JPH104623A - Ground fault detection circuit and ground fault detection method - Google Patents

Ground fault detection circuit and ground fault detection method

Info

Publication number
JPH104623A
JPH104623A JP8154520A JP15452096A JPH104623A JP H104623 A JPH104623 A JP H104623A JP 8154520 A JP8154520 A JP 8154520A JP 15452096 A JP15452096 A JP 15452096A JP H104623 A JPH104623 A JP H104623A
Authority
JP
Japan
Prior art keywords
frequency component
signal
frequency
zero
phase current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8154520A
Other languages
Japanese (ja)
Inventor
Yoshihiro Hatakeyama
善博 畠山
Koichi Nishimura
貢一 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP8154520A priority Critical patent/JPH104623A/en
Publication of JPH104623A publication Critical patent/JPH104623A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a ground fault detection circuit, where the influence of capacitance to the ground of a cable, to detect ground fault in a non-grounded circuit by injecting a signal between the ground and an electric path, and measuring the leakage of the signal. SOLUTION: This circuit has a signal injection circuit 13 which injects the signals of multiple frequency component f1 and f2 into a non-grounded current path 12, through an injection filter 14 to check the power frequency of a current path, and the ratio between these injection frequency components is five or higher. This circuit is equipped with an earth resistance level detecting circuit 16 which measures and computes the earth resistance, by detecting the leak current of the injected frequency components by a zero-phase current sensor 15, provided at the current path 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は非接地系電路の漏
洩電流を検出する地絡検出回路及び地絡検出方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ground fault detecting circuit and a ground fault detecting method for detecting a leakage current of an ungrounded electric circuit.

【0002】[0002]

【従来の技術】図8は例えば、特公昭55−24331
号公報に示された従来の地絡検出回路である。図におい
て、1は配電用トランス、2は配電用トランス1に接続
した電路、3は電路2の対地容量、4は接地抵抗器等か
らなる接地装置、5は電路2の不平衡電流を検出する零
相変流器である。6は電路2に接続した結合装置であ
り、例えばコンデンサとリアクタとからなる直列共振回
路で、例えば60Hzの商用交流電流は塞流し地絡検出
用の信号電流のみを通過させる。
2. Description of the Related Art FIG. 8 shows, for example, Japanese Patent Publication No. 55-24331.
FIG. In the figure, 1 is a power distribution transformer, 2 is an electric circuit connected to the power distribution transformer 1, 3 is a grounding capacity of the electric circuit 2, 4 is a grounding device including a grounding resistor, and 5 is an unbalanced current of the electric circuit 2. It is a zero-phase current transformer. Reference numeral 6 denotes a coupling device connected to the electric circuit 2, which is a series resonance circuit including, for example, a capacitor and a reactor. For example, a commercial alternating current of 60 Hz is blocked, and only a signal current for ground fault detection is passed.

【0003】7は結合装置5に接続された発振器であ
り、制御器101からの信号によって所定周波数f1
2倍の周波数、例えばf2=2f1が成立するような2倍
の周波数を発振して結合装置6を介して電路2へ注入す
る。9は増幅回路であり、この増幅回路9は零相変流器
5で検出された地絡インピーダンスZ(対地容量3と地
絡抵抗8との並列インピーダンス)の漏洩電流を増幅し
て処理回路10へ出力する。
[0003] 7 is an oscillator which is connected to the coupling device 5, 2 times the frequency of the predetermined frequency f 1 by a signal from the controller 101, for example, oscillating a frequency twice as f 2 = 2f 1 is satisfied Then, it is injected into the electric circuit 2 through the coupling device 6. Reference numeral 9 denotes an amplifying circuit. The amplifying circuit 9 amplifies a leakage current of the ground fault impedance Z (parallel impedance of the ground capacitance 3 and the ground fault resistor 8) detected by the zero-phase current transformer 5, and a processing circuit 10 Output to

【0004】処理回路10は、一端を増幅回路9に共通
接続し、他端をそれぞれ制御器101に接続した論理和
ゲート102,104、論理和ゲート102の出力を増
幅する増幅回路103、増幅回路103の出力と論理和
ゲート104の出力を比較する比較器105より構成さ
れる。20は比較器105の出力が所定の設定値に達し
たときにスイッチング動作をし、図示しない表示回路を
動作させるスイッチング素子である。
The processing circuit 10 has OR gates 102 and 104 having one end commonly connected to the amplifier circuit 9 and the other end connected to the controller 101, an amplifier circuit 103 for amplifying the output of the OR gate 102, and an amplifier circuit. It comprises a comparator 105 for comparing the output of 103 with the output of OR gate 104. Reference numeral 20 denotes a switching element which performs a switching operation when the output of the comparator 105 reaches a predetermined set value, and operates a display circuit (not shown).

【0005】次に、従来回路の動作について説明する。
制御器101の指令によって発振器7がf2=2f1が成
立するような2倍の周波数の信号を発振し、これが結合
装置6を介して電路2に加えられと、電路2には図に示
すように対地容量3があるため、各対地容量3を通して
大地に電流ic1が流れ、分岐電路数をnとすれば接地
装置4をnic1となって電流が流れる閉ループを構成
する。
Next, the operation of the conventional circuit will be described.
Oscillator 7 oscillates a signal of twice the frequency such that f 2 = 2f 1 is established by a command from controller 101, and this signal is applied to electric circuit 2 via coupling device 6. since there is a ground capacitor 3 as the earth current ics 1 flows through each ground capacitor 3 constitute a closed loop current flows through the electric branch number becomes nic 1 to n Tosureba grounding device 4.

【0006】接地装置4を通る電流nic1は零相変流
器5で検出されて増幅器9により論理和ゲート102、
104の各一端に加えられる。一方論理和ゲート104
の他端には制御器101からゲート用の入力信号を印加
しているので、論理和ゲート102の出力信号だけが増
幅器103で略2倍に増幅されて比較器105に入力さ
れる。
The current nic 1 passing through the grounding device 4 is detected by the zero-phase current transformer 5 and is supplied to the OR gate 102 by the amplifier 9.
104 at each end. On the other hand, OR gate 104
Since the input signal for the gate is applied from the controller 101 to the other end, only the output signal of the OR gate 102 is amplified approximately twice by the amplifier 103 and input to the comparator 105.

【0007】比較器105は、増幅器103の出力と論
理和ゲート104の出力電流の比を求め、その比が所定
値以外となった時に漏電検出信号をスイッチング素子2
0に出力する。スイッチング素子20は漏電検出信号を
受けるとオン動作し、図示しない表示回路を稼働させて
漏電検出を表示する。
The comparator 105 calculates the ratio between the output of the amplifier 103 and the output current of the OR gate 104, and outputs the leakage detection signal to the switching element 2 when the ratio becomes a value other than a predetermined value.
Output to 0. Upon receiving the leakage detection signal, the switching element 20 turns on, and activates a display circuit (not shown) to display the leakage detection.

【0008】[0008]

【発明が解決しようとする課題】従来の地絡検出回路は
以上のように周波数比の小さい(2倍の)注入周波数を
使用しているので、対地容量が大きいとき零相変流器の
検出ばらつきが地絡抵抗算出に与える影響が大きく(こ
の影響については後述する。)適用できる対地容量範囲
が限られ、つまり対地容量の大きい、即ち電線長の長い
電路には適用が困難であったという問題点があった。
As described above, the conventional ground fault detection circuit uses the injection frequency having a small frequency ratio (double), so that the zero-phase current transformer is detected when the ground capacity is large. The variation has a large effect on the ground fault resistance calculation (this effect will be described later). The applicable ground capacity range is limited, that is, it is difficult to apply to a large ground capacity, that is, an electric circuit having a long wire length. There was a problem.

【0009】この発明は以上の様な課題を解決するため
になされたもので、対地容量が大きくなる長い電線長の
電路にも適用できる地絡検出回路および地絡検出方法を
得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide a ground fault detecting circuit and a ground fault detecting method which can be applied to a long electric wire having a large ground capacity. I do.

