JP2009300158A - Insulation monitoring device - Google Patents

Insulation monitoring device Download PDF

Info

Publication number
JP2009300158A
JP2009300158A JP2008152865A JP2008152865A JP2009300158A JP 2009300158 A JP2009300158 A JP 2009300158A JP 2008152865 A JP2008152865 A JP 2008152865A JP 2008152865 A JP2008152865 A JP 2008152865A JP 2009300158 A JP2009300158 A JP 2009300158A
Authority
JP
Japan
Prior art keywords
signal
component
ground
reference signal
monitoring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008152865A
Other languages
Japanese (ja)
Inventor
Takaaki Ueno
高明 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Midori Anzen Co Ltd
Original Assignee
Midori Anzen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Midori Anzen Co Ltd filed Critical Midori Anzen Co Ltd
Priority to JP2008152865A priority Critical patent/JP2009300158A/en
Publication of JP2009300158A publication Critical patent/JP2009300158A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To perform highly accurate insulation monitoring at a short time interval by using a monitoring signal having comparatively small power. <P>SOLUTION: A monitoring signal having a frequency different from a commercial frequency is injected into a class B grounding conductor 4 of a transformer 1, and a leakage current flowing back into the class B grounding conductor through a low voltage side electric path and the ground is detected, and an unnecessary component including the commercial frequency is removed from the leakage current, to thereby detect a measurement signal equivalent to a monitoring signal component of the leakage current. A reference signal equivalent to a monitoring signal injected from a reference input from the class B grounding conductor based on a class D grounding point of the low voltage side electric path is detected, and a ground insulation resistance component included in the measurement signal is extracted successively with high frequency resolution and time resolution, by DFT operation using a measurement signal of each reference signal n(>m) cycle portion shifted as much as each reference signal m cycle portion, which is synchronized with a prescribed phase of the reference signal. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は絶縁監視装置に関し、更に詳しくは、受電変圧器の低圧側電路における対地絶縁抵抗を該電路と大地を介してB種接地線に環流する漏れ電流により監視する絶縁監視装置に関する。   The present invention relates to an insulation monitoring apparatus, and more particularly to an insulation monitoring apparatus that monitors ground insulation resistance in a low-voltage side circuit of a power receiving transformer using a leakage current that circulates to a class B ground line through the circuit and the ground.

受電変圧器の低圧側電路(100V、200V、600V)には、工場の機械設備或いは一般家庭のパソコン等、様々な負荷が接続されているため、このような低圧側電路における漏電をいち早く検出して、漏電事故等を未然に防止する必要がある。   Various loads, such as factory machinery or personal household computers, are connected to the low-voltage side circuit (100V, 200V, 600V) of the power receiving transformer. Therefore, it is necessary to prevent electrical leakage accidents.

図9は従来技術を説明する図で、従来の絶縁監視装置の概略構成を示している(特許文献1,2)。図において、受電変圧器1の低圧側電路には負荷2が接続されると共に、この内の第1の電路3はB種接地線4を介して接地され、また第2の電路5は大地との間に対地絶縁抵抗R0と対地静電(浮遊)容量C0とからなる対地インピーダンスZ0を有している。この様な変圧器1の低圧側では、第2の電路5、対地インピーダンスZ0、大地及びB種接地線4を介して対地インピーダンスZ0と大地の抵抗とに基づく漏れ電流が還流する。従来の絶縁監視装置200はこのような低圧側電路のB種接地線4に設けられている。   FIG. 9 is a diagram for explaining the prior art, and shows a schematic configuration of a conventional insulation monitoring device (Patent Documents 1 and 2). In the figure, a load 2 is connected to the low voltage side electric circuit of the power receiving transformer 1, and a first electric circuit 3 is grounded via a class B grounding wire 4, and a second electric circuit 5 is connected to the ground. Between the two, a ground impedance Z0 including a ground insulation resistance R0 and a ground electrostatic (floating) capacitance C0 is provided. On the low voltage side of such a transformer 1, a leakage current based on the ground impedance Z 0 and the ground resistance flows through the second electric circuit 5, the ground impedance Z 0, the ground, and the B-type ground line 4. The conventional insulation monitoring apparatus 200 is provided on the B type ground line 4 of such a low voltage side electric circuit.

この絶縁監視装置200は、商用周波数とは異なる周波数の監視信号を生成し、重畳トランス30を介してB種接地線4に注入する監視信号発生部201と、低圧側電路のD種接地点EDを基準として前記B種接地線4より検出された前記監視信号に相当する基準信号を検出する基準信号検出部202と、変圧器1の低圧側電路と大地を介して前記B種接地線4に環流する漏れ電流を検出すると共に、その検出出力から商用周波数及びその高調波等の不要成分を除去して漏れ電流の監視信号成分に相当する測定信号を検出する測定信号検出部203と、前記基準信号に位相同期して、前記測定信号に含まれる漏れ電流の対地絶縁抵抗成分を求める演算処理部204とを備え、該求めた測定信号(即ち、漏れ電流の監視信号成分)の対地絶縁抵抗成分を継続的に監視することで漏電等を監視している。   The insulation monitoring apparatus 200 generates a monitoring signal having a frequency different from the commercial frequency, and injects the monitoring signal into the B-type ground line 4 via the superimposing transformer 30, and the D-type grounding point ED of the low-voltage side electric circuit. And a reference signal detector 202 for detecting a reference signal corresponding to the monitoring signal detected from the B-type grounding wire 4 with respect to the B-type grounding wire 4, and the B-type grounding wire 4 via the low-voltage side electric circuit and the ground of the transformer 1 A measurement signal detection unit 203 that detects a leakage current that circulates, removes unnecessary components such as commercial frequencies and harmonics from the detection output, and detects a measurement signal corresponding to a monitoring signal component of the leakage current, and the reference And an arithmetic processing unit 204 for obtaining a ground insulation resistance component of a leakage current included in the measurement signal in phase synchronization with the signal, and a ground insulation resistance of the obtained measurement signal (that is, a monitoring signal component of the leakage current). It monitors the electric leakage by continuously monitoring component.

この様な構成では、対地インピーダンスZ0が比較的大きい正常な場合は良いが、何らかの理由により絶縁劣化が始まると、大地を介してB種接地線4に環流する商用成分の漏れ電流が大きくなると共に、D種接地点EDを基準とするB種接地線4にも大きな商用電圧(数十V程度)が表れるため、基準信号の正確な検出が困難となる。また、これに伴い測定信号に含まれる対地絶縁抵抗成分の検出も不安定かつ不正確なものになってしまう。   In such a configuration, it is preferable that the ground impedance Z0 is relatively large and normal, but when insulation deterioration starts for some reason, the leakage current of the commercial component circulating to the B-type grounding wire 4 through the ground increases. Since a large commercial voltage (about several tens of volts) appears on the B-type grounding line 4 with the D-type grounding point ED as a reference, it is difficult to accurately detect the reference signal. As a result, the detection of the ground insulation resistance component included in the measurement signal also becomes unstable and inaccurate.

