて、フーリエ変換により求めた相電圧Uの基本波実数部U1rと虚数部U1i、並びに前記合成漏れ電流Ioの基本波実数部Io1rと虚数部Io1iとから、比較的単純な式(1)の演算によって絶縁抵抗の漏れ電流Iorを求められる。従って、対地絶縁抵抗を通じて流れる漏れ電流Iorを、正確かつ容易に求めることができる。 According to the leakage current measuring method according to claim 1 and the leakage current measuring apparatus according to claim 2, harmonics caused by LED illumination, which is noise close to the power supply frequency band (fundamental frequency band), and industrial motors are possible. Even when inverter noise generated from the transmission is always superimposed on the combined leakage current Io, the analysis window width of the Fourier transform is obtained from the phase voltage U between the N phase and the L phase of the distribution line to be measured, and Fourier From the fundamental wave real part U 1r and imaginary part U 1i of the phase voltage U obtained by conversion, and the fundamental wave real part Io 1r and imaginary part Io 1i of the combined leakage current Io, a relatively simple expression (1) is obtained. The leakage current Ior of the insulation resistance can be obtained by calculation. Therefore, the leakage current Ior flowing through the ground insulation resistance can be accurately and easily obtained.

また、請求項3に係る漏れ電流測定装置は、漏れ電流測定を行った被測定配電線についての絶縁状態を判別する機能を備えているので、装置使用者の利便性を一層高めることができる。   In addition, since the leakage current measuring apparatus according to claim 3 has a function of discriminating the insulation state of the distribution line to be measured for which leakage current has been measured, the convenience of the apparatus user can be further enhanced.

本発明に係る漏れ電流測定方法を適用した漏れ電流測定装置を被測定配電線に接続した状態の概略構成図である。It is a schematic block diagram of the state which connected the leakage current measuring apparatus to which the leakage current measuring method which concerns on this invention was applied to the distribution line to be measured. 絶縁抵抗の漏れ電流Iorについての測定原理を説明するためのベクトル図である。It is a vector diagram for demonstrating the measurement principle about the leakage current Ior of an insulation resistance.

以下、本発明の実施形態を、添付図面に基づいて詳細に説明する。図1は、漏れ電流測定装置1を交流電源2の配電線に接続した概略構成を示す。   Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 shows a schematic configuration in which a leakage current measuring device 1 is connected to a distribution line of an AC power supply 2.

漏れ電流測定装置1は、少なくとも、電圧検出手段11、電流検出手段12、処理手段13、記憶手段14および表示手段15を備え、例えば、交流電源2のN端子に接続した配電線Lnと、交流電源2の端子Lに接続した配電線Luを被測定配電線とし、この被測定配電線についての絶縁抵抗の漏れ電流Iorを測定するものである。なお、交流電源2は、変圧器の低圧側単相巻線21の一方が接地されたN相であり、N端子に接続されており、低圧側単相巻線21の他方がホット側のL相であり、L端子に接続されている。   The leakage current measuring apparatus 1 includes at least a voltage detection unit 11, a current detection unit 12, a processing unit 13, a storage unit 14, and a display unit 15. For example, the distribution line Ln connected to the N terminal of the AC power source 2 and an AC The distribution line Lu connected to the terminal L of the power source 2 is used as a measured distribution line, and the leakage current Ior of the insulation resistance of the measured distribution line is measured. The AC power supply 2 has an N-phase in which one of the low-voltage side single-phase windings 21 of the transformer is grounded and is connected to the N terminal, and the other of the low-voltage side single-phase windings 21 is a hot-side L Phase and connected to the L terminal.

ここでの交流電源2は、一例として、商用周波数の単相交流電圧(N相とL相間の相電圧U)を発生させると共に、発生させた相電圧Uを端子Lから出力する。かくして、交流電源2は、配電線Luが接続された端子Lに相電圧Uを出力して、配電線Luに接続された負荷3に対して相電流Iを供給できる。また、交流電源2の配電線Luと接地との間には、図1中に示すように、対地静電容量Cおよび対地漏れ抵抗Rが存在している。   As an example, the AC power source 2 generates a single-phase AC voltage having a commercial frequency (phase voltage U between the N phase and the L phase) and outputs the generated phase voltage U from the terminal L. Thus, the AC power supply 2 can output the phase voltage U to the terminal L to which the distribution line Lu is connected, and supply the phase current I to the load 3 connected to the distribution line Lu. In addition, a ground capacitance C and a ground leakage resistance R exist between the distribution line Lu of the AC power supply 2 and the ground, as shown in FIG.