【0010】[0010]

【課題を解決するための手段】請求項1の発明に係る地
絡検出回路は、非接地系電路と大地間に、基準となる第
1の周波数成分の信号及びこの第1の周波数成分と少な
くとも5倍の周波数比を有する第2の周波数成分の信号
を注入する信号注入手段と、前記注入される信号中、前
記第1及び第2の周波数成分の信号を通過させ電源周波
数成分の信号を阻止する注入フィルタと、前記非接地系
電路に設置し、非接地系電路に流れる前記各周波数成分
の電流をそれぞれベクトル合成し零相電流を検出する零
相電流センサ、前記零相電流センサにより検出された第
1の周波数成分の零相電流と、第2の周波数成分の零相
電流との2つのレベルに基づいて地絡抵抗値を算出する
地絡抵抗検出手段と、算出された地絡抵抗値が所定値以
下の場合、警報出力または前記電路の遮断信号を出力す
る警報出力手段とを備えたものである。
According to a first aspect of the present invention, there is provided a ground fault detection circuit comprising a signal of a first frequency component serving as a reference and at least a signal of the first frequency component between an ungrounded electric circuit and the ground. Signal injecting means for injecting a signal of a second frequency component having a frequency ratio of 5 times, and passing the signals of the first and second frequency components in the injected signal and blocking the signal of a power supply frequency component Injection filter, and a zero-phase current sensor that is installed on the non-grounded circuit and that combines the currents of the respective frequency components flowing through the non-grounded system with respective vectors to detect a zero-phase current, are detected by the zero-phase current sensor. Ground-fault resistance detecting means for calculating a ground-fault resistance value based on two levels of the zero-phase current of the first frequency component and the zero-phase current of the second frequency component; Is less than the specified value, an alarm Or those with an alarm output means for outputting a blocking signal of the path.

【0011】請求項2の発明に係る地絡検出回路は、非
接地系電路と大地間に、基準となる第1の周波数成分の
信号、この第1の周波数成分と少なくとも5倍の周波数
比を有する第2の周波数成分の信号、及び前記第1の周
波数成分より低い第3の周波数成分の信号を注入する信
号注入手段と、前記注入される信号中、前記第1、第
2、及び第3の周波数成分の信号を通過させ電源周波数
成分の信号を阻止する注入フィルタと、前記非接地系電
路に設置し、非接地系電路に流れる前記各周波数成分の
電流をそれぞれベクトル合成し零相電流を検出する零相
電流センサ、前記零相電流センサより検出された零相電
流中、前記各周波数成分の零相電流を抽出する各周波数
成分対応の信号周波数抽出手段と、前記第1の周波数成
分或いは第3の周波数成分対応の信号周波数抽出手段を
切り換えて対応する周波数成分の零相電流を伝達する切
り換えスイッチと、前記信号周波数抽出手段により抽出
された第2の周波数成分の零相電流と切り換えスイッチ
より伝達された周波数成分の零相電流との2つのレベル
に基づいて地絡抵抗値を算出する地絡抵抗検出手段と、
算出された地絡抵抗値が所定値以下の場合、警報出力ま
たは前記電路の遮断信号を出力する警報出力手段とを備
えたものである。
A ground fault detecting circuit according to a second aspect of the present invention provides a signal of a first frequency component serving as a reference, and a frequency ratio at least five times that of the first frequency component between an ungrounded electric circuit and the ground. Signal injecting means for injecting a signal of a second frequency component and a signal of a third frequency component lower than the first frequency component, and the first, second, and third signals in the injected signal. An injection filter that passes the signal of the frequency component and blocks the signal of the power supply frequency component, and is installed in the non-grounded circuit, and the current of each of the frequency components flowing in the non-grounded circuit is vector-synthesized to generate a zero-phase current. A zero-phase current sensor for detecting, a signal frequency extracting means corresponding to each frequency component for extracting a zero-phase current of each frequency component among the zero-phase currents detected by the zero-phase current sensor, and the first frequency component or Third frequency A changeover switch for switching the signal frequency extraction means corresponding to the component to transmit a zero-phase current of the corresponding frequency component, and a zero-phase current of the second frequency component extracted by the signal frequency extraction means and transmitted from the changeover switch. Ground-fault resistance detecting means for calculating a ground-fault resistance value based on two levels of the zero-phase current of the frequency component and
When the calculated ground fault resistance value is equal to or less than a predetermined value, an alarm output means for outputting an alarm output or a signal to cut off the electric circuit is provided.

【0012】請求項3の発明に係る地絡検出回路は、非
接地系電路と大地間に、基準となる第1の周波数成分の
信号、この第1の周波数成分と少なくとも5倍の周波数
比を有する第2の周波数成分の信号、前記第1の周波数
成分より低い第3の周波数成分の信号中、前記第1の周
波数成分の信号或いは第3の周波数成分の信号の一方を
選択する信号周波数選択手段と、前記第2の周波数成分
の信号と信号周波数選択手段により選択された周波数成
分の信号を非接地系電路と大地間に注入する信号注入手
段と、前記注入される信号中、前記第2及び選択された
周波数成分の信号を通過させ電源周波数成分の信号を阻
止する注入フィルタと、前記非接地系電路に設置し、非
接地系電路に流れる前記各周波数成分の電流をそれぞれ
ベクトル合成し零相電流を検出する零相電流センサ、前
記零相電流センサにより検出された第2の周波数成分の
零相電流と前記注入信号周波数選択手段に選択された周
波数成分の零相電流との2つのレベルに基づいて地絡抵
抗値を算出する地絡抵抗検出手段と、算出された地絡抵
抗値が所定値以下の場合、警報出力または前記電路の遮
断信号を出力する警報出力手段とを備えたものである。
A ground fault detecting circuit according to a third aspect of the present invention provides a signal of a first frequency component serving as a reference, and a frequency ratio at least five times that of the first frequency component between an ungrounded electric circuit and the ground. Signal frequency selection for selecting one of the first frequency component signal and the third frequency component signal from the second frequency component signal and the third frequency component signal lower than the first frequency component Means, signal injection means for injecting the signal of the second frequency component and the signal of the frequency component selected by the signal frequency selection means between the non-grounded electric circuit and the ground; And an injection filter that passes a signal of a selected frequency component and blocks a signal of a power supply frequency component, and is installed on the non-grounded electric circuit. A zero-phase current sensor for detecting a current; a zero-phase current of a second frequency component detected by the zero-phase current sensor; and a zero-phase current of a frequency component selected by the injection signal frequency selection means. Ground fault resistance detecting means for calculating a ground fault resistance value based on the ground fault resistance value, and when the calculated ground fault resistance value is equal to or less than a predetermined value, an alarm output or an alarm output means for outputting a cutoff signal of the electric circuit. is there.

【0013】請求項4の発明に係る地絡検出回路は、請
求項1ないし3のいずれかにおいて、注入フィルタを帯
域除去フィルタとし、注入された各周波数成分の信号中
で電源周波数成分の信号を除去するものである。
According to a fourth aspect of the present invention, there is provided a ground fault detection circuit according to any one of the first to third aspects, wherein the injection filter is a band elimination filter, and a signal of a power supply frequency component among the injected frequency component signals. It is to be removed.

【0014】請求項5の発明に係る地絡検出方法は、非
接地系電路と大地間に、基準となる第1の周波数成分の
信号と、この第1の周波数成分と少なくとも5倍の周波
数比を有する第2の周波数成分の信号を注入して前記非
接地系電路に流れる各周波数成分の電流をそれぞれベク
トル合成し零相電流を検出し、続いて前記零相電流セン
サにより検出された第1の周波数成分の零相電流と、第
2の周波数成分の零相電流との2つのレベルに基づいて
地絡抵抗値を算出した後に、算出された地絡抵抗値が所
定値以下の場合には警報出力または前記電路の遮断信号
を出力するものである。
According to a fifth aspect of the present invention, there is provided a ground fault detecting method, wherein a signal of a first frequency component as a reference and a frequency ratio at least five times higher than the first frequency component are provided between the ungrounded electric circuit and the ground. And a vector of the current of each frequency component flowing through the ungrounded electric circuit is synthesized to detect a zero-phase current, and then the first phase detected by the zero-phase current sensor is detected. After calculating the ground fault resistance based on the two levels of the zero-phase current of the frequency component and the zero-phase current of the second frequency component, if the calculated ground fault resistance is equal to or less than a predetermined value, It outputs an alarm output or a signal to cut off the electric circuit.

【0015】請求項6の発明に係る地絡検出方法は、請
求項5において、第1の周波数成分とこれより低い第3
の周波数成分と、前記第1の周波数と少なくとも5倍の
周波数比を有する第2の周波数成分の信号を非接地系電
路に同時に注入し、零相電流センサにより検出された零
相電流成分の内で第2の周波数成分の零相電流と、第1
の周波数成分或いは第3の周波数成分の零相電流成分と
の2つのレベルに基づいて地絡抵抗値を算出するもので
ある。
According to a sixth aspect of the present invention, in the ground fault detecting method according to the fifth aspect, the first frequency component and the third frequency component lower than the first frequency component are set.
And a signal of a second frequency component having a frequency ratio at least five times that of the first frequency are simultaneously injected into an ungrounded electric circuit, and the zero-phase current component detected by the zero-phase current sensor is And the zero-phase current of the second frequency component and the first
The ground fault resistance value is calculated on the basis of the two levels of the frequency component and the zero-phase current component of the third frequency component.