このため、従来は、監視信号として比較的大きな電力の低周波信号(例えば20Hz、0.5V)を注入すると共に、比較的粗い周波数分解能(例えば2.5Hz)のDFT演算により該測定信号に含まれる対地絶縁抵抗成分を抽出していた。
特開2005−181148 特許第3043278号公報
For this reason, conventionally, a low frequency signal (for example, 20 Hz, 0.5 V) with relatively large power is injected as a monitoring signal, and is included in the measurement signal by DFT calculation with a relatively coarse frequency resolution (for example, 2.5 Hz). The ground insulation resistance component was extracted.
JP 2005-181148 A Japanese Patent No. 3043278

しかし、平時よりB種接地線に比較的大きなパワーの監視信号を注入するのは、自己の負荷装置2のみならず周辺の機器にとっても好ましくない。また、負荷装置の電源ON/OFF等に伴って発生するノイズには監視信号の周波数(例えば20Hz)に近い周波数成分も少なからず含まれているため、このようなノイズはフィルタ手段では完全には除去し切れないばかりか、DFT演算の周波数分解能が例えば2.5Hzと粗いものであると、監視信号の中心周波数(20Hz)の近傍でDFT演算により得られる各周波数成分は17.5Hz、20Hz、22.5Hzとなり、例えば19Hzや21Hz等の監視信号の周波数に近いノイズ成分は20Hzの演算結果に含まれてしまうことになるため、十分なS/Nが得られなかった。   However, injecting a comparatively large power monitoring signal into the B-type ground line from the normal time is not preferable for not only the load device 2 but also peripheral devices. In addition, since the noise generated when the load device is turned ON / OFF includes not only a frequency component close to the frequency of the monitoring signal (for example, 20 Hz), such noise is completely eliminated by the filter means. If the frequency resolution of the DFT operation is as coarse as 2.5 Hz, for example, the frequency components obtained by the DFT operation near the center frequency (20 Hz) of the monitoring signal are 17.5 Hz, 20 Hz, Since the noise component close to the frequency of the monitoring signal such as 19 Hz or 21 Hz is included in the calculation result of 20 Hz, for example, sufficient S / N cannot be obtained.

本発明は上記従来技術の問題点に鑑みなされたもので、その目的とするところは、比較的小電力の監視信号を使用して高精度な絶縁監視を短い時間間隔で行える絶縁監視装置を提供することにある。   The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide an insulation monitoring apparatus that can perform high-precision insulation monitoring in a short time interval using a relatively small power monitoring signal. There is to do.

上記の課題を解決するため、本発明の第1の態様による絶縁監視装置は、受電変圧器のB種接地線に対して商用周波数とは異なる周波数の監視信号を注入する監視信号注入手段と、前記変圧器の低圧側電路と大地を介して前記B種接地線に環流する漏れ電流を検出する電流検出手段と、前記検出された漏れ電流から商用周波数及びその高調波等の不要成分を除去して漏れ電流の監視信号成分に相当する測定信号を検出する測定信号検出手段と、前記低圧側電路のD種接地点を基準とする前記B種接地線からの基準入力より前記注入された監視信号に相当する基準信号を検出する基準信号検出手段と、前記基準信号の所定位相に同期し、該基準信号mサイクル分ずつずらした各基準信号n(>m)サイクル分の測定信号を使用したDFT演算により該測定信号に含まれる対地絶縁抵抗成分を順次抽出する抵抗成分抽出手段と、を備える。   In order to solve the above-described problem, an insulation monitoring apparatus according to the first aspect of the present invention includes a monitoring signal injection unit that injects a monitoring signal having a frequency different from the commercial frequency to the B-type ground line of the power receiving transformer, Current detecting means for detecting a leakage current circulating in the B-type ground line via the low-voltage side electric circuit and the ground of the transformer, and removing unnecessary components such as a commercial frequency and its harmonics from the detected leakage current The measurement signal detecting means for detecting the measurement signal corresponding to the monitoring signal component of the leakage current and the monitoring signal injected from the reference input from the B-type grounding line with the D-type grounding point of the low-voltage side circuit as a reference A DFT using a reference signal detecting means for detecting a reference signal corresponding to the reference signal, and a measurement signal for each reference signal n (> m) cycles synchronized with a predetermined phase of the reference signal and shifted by m cycles of the reference signal For calculation It includes a resistance component extraction means for sequentially extracting the ground insulation resistance component included in Ri該 measuring signal.

一般に、DFT演算では、基本周波数f0の整数倍の周波数成分が得られることから、この基本周波数f0はDFT演算の周波数分解能を表すことになる。従って、特定周波数(例えば20Hz)の監視信号を使用する絶縁監視では、この周波数分解能は高い程、高精度な絶縁監視を行える。しかし、この周波数分解能が高いほど長時間(即ち、nが大)に渡る測定信号を使用する必要があるため、各演算結果の得られる時間間隔(即ち、DFT演算の時間分解能)が低下する。そこで、本発明では、基準信号m(<n)サイクル分ずつずらした各基準信号nサイクル分の測定信号を使用したDFT演算により該測定信号に含まれる対地絶縁抵抗成分を順次抽出する。この場合に、nは大きいほど監視信号成分の抽出精度が向上し、かつmは小さいほど短い時間間隔で監視結果が得られるが、本発明では、これらを同時に満足できる。   In general, in the DFT operation, a frequency component that is an integral multiple of the fundamental frequency f0 is obtained. Therefore, the fundamental frequency f0 represents the frequency resolution of the DFT operation. Therefore, in the insulation monitoring using a monitoring signal of a specific frequency (for example, 20 Hz), the higher the frequency resolution, the more accurate the insulation monitoring can be performed. However, as the frequency resolution is higher, it is necessary to use a measurement signal for a longer time (that is, n is larger), and therefore the time interval (that is, the time resolution of the DFT operation) from which each operation result is obtained decreases. Therefore, in the present invention, the ground insulation resistance component included in the measurement signal is sequentially extracted by the DFT calculation using the measurement signal of each reference signal n cycles shifted by the reference signal m (<n) cycles. In this case, the larger n is, the better the extraction accuracy of the monitoring signal component is, and the smaller m is, the shorter the time interval can be obtained, the present invention can satisfy these simultaneously.

本発明の第2の態様では、前記基準信号の所定位相に同期し、該基準信号mサイクル分ずつずらした各基準信号nサイクル分の測定信号を使用したDFT演算により前記測定信号に含まれる対地静電容量成分を順次抽出する容量成分抽出手段と、該抽出した対地静電容量成分信号に基づき前記漏れ電流の監視信号成分に含まれる対地静電容量成分を打ち消すための抑圧信号を生成して前記電流検出手段の抑圧部に供給する抑圧信号生成手段とを備え、前記抵抗成分抽出手段は、前記漏れ電流の監視信号成分に含まれる対地静電容量成分を抑圧された状態の測定信号に基づいて該測定信号に含まれる対地絶縁抵抗成分を抽出する。   In the second aspect of the present invention, the ground included in the measurement signal by DFT calculation using the measurement signals for n cycles of the reference signal synchronized with the predetermined phase of the reference signal and shifted by m cycles of the reference signal. Capacitance component extraction means for sequentially extracting capacitance components, and generating a suppression signal for canceling the ground capacitance component included in the leakage current monitoring signal component based on the extracted ground capacitance component signal Suppression signal generation means for supplying to the suppression unit of the current detection means, wherein the resistance component extraction means is based on a measurement signal in a state where the ground capacitance component included in the monitoring signal component of the leakage current is suppressed Thus, a ground insulation resistance component included in the measurement signal is extracted.