上記電圧検出手段11は、一対の電圧検出プローブ16a,16bを介して配電線Ln,Luに接続され、一対の電圧検出プローブ16a,16bを介して相電圧Uを検出し、処理手段13に出力する。   The voltage detection means 11 is connected to the distribution lines Ln and Lu via a pair of voltage detection probes 16a and 16b, detects the phase voltage U via the pair of voltage detection probes 16a and 16b, and outputs it to the processing means 13 To do.

電流検出手段12は、配電線Ln,Luに予め決められた向きで装着された電流トランス型の電流検出プローブ4を介して、配電線Ln,Luに流れる相電流I、対地静電容量Cを経由して接地に流れる漏れ電流(以下、「無効漏れ電流」ともいう)Ioc、対地漏れ抵抗Rを経由して接地に流れる漏れ電流(以下、「有効漏れ電流」ともいう)Iorの合成漏れ電流Ioを検出すると共に、これを電圧信号Uiに変換して処理手段13に出力する。なお、負荷3に流れる相電流Iは、図1中に2種類の点線で示すように、配電線Ln,Luのそれぞれにおいて逆向きに流れる(電流検出プローブ4内をそれぞれ逆方向に流れる)ことになるため、電流検出プローブ4での電流検出に際しては、各配電線Ln,Luを流れる相電流Iがそれぞれ打ち消され、上記の無効漏れ電流Iocと有効漏れ電流Iorとが合成された合成漏れ電流Ioのみが電流検出プローブ4にて検出されるのである。   The current detection means 12 obtains the phase current I flowing through the distribution lines Ln and Lu and the capacitance C to ground via the current transformer type current detection probe 4 attached to the distribution lines Ln and Lu in a predetermined direction. Leakage current that flows to ground via Ioc (hereinafter also referred to as “invalid leakage current”) Ioc, leakage current that flows to ground via ground resistance R (hereinafter also referred to as “effective leakage current”) Ior Io is detected, converted into a voltage signal Ui, and output to the processing means 13. The phase current I flowing in the load 3 flows in the opposite direction in each of the distribution lines Ln and Lu as shown by two types of dotted lines in FIG. 1 (each flows in the current detection probe 4 in the opposite direction). Therefore, when the current is detected by the current detection probe 4, the phase current I flowing through the distribution lines Ln and Lu is canceled, and the combined leakage current obtained by combining the reactive leakage current Ioc and the effective leakage current Ior. Only Io is detected by the current detection probe 4.

処理手段13は、例えば、1つのコンパレータと2つのアンチエイリアシングフィルタおよびA/D変換器、演算用にFPGAおよびCPU等で構成することができる。すなわち、処理手段13は、電圧検出手段11から供給される相電圧Uが仮に50Hzの周波数であれば10周期分、60Hzであれば12周期分の解析ウインドウ幅をコンパレータにて求めると同時に、一方のA/D変換器で相電圧波形データDuに変換し、電流検出手段12から供給される電圧信号Uiを他方のA/D変換器で電流波形データDiに変換するA/D変換処理を行う。   The processing means 13 can be composed of, for example, one comparator, two anti-aliasing filters and an A / D converter, and an FPGA and CPU for calculation. That is, the processing means 13 obtains an analysis window width for 10 cycles if the phase voltage U supplied from the voltage detection means 11 is a frequency of 50 Hz, and 12 cycles if the frequency is 60 Hz, The A / D converter converts the phase voltage waveform data Du into phase voltage waveform data Du, and converts the voltage signal Ui supplied from the current detection means 12 into current waveform data Di with the other A / D converter. .

また、処理手段13は、相電圧波形データDuおよび電流波形データDiに基づいて、それぞれフーリエ変換をおこない、相電圧波形データDuの基本波実数部U1rと虚数部U1i、電流波形データDiの基本波実数部Io1rと虚数部Io1iとを求める第1演算処理を実行する。さらに、処理手段13は、下式(1)に基づいて、配電線Luについての絶縁抵抗の漏れ電流Iorを算出(測定)する第2演算処理を実行する。

Figure 2018021812
Further, the processing means 13 performs Fourier transform based on the phase voltage waveform data Du and the current waveform data Di, respectively, and the fundamental wave real part U 1r and imaginary part U 1i of the phase voltage waveform data Du and the current waveform data Di. A first calculation process for obtaining the fundamental wave real part Io 1r and the imaginary part Io 1i is executed. Further, the processing means 13 executes a second calculation process for calculating (measuring) the leakage current Ior of the insulation resistance for the distribution line Lu based on the following formula (1).
Figure 2018021812

次に、図2を参照して、上式(1)の算出根拠について説明する。なお、式(1)算出根拠の理解を容易にするため、相電圧Uを、図2中に破線で示し、以下の説明において、各ベクトルの角度は、相電圧Uを基準(0°)とし、紙面に対して反時計回りに回転したときの角度で表記するものとする。   Next, with reference to FIG. 2, the calculation basis of the above equation (1) will be described. In order to facilitate understanding of the basis for calculating equation (1), the phase voltage U is indicated by a broken line in FIG. , And the angle when rotated counterclockwise with respect to the paper surface.