【0016】請求項7の発明に係る地絡検出方法は、請
求項5において、第1の周波数成分とこれより低い第3
の周波数成分と、前記第1の周波数と少なくとも5倍の
周波数比を有する第2の周波数成分の信号中、第2の周
波数成分の信号と共に、第1或いは第2の周波数成分の
信号の一方を非接地系電路と大地間に注入して前記非接
地系電路に流れる各周波数成分の電流をそれぞれベクト
ル合成し零相電流を検出し、続いて前記零相電流センサ
により検出された第2の周波数成分の零相電流と、第1
或いは第3の周波数成分の零相電流との2つのレベルに
基づいて地絡抵抗値を算出した後に、算出された地絡抵
抗値が所定値以下の場合には警報出力または前記電路の
遮断信号を出力するものである。
According to a seventh aspect of the present invention, there is provided a ground fault detecting method according to the fifth aspect, wherein the first frequency component and the third frequency component lower than the first frequency component are provided.
And a second frequency component signal having a frequency ratio of at least 5 times that of the first frequency, together with the second frequency component signal, one of the first or second frequency component signals. The vector of the current of each frequency component that flows between the ungrounded circuit and the ground and flows through the ungrounded circuit is vector-combined to detect the zero-phase current, and then the second frequency detected by the zero-phase current sensor is detected. Component zero-sequence current and the first
Alternatively, after calculating the ground fault resistance value based on the two levels of the zero-phase current of the third frequency component and the ground fault resistance value, if the calculated ground fault resistance value is equal to or less than a predetermined value, an alarm output or a cutoff signal of the electric circuit is provided. Is output.

【0017】[0017]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施の形態1.以下、この発明の実施の形態1を図につ
いて説明する。図1は本実施の形態1の地絡検出回路の
構成を示す図である。図において、11は商用交流電源
が一次側に接続された配電用トランスであり、例えば二
次側の電圧V1、V2は周波数60Hzで100Vであ
る。12は配電用トランス11の二次側電圧が印加され
た非接地交流電路、13は非接地交流電路12に地絡検
出用の信号電圧を注入する信号注入手段であり、この信
号注入手段13は例えば注入信号発生部13a,13b
より発せられた電圧EがAC10V、第1の注入周波数
がf1及び第2の注入周波数f2の複数周波の信号(以
下、注入信号電圧ES)を注入する。
Embodiment 1 FIG. Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a configuration of a ground fault detection circuit according to the first embodiment. In the figure, reference numeral 11 denotes a power distribution transformer in which a commercial AC power supply is connected to the primary side. For example, the voltages V1 and V2 on the secondary side are 100 V at a frequency of 60 Hz. Reference numeral 12 denotes an ungrounded AC circuit to which the secondary voltage of the power distribution transformer 11 is applied, and 13 denotes a signal injection unit that injects a signal voltage for ground fault detection into the ungrounded AC line 12. For example, the injection signal generators 13a and 13b
A plurality of frequency signals having a voltage E of 10 V AC and a first injection frequency f 1 and a second injection frequency f 2 (hereinafter, injection signal voltage ES) are injected.

【0018】14は注入フィルターであり、この注入フ
ィルター14は信号注入手段13より注入される注入信
号電圧ESの周波数成分の内、電源周波数60Hzは阻
止して注入周波数f1及びf2の信号は導通させる。
Reference numeral 14 denotes an injection filter. The injection filter 14 blocks the power supply frequency 60 Hz of the frequency components of the injection signal voltage ES injected from the signal injection means 13 and conducts the signals of the injection frequencies f1 and f2. .

【0019】15は非接地交流電路12の地絡事故によ
り流れる零相電流(漏洩電流)Igを検出する零相電流
センサ(ZCT)、16は地絡抵抗レベル検出回路であ
って零相電流センサ15の検出電流の内、第1の注入周
波数f1と第2の注入周波数f2の漏洩電流Ig1,Ig2
を抽出しその検知レベルから地絡抵抗Rgを算出する。
17は警報出力回路であり、この警報出力回路17は算
出された地絡抵抗Rgが所定値以下のとき、外部へ警報
出力または、非接地交流電路12の図示しない遮断装置
へ遮断信号を出力する。
Reference numeral 15 denotes a zero-phase current sensor (ZCT) for detecting a zero-phase current (leakage current) Ig flowing due to a ground fault in the ungrounded AC circuit 12, and 16 denotes a ground-fault resistance level detecting circuit, which is a zero-phase current sensor. of 15 detection current, the leakage current Ig 1 of the first injection frequency f 1 and the second injection frequency f 2, Ig 2
And ground fault resistance Rg is calculated from the detection level.
Reference numeral 17 denotes an alarm output circuit. The alarm output circuit 17 outputs an alarm output to the outside or a cutoff signal to a cutoff device (not shown) of the non-grounded AC power line 12 when the calculated ground fault resistance Rg is equal to or less than a predetermined value. .

【0020】図2は注入信号に対する非接地交流電路1
2の等価回路図である。図において、Rgは地絡抵抗、
0は図1に示す各電線12R〜12Tの対地容量C1
2、C3の合計である。
FIG. 2 shows an ungrounded AC circuit 1 for an injection signal.
2 is an equivalent circuit diagram of FIG. In the figure, Rg is the ground fault resistance,
C 0 is the ground capacity C 1 of each of the electric wires 12R to 12T shown in FIG.
It is the sum of C 2 and C 3 .

【0021】次に、本実施の形態の動作について述べ
る。非接地交流電路12の1線が地絡抵抗Rgのある位
置で地絡した場合を考える。図2の等価回路図に示すよ
うに、注入信号電圧ESにより地絡抵抗Rg及び対地容
量C0へ漏洩電流Igが流れ、これを零相電流センサー
15が検出する。ここで注入信号電圧ESにおける周波
数f1成分の漏洩電流をIg1,地絡抵抗Rgを流れる電
流をIr1,合計対地容量C0を流れる電流をIc1とす
る。
Next, the operation of this embodiment will be described. Consider a case in which one line of the ungrounded AC electric circuit 12 has a ground fault at a position where the ground fault resistance Rg is present. As shown in the equivalent circuit diagram of FIG. 2, the injected signal voltage ES by the leakage current Ig flows to the ground fault resistance Rg and earth capacitance C 0, which zero-phase current sensor 15 detects. Here, the leakage current of the frequency f 1 component in the injection signal voltage ES is Ig 1 , the current flowing through the ground fault resistor Rg is Ir 1 , and the current flowing through the total ground capacitance C 0 is Ic 1 .

【0022】また、注入信号電圧ESにおける第2の周
波数f2の漏洩電流をIg2,地絡抵抗Rgを流れる電流
をIr2,合計対地容量C0を流れる電流をIc2とし、
各注入信号電圧ESの周波数比f2/f1をNとすると、
図3のベクトル図からIc2=N・Ic1、Ir2=Ir1
より下記の方程式が成り立つ。
Further, the leakage current at the second frequency f 2 in the injection signal voltage ES is Ig 2 , the current flowing through the ground fault resistor Rg is Ir 2 , the current flowing through the total ground capacitance C 0 is Ic 2 ,
Assuming that the frequency ratio f 2 / f 1 of each injection signal voltage ES is N,
From the vector diagram of FIG. 3, Ic 2 = N · Ic 1 , Ir 2 = Ir 1
The following equation holds.

【0023】Ig1 2= Ic1 2+Ir1 2 Ig2 2=(N・ Ic12+Ir1 2 [0023] Ig 1 2 = Ic 1 2 + Ir 1 2 Ig 2 2 = (N · Ic 1) 2 + Ir 1 2

【0024】上記各式から以下の(1)式が得られる。 Ir1 2={(N・Ig12−Ig2 2}/(N2−1) ・・・・(1)From the above equations, the following equation (1) is obtained. Ir 1 2 = {(N · Ig 1) 2 -Ig 2 2} / (N 2 -1) ···· (1)

【0025】ここで零相電流センサー15の検出ばらつ
きの影響について述べる。検出ばらつきをαとしばらつ
きの上限と下限を想定してIg1をIg1・(1+α),
Ig2をIg2・(1−α)と検出した場合の漏洩電流I
gの算出誤差をβとする。
Here, the influence of the detection variation of the zero-phase current sensor 15 will be described. Assuming that the detection variation is α and the upper and lower limits of the variation are assumed, Ig 1 is Ig 1 · (1 + α),
Leakage current I when the ig 2 is detected and Ig 2 · (1-α)
The calculation error of g is β.