本発明では、漏れ電流の監視信号成分のうちの対地静電容量成分が電流検出手段において略0となるように抑圧されるため、残りの検出信号より対地絶縁抵抗成分を雑音の少ない状態でより高精度に抽出できる。   In the present invention, the ground capacitance component of the monitoring signal component of the leakage current is suppressed so as to be substantially zero in the current detection means, so that the ground insulation resistance component can be reduced in a state with less noise than the remaining detection signals. Extract with high accuracy.

本発明の第3の態様では、前記検出された測定信号を順次記憶すると共に、少なくとも1回のDFT演算で使用する基準信号nサイクル分の測定信号に対して基準信号mサイクル分の空き容量を加えた記憶容量を有し、該記憶容量を巡回して使用されるバッファメモリを備え、前記抵抗成分抽出手段は、前記バッファメモリの測定信号を使用してDFT演算を行う。従って、有限な記憶容量を効率よく利用できる。   In the third aspect of the present invention, the detected measurement signals are sequentially stored, and a free capacity for m reference signal cycles is provided for measurement signals for n reference signal cycles used in at least one DFT operation. A buffer memory having an added storage capacity and used by circulating the storage capacity is provided, and the resistance component extraction unit performs a DFT operation using a measurement signal of the buffer memory. Therefore, a finite storage capacity can be used efficiently.

本発明の第4の態様では、前記基準信号mサイクル分ずつずらしたタイミングで発生する各対地絶縁抵抗成分信号を実時間で画面に表示する表示手段を備える。従って、ユーザは高精度な絶縁監視を短い時間間隔で行える。   According to a fourth aspect of the present invention, there is provided display means for displaying each ground insulation resistance component signal generated at a timing shifted by the reference signal m cycles on the screen in real time. Therefore, the user can perform highly accurate insulation monitoring at short time intervals.

本発明の第5の態様では、前記基準信号検出手段は、前記B種接地線の基準入力から商用周波数成分信号を抽出するバンドパスフィルタと、前記B種接地線の基準入力から前記バンドパスフィルタで抽出した商用周波数成分信号を除去する商用成分除去手段と、該商用周波数成分信号を除去された基準入力から前記監視信号の周波数成分に相当する基準信号を抽出するフィルタ手段と、を備える。   In a fifth aspect of the present invention, the reference signal detection means includes a bandpass filter that extracts a commercial frequency component signal from a reference input of the type B ground line, and a bandpass filter that extracts the reference input of the type B ground line. And a filter means for extracting a reference signal corresponding to the frequency component of the monitoring signal from the reference input from which the commercial frequency component signal has been removed.

本発明では、B種接地線の基準入力から主要なノイズ源である商用成分を抽出すると共に、該抽出した商用成分で基準入力の商用成分を相殺(除去)するため、絶縁劣化等に伴いB種接地線に大きな商用電圧が現れても、商用成分をその大きさによらず常に高い精度で除去(相殺)でき、残りの基準入力から小電力の監視信号に相当する基準信号を高い精度で検出できる。また、このような基準信号に位相同期することにより、B種接地線に環流する漏れ電流の監視信号成分から対地絶縁抵抗成分を高精度かつ高信頼性で抽出できる。   In the present invention, the commercial component that is the main noise source is extracted from the reference input of the class B grounding wire, and the commercial component of the reference input is canceled (removed) by the extracted commercial component. Even if a large commercial voltage appears on the seed ground line, the commercial component can always be removed (cancelled) with high accuracy regardless of its size, and the reference signal corresponding to the low-power monitoring signal can be accurately detected from the remaining reference input. It can be detected. Further, by synchronizing the phase with such a reference signal, the ground insulation resistance component can be extracted with high accuracy and high reliability from the monitoring signal component of the leakage current circulating in the B-type ground line.

本発明の第6の態様では、前記検出した漏れ電流の測定信号を前記基準信号の1サイクル分に渡って累積加算する累積加算手段と、前記累積加算手段の累積加算結果が所定の閾値範囲を逸脱しているか否かを判定する判定手段とを備え、前記抵抗成分抽出手段は、前記基準信号の所定位相に同期し、前記判定手段により所定の閾値範囲を逸脱しないと判定された基準信号を使用したDFT演算により該測定信号に含まれる対地絶縁抵抗成分を抽出する。   In a sixth aspect of the present invention, cumulative addition means for cumulatively adding the measured signal of the detected leakage current over one cycle of the reference signal, and the cumulative addition result of the cumulative addition means has a predetermined threshold range. Determining means for determining whether or not there is a deviation, wherein the resistance component extraction means synchronizes with a predetermined phase of the reference signal and outputs a reference signal determined by the determination means as not to deviate from a predetermined threshold range. A ground insulation resistance component included in the measurement signal is extracted by the used DFT calculation.

ところで、負荷装置の電源ON/OFFに伴って発生するような低周波ノイズには監視信号の周波数(例えば20Hz)に近い周波数成分も少なからず含まれているため、この種のノイズ成分はフィルタ手段では充分に除去し切れない。この点、本発明においては、累積加算手段は、漏れ電流の測定信号を基準信号の1サイクル分に渡って累積加算するため、その累積加算結果は、この測定信号に含まれる低周波ノイズの平均レベル(DCレベル)に応じて大きく変動することになる。そこで、判定手段によりこの累積加算結果が所定の閾値範囲を逸脱しているか否かを判定すると共に、抵抗成分抽出手段は、所定の閾値範囲を逸脱しないと判定された基準信号nサイクル分の測定信号を使用したDFT演算により該測定信号に含まれる対地絶縁抵抗成分を抽出する。従って、本発明によれば、フィルタ手段では除去できないような低周波ノイズを含む測定信号(監視信号)の使用を有効に回避しつつ、適正な測定信号を使用して絶縁監視を高精度かつ高信頼性で行える。   By the way, since the low frequency noise that is generated when the load device is turned on / off includes not only a frequency component close to the frequency of the monitoring signal (for example, 20 Hz), this type of noise component is a filter means. Then, it cannot be removed sufficiently. In this regard, in the present invention, the cumulative addition means cumulatively adds the leakage current measurement signal over one cycle of the reference signal, so that the cumulative addition result is the average of the low-frequency noise included in this measurement signal. It fluctuates greatly according to the level (DC level). Therefore, the determination unit determines whether or not the cumulative addition result deviates from a predetermined threshold range, and the resistance component extraction unit performs measurement for the reference signal n cycles determined not to deviate from the predetermined threshold range. A ground insulation resistance component included in the measurement signal is extracted by DFT calculation using the signal. Therefore, according to the present invention, insulation monitoring can be performed with high accuracy and high accuracy using an appropriate measurement signal while effectively avoiding the use of a measurement signal (monitoring signal) including low frequency noise that cannot be removed by the filter means. Can be done with reliability.