配電線Luについての無効漏れ電流Iocは、有効漏れ電流Ior(相電圧Uと同位相(0°))に対して位相が90°進んでいる。漏れ電流Ioc,Iorの合成漏れ電流Ioは、ベクトル和でIo=Ioc+Iorと表される。有効漏れ電流Iorは、上述したように、相電圧Uと同じ角度(0°)上に存在するため、合成漏れ電流Ioは、図2に示すように、相電圧Uを基準とした0°から90°までの範囲内に存在することになる。   The reactive leakage current Ioc for the distribution line Lu is advanced by 90 ° in phase with respect to the effective leakage current Ior (the same phase (0 °) as the phase voltage U). The combined leakage current Io of the leakage currents Ioc and Ior is expressed as Io = Ioc + Ior as a vector sum. Since the effective leakage current Ior exists on the same angle (0 °) as the phase voltage U as described above, the combined leakage current Io starts from 0 ° with respect to the phase voltage U as shown in FIG. It exists in the range up to 90 degrees.

合成漏れ電流Ioにノイズ等が重畳しておらず理想的な正弦波であった場合、図2からも分かるように有効漏れ電流Iorは、合成漏れ電流Ioの余弦として求められるので、「Ior=Io×cosθ …(2)」となる。   When noise or the like is not superimposed on the combined leakage current Io and is an ideal sine wave, the effective leakage current Ior is obtained as a cosine of the combined leakage current Io as can be seen from FIG. Io × cos θ (2) ”.

ここで交流回路の有効電力をPとし、相電圧をU、負荷電流を合成漏れ電流Io、電圧と負荷電流との位相角(力率角)をcosθとすると、有効電力Pは「P=U×Io×cosθ …(3)」となる。そして、式(3)の有効電力Pを相電圧Uで除すると「P÷U=Io×cosθ」となり、これに上式(2)を適用すると「Ior=P÷U …(4)」となるので、有効電力Pと相電圧Uから有効漏れ電流Iorのみを求めることができる。   Here, when the active power of the AC circuit is P, the phase voltage is U, the load current is the combined leakage current Io, and the phase angle (power factor angle) between the voltage and the load current is cos θ, the active power P is “P = U × Io × cos θ (3) ”. Then, when the active power P in the equation (3) is divided by the phase voltage U, “P ÷ U = Io × cos θ” is obtained, and when the above equation (2) is applied thereto, “Ior = P ÷ U (4)”. Therefore, only the effective leakage current Ior can be obtained from the effective power P and the phase voltage U.

次に、基本波の有効電力P1を相電圧波形データDuの基本波実数部U1rと虚数部U1i、電流波形データDiの基本波実数部Io1rと虚数部Io1iとを用いて一般的な交流回路の有効電力を複素数から求める式に当て嵌めて表すと「P1=|U1r×Io1r+U1i×Io1i| …(5)」となり、基本波の相電圧U1は下式(6)となる。

Figure 2018021812
Next, the fundamental wave active power P 1 is generally calculated using the fundamental wave real part U 1r and imaginary part U 1i of the phase voltage waveform data Du, and the fundamental wave real part Io 1r and imaginary part Io 1i of the current waveform data Di. The effective power of a typical AC circuit is expressed by fitting it to an equation for obtaining a complex number, so that “P 1 = | U 1r × Io 1r + U 1i × Io 1i | (5)”, and the fundamental phase voltage U 1 is Equation (6) is obtained.
Figure 2018021812

即ち、上式(4)に対して、式(5)および式(6)を当てはめると、上式(1)が得られるのである。   That is, when the formulas (5) and (6) are applied to the above formula (4), the above formula (1) is obtained.

なお、上式(1)はフーリエ変換後の基本波のみを演算対象としているため、電源周波数帯域(基本波周波数帯域)に近いノイズであるLED用照明による高調波や、産業用モータの可変速装置から発生するインバータノイズ等が常に合成漏れ電流Ioへ重畳した状態であっても測定に影響することが無く、別途高調波を除去するフィルタ回路を設ける必要もない。   In addition, since the above formula (1) is intended to calculate only the fundamental wave after Fourier transform, harmonics due to LED illumination, which is noise close to the power supply frequency band (fundamental frequency band), and the variable speed of industrial motors. Even if inverter noise generated from the apparatus is always superimposed on the combined leakage current Io, measurement is not affected, and there is no need to provide a separate filter circuit for removing harmonics.