【0026】Ir1=ES/Rg Ic1=2πf1・C0・E=A・Ir1(ただしA=2π
1・C0・Rg)である。
Ir 1 = ES / Rg Ic 1 = 2πf 1 · C 0 · E = A · Ir 1 (where A = 2π
f 1 · C 0 · Rg).

【0027】従って(1)式より(1+β)2・Ir1 2
=[N2{(A・Ir12+Ir1 2}(1+α)2
{(N・A・Ir12+Ir1 2}(1−α)2]/(N2
−1)となり以下の(2)式を得る。
[0027] Therefore, from equation (1) (1 + β) 2 · Ir 1 2
= [N 2 {(A · Ir 1) 2 + Ir 1 2} (1 + α) 2 -
{(N · A · Ir 1 ) 2 + Ir 1 2} (1-α) 2] / (N 2
-1) and the following equation (2) is obtained.

【0028】 (1+β)2= (N2・A2・4α+ N2(1+α)2−(1−α)2)/(N2 −1) ・・・(2)(1 + β) 2 = (N 2 · A 2 · 4α + N 2 (1 + α) 2- (1-α) 2 ) / (N 2 -1) (2)

【0029】図4は周波数比N=2、N=5の場合に
(2)式をグラフで現したものであり、縦軸が誤差分散
(1+β)2、横軸はAを示し、地絡抵抗Rg(=ES
/Ir1)の許容算出誤差を20%とすると、(1+
β)2=(1+0.2)2=1.41であるから、N=2
の場合A=0.3程度まで許容できることになる。
FIG. 4 is a graph showing the equation (2) when the frequency ratios N = 2 and N = 5. The vertical axis represents the error variance (1 + β) 2 , the horizontal axis represents A, and the ground fault. Resistance Rg (= ES
/ Ir 1 ) assuming an allowable calculation error of 20%, (1+
β) 2 = (1 + 0.2) 2 = 1.41, so N = 2
In this case, it can be tolerated up to about A = 0.3.

【0030】N=5の場合は同様に、(1+β)2
1.41となるのは、A=0.7程度となる。A=2π
1・C0・Rgであり、地絡抵抗Rgが同一であれば、
Aは対地容量C0に比例するからN=5の方がN=2の
場合にくらべ約2倍の対地容量、即ち約2倍の電線長ま
で誤差がほぼ同一で適用できることになる。
Similarly, when N = 5, (1 + β) 2 =
1.41 is about A = 0.7. A = 2π
f 1 · C 0 · Rg, and if the ground fault resistance Rg is the same,
Since A is proportional to the ground capacity C 0 , the error is substantially the same for N = 5 up to about twice the ground capacity, that is, about twice as long as N = 2, when N = 2.

【0031】図5はA=0.7の場合の(2)式をグラ
フで表したものである。縦軸が誤差分散(1+β)2
横軸が周波数比Nを示す。図から判るようにN=2から
N=3で(1+β)2は急激に減少し、N=5くらいか
らβはほぼ一定になる。これより周波数比Nを5以上に
設定することで、誤差を少なくして地絡抵抗Rgを検出
できる。
FIG. 5 is a graph showing the equation (2) when A = 0.7. The vertical axis is error variance (1 + β) 2 ,
The horizontal axis indicates the frequency ratio N. As can be seen from the figure, (1 + β) 2 decreases rapidly from N = 2 to N = 3, and β becomes almost constant from about N = 5. By setting the frequency ratio N to 5 or more, the error can be reduced and the ground fault resistance Rg can be detected.

【0032】地絡抵抗Rgの許容算出誤差範囲を設定す
ると、(2)式よりA(A=2・π・f1・C0・R
g)の値がきまり、 第1の注入周波数f1と対地容量C
0は反比例するので、第1の注入周波数f1が小さいほど
対地容量C0は大きくてもよく、本実施の形態の地絡検
出回路を電線長のより長い電路への適用が可能となる。
When the allowable calculation error range of the ground fault resistance Rg is set, A (A = 2 · π · f1 · C 0 · R) is obtained from the equation (2).
g), the first injection frequency f 1 and the ground capacitance C
Since 0 is inversely proportional, the smaller the first injection frequency f 1, the larger the ground capacitance C 0 may be, and the ground fault detection circuit according to the present embodiment can be applied to an electric circuit having a longer wire length.

【0033】非接地交流電路12に注入される信号の周
波数で、商用電源周波付近の周波数は帯域除去フィルタ
で構成される注入フィルタ14により阻止される。従っ
て、商用電源周波数例えば60Hzをはさんで、第1の
注入周波数f1は商用電源周波数より低い値、例えば2
0Hz、また第2の注入周波数f2を商用電源周波数よ
り高い値、例えば100Hzとすることで、注入フィル
タ14の影響を受けずに、地絡抵抗Rgを所定の誤差範
囲内で検出できる。このように、非接地交流電路12の
商用電源周波数を挟んで第1の注入周波数f1と第2の
注入周波数f2を設定することで周波数比を5以上に設
定することが容易となる。
The frequency of the signal injected into the ungrounded AC power line 12 near the commercial power frequency is blocked by the injection filter 14 composed of a band elimination filter. Therefore, the first injection frequency f 1 is lower than the commercial power supply frequency, for example, 2
By setting 0 Hz and the second injection frequency f 2 to a value higher than the commercial power frequency, for example, 100 Hz, the ground fault resistance Rg can be detected within a predetermined error range without being affected by the injection filter 14. As described above, by setting the first injection frequency f 1 and the second injection frequency f 2 with the commercial power supply frequency of the ungrounded AC power line 12 interposed therebetween, it becomes easy to set the frequency ratio to 5 or more.

【0034】実施の形態2.図6はこの発明の実施の形
態2の地絡検出回路の構成を示す図である。図におい
て、11〜17は上記実施の形態1の説明と同様であ
る。13cは第1の注入周波数f1より低い周波数の第
3の注入周波数f3の注入信号電圧ESを発する注入信
号発生部であり、各注入信号電圧ESの注入周波数の関
係はf3<f1<f2となる。
Embodiment 2 FIG. 6 is a diagram showing a configuration of a ground fault detection circuit according to Embodiment 2 of the present invention. In the figure, reference numerals 11 to 17 are the same as those in the first embodiment. 13c is injected signal generating unit for emitting a third injection signal voltage ES of the injection frequency f 3 of the frequency lower than the first injection frequency f 1, the relationship between the injection frequency of the injected signal voltage ES f 3 <f 1 <a f 2.

【0035】18は周波数選択手段であり、信号注入手
段13へ第1の注入周波数f1の注入信号電圧または第
3の注入周波数f3の注入信号電圧を選択する。第3の
注入周波数f3を第1の注入周波数f1より小さくする
と、第3の注入周波数f3帯域の漏洩電流Ig3を検出す
るためには、周期が長い分それだけ長い検出の時間を要
する。
Numeral 18 denotes frequency selection means for selecting an injection signal voltage of the first injection frequency f 1 or an injection signal voltage of the third injection frequency f 3 to the signal injection means 13. If the third injection frequency f 3 is smaller than the first injection frequency f 1 , the longer the period, the longer the detection time is required to detect the leakage current Ig 3 in the third injection frequency f 3 band. .

【0036】例えば注入周波数が5Hzの場合、その1
サイクルの周期は200m秒であるから、高速検出には
適さない(通常、高速型の地絡検出は100m秒以下、
遅延型では300m秒から2秒程度で行われる)。従っ
て、許容される検出時間に応じて、第3の注入周波数f
3を更に低い注入周波数で選択することで、周波数の低
減に反比例して対地容量C0を大きくすることができ
る。これはAが同じ、つまり周波数×C0が一定なら
ば、図5より誤差が大きくなった分、更に小さくなるか
らである。
For example, when the injection frequency is 5 Hz, 1
Since the cycle period is 200 ms, it is not suitable for high-speed detection (usually, high-speed ground fault detection is 100 ms or less,
In the case of the delay type, it is performed in about 300 ms to 2 seconds). Therefore, depending on the permissible detection time, the third injection frequency f
By selecting 3 at a lower injection frequency, the ground capacitance C 0 can be increased in inverse proportion to the frequency reduction. This is because if A is the same, that is, if the frequency × C 0 is constant, the error becomes larger and smaller than that in FIG.