以上述べた如く本発明によれば、比較的小電力の監視信号を使用して高精度な絶縁監視を短い時間間隔で行えるため、負荷装置や周辺の機器に別段の影響を与えることなく、高精度な絶縁監視を高い時間分解能で行える。   As described above, according to the present invention, since highly accurate insulation monitoring can be performed at a short time interval using a relatively low power monitoring signal, the load device and peripheral devices are not affected significantly. Accurate insulation monitoring can be performed with high time resolution.

以下、添付図面を参照して本発明に好適な実施の形態を詳細に説明する。図1は実施の形態による絶縁監視装置のブロック図である。図において、受電変圧器1の低圧側電路には負荷2が接続されると共に、この内の第1の電路3はB種接地線4を介して接地され、また第2の電路5は、大地との間に対地絶縁抵抗R0と対地静電(浮遊)容量C0とからなる対地インピーダンスZ0を有している。この様な変圧器1の低圧側では、第2の電路5、対地インピーダンスZ0、大地及びB種接地線4を介して対地インピーダンスZ0と大地の抵抗とに基づく漏れ電流が還流する。この絶縁監視装置10はこのような低圧側電路のB種接地線4に設けられる。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, exemplary embodiments of the invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a block diagram of an insulation monitoring apparatus according to an embodiment. In the figure, a load 2 is connected to a low-voltage side circuit of the power receiving transformer 1, and a first circuit 3 is grounded via a B-type grounding wire 4, and a second circuit 5 is connected to the ground. Between the two, a ground impedance Z0 including a ground insulation resistance R0 and a ground electrostatic (floating) capacitance C0 is provided. On the low voltage side of such a transformer 1, a leakage current based on the ground impedance Z 0 and the ground resistance flows through the second electric circuit 5, the ground impedance Z 0, the ground, and the B-type ground line 4. The insulation monitoring device 10 is provided on the B-type ground line 4 of such a low-voltage side electric circuit.

この絶縁監視装置10は、変圧器1のB種接地線4に対して商用周波数とは異なる周波数の監視信号Wを注入する監視信号注入手段20を備える。この監視信号注入手段20は、演算処理部(MPU)90から提供される高精度、高安定なクロック信号CKを分周して商用周波数とは異なる周波数(例えば20Hz)の正弦波交流信号である監視信号を発生する発振器(OSC)21と、この監視信号がB種接地線4上で所要の電圧レベル(例えば0.07V程度)となるように電力増幅する増幅器22とを備え、こうして得られた監視信号Wを注入手段としての重畳トランス(CT)30を介してB種接地線4に注入する。   The insulation monitoring device 10 includes monitoring signal injection means 20 that injects a monitoring signal W having a frequency different from the commercial frequency into the B-type ground line 4 of the transformer 1. The monitoring signal injection means 20 is a sinusoidal AC signal having a frequency (for example, 20 Hz) different from the commercial frequency by dividing the high-accuracy and high-stable clock signal CK provided from the arithmetic processing unit (MPU) 90. An oscillator (OSC) 21 that generates a monitoring signal and an amplifier 22 that amplifies the power so that the monitoring signal has a required voltage level (for example, about 0.07 V) on the B-type ground line 4 are obtained. The monitored signal W is injected into the B-type ground line 4 through a superposed transformer (CT) 30 as injection means.

またこの絶縁監視装置10は、低圧側電路のD種接地点EDを基準としてB種接地線より前記注入された監視信号Wに相当する基準信号Bを検出する基準信号検出手段40を備える。この基準信号検出手段40は、B種接地線4の基準入力bから該基準入力bに含まれる商用周波数成分を除去する商用成分除去部41と、この商用成分を除去された基準入力から監視信号Wの周波数成分を抽出すると共に、該抽出した信号の位相調整を行って漏れ電流の監視信号成分に含まれる対地静電容量成分に位相同期した基準信号Bを生成するフィルタ手段としてのスイッチト・キャパシタ・フィルタ(SCF)45とを備える。   The insulation monitoring apparatus 10 further includes a reference signal detection means 40 for detecting a reference signal B corresponding to the injected monitoring signal W from a B-type ground line with a D-type grounding point ED of the low-voltage side electric circuit as a reference. The reference signal detection means 40 includes a commercial component removing unit 41 that removes a commercial frequency component contained in the reference input b from the reference input b of the B-type ground line 4, and a monitoring signal from the reference input from which the commercial component has been removed. Switched filter means for extracting a frequency component of W and adjusting the phase of the extracted signal to generate a reference signal B phase-synchronized with the ground capacitance component included in the leakage current monitoring signal component And a capacitor filter (SCF) 45.

商用成分除去部41では、一方でB種接地線4からの基準入力bをバッファアンプ(BA)42によりバッファ(インピーダンス整合及び利得1で増幅)すると共に、他方では前記B種接地線4からの基準入力bからバンドパスフィルタ(BPF)43により商用周波数成分を抽出する。更に、差動増幅器(AMP)44によってBA42の出力の基準入力bからBPF43の出力の商用周波数成分を差し引くことにより、商用成分が除去(相殺)された基準入力信号を生成する。   In the commercial component removal unit 41, the reference input b from the B-type ground line 4 is buffered (amplified by impedance matching and gain 1) by the buffer amplifier (BA) 42 on the one hand, and on the other hand from the B-type ground line 4. A commercial frequency component is extracted from the reference input b by a band pass filter (BPF) 43. Furthermore, the differential amplifier (AMP) 44 subtracts the commercial frequency component of the output of the BPF 43 from the reference input b of the output of the BA 42 to generate a reference input signal from which the commercial component is removed (cancelled).

本実施の形態では、B種接地線4の基準入力bから主要なノイズ源である商用成分を抽出すると共に、該抽出した商用成分で基準入力bの商用成分を相殺(除去)するため、絶縁劣化等に伴いB種接地線4に大きな商用電圧が現れても、商用成分をその大きさによらず常に高い精度で除去(相殺)できるため、残りの基準入力から小電力の監視信号Wに相当する基準信号Bを高い精度で検出できる。また、このような基準信号Bに位相同期することにより、B種接地線4に環流する漏れ電流の監視信号成分から対地絶縁抵抗成分IgRを高精度かつ高信頼性で抽出できる。   In the present embodiment, the commercial component that is the main noise source is extracted from the reference input b of the B-type grounding wire 4, and the commercial component of the reference input b is canceled (removed) by the extracted commercial component. Even if a large commercial voltage appears on the B-type ground line 4 due to deterioration or the like, the commercial component can always be removed (cancelled) with high accuracy regardless of its size, so that the remaining reference input is changed to the low-power monitoring signal W. The corresponding reference signal B can be detected with high accuracy. Further, by synchronizing the phase with the reference signal B, the ground insulation resistance component IgR can be extracted with high accuracy and high reliability from the monitoring signal component of the leakage current circulating in the B-type ground line 4.