斯くして、処理手段13は、式(1)の演算を行う事により、対地絶縁抵抗を通じて流れる漏れ電流Iorを正確に検出することができるのである。   Thus, the processing means 13 can accurately detect the leakage current Ior flowing through the ground insulation resistance by performing the calculation of the equation (1).

記憶手段14は、ROMやRAM等の半導体メモリで構成することができ、上述した処理手段13のための動作プログラム、有効漏れ電流Ior算出用の式(1)、有効漏れ電流Iorについての絶縁状態判別規格値Iref(例えば、1mA)等を予め記憶させておく。また、記憶手段14は、処理手段13によって一時的な記憶領域として使用されるもので、処理手段13が演算した相電圧波形データDu、相電圧Uの基本波実数部U1rと虚数部U1i、電流波形データDi、合成漏れ電流Ioの基本波実数部Io1rと虚数部Io1i等を記憶させておき、必要に応じて読み出すのである。 The storage means 14 can be composed of a semiconductor memory such as a ROM or a RAM, and the above-described operation program for the processing means 13, the expression (1) for calculating the effective leakage current Ior, and the insulation state for the effective leakage current Ior. A discrimination standard value Iref (for example, 1 mA) or the like is stored in advance. The storage means 14 is used as a temporary storage area by the processing means 13, and the phase voltage waveform data Du calculated by the processing means 13, the fundamental wave real part U 1r and the imaginary part U 1i of the phase voltage U. The current waveform data Di, the fundamental wave real part Io 1r and the imaginary part Io 1i of the combined leakage current Io are stored and read out as necessary.

表示手段15は、ディスプレイ装置(例えばLCD)などの表示装置で構成しても良いし、アナログメータやセグメント式デジタル表示器等で構成しても良い。この表示手段15によって、処理手段13によって得られた漏れ電流の測定値や絶縁状態の判別結果を可視表示する。なお、音声合成によって測定値や判別結果を音声出力する機能を別途設けるようにしても良いし、表示手段15に代えて警報装置を設け、音や発光等を用いて絶縁異常の警報を発するようにしても良い。   The display means 15 may be constituted by a display device such as a display device (for example, LCD), or may be constituted by an analog meter, a segment type digital display, or the like. By this display means 15, the measured value of the leakage current obtained by the processing means 13 and the determination result of the insulation state are displayed visually. It should be noted that a function for outputting the measurement value and the determination result by voice synthesis may be provided separately, or an alarm device may be provided in place of the display means 15 so that an insulation abnormality alarm is generated using sound or light emission. Anyway.

続いて、上述した構成の漏れ電流測定装置1の動作を説明する。なお、漏れ電流測定装置1による計測を行うため、予め、一対の電圧検出プローブ16a,16bが配電線Ln,Luに接続され、かつ電流検出プローブ4が配電線Ln,Luに予め決められた向きで装着されているものとする。   Subsequently, the operation of the leakage current measuring apparatus 1 having the above-described configuration will be described. In order to perform measurement by the leakage current measuring device 1, a pair of voltage detection probes 16a and 16b is connected to the distribution lines Ln and Lu in advance, and the current detection probe 4 is predetermined to the distribution lines Ln and Lu. It is assumed that it is installed.

漏れ電流測定装置1の作動状態において、電圧検出手段11は、一対の電圧検出プローブ16a,16bを介して相電圧Uを検出し、処理手段13に出力する。また、電流検出手段12は、電流トランス型の電流検出プローブ4を介して、配電線Ln,Luに流れる合成漏れ電流Ioを検出すると共に、電圧信号Uiに変換して処理手段13に出力する。   In the operating state of the leakage current measuring apparatus 1, the voltage detection means 11 detects the phase voltage U via the pair of voltage detection probes 16 a and 16 b and outputs it to the processing means 13. The current detection means 12 detects the combined leakage current Io flowing through the distribution lines Ln and Lu via the current transformer type current detection probe 4, converts it into a voltage signal Ui, and outputs it to the processing means 13.

処理手段13は、まず、相電圧Uおよび電圧信号Uiの入力を受けつつ、相電圧Uが仮に商用周波数50Hzの周波数であれば10周期分、商用周波数60Hzであれば12周期分の解析ウインドウ幅をコンパレータにて求めると同時に、A/D変換処理を実行して、相電圧Uを相電圧波形データDuに変換し、記憶手段14に記憶させると共に、電圧信号Uiを電流波形データDiに変換し、記憶手段14に記憶させる。   First, the processing means 13 receives the input of the phase voltage U and the voltage signal Ui, and if the phase voltage U is a commercial frequency of 50 Hz, the analysis window width is 10 cycles, and if the commercial frequency is 60 Hz, the analysis window width is 12 cycles. Is obtained by the comparator, and at the same time, A / D conversion processing is executed to convert the phase voltage U into the phase voltage waveform data Du and store it in the storage means 14, and the voltage signal Ui is converted into the current waveform data Di. And stored in the storage means 14.