【0037】実施の形態3.図7はこの発明の実施の形
態3の地絡検出回路の構成を示す図である。図におい
て、11〜17、13a〜13cは上記実施の形態2の
説明と同様である。16eは演算検出部、16a、16
b、16cは第1、第2、第3の注入周波数f1、f2
3の漏洩電流Ig1,Ig2,Ig3を選択抽出するフィ
ルタより構成される注入信号周波数抽出回路、16dは
切り換えスイッチであり、第1の注入周波数f1或いは
第3の注入周波数f3の漏洩電流Ig1,Ig3の一方を
選択して演算検出部16eに伝える。
Embodiment 3 FIG. 7 is a diagram showing a configuration of a ground fault detection circuit according to Embodiment 3 of the present invention. In the figure, 11 to 17 and 13a to 13c are the same as those described in the second embodiment. 16e is an operation detection unit, 16a, 16
b, 16c are the first, second, and third injection frequencies f 1 , f 2 ,
leakage current Ig 1, Ig 2, Ig 3 selective extraction injecting signal frequency extraction circuit constituted by filter f 3, 16d is a changeover switch, the first injection frequency f 1 or the third injection frequency f 3 leakage current Ig 1, one of the Ig 3 selects and transmitted to computing detection unit 16e.

【0038】次に動作の説明をする。信号注入手段13
から交流電路12へは第1、第2、第3の注入周波数成
分f1、f2、f3の注入信号電圧ESが注入される。零
相電流センサ15では各注入周波数f1、f2、f3の漏
洩電流Ig1,Ig2,Ig3が検知されるが、許容検出
時間に応じて、切り換えスイッチ16dを第1の注入周
波数f1と第3の注入周波数f3のいずれか一方の漏洩
電流Ig1,Ig3を選択することにより、1台の配電用
トランス11から電路が分岐されてそれぞれの分岐電路
の対地容量C0が異なり、許容検出時間が異なる場合
に、各分岐電路に挿入された零相電流センサ15以降の
交流電路12の長さ(対地容量の大きさ)に対応させて
基準となる周波数比を選択するので、分岐電路毎の地絡
抵抗Rgの検出が許容検出時間の範囲で精度よくでき
る。
Next, the operation will be described. Signal injection means 13
The injection signal voltage ES of the first, second, and third injection frequency components f 1 , f 2 , and f 3 is injected into the AC electric circuit 12 from. The zero-phase current sensor 15 detects leakage currents Ig 1 , Ig 2 , and Ig 3 at the respective injection frequencies f 1 , f 2 , and f 3. According to the allowable detection time, the changeover switch 16 d is set to the first injection frequency. by selecting f1 and one of the leakage current Ig 1, Ig 3 of the third injection frequency f3, path from one of the distribution transformer 11 has different earth capacitance C 0 of the respective branch paths are branched When the allowable detection time is different, the reference frequency ratio is selected in accordance with the length (the magnitude of the ground capacity) of the AC circuit 12 after the zero-phase current sensor 15 inserted in each branch circuit. The detection of the ground fault resistance Rg for each branch electric circuit can be performed accurately within the allowable detection time range.

【0039】なお、説明の都合上、第1の注入周波数f
1の注入信号電圧ESと第2の注入周波数f2の注入信
号電圧ESとを等しいもので説明したが、この注入信号
電圧ESが異なっていても、この電圧比をあらかじめ地
絡抵抗レベル検出回路16に持たせておけば、上述の計
算式に電圧比を加味して、地絡抵抗Rgの算出が可能で
ある。また、電路を一般の商用電源の周波数で説明した
が、これにこだわること無く別の周波数の電路(例えば
400Hz回路)に使用できることは明白である。
For convenience of explanation, the first injection frequency f
1 has been described as being equal to the injection signal voltage ES of the second injection frequency f2. Even if the injection signal voltage ES is different, this voltage ratio is determined in advance by the ground fault resistance level detection circuit 16. , It is possible to calculate the ground fault resistance Rg in consideration of the voltage ratio in the above formula. Further, although the electric circuit has been described using the frequency of a general commercial power supply, it is apparent that the electric circuit can be used for an electric circuit of another frequency (for example, a 400 Hz circuit) without being limited to this.

【0040】[0040]

【発明の効果】請求項1の発明によれば、非接地系電路
と大地間に、基準となる第1の周波数成分の信号及びこ
の第1の周波数成分と少なくとも5倍の周波数比を有す
る第2の周波数成分の信号を注入する信号注入手段と、
前記注入される信号中、前記第1及び第2の周波数成分
の信号を通過させ電源周波数成分の信号を阻止する注入
フィルタと、前記非接地系電路に設置し、非接地系電路
に流れる前記各周波数成分の電流をそれぞれベクトル合
成し零相電流を検出する零相電流センサと、前記零相電
流センサにより検出された第1の周波数成分の零相電流
と、第2の周波数成分の零相電流との2つのレベルに基
づいて地絡抵抗値を算出する地絡抵抗検出手段と、算出
された地絡抵抗値が所定値以下の場合、警報出力または
前記電路の遮断信号を出力する警報出力手段とを備え、
2つの信号の周波数成分の比を5倍以上とすることで2
つの周波数成分の漏洩電流のベクトル演算から、地絡抵
抗の演算による計測誤差を小さく抑えることができると
いう効果がある。
According to the first aspect of the present invention, a signal of a first frequency component serving as a reference and a frequency ratio at least five times that of the first frequency component are provided between an ungrounded electric circuit and the ground. Signal injecting means for injecting the signal of the frequency component 2;
In the injected signal, an injection filter that passes the signals of the first and second frequency components and blocks a signal of a power supply frequency component, and each of the injection filters that are installed on the non-grounded electric circuit and flow through the non-grounded electric circuit. A zero-phase current sensor for vector-synthesizing the currents of the frequency components to detect a zero-phase current, a zero-phase current of a first frequency component detected by the zero-phase current sensor, and a zero-phase current of a second frequency component Ground fault resistance detecting means for calculating a ground fault resistance value based on the two levels, and an alarm output means for outputting an alarm output or a cutoff signal for the electric circuit when the calculated ground fault resistance value is equal to or less than a predetermined value. With
By setting the ratio of the frequency components of the two signals to 5 times or more, 2
There is an effect that the measurement error due to the ground fault resistance calculation from the vector calculation of the leakage current of two frequency components can be reduced.

【0041】請求項2の発明によれば、非接地系電路と
大地間に、基準となる第1の周波数成分の信号、この第
1の周波数成分と少なくとも5倍の周波数比を有する第
2の周波数成分の信号、及び前記第1の周波数成分より
低い第3の周波数成分の信号を注入する信号注入手段
と、前記注入される信号中、前記第1、第2、及び第3
の周波数成分の信号を通過させ電源周波数成分の信号を
阻止する注入フィルタと、前記非接地系電路に設置し、
非接地系電路に流れる前記各周波数成分の電流をそれぞ
れベクトル合成し零相電流を検出する零相電流センサ
と、前記零相電流センサより検出された零相電流中、前
記各周波数成分の零相電流を抽出する各周波数成分対応
の信号周波数抽出手段と、前記第1の周波数成分或いは
第3の周波数成分対応の信号周波数抽出手段を切り換え
て対応する周波数成分の零相電流を伝達する切り換えス
イッチと、前記信号周波数抽出手段により抽出された第
2の周波数成分の零相電流と切り換えスイッチより伝達
された周波数成分の零相電流との2つのレベルに基づい
て地絡抵抗値を算出する地絡抵抗検出手段と、算出され
た地絡抵抗値が所定値以下の場合、警報出力または前記
電路の遮断信号を出力する警報出力手段とを備えたの
で、地絡検出許容時限内でより配線長の長い電路でも精
度良く地絡抵抗の検出ができるという効果がある。
According to the second aspect of the present invention, a signal of a first frequency component serving as a reference, and a second signal having a frequency ratio at least five times that of the first frequency component are provided between the ungrounded electric circuit and the ground. Signal injecting means for injecting a signal of a frequency component and a signal of a third frequency component lower than the first frequency component; and wherein the first, second, and third signals are included in the injected signal.
An injection filter that passes the signal of the frequency component and blocks the signal of the power supply frequency component, and is installed on the ungrounded electric circuit,
A zero-phase current sensor for vector-synthesizing the current of each of the frequency components flowing through the ungrounded electric circuit to detect a zero-phase current; and a zero-phase current of each of the frequency components in the zero-phase current detected by the zero-phase current sensor. A signal frequency extracting means corresponding to each frequency component for extracting a current, and a changeover switch for switching the signal frequency extracting means corresponding to the first frequency component or the third frequency component and transmitting a zero-phase current of the corresponding frequency component; A ground fault resistance calculating a ground fault resistance value based on two levels of a zero-phase current of the second frequency component extracted by the signal frequency extracting means and a zero-phase current of the frequency component transmitted from the changeover switch; Detecting means, and an alarm output means for outputting an alarm output or a signal to cut off the electric circuit when the calculated ground fault resistance value is equal to or less than a predetermined value. There is an effect that can be precisely ground fault resistance detected with the wiring length long path in.