更に、次段のフィルタ手段としてのSCF45は、バンドパスフィルタとしての機能と、MPU90から指定されたクロック周波数の指令に基づいて基準信号Bの位相を調整する位相シフタとしての機能とを兼ね備えており、まずバンドパスフィルタの機能により、商用成分を除去された基準入力bから、更に商用周波数及びその高調波等の不要成分を除去して監視信号の周波数成分からなる基準信号Bを抽出すると共に、前記位相シフタとしての機能により、この基準信号Bの位相を漏れ電流の監視信号成分に含まれる対地静電容量成分IgCの位相に合わせる。この基準信号Bは、測定信号Mに含まれる対地静電容量成分を抑圧するための後述の抑圧信号生成部80に送られると共に、次段の同期信号生成部70にも入力される。こうして得られた同期信号Sが演算処理部(MPU)90に送られる。   Further, the SCF 45 as the next-stage filter means has both a function as a band-pass filter and a function as a phase shifter that adjusts the phase of the reference signal B based on a clock frequency command designated by the MPU 90. First, by the function of the band-pass filter, unnecessary components such as the commercial frequency and its harmonics are further removed from the reference input b from which the commercial component is removed, and the reference signal B composed of the frequency component of the monitoring signal is extracted. By the function as the phase shifter, the phase of the reference signal B is matched with the phase of the ground capacitance component IgC included in the leakage current monitoring signal component. The reference signal B is sent to a later-described suppression signal generation unit 80 for suppressing the ground capacitance component included in the measurement signal M, and is also input to the next-stage synchronization signal generation unit 70. The synchronization signal S obtained in this way is sent to the arithmetic processing unit (MPU) 90.

またこの絶縁監視装置10は、変圧器1の低圧側電路より大地を介してB種接地線4に環流する漏れ電流mを検出する電流検出手段としての零相変流器(ZCT)50と、該検出した漏れ電流mから商用周波数等の不要成分を除去して漏れ電流の監視信号成分に相当する測定信号Mを検出する測定信号検出手段60とを備える。   Further, the insulation monitoring device 10 includes a zero-phase current transformer (ZCT) 50 as current detection means for detecting a leakage current m that circulates from the low-voltage side electric circuit of the transformer 1 to the B-type grounding wire 4 through the ground. Measurement signal detection means 60 for detecting a measurement signal M corresponding to a monitoring signal component of the leakage current by removing unnecessary components such as a commercial frequency from the detected leakage current m.

この測定信号検出手段60は、ZCT50により検出された漏れ電流mを電圧信号に変換すると共に次段で必要なレベルにまで増幅するヘッドアンプ61と、このヘッドアンプ61の出力から商用周波数およびその高調波等の不要成分を除去するローパスフィルタ(LPF)62と、このLPF62の出力を所定レート(例えば基準信号1サイクルの50ms当たり32サンプルのレート)でサンプリングしてディジタルの測定信号Mに変換するA/D変換器63とを備える。   The measurement signal detection means 60 converts the leakage current m detected by the ZCT 50 into a voltage signal and amplifies it to a required level in the next stage, and outputs the commercial frequency and its harmonics from the output of the head amplifier 61. A low-pass filter (LPF) 62 that removes unnecessary components such as waves, and the output of the LPF 62 are sampled at a predetermined rate (for example, a rate of 32 samples per 50 ms of one cycle of the reference signal) and converted to a digital measurement signal M / D converter 63.

またこの絶縁監視装置10は、基準信号Bの所定位相に同期し、該基準信号nサイクル分の測定信号Mを使用したDFT(Discrete Fourier Transform)演算により該測定信号(即ち、漏れ電流の監視信号成分)Mに含まれる対地静電容量成分IgCを抽出する容量成分抽出手段90bと、該抽出した対地静電容量成分信号IgCに基づき漏れ電流の監視信号成分に含まれる対地静電容量成分を打ち消すための抑圧信号Pを生成してZCT50の抑圧部(三次巻線)より前記対地静電容量成分を打ち消す方向に供給する抑圧信号生成部80とを備える。   In addition, the insulation monitoring device 10 synchronizes with the predetermined phase of the reference signal B, and the measurement signal (that is, the leakage current monitoring signal) by DFT (Discrete Fourier Transform) calculation using the measurement signal M for n cycles of the reference signal. Component) Capacitance component extracting means 90b for extracting the ground capacitance component IgC included in M, and canceling the ground capacitance component included in the leakage current monitoring signal component based on the extracted ground capacitance component signal IgC And a suppression signal generator 80 for generating a suppression signal P for supplying the ground capacitance component in a direction to cancel the ground capacitance component from the suppression unit (tertiary winding) of the ZCT 50.

この抑圧信号生成部80は、SCF45で生成された基準信号Bの出力レベル(振幅)を制御する回路であり、該SCF45からの基準信号Bを容量成分抽出手段90bで求められた対地静電容量成分IgCで増幅することにより、ZCT50で検出される監視信号の対地静電容量成分IgCが磁束的に相殺されるような大きさの抑圧信号Pを生成する。   The suppression signal generation unit 80 is a circuit for controlling the output level (amplitude) of the reference signal B generated by the SCF 45, and the ground capacitance obtained by the capacitance component extraction means 90b using the reference signal B from the SCF 45. By amplifying with the component IgC, a suppression signal P having such a magnitude that the ground capacitance component IgC of the monitoring signal detected by the ZCT 50 is canceled out magnetically is generated.

更にこの絶縁監視装置10は、本実施の形態の絶縁監視装置10における各種制御・処理を行う演算処理部(MPU)90を備える。この演算処理部90は、基準信号Bの所定位相(この例では90°遅れ位相相当)に同期し、基準信号nサイクル分の測定信号Mを使用したDFT演算により測定信号Mに含まれる対地絶縁抵抗成分IgRを求める抵抗成分抽出手段90aと、上記容量成分抽出手段90bとを備える。詳細は後述する。   The insulation monitoring device 10 further includes an arithmetic processing unit (MPU) 90 that performs various controls and processes in the insulation monitoring device 10 of the present embodiment. This arithmetic processing unit 90 is synchronized with a predetermined phase of the reference signal B (corresponding to a 90 ° delayed phase in this example), and is ground-insulated in the measurement signal M by DFT calculation using the measurement signal M for n cycles of the reference signal. Resistance component extraction means 90a for obtaining the resistance component IgR and the capacitance component extraction means 90b are provided. Details will be described later.

その他、この演算処理部90は、SCF45に対し、基準信号Bの位相を調整するための基準となるクロック周波数を指令する。更に表示部101や操作部102の各機能を制御する他、警報出力部103を制御する。   In addition, the arithmetic processing unit 90 instructs the SCF 45 to specify a clock frequency that serves as a reference for adjusting the phase of the reference signal B. In addition to controlling each function of the display unit 101 and the operation unit 102, the alarm output unit 103 is controlled.