次いで、処理手段13は、第1演算処理を実行する。第1演算処理とは、相電圧波形データDuおよび電流波形データDiに基づいて、それぞれフーリエ変換をおこない、相電圧波形データDuの基本波実数部U1rと虚数部U1i、電流波形データDiの基本波実数部Io1rと虚数部Io1iとを算出する処理である。この第1演算処理によって算出した、U1r,U1i,Io1r,Io1iも記憶手段14に記憶させる。 Next, the processing means 13 executes a first calculation process. The first calculation process is based on the phase voltage waveform data Du and the current waveform data Di, respectively, and Fourier transform is performed. The fundamental real part U 1r and imaginary part U 1i of the phase voltage waveform data Du and the current waveform data Di are This is a process for calculating the fundamental wave real part Io 1r and the imaginary part Io 1i . U 1r , U 1i , Io 1r , Io 1i calculated by the first calculation process are also stored in the storage unit 14.

最後に、処理手段13は、第2演算処理を実行する。この第2演算処理とは、上式(1)に基づく漏れ電流を算出する処理である。第2演算処理を実行するにあたり、処理手段13は、先ず、相電圧波形データDuの基本波実数部U1rと虚数部U1i、電流波形データDiの基本波実数部Io1rと虚数部Io1iおよび式(1)を記憶手段14から読み出す。続いて、処理手段13は、相電圧波形データDuの基本波実数部U1rと虚数部U1i、電流波形データDiの基本波実数部Io1rと虚数部Io1iを式(1)に代入して、配電線Lr,Ltについての有効漏れ電流Iorを算出(測定)するのである。 Finally, the processing means 13 executes the second calculation process. This 2nd calculation process is a process which calculates the leakage current based on the above Formula (1). In executing the second arithmetic processing, the processing means 13 firstly, the fundamental wave real part U 1r and imaginary part U 1i of the phase voltage waveform data Du, and the fundamental wave real part Io 1r and imaginary part Io 1i of the current waveform data Di. And the expression (1) is read from the storage means 14. Subsequently, the processing means 13 substitutes the fundamental wave real part U 1r and the imaginary part U 1i of the phase voltage waveform data Du and the fundamental wave real part Io 1r and the imaginary part Io 1i of the current waveform data Di into the equation (1). Thus, the effective leakage current Ior for the distribution lines Lr and Lt is calculated (measured).

なお、本実施形態に示す処理手段13は、求めた漏れ電流の値から絶縁状態を判別する判別処理を行うものとした。この判別処理に際して、処理手段13は、記憶手段14から有効漏れ電流Iorについての絶縁状態判別規格値Irefを読み出すと共に、算出した有効漏れ電流Iorをこの絶縁状態判別規格値Irefと比較し、有効漏れ電流Iorが規格値Iref以上のときには、算出した有効漏れ電流Iorと共に、絶縁状態判別規格値Iref以上の有効漏れ電流Iorが発生している旨(絶縁状態が不良である旨)の判別結果を表示手段15に表示させる。一方、有効漏れ電流Iorが絶縁状態判別規格値Iref未満のときには、算出した有効漏れ電流Iorと共に、有効漏れ電流が規格値未満である旨(絶縁状態が良好である旨)の判別結果を表示手段15に表示させる。   In addition, the processing means 13 shown in this embodiment shall perform the discrimination | determination process which discriminate | determines an insulation state from the value of the calculated | required leakage current. In this determination process, the processing unit 13 reads the insulation state determination standard value Iref for the effective leakage current Ior from the storage unit 14 and compares the calculated effective leakage current Ior with the insulation state determination standard value Iref to determine effective leakage. When the current Ior is equal to or greater than the standard value Iref, together with the calculated effective leakage current Ior, a determination result indicating that the effective leakage current Ior equal to or greater than the insulation state determination standard value Iref is generated (that the insulation state is defective) is displayed It is displayed on the means 15. On the other hand, when the effective leakage current Ior is less than the insulation state determination standard value Iref, together with the calculated effective leakage current Ior, a determination result indicating that the effective leakage current is less than the standard value (that the insulation state is good) is displayed. 15 is displayed.