【0042】請求項3の発明によれば、非接地系電路と
大地間に、基準となる第1の周波数成分の信号、この第
1の周波数成分と少なくとも5倍の周波数比を有する第
2の周波数成分の信号、前記第1の周波数成分より低い
第3の周波数成分の信号中、前記第1の周波数成分の信
号或いは第3の周波数成分の信号の一方を選択する信号
周波数選択手段と、前記第2の周波数成分の信号と信号
周波数選択手段により選択された周波数成分の信号を非
接地系電路と大地間に注入する信号注入手段と、前記注
入される信号中、前記第2及び選択された周波数成分の
信号を通過させ電源周波数成分の信号を阻止する注入フ
ィルタと、前記非接地系電路に設置し、非接地系電路に
流れる前記各周波数成分の電流をそれぞれベクトル合成
し零相電流を検出する零相電流センサ、前記零相電流セ
ンサにより検出された第2の周波数成分の零相電流と前
記注入信号周波数選択手段に選択された周波数成分の零
相電流との2つのレベルに基づいて地絡抵抗値を算出す
る地絡抵抗検出手段と、算出された地絡抵抗値が所定値
以下の場合、警報出力または前記電路の遮断信号を出力
する警報出力手段とを備えたので、零相電流センサ以降
の配線長に応じて地絡検出許容時限を設定することで、
精度良く地絡抵抗の検出ができるという効果がある。
According to the third aspect of the present invention, a signal of a first frequency component serving as a reference, and a second signal having a frequency ratio at least five times that of the first frequency component, between the ungrounded electric circuit and the ground. Signal frequency selecting means for selecting one of the first frequency component signal and the third frequency component signal from the frequency component signal and the third frequency component signal lower than the first frequency component; Signal injecting means for injecting the signal of the second frequency component and the signal of the frequency component selected by the signal frequency selecting means between the ungrounded electric circuit and the ground; An injection filter that passes a signal of a frequency component and blocks a signal of a power supply frequency component, and is installed in the ungrounded circuit, and a vector synthesis of the current of each frequency component flowing in the ungrounded circuit is performed to detect a zero-phase current. A zero-phase current sensor based on two levels of a zero-phase current of a second frequency component detected by the zero-phase current sensor and a zero-phase current of a frequency component selected by the injection signal frequency selection means. A ground-fault resistance detecting means for calculating a ground-fault resistance value, and an alarm output means for outputting an alarm output or a signal for cutting off the electric circuit when the calculated ground-fault resistance value is equal to or less than a predetermined value. By setting the ground fault detection allowable time limit according to the wiring length after the sensor,
There is an effect that the ground fault resistance can be detected with high accuracy.

【0043】請求項4の発明によれば、注入フィルタを
帯域除去フィルタとし、注入された各周波数成分の信号
中で電源周波数成分の信号を除去するようにしたので、
注入周波数を自由に設定できるという効果がある。
According to the fourth aspect of the present invention, the injection filter is a band elimination filter, and the power supply frequency component signal is removed from the injected frequency component signals.
There is an effect that the injection frequency can be set freely.

【0044】請求項5の発明によれば、非接地系電路と
大地間に、基準となる第1の周波数成分の信号と、この
第1の周波数成分と少なくとも5倍の周波数比を有する
第2の周波数成分の信号を注入して前記非接地系電路に
流れる各周波数成分の電流をそれぞれベクトル合成し零
相電流を検出し、続いて前記零相電流センサにより検出
された第1の周波数成分の零相電流と、第2の周波数成
分の零相電流との2つのレベルに基づいて地絡抵抗値を
算出した後に、算出された地絡抵抗値が所定値以下の場
合には警報出力または前記電路の遮断信号を出力するよ
うにしたので、2つの信号の周波数成分の比を5倍以上
とし、2つの周波数成分の漏洩電流のベクトル演算から
地絡抵抗の演算による計測誤差を小さく抑えることがで
きるという効果がある。
According to the fifth aspect of the present invention, the signal of the first frequency component serving as a reference and the second signal having a frequency ratio at least five times that of the first frequency component are provided between the ungrounded electric circuit and the ground. The signal of the frequency component is injected, and the current of each frequency component flowing in the ungrounded electric circuit is vector-synthesized to detect the zero-phase current, and then the first frequency component of the first frequency component detected by the zero-phase current sensor is detected. After calculating the ground fault resistance based on the two levels of the zero-phase current and the zero-phase current of the second frequency component, if the calculated ground fault resistance is equal to or less than a predetermined value, an alarm output or Since the cutoff signal of the electric circuit is output, the ratio of the frequency components of the two signals is made five times or more, and the measurement error due to the calculation of the ground fault resistance from the vector calculation of the leakage current of the two frequency components can be reduced. The effect of being able to do That.

【0045】請求項6の発明によれば、第1の周波数成
分とこれより低い第3の周波数成分と、前記第1の周波
数と少なくとも5倍の周波数比を有する第2の周波数成
分の信号を非接地系電路に同時注入し、零相電流センサ
により検出された零相電流成分の内で第2の周波数成分
の零相電流と、第1の周波数成分或いは第3の周波数成
分の零相電流成分との2つのレベルに基づいて地絡抵抗
値を算出するようにしたので、地絡検出許容時限内でよ
り配線長の長い電路でも精度良く地絡抵抗の検出ができ
るという効果がある。
According to the sixth aspect of the present invention, the signal of the first frequency component, the third frequency component lower than the first frequency component, and the signal of the second frequency component having a frequency ratio at least five times as high as the first frequency are generated. The zero-phase current of the second frequency component and the zero-phase current of the first frequency component or the third frequency component among the zero-phase current components detected by the zero-phase current sensor simultaneously injected into the ungrounded electric circuit. Since the ground fault resistance value is calculated based on the two levels of the component and the ground fault resistance, there is an effect that the ground fault resistance can be accurately detected even on an electric circuit having a longer wiring length within the ground fault detection allowable time limit.

【0046】請求項7の発明によれば、第1の周波数成
分とこれより低い第3の周波数成分と、前記第1の周波
数と少なくとも5倍の周波数比を有する第2の周波数成
分の信号中、第2の周波数成分の信号と共に、第1或い
は第2の周波数成分の信号の一方を非接地系電路と大地
間に注入して前記非接地系電路に流れる各周波数成分の
電流をそれぞれベクトル合成し零相電流を検出し、続い
て前記零相電流センサにより検出された第2の周波数成
分の零相電流と、第1或いは第3の周波数成分の零相電
流との2つのレベルに基づいて地絡抵抗値を算出した後
に、算出された地絡抵抗値が所定値以下の場合には警報
出力または前記電路の遮断信号を出力するようにしたの
で、零相電流センサ以降の配線長に応じて地絡検出許容
時限を設定することで、精度良く地絡抵抗の検出ができ
るという効果がある。
According to the seventh aspect of the present invention, in the signal of the first frequency component, the third frequency component lower than the first frequency component, and the second frequency component having a frequency ratio at least five times that of the first frequency component , One of the first and second frequency component signals is injected between the ungrounded electric circuit and the ground together with the second frequency component signal, and the current of each frequency component flowing through the ungrounded electric circuit is vector-combined. A zero-phase current, and subsequently based on two levels of the zero-phase current of the second frequency component and the zero-phase current of the first or third frequency component detected by the zero-phase current sensor. After calculating the ground fault resistance value, if the calculated ground fault resistance value is equal to or less than a predetermined value, an alarm output or a signal to cut off the electric circuit is output, so that it is determined according to the wiring length after the zero-phase current sensor. To set the allowable time limit for ground fault detection. In, there is an effect that it is precisely the ground fault resistance detection.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1に係る地絡検出回路
の構成を示す図である。
FIG. 1 is a diagram showing a configuration of a ground fault detection circuit according to a first embodiment of the present invention.

【図2】 実施の形態1に係る地絡検出回路の注入信号
の等価回路図である。
FIG. 2 is an equivalent circuit diagram of an injection signal of the ground fault detection circuit according to the first embodiment.

【図3】 実施の形態1における地絡抵抗漏洩電流算出
を発明を説明するベクトル図である。
FIG. 3 is a vector diagram for explaining the invention of calculating a ground fault resistance leakage current in the first embodiment.

【図4】 実施の形態1において注入信号の周波数比率
をパラメータとした地絡抵抗漏洩電流算の誤差分散特性
を示すグラフである。
FIG. 4 is a graph showing error dispersion characteristics of ground fault resistance leakage current calculation using a frequency ratio of an injection signal as a parameter in the first embodiment.