次に、上記のように構成された絶縁監視装置10の基本的な動作を説明する。まず監視信号注入手段20は商用周波数とは異なる周波数(例えば20Hz)の監視信号Wを生成し、この監視信号Wを重畳トランス30を介して受電変圧器1のB種接地線4に注入する。   Next, the basic operation of the insulation monitoring apparatus 10 configured as described above will be described. First, the monitoring signal injection means 20 generates a monitoring signal W having a frequency (for example, 20 Hz) different from the commercial frequency, and injects the monitoring signal W into the B-type ground line 4 of the power receiving transformer 1 through the superimposing transformer 30.

一方、測定信号検出手段60では、対地インピーダンスZ0と大地を介してB種接地線4に環流する漏れ電流をZCT50により検出し、この電流をヘッドアンプ61で電圧信号に変換すると共に必要なレベルまで増幅する。更に、この増幅出力からLPF62で商用周波数およびその高調波等の不要成分を除去すると共に、その出力をA/D変換器63でディジタル信号に変換する。   On the other hand, in the measurement signal detection means 60, the leakage current flowing back to the B-type ground line 4 via the ground impedance Z0 and the ground is detected by the ZCT 50, and this current is converted into a voltage signal by the head amplifier 61 and the required level is reached. Amplify. Further, unnecessary components such as a commercial frequency and its harmonics are removed from the amplified output by the LPF 62, and the output is converted into a digital signal by the A / D converter 63.

これと同時に、基準信号検出手段40では、商用成分除去部41がB種接地線4からの基準入力bより主要なノイズ源である商用成分を除去する。更にSCF45が商用成分除去部41の出力から商用周波数及びその高調波等の不要成分を除去し、こうして得られた基準信号Bの位相を漏れ電流の測定信号Mに含まれる対地静電容量成分IgCの位相に合わせる。この基準信号Bは、測定信号Mに含まれる対地静電容量成分IgCを抑圧するための抑圧信号生成部80に送られると共に、次段の同期信号生成部70にも入力され、ここで得られた同期信号Sが演算処理部90に送られる。   At the same time, in the reference signal detection means 40, the commercial component removal unit 41 removes the commercial component that is the main noise source from the reference input b from the B-type ground line 4. Further, the SCF 45 removes unnecessary components such as the commercial frequency and its harmonics from the output of the commercial component removing unit 41, and the phase of the reference signal B obtained in this way is the ground capacitance component IgC included in the leakage current measurement signal M. Adjust to the phase of. The reference signal B is sent to the suppression signal generation unit 80 for suppressing the ground capacitance component IgC included in the measurement signal M, and is also input to the next-stage synchronization signal generation unit 70, and is obtained here. The synchronized signal S is sent to the arithmetic processing unit 90.

演算処理部90では、抵抗成分抽出手段90aが基準信号Bの所定位相(この例では90°遅れ位相に相当)に同期して該基準信号nサイクル分の測定信号Mを使用したDFT演算により該測定信号Mに含まれる対地絶縁抵抗成分IgRを抽出すると共に、容量成分抽出手段90bでは基準信号Bの所定位相に同期して該基準信号nサイクル分の測定信号Mを使用したDFT演算により該測定信号Mに含まれる対地静電容量成分IgCを抽出する。   In the arithmetic processing unit 90, the resistance component extracting unit 90a performs the DFT operation using the measurement signal M for n cycles of the reference signal in synchronization with a predetermined phase of the reference signal B (corresponding to a 90 ° delayed phase in this example). The ground insulation resistance component IgR included in the measurement signal M is extracted, and the capacitance component extraction unit 90b performs the measurement by DFT calculation using the measurement signal M for n cycles of the reference signal in synchronization with a predetermined phase of the reference signal B. The ground capacitance component IgC included in the signal M is extracted.

抑圧信号発生手段80では、容量成分抽出手段90bより時々刻々と出力される対地静電容量成分信号IgCに基づきSCF45から出力される基準信号Bの振幅を調整すると共に、出力の抑圧電流信号PをZCT50の抑圧部(3次巻き線)に逆方向に加えることによってZCT50における対地静電容量成分IgCが磁束的に相殺される(0となる)ようにフィードバック制御する。一方、抵抗成分抽出手段90aでは、対地静電容量成分IgCが充分に抑圧された状態の測定信号Mを使用することにより該測定信号Mの対地絶縁抵抗成分IgRを高精度に求めることが可能となる。   The suppression signal generation means 80 adjusts the amplitude of the reference signal B output from the SCF 45 based on the ground capacitance component signal IgC output from the capacitance component extraction means 90b every moment, and outputs the output suppression current signal P. Feedback control is performed so that the ground capacitance component IgC in the ZCT 50 is magnetically canceled (becomes 0) by being applied in the reverse direction to the suppression unit (third winding) of the ZCT 50. On the other hand, the resistance component extraction unit 90a can obtain the ground insulation resistance component IgR of the measurement signal M with high accuracy by using the measurement signal M in a state where the ground capacitance component IgC is sufficiently suppressed. Become.

以上、この絶縁監視装置10の基本的な構成及び動作を説明したが、本実施の形態では、小電力の監視信号Wを使用しても高精度、高信頼性の絶縁監視を可能とするために、更に幾つかの工夫が演算処理部90においてなされている。次にこれらを詳細に説明する。   The basic configuration and operation of the insulation monitoring apparatus 10 have been described above. In the present embodiment, in order to enable highly accurate and reliable insulation monitoring even when the low-power monitoring signal W is used. In addition, some ideas are made in the arithmetic processing unit 90. Next, these will be described in detail.

図2は実施の形態による演算処理部の機能ブロック図である。図において、91は入力の測定信号Mをバッファメモリ92に書き込む書込制御部、92は少なくとも1回のDFT演算で使用する基準信号nサイクル分の測定信号Mに対して基準信号m(<n)サイクル分の空き容量を加えた記憶容量を有するバッファメモリ、93は入力の測定信号Mを基準信号1サイクル分に渡って累積加算すると共に、その累積加算結果が所定の閾値範囲を逸脱しているか否かを判別する累積加算判定部、94は累積加算判定部93の累積加算結果を時系列に監視することで前記所定の閾値範囲を最適に更新する閾値更新部である。   FIG. 2 is a functional block diagram of the arithmetic processing unit according to the embodiment. In the figure, 91 is a write control unit for writing an input measurement signal M to the buffer memory 92, and 92 is a reference signal m (<n for the measurement signal M for n cycles of the reference signal used in at least one DFT operation. ) A buffer memory 93 having a storage capacity including the free capacity for the cycle, 93 adds the input measurement signal M cumulatively over one cycle of the reference signal, and the cumulative addition result deviates from a predetermined threshold range. A cumulative addition determination unit 94 for determining whether or not there is a threshold update unit that optimally updates the predetermined threshold range by monitoring the cumulative addition result of the cumulative addition determination unit 93 in time series.