このように、本実施形態に係る漏れ電流測定装置1によれば、相電圧波形データDuの基本波実数部U1rと虚数部U1i、電流波形データDiの基本波実数部Io1rと虚数部Io1iおよび式(1)に基づいて、単相2線式の交流電源2の端子Lに接続される配電線Luについての絶縁抵抗の漏れ電流(有効漏れ電流)Iorを精度良く測定することができる。 Thus, according to the leakage current measuring apparatus 1 according to the present embodiment, the fundamental wave real part U 1r and the imaginary part U 1i of the phase voltage waveform data Du, and the fundamental wave real part Io 1r and the imaginary part of the current waveform data Di. Based on Io 1i and equation (1), the leakage current (effective leakage current) Ior of the insulation resistance for the distribution line Lu connected to the terminal L of the single-phase two-wire AC power supply 2 can be accurately measured. it can.

また、本実施形態の漏れ電流測定装置1によれば、測定した有効漏れ電流Iorと予め規定された絶縁状態判別規格値Irefとを処理手段13によって比較し、その比較結果である絶縁状態の判定結果を表示手段15に表示させることで、漏れ電流測定装置1の使用者に、配電線Luの絶縁状態の良否を確実かつ容易に報らせることができる。   Further, according to the leakage current measuring apparatus 1 of the present embodiment, the measured effective leakage current Ior and the insulation state determination standard value Iref defined in advance are compared by the processing means 13, and the insulation state determination which is the comparison result is determined. By displaying the result on the display unit 15, the user of the leakage current measuring device 1 can be surely and easily notified of the quality of the insulation state of the distribution line Lu.

さらに、配電線Luに遮断機が別途設けられており、遮断機を外部からの制御信号により遮断動作を実行させられる場合、遮断器の制御信号ラインと漏れ電流測定装置1とを接続して絶縁抵抗の検査を行い、処理手段13によって絶縁状態の判定結果が出ると、制御信号ラインを介して遮断機へ動作指令を出力することで、速やかに遮断機を動作させる遮断機制御機能を処理手段13に持たせておけば、漏電に起因する事故を確実に防止することができる。   Further, when a breaker is separately provided in the distribution line Lu and the breaker can be cut off by a control signal from the outside, the control signal line of the breaker and the leakage current measuring device 1 are connected and insulated. When the resistance is inspected and the result of determination of the insulation state is output by the processing means 13, an operation command is output to the circuit breaker via the control signal line, so that the circuit breaker control function for quickly operating the circuit breaker is processed. If it is given to 13, it is possible to reliably prevent accidents caused by electric leakage.

なお、本実施形態の漏れ電流測定装置1では、処理手段13が、測定した有効漏れ電流Iorを絶縁状態判別規格値Irefと比較して、絶縁状態まで判別して報知する構成としたが、この機能は付加的なものである。したがって、測定した有効漏れ電流Iorを表示手段15に表示するだけの漏れ電流測定装置としても構わない。このように、絶縁状態の判別機能を持たない漏れ電流測定装置であっても、測定された有効漏れ電流Iorが表示手段15に表示されるので、配電線についての有効漏れ電流Iorを漏れ電流測定装置の使用者に報らせることができ、使用者自らが絶縁状態判別規格値Irefと比較すれば、配電線についての絶縁状態を判別できるのである。   In the leakage current measuring apparatus 1 of the present embodiment, the processing unit 13 compares the measured effective leakage current Ior with the insulation state determination standard value Iref, and determines and notifies the insulation state. The function is additional. Therefore, a leakage current measuring device that only displays the measured effective leakage current Ior on the display means 15 may be used. As described above, even if the leakage current measuring device does not have an insulation state discriminating function, since the measured effective leakage current Ior is displayed on the display means 15, the effective leakage current Ior for the distribution line is measured as a leakage current measurement. The user of the apparatus can be informed, and if the user himself compares with the insulation state determination standard value Iref, the insulation state of the distribution line can be determined.

以上、本発明に係る漏れ電流測定方法を適用した漏れ電流測定装置の実施形態を添付図面に基づいて説明したが、本発明は、この実施形態に限定されるものではなく、特許請求の範囲に記載の構成を変更しない範囲で、公知既存の等価な技術手段を転用することにより実施しても構わない。   As mentioned above, although the embodiment of the leakage current measuring device to which the leakage current measuring method according to the present invention is applied has been described with reference to the accompanying drawings, the present invention is not limited to this embodiment, and is within the scope of the claims. You may implement by diverting well-known existing equivalent technical means in the range which does not change the structure of description.