【図5】 実施の形態1において注入信号の周波数比率
を変えた場合の地絡抵抗漏洩電流算の誤差分散特性を示
すグラフである。
FIG. 5 is a graph showing an error dispersion characteristic of a ground fault resistance leakage current calculation when the frequency ratio of an injection signal is changed in the first embodiment.

【図6】 この発明の実施の形態2に係る地絡検出回路
の構成を示す図である。
FIG. 6 is a diagram showing a configuration of a ground fault detection circuit according to a second embodiment of the present invention.

【図7】 この発明の実施の形態3に係る地絡検出回路
の構成を示す図である。
FIG. 7 is a diagram showing a configuration of a ground fault detection circuit according to a third embodiment of the present invention.

【図8】 従来の地絡検出回路の図である。FIG. 8 is a diagram of a conventional ground fault detection circuit.

【符号の説明】[Explanation of symbols]

11 配電用トランス、12 交流電路、13 信号注
入手段、14 注入フィルター、15 零相電流セン
サ、16 地絡抵抗レベル検出回路、16a〜16c
注入信号周波数抽出回路、16d 切り換えスイッチ、
16e 演算検出部、17 警報出力回路、18 周波
数選択手段。
DESCRIPTION OF SYMBOLS 11 Distribution transformer, 12 AC circuit, 13 Signal injection means, 14 Injection filter, 15 Zero-phase current sensor, 16 Ground fault resistance level detection circuit, 16a-16c
Injection signal frequency extraction circuit, 16d changeover switch,
16e Operation detection section, 17 alarm output circuit, 18 frequency selection means.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 非接地系電路と大地間に、基準となる第
1の周波数成分の信号、及びこの第1の周波数成分と少
なくとも5倍の周波数比を有する第2の周波数成分の信
号を注入する信号注入手段と、 前記注入される信号中、前記第1及び第2の周波数成分
の信号を通過させ電源周波数成分の信号を阻止する注入
フィルタと、 前記非接地系電路に設置し、この非接地系電路に流れる
前記各周波数成分の電流をそれぞれベクトル合成し零相
電流を検出する零相電流センサと、 前記零相電流センサにより検出された第1の周波数成分
の零相電流と、前記第2の周波数成分の零相電流との2
つのレベルに基づいて地絡抵抗値を算出する地絡抵抗検
出手段と、 算出された地絡抵抗値が所定値以下の場合、警報出力ま
たは前記非接地系電路の遮断信号を出力する警報出力手
段とを備えたことを特徴とする地絡検出回路。
1. A signal of a first frequency component serving as a reference and a signal of a second frequency component having a frequency ratio at least five times that of the first frequency component are injected between an ungrounded electric circuit and the ground. A signal injecting means for transmitting a signal of the first and second frequency components in the injected signal and blocking a signal of a power supply frequency component; A zero-phase current sensor for vector-synthesizing the currents of the respective frequency components flowing through the grounding system electric circuit to detect a zero-phase current; a zero-phase current of a first frequency component detected by the zero-phase current sensor; 2 with the zero-phase current of the frequency component 2
Ground-fault resistance detecting means for calculating a ground-fault resistance value based on the two levels; and, when the calculated ground-fault resistance value is equal to or less than a predetermined value, an alarm output means for outputting an alarm output or a cutoff signal for the ungrounded electric circuit. And a ground fault detection circuit.
【請求項2】 非接地系電路と大地間に、基準となる第
1の周波数成分の信号、この第1の周波数成分と少なく
とも5倍の周波数比を有する第2の周波数成分の信号、
及び前記第1の周波数成分より低い第3の周波数成分の
信号を注入する信号注入手段と、 前記注入される信号中、前記第1、第2、及び第3の周
波数成分の信号を通過させ電源周波数成分の信号を阻止
する注入フィルタと、 前記非接地系電路に設置し、この非接地系電路に流れる
前記各周波数成分の電流をそれぞれベクトル合成し零相
電流を検出する零相電流センサと、 前記零相電流センサより検出された零相電流中、前記各
周波数成分の零相電流を抽出する各周波数成分対応の信
号周波数抽出手段と。 前記第1の周波数成分或いは第3の周波数成分対応の信
号周波数抽出手段を切り換えて対応する周波数成分の零
相電流を伝達する切り換えスイッチと、 前記信号周波数抽出手段により抽出された前記第2の周
波数成分の零相電流と切り換えスイッチより伝達された
周波数成分の零相電流との2つのレベルに基づいて地絡
抵抗値を算出する地絡抵抗検出手段と、 算出された地絡抵抗値が所定値以下の場合、警報出力ま
たは前記電路の遮断信号を出力する警報出力手段とを備
えたことを特徴とする地絡検出回路。
2. A signal of a first frequency component serving as a reference, a signal of a second frequency component having a frequency ratio at least 5 times that of the first frequency component, between the ungrounded electric circuit and ground,
And a signal injecting means for injecting a signal of a third frequency component lower than the first frequency component; and a power supply for passing the signals of the first, second, and third frequency components in the injected signal. An injection filter that blocks a signal of a frequency component, and a zero-phase current sensor that is installed in the non-grounded electric circuit, and that synthesizes a vector of the current of each of the frequency components flowing through the non-grounded electric circuit and detects a zero-phase current, Signal frequency extracting means corresponding to each frequency component for extracting a zero-phase current of each of the frequency components from the zero-phase current detected by the zero-phase current sensor. A changeover switch for switching the signal frequency extracting means corresponding to the first frequency component or the third frequency component and transmitting a zero-phase current of the corresponding frequency component; and the second frequency extracted by the signal frequency extracting means. Ground-fault resistance detecting means for calculating a ground-fault resistance value based on two levels of the zero-phase current of the component and the zero-phase current of the frequency component transmitted from the changeover switch; In the following case, an alarm output means for outputting an alarm output or an interruption signal of the electric circuit is provided.
【請求項3】 基準となる第1の周波数成分の信号、こ
の第1の周波数成分と少なくとも5倍の周波数比を有す
る第2の周波数成分の信号、及び前記第1の周波数成分
より低い第3の周波数成分の信号中、前記第1の周波数
成分の信号或いは第3の周波数成分の信号の一方を選択
する信号周波数選択手段と、前記第2の周波数成分の信
号と信号周波数選択手段により選択された周波数成分の
信号を非接地系電路と大地間に注入する信号注入手段
と、 前記注入される信号中、前記第2及び選択された周波数
成分の信号を通過させ電源周波数成分の信号を阻止する
注入フィルタと、 前記非接地系電路に設置し、非接地系電路に流れる前記
各周波数成分の電流をそれぞれベクトル合成し零相電流
を検出する零相電流センサと、 前記零相電流センサにより検出された第2の周波数成分
の零相電流と前記注入信号周波数選択手段により選択さ
れた周波数成分の零相電流との2つのレベルに基づいて
地絡抵抗値を算出する地絡抵抗検出手段と、 算出された地絡抵抗値が所定値以下の場合、警報出力ま
たは前記電路の遮断信号を出力する警報出力手段とを備
えたことを特徴とする地絡検出回路。
3. A signal of a first frequency component serving as a reference, a signal of a second frequency component having a frequency ratio at least five times that of the first frequency component, and a third signal lower than the first frequency component. Signal frequency selecting means for selecting one of the signal of the first frequency component or the signal of the third frequency component, and the signal of the second frequency component and the signal frequency selecting means. Signal injecting means for injecting a signal of the selected frequency component between the ungrounded electric circuit and the ground, and passing the signal of the second and selected frequency components in the injected signal to block the signal of the power supply frequency component Injection filter, installed in the ungrounded circuit, a zero-phase current sensor that detects the zero-phase current by vector-combining the currents of the respective frequency components flowing in the ungrounded circuit, and the zero-phase current sensor Ground-fault resistance detecting means for calculating a ground-fault resistance value based on two levels of the zero-phase current of the second frequency component detected by the detection means and the zero-phase current of the frequency component selected by the injection signal frequency selecting means. And a warning output means for outputting a warning output or a cutoff signal of the electric circuit when the calculated ground fault resistance value is equal to or less than a predetermined value.
【請求項4】 注入フィルタを帯域除去フィルタとし、
注入された各周波数成分の信号中で電源周波数成分の信
号を除去することを特徴とする請求項1ないし3のいず
れかに記載の地絡検出回路。
4. The injection filter is a band elimination filter,
4. The ground fault detection circuit according to claim 1, wherein a signal of a power supply frequency component is removed from the injected frequency component signals.
【請求項5】 非接地系電路と大地間に、基準となる第
1の周波数成分の信号と、この第1の周波数成分と少な
くとも5倍の周波数比を有する第2の周波数成分の信号
を注入して前記非接地系電路に流れる各周波数成分の電
流をそれぞれベクトル合成し零相電流を検出し、続いて
前記零相電流センサにより検出された前記第1の周波数
成分の零相電流と、前記第2の周波数成分の零相電流と
の2つのレベルに基づいて地絡抵抗値を算出した後に、
算出された地絡抵抗値が所定値以下の場合には警報出力
または前記電路の遮断信号を出力することを特徴とする
地絡検出方法。
5. A signal of a first frequency component serving as a reference and a signal of a second frequency component having a frequency ratio at least five times that of the first frequency component are injected between an ungrounded electric circuit and the ground. Then, the current of each frequency component flowing in the ungrounded system electric circuit is vector-synthesized to detect a zero-phase current, and then the zero-phase current of the first frequency component detected by the zero-phase current sensor, and After calculating the ground fault resistance value based on the two levels with the zero-phase current of the second frequency component,
If the calculated ground fault resistance value is equal to or less than a predetermined value, an alarm output or a signal for shutting off the electric circuit is output.
【請求項6】 第1の周波数成分とこれより低い第3の
周波数成分と、前記第1の周波数と少なくとも5倍の周
波数比を有する第2の周波数成分の信号を非接地系電路
に同時に注入し、零相電流センサにより検出された零相
電流成分の内で第2の周波数成分の零相電流と、第1の
周波数成分或いは第3の周波数成分の零相電流成分との
2つのレベルに基づいて地絡抵抗値を算出することを特
徴とする請求項5に記載の地絡検出方法。
6. A signal of a first frequency component, a third frequency component lower than the first frequency component, and a signal of a second frequency component having a frequency ratio at least five times that of the first frequency are simultaneously injected into an ungrounded electric circuit. Then, among the zero-phase current components detected by the zero-phase current sensor, two levels are obtained: a zero-phase current of the second frequency component and a zero-phase current component of the first frequency component or the third frequency component. The ground fault detection method according to claim 5, wherein the ground fault resistance value is calculated based on the ground fault resistance value.
【請求項7】 第1の周波数成分とこれより低い第3の
周波数成分と、前記第1の周波数と少なくとも5倍の周
波数比を有する第2の周波数成分の信号中、前記第2の
周波数成分の信号と共に、前記第1或いは第2の周波数
成分の信号の一方を非接地系電路と大地間に注入して前
記非接地系電路に流れる各周波数成分の電流をそれぞれ
ベクトル合成し零相電流を検出し、続いて検出された前
記第2の周波数成分の零相電流と、前記第1或いは第3
の周波数成分の零相電流との2つのレベルに基づいて地
絡抵抗値を算出した後に、算出された地絡抵抗値が所定
値以下の場合には警報出力または前記電路の遮断信号を
出力することを特徴とする請求項5に記載の地絡検出方
法。
7. The second frequency component in a signal of a first frequency component, a third frequency component lower than the first frequency component, and a second frequency component having a frequency ratio at least five times that of the first frequency component. And one of the signals of the first or second frequency component is injected between the non-grounded circuit and the ground, and the current of each frequency component flowing in the non-grounded circuit is vector-combined to generate a zero-phase current. Detecting and subsequently detecting the zero-phase current of the second frequency component and the first or third
After calculating the ground fault resistance value based on the two levels of the zero-phase current of the frequency component and the calculated ground fault resistance value, if the calculated ground fault resistance value is equal to or less than a predetermined value, an alarm output or a cutoff signal of the electric circuit is output. The ground fault detection method according to claim 5, wherein:
JP8154520A 1996-06-14 1996-06-14 Ground fault detection circuit and ground fault detection method Pending JPH104623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8154520A JPH104623A (en) 1996-06-14 1996-06-14 Ground fault detection circuit and ground fault detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8154520A JPH104623A (en) 1996-06-14 1996-06-14 Ground fault detection circuit and ground fault detection method