また、95は同期信号生成部70からの同期信号Sに同期して、バッファメモリ92の基準信号nサイクル分の測定信号Mを使用したDFT演算により該測定信号Mに含まれる対地絶縁抵抗成分IgRと対地静電容量成分IgCとを分離するCR分離部である。このCR分離部95には、上記対地絶縁抵抗成分IgRを求める抵抗成分抽出手段90aと、対地静電容量成分IgCを求める容量成分抽出手段90bとが含まれる。   Reference numeral 95 denotes a ground insulation resistance component IgR included in the measurement signal M by DFT calculation using the measurement signal M for n cycles of the reference signal in the buffer memory 92 in synchronization with the synchronization signal S from the synchronization signal generator 70. And a ground separation component that separates the electrostatic capacitance component IgC from the ground. The CR separation unit 95 includes a resistance component extraction unit 90a for obtaining the ground insulation resistance component IgR and a capacitance component extraction unit 90b for obtaining the ground capacitance component IgC.

更に、96はこのCR分離部95で分離された各対地絶縁抵抗成分信号IgRを時系列に監視することにより、ノイズの影響を受けた測定信号Mによって対地絶縁抵抗成分IgRの表示出力が不安定になるのを抑制する重み付け処理部、そして、97はこの重み付け処理された対地絶縁抵抗成分IgRに基づいて漏電の有/無を判定する漏電判定部である。これらの機能ブロックはMPU90のプログラム実行により実現される。   Further, 96 monitors each ground insulation resistance component signal IgR separated by the CR separation unit 95 in time series, and the display output of the ground insulation resistance component IgR is unstable due to the measurement signal M affected by noise. A weighting processing unit 97 that suppresses the occurrence of electric leakage, and 97 is a leakage determination unit that determines the presence / absence of leakage based on the grounded insulation resistance component IgR subjected to the weighting process. These functional blocks are realized by program execution of the MPU 90.

次に各部の動作を詳細に説明する。まず書込制御部91は、同期信号Sの所定のタイミング(例えば対地絶縁抵抗成分IgRの0位相)に同期して入力の測定信号Mを順次バッファメモリ92に書き込む。これと並行して、累積加算判定部93では測定信号Mの累積加算を開始し、基準信号1サイクル(例えば50ms当たり32サンプル)分に渡って測定信号Mを累積加算すると共に、その累積加算結果が所定の閾値TH1、TH2で挟まれる範囲内にあるか否かを判定する。   Next, the operation of each unit will be described in detail. First, the write control unit 91 sequentially writes the input measurement signal M in the buffer memory 92 in synchronization with a predetermined timing of the synchronization signal S (for example, the zero phase of the ground insulation resistance component IgR). In parallel with this, the cumulative addition determination unit 93 starts cumulative addition of the measurement signal M, cumulatively adds the measurement signal M over one cycle of the reference signal (for example, 32 samples per 50 ms), and the cumulative addition result Is within a range between predetermined thresholds TH1 and TH2.

ところで、この測定信号Mは、上記の如くZCT50で漏れ電流の監視信号成分に含まれる対地静電容量成分IgCを充分に抑圧した上、LPF62で20Hzを超える不要成分を除去したものであるから、本来ならこの測定信号Mには監視信号の対地絶縁抵抗成分IgRのみが残っているはずである。   By the way, this measurement signal M is obtained by sufficiently suppressing the ground capacitance component IgC contained in the leakage current monitoring signal component by the ZCT 50 as described above and removing unnecessary components exceeding 20 Hz by the LPF 62. Originally, only the ground insulation resistance component IgR of the monitoring signal should remain in the measurement signal M.

しかし、実際の測定信号Mには監視信号(20Hz)に近い周波数のノイズ信号が含まれている場合が少なくない。例えば、負荷2の電源入/切時に発生するノイズには、これを20Hz(50ms)の区間で見ると、その平均レベルが20Hzに近い周波数で大きく振動する場合があり、このようなノイズ信号はLPF62では除去し切れない。そこで、累積加算判定部93では測定信号Mを基準信号1サイクル分に渡って累積加算することによりこのようなノイズ信号による影響の有/無を有効に検出している。以下、これを詳細に説明する。   However, the actual measurement signal M often includes a noise signal having a frequency close to the monitoring signal (20 Hz). For example, when the noise generated when the load 2 is turned on / off is viewed in a section of 20 Hz (50 ms), the average level may vibrate greatly at a frequency close to 20 Hz. The LPF 62 cannot be completely removed. Therefore, the cumulative addition determining unit 93 effectively detects the presence / absence of the influence of the noise signal by cumulatively adding the measurement signal M over one cycle of the reference signal. This will be described in detail below.

図3は実施の形態による累積加算判定部のフローチャートである。ステップS11では同期信号Sの発生を待ち、やがて発生すると、ステップS12では所定の初期化処理を行う。具体的には、累積加算レジスタ=0、測定信号Mの加算数カウンタ=1、無効フラグ=0に初期化する。更にステップS13では測定信号Mの発生を待ち、やがて発生すると、ステップS14ではその測定信号Mを取得し、ステップS15ではこの測定信号Mを累積加算レジスタに加算する。ステップS16では加算数カウンタ≧K(例えば32)か否かを判別すると共に、NOの場合はステップS17で加算数カウンタに+1し、ステップS13に戻る。   FIG. 3 is a flowchart of the cumulative addition determination unit according to the embodiment. In step S11, the generation of the synchronization signal S is waited, and when it occurs, a predetermined initialization process is performed in step S12. Specifically, the cumulative addition register = 0, the addition counter of the measurement signal M = 1, and the invalid flag = 0 are initialized. Further, in step S13, the generation of the measurement signal M is awaited. When the measurement signal M is generated, the measurement signal M is acquired in step S14, and the measurement signal M is added to the cumulative addition register in step S15. In step S16, it is determined whether or not the addition number counter ≧ K (for example, 32). If NO, the addition number counter is incremented by 1 in step S17, and the process returns to step S13.

こうして、やがて測定信号MをK(32)回分累積加算すると、ステップS16における判別はYESとなり、フローはステップS18に進む。ステップS18では累積加算値が所定閾値TH1、TH2で挟まれる範囲内(TH1<累積加算値<TH2)にあるか否かを判別し、NO(範囲外)の場合はステップS19で当該基準信号1サイクル分の測定信号Mが無効であることを表す無効フラグ=1(無効)とする。またYES(範囲内)の場合はステップS19の処理をスキップする。ステップS20ではフラグの状態(有効/無効)を書込制御部91と閾値更新部部94に通知する。そして、ステップS11に戻る。   Thus, when the measurement signal M is cumulatively added for K (32) times in the end, the determination in step S16 is YES, and the flow proceeds to step S18. In step S18, it is determined whether or not the cumulative addition value is within a range between the predetermined thresholds TH1 and TH2 (TH1 <cumulative addition value <TH2). If NO (out of range), the reference signal 1 is determined in step S19. It is assumed that an invalid flag = 1 (invalid) indicating that the measurement signal M for the cycle is invalid. If YES (within range), the process of step S19 is skipped. In step S20, the flag state (valid / invalid) is notified to the write control unit 91 and the threshold update unit 94. Then, the process returns to step S11.