1 漏れ電流測定装置
11 電圧検出手段
12 電流検出手段
13 処理手段
14 記憶手段
15 表示手段
DESCRIPTION OF SYMBOLS 1 Leakage current measuring apparatus 11 Voltage detection means 12 Current detection means 13 Processing means 14 Storage means 15 Display means

Claims (3)

ホット側L相と接地側N相から成る単相2線式の配電線を被測定配電線とし、この被測定配電線における絶縁抵抗の漏れ電流Iorを測定する漏れ電流測定方法であって、
前記被測定配電線のN相とL相間の相電圧Uを検出する電圧検出工程と、
前記被測定配電線に流れる合成漏れ電流Ioを検出する電流検出工程と、
前記相電圧Uから解析ウインドウ幅を求めると共に、フーリエ変換を用いて、前記相電圧Uの基本波実数部U1rと虚数部U1i、並びに前記合成漏れ電流Ioの基本波実数部Io1rと虚数部Io1iとを求める第1演算工程と、
下式(1)に基づいて、前記絶縁抵抗の漏れ電流Iorを求める第2演算工程と、
を行うことを特徴とする漏れ電流測定方法。
Figure 2018021812
A leakage current measuring method for measuring a leakage current Ior of an insulation resistance in a measured distribution line, using a single-phase two-wire distribution line composed of a hot side L phase and a ground side N phase as a measured distribution line,
A voltage detection step of detecting a phase voltage U between the N phase and the L phase of the distribution line to be measured;
A current detection step of detecting a composite leakage current Io flowing through the measured distribution line;
The analysis window width is obtained from the phase voltage U, and the fundamental wave real part U 1r and imaginary part U 1i of the phase voltage U and the fundamental wave real part Io 1r and imaginary number of the combined leakage current Io are obtained by using Fourier transform. A first calculation step for obtaining part Io 1i ;
A second calculation step for obtaining a leakage current Ior of the insulation resistance based on the following equation (1):
Leakage current measuring method characterized by performing.
Figure 2018021812
ホット側L相と接地側N相から成る単相2線式の配電線を被測定配電線とし、この被測定配電線における絶縁抵抗の漏れ電流Iorを測定する漏れ電流測定装置であって、
前記被測定配電線のN相とL相間の相電圧Uを検出する電圧検出手段と、
前記被測定配電線に流れる合成漏れ電流Ioを検出する電流検出手段と、
前記相電圧Uから解析ウインドウ幅を求めると共に、フーリエ変換を用いて、前記相電圧Uの基本波実数部U1rと虚数部U1i、並びに前記合成漏れ電流Ioの基本波実数部Io1rと虚数部Io1iとを求める第1演算処理と、下式(1)に基づいて前記絶縁抵抗の漏れ電流Iorを求める第2演算処理を行う処理手段と、
を備えることを特徴とする漏れ電流測定装置。
Figure 2018021812
A leakage current measuring device for measuring a leakage current Ior of an insulation resistance in a measured distribution line as a measured distribution line, a single-phase two-wire distribution line composed of a hot side L phase and a ground side N phase,
Voltage detection means for detecting a phase voltage U between the N phase and the L phase of the distribution line to be measured;
Current detection means for detecting a combined leakage current Io flowing through the measured distribution line;
The analysis window width is obtained from the phase voltage U, and the fundamental wave real part U 1r and imaginary part U 1i of the phase voltage U and the fundamental wave real part Io 1r and imaginary number of the combined leakage current Io are obtained by using Fourier transform. Processing means for performing a first calculation process for obtaining the part Io 1i and a second calculation process for obtaining the leakage current Ior of the insulation resistance based on the following equation (1):
A leakage current measuring apparatus comprising:
Figure 2018021812
前記処理手段は、前記測定した漏れ電流Iorと予め規定された絶縁状態判別規格値とを比較して、前記被測定配電線についての絶縁状態を判別する判別処理を行うことを特徴とする請求項2に記載の漏れ電流測定装置。   The said processing means performs the discrimination | determination process which compares the measured leakage current Ior with the insulation state discrimination | determination standard value prescribed | regulated previously, and discriminate | determines the insulation state about the said to-be-measured distribution line. 2. The leakage current measuring device according to 2.
JP2016152610A 2016-08-03 2016-08-03 Device and method for measuring leakage current Pending JP2018021812A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016152610A JP2018021812A (en) 2016-08-03 2016-08-03 Device and method for measuring leakage current
KR1020170047149A KR20180015566A (en) 2016-08-03 2017-04-12 Leakage current measuring method and leakage current measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016152610A JP2018021812A (en) 2016-08-03 2016-08-03 Device and method for measuring leakage current

Publications (1)

Publication Number Publication Date
JP2018021812A true JP2018021812A (en) 2018-02-08

Family

ID=61165454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016152610A Pending JP2018021812A (en) 2016-08-03 2016-08-03 Device and method for measuring leakage current