Publications (1)

Publication Number Publication Date
JPH104623A true JPH104623A (en) 1998-01-06

Family

ID=15586057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8154520A Pending JPH104623A (en) 1996-06-14 1996-06-14 Ground fault detection circuit and ground fault detection method

Country Status (1)

Country Link
JP (1) JPH104623A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006343103A (en) * 2005-06-07 2006-12-21 Hioki Ee Corp Circuit board inspection device
ES2296462A1 (en) * 2005-07-14 2008-04-16 Juan Jose Zamora Belver Detecting system for faults in low-intensity electric distribution network, superimposing shades of voltage, has computer that generates some voltage tones that are introduced into electricity distribution network in certain states
JP2008203083A (en) * 2007-02-20 2008-09-04 Tohoku Denki Hoan Kyokai Superposition method for scalar-system igr detector
JP2010054462A (en) * 2008-08-29 2010-03-11 Kansai Denki Hoan Kyokai Insulation monitoring method for low voltage electric path and insulation monitoring device
EP2383856A1 (en) * 2010-04-30 2011-11-02 Schneider Electric Industries SAS Identification and directional detection of a defect in a three-phase network
CN102305898A (en) * 2011-05-18 2012-01-04 昆明理工大学 Method for selecting fault phase of alternating current transmission line by using transient energy
CN109884465A (en) * 2019-03-01 2019-06-14 辽宁工业大学 A kind of one-way earth fault localization method based on signal injection method
CN113687272A (en) * 2021-08-15 2021-11-23 南京理工大学 Electric vehicle wireless charging power supply cable fault positioning method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006343103A (en) * 2005-06-07 2006-12-21 Hioki Ee Corp Circuit board inspection device
ES2296462A1 (en) * 2005-07-14 2008-04-16 Juan Jose Zamora Belver Detecting system for faults in low-intensity electric distribution network, superimposing shades of voltage, has computer that generates some voltage tones that are introduced into electricity distribution network in certain states
JP2008203083A (en) * 2007-02-20 2008-09-04 Tohoku Denki Hoan Kyokai Superposition method for scalar-system igr detector
JP2010054462A (en) * 2008-08-29 2010-03-11 Kansai Denki Hoan Kyokai Insulation monitoring method for low voltage electric path and insulation monitoring device
EP2383856A1 (en) * 2010-04-30 2011-11-02 Schneider Electric Industries SAS Identification and directional detection of a defect in a three-phase network
FR2959618A1 (en) * 2010-04-30 2011-11-04 Schneider Electric Ind Sas IDENTIFICATION AND DIRECTIONAL DETECTION OF A FAULT IN A THREE PHASE NETWORK.
CN102305898A (en) * 2011-05-18 2012-01-04 昆明理工大学 Method for selecting fault phase of alternating current transmission line by using transient energy
CN109884465A (en) * 2019-03-01 2019-06-14 辽宁工业大学 A kind of one-way earth fault localization method based on signal injection method
CN109884465B (en) * 2019-03-01 2023-09-29 辽宁工业大学 Unidirectional ground fault positioning method based on signal injection method
CN113687272A (en) * 2021-08-15 2021-11-23 南京理工大学 Electric vehicle wireless charging power supply cable fault positioning method

Similar Documents

Publication Publication Date Title
CN1786726B (en) System and method of locating ground fault in electrical power distribution system
JP5140012B2 (en) Electric leakage test device, electric leakage circuit breaker, circuit breaker, and electric leakage monitoring device provided with the same
KR102050255B1 (en) Method and test device for testing wiring of transducers
EP0062446B1 (en) Locating faults in power transmission systems
JPS6238930B2 (en)
US10191090B2 (en) Power transformers using optical current sensors
AU2013333854B2 (en) System for protection of a plurality of DC voltage sources
JP3897818B2 (en) Method and apparatus for testing electrical installations
JPH104623A (en) Ground fault detection circuit and ground fault detection method
Loos et al. Fault direction method in compensated network using the zero sequence active energy signal
JP2019507344A (en) Apparatus and associated method for determining a ground fault
JP2006266814A (en) Alternating-current impedance measuring device and method
CN103403564B (en) For the method for adaptation of ground fault detection
JP2019124552A (en) Electric path failure detection device
JP2598984B2 (en) Earth leakage detector
JP3313200B2 (en) Zero-phase current transformer primary current measuring device
JP3640474B2 (en) Uninterruptible insulation resistance measuring device
JP2002098729A (en) Leak current probing device
Wan et al. Study of a fresh subharmonic injection scheme based on equilibrium principle for hydro-generator stator ground protection
SU1718159A1 (en) Method of proximate diagnostic of rectification units of power supply block
JPH0473755B2 (en)
JPH01286725A (en) Ground-fault detection system
JPS5933233B2 (en) Grounding system insulation resistance measuring device
SU1481695A1 (en) Method of locating permanent loops in three-phase electric networks with insulated neutral
JP2729822B2 (en) Wiring insulation resistance measurement method