Country Status (2)

Country Link
JP (1) JP2018021812A (en)
KR (1) KR20180015566A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108667105A (en) * 2018-06-29 2018-10-16 深圳巴斯巴科技发展有限公司 A kind of earth leakage protective portable charged protective device of band Type B
WO2019187817A1 (en) * 2018-03-29 2019-10-03 オムロン株式会社 Insulation measurement device and insulation measurement method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102039268B1 (en) * 2018-08-23 2019-10-31 주식회사 에프램 An Alternating and Direct Current Detection Circuit
KR102171609B1 (en) * 2019-06-03 2020-10-29 주식회사 테스 Apparatus and method for analyzing leakage current
KR20230164496A (en) * 2022-05-25 2023-12-04 동우전기 주식회사 Electronic device for determining ground fault of power line using rcd circuit and imd circuit and operating method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000028671A (en) * 1998-07-07 2000-01-28 Toyo Commun Equip Co Ltd Insulation detector
JP2005227132A (en) * 2004-02-13 2005-08-25 Meidensha Corp Insulation condition monitoring apparatus and insulation condition monitoring method
US20110068802A1 (en) * 2009-09-24 2011-03-24 George William Roscoe Ground fault detection device
JP2012215423A (en) * 2011-03-31 2012-11-08 Patokkusu Japan Kk Leak current measuring device and leak current measuring method in power supply system
JP2013036884A (en) * 2011-08-09 2013-02-21 Fuji Electric Fa Components & Systems Co Ltd Insulation monitoring method and insulation monitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000028671A (en) * 1998-07-07 2000-01-28 Toyo Commun Equip Co Ltd Insulation detector
JP2005227132A (en) * 2004-02-13 2005-08-25 Meidensha Corp Insulation condition monitoring apparatus and insulation condition monitoring method
US20110068802A1 (en) * 2009-09-24 2011-03-24 George William Roscoe Ground fault detection device
JP2012215423A (en) * 2011-03-31 2012-11-08 Patokkusu Japan Kk Leak current measuring device and leak current measuring method in power supply system
JP2013036884A (en) * 2011-08-09 2013-02-21 Fuji Electric Fa Components & Systems Co Ltd Insulation monitoring method and insulation monitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187817A1 (en) * 2018-03-29 2019-10-03 オムロン株式会社 Insulation measurement device and insulation measurement method
JP2019174385A (en) * 2018-03-29 2019-10-10 オムロン株式会社 Insulation measuring device and insulation measuring method
CN108667105A (en) * 2018-06-29 2018-10-16 深圳巴斯巴科技发展有限公司 A kind of earth leakage protective portable charged protective device of band Type B

Also Published As

Publication number Publication date
KR20180015566A (en) 2018-02-13

Similar Documents

Publication Publication Date Title
JP2018021812A (en) Device and method for measuring leakage current
KR100876651B1 (en) Method of leakage current break and measurement leakage current use phase calculation
JP5544517B2 (en) Leakage current measuring device and measuring method in electrical equipment
KR101035702B1 (en) Apparatus and method for measuring the power quality
JP2009058234A (en) Leak current measuring instrument and measuring method
JP5418219B2 (en) High voltage insulation monitoring device
JP5743296B1 (en) Leakage location exploration method and apparatus
KR101407864B1 (en) Impedance calculation appratus and sinusoidal insulation monitoring apparatus comprising the voltage sensing
WO2018167909A1 (en) Leakage current detection device, method, and program for detecting leakage current
JP4977481B2 (en) Insulation monitoring device
JP3355905B2 (en) Insulation monitoring system
JP2011027449A (en) Leakage current measuring device
JP5477020B2 (en) Leakage current measuring device and measuring method in electrical equipment
KR100920153B1 (en) Measurement Device of leakage current ohmic value on power line And Method Thereof
JP6240918B1 (en) Leakage current measuring method and leakage current measuring device
EP3133632B1 (en) Circuit breaker
CN106772200B (en) CVT metering error abnormity evaluation method and system based on capacitance-to-ground current
JP2011149959A (en) Insulation monitoring device
JP2023021267A (en) Detection device, method, and program
KR101075484B1 (en) Measurement Device of leakage current ohmic value on power line And Method Thereof
JP2005227132A (en) Insulation condition monitoring apparatus and insulation condition monitoring method
KR101954924B1 (en) Uninterruptible insulation resistance measurement system and method
JP2010060329A (en) Apparatus and method for measuring leakage current of electrical path and electric instrument
JP5101334B2 (en) Leakage current measuring device
JP2009081925A (en) Apparatus for detecting grounding current for resistor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180313