図4は実施の形態による累積加算判定部93の動作説明図であり、監視信号Wに幾種類かの典型的なノイズが重畳された場合の累積加算経過と累積加算結果を示している。図4(a)にまずノイズが含まれていない場合を示す。この場合の測定信号M(=監視信号W)は正弦波交流信号であるから、基準信号1サイクル分に渡る累積加算経過は図示の如くその前半部では一様に増加するが、後半部では一様に減少して最終的に「0」となる。この累積加算結果SUMは閾値TH1,TH2の範囲内にあるので有効である。   FIG. 4 is an operation explanatory diagram of the cumulative addition determination unit 93 according to the embodiment, and shows the cumulative addition progress and the cumulative addition result when several types of typical noise are superimposed on the monitoring signal W. FIG. 4A shows a case where noise is not included. Since the measurement signal M (= monitoring signal W) in this case is a sinusoidal AC signal, the cumulative addition process over one cycle of the reference signal increases uniformly in the first half as shown in the figure, but in the second half, In the same manner, it finally decreases to “0”. This cumulative addition result SUM is effective because it is within the range of the thresholds TH1 and TH2.

図4(b)は監視信号Wに20Hzよりも高い周波数のノイズ信号Nが重畳した場合を示している。この場合の累積加算経過SUMも上記図4(a)と同様にその前半部で増加し、後半部で減少するが、ノイズ信号Nの平均レベルが幾分+側にオフセットしているため、その累積加算結果SUMは+側の閾値TH2の少し下側に位置している。この測定信号Mもノイズによる影響があまり大きくないとして有効とされる。但し、このような高い周波数のノイズは実際はLPF62によって除去されるため、問題は無い。   FIG. 4B shows a case where a noise signal N having a frequency higher than 20 Hz is superimposed on the monitoring signal W. The cumulative addition progress SUM in this case also increases in the first half and decreases in the second half as in FIG. 4A, but the average level of the noise signal N is somewhat offset to the + side. The cumulative addition result SUM is located slightly below the positive threshold TH2. This measurement signal M is also effective because the influence of noise is not so great. However, since such high frequency noise is actually removed by the LPF 62, there is no problem.

図4(c)は監視信号Wに対して平均レベルが+側に大きく振れるスパイク状のノイズ信号Nが重畳した場合を示しており、このようなノイズ信号は負荷2の電源をオンした場合に連動して典型的に表れる。この場合の累積加算経過SUMもその前半部で大きく増加し、後半部で減少に転じるが、この区間ではノイズ信号の平均レベルが大きく+側にオフセットしているため、その累積加算結果SUMも+側の閾値TH2を大きく+側に逸脱している。このような低周波のノイズ成分NはLPF62では除去できないため問題であるが、その影響を受けた測定信号Mは累積加算判定部93によって適切に「無効」とされる。   FIG. 4C shows a case where a spike-like noise signal N whose average level greatly fluctuates toward the + side is superimposed on the monitoring signal W. Such a noise signal is generated when the load 2 is turned on. It appears typically in conjunction. In this case, the cumulative addition progress SUM also greatly increases in the first half and starts to decrease in the second half, but since the average level of the noise signal is greatly offset in this period, the cumulative addition result SUM is also + The threshold value TH2 on the side is greatly deviated to the + side. Such a low-frequency noise component N is problematic because it cannot be removed by the LPF 62, but the measurement signal M affected by the noise component N is appropriately “invalid” by the cumulative addition determination unit 93.

図4(d)は監視信号Wに対して平均レベルが−側に大きく振れるスパイク状のノイズ信号Nが重畳した場合を示しており、このようなノイズ信号は負荷2の電源2をオフした場合に連動して典型的に表れる。この場合の累積加算経過SUMは、監視信号Wとノイズ信号Nとが略逆位相であるため、途中では大きく波打っているが、ノイズ信号Nの平均レベルは−側に大きくオフセットしているため、その累積加算結果SUMも−側の閾値TH1を大きく−側に逸脱している。このような測定信号Mも累積加算判定部93によって「無効」とされる。   FIG. 4D shows a case where a spike-like noise signal N whose average level greatly fluctuates on the minus side is superimposed on the monitoring signal W. Such a noise signal is when the power supply 2 of the load 2 is turned off. It typically appears in conjunction with In this case, the cumulative addition progress SUM is greatly waved in the middle because the monitoring signal W and the noise signal N are substantially opposite in phase, but the average level of the noise signal N is largely offset to the minus side. The cumulative addition result SUM also deviates greatly from the minus threshold TH1 to the minus side. Such a measurement signal M is also “invalid” by the cumulative addition determination unit 93.

なお、実際上、監視信号Wとノイズ信号Nとは様々な振幅や位相で重畳されるものであるが、それらの累積加算経過や累積加算結果SUMがどのようなものになるかは、上記の例から容易に推測できる。   In practice, the monitoring signal W and the noise signal N are superimposed with various amplitudes and phases. However, the cumulative addition process and the cumulative addition result SUM are described above. Can easily be guessed from examples.

このように、測定信号Mに比較的低周波の大きいノイズ信号が含まれていると、対地絶縁抵抗成分IgRを正確には監視できなくなるため、そのような1サイクル分の測定信号MはDFT演算には使わない方が良い。そこで、本実施の形態では、基準信号1サイクル分の累積加算結果SUMが所定の閾値範囲を逸脱する場合は当該区間の測定信号Mが「無効」である旨の信号を書込制御部91及び閾値更新部94に通知する。   As described above, if the measurement signal M includes a noise signal having a relatively low frequency, the ground insulation resistance component IgR cannot be accurately monitored. Therefore, the measurement signal M for one cycle is subjected to the DFT calculation. It is better not to use it. Therefore, in the present embodiment, when the cumulative addition result SUM for one cycle of the reference signal deviates from a predetermined threshold range, a signal indicating that the measurement signal M in the section is “invalid” is sent to the write control unit 91 and The threshold update unit 94 is notified.

図2に戻り、この書込制御部91は、累積加算判定部93より「無効」の通知を受けた場合は、バッファメモリ92に書き込んだ今回の基準信号1サイクル分の測定信号Mを前回の有効とされた基準信号1サイクル分の測定信号Mによって書き換え(即ち、上書きす)る。こうして、ノイズ成分の大きい測定信号MはDFT演算から効率よく除外され、「有効」とされた直近の測定信号Mによって置き換えられる。   Returning to FIG. 2, when the write control unit 91 receives a notification of “invalid” from the cumulative addition determination unit 93, the write control unit 91 outputs the measurement signal M for one cycle of the current reference signal written in the buffer memory 92 to the previous time. It is rewritten (that is, overwritten) by the measurement signal M for one cycle of the valid reference signal. In this way, the measurement signal M having a large noise component is efficiently excluded from the DFT calculation, and is replaced by the latest measurement signal M that is “valid”.

一方、閾値更新部94は、予め設定された閾値TH1,TH2を累積加算判定部93に提供すると共に、この累積加算判定部93から送られる「有効]/「無効」の通知を監視することによりこの閾値範囲TH1、TH2を適宜に更新する。以下、これを詳細に説明する。   On the other hand, the threshold update unit 94 provides preset thresholds TH1 and TH2 to the cumulative addition determination unit 93 and monitors “valid” / “invalid” notifications sent from the cumulative addition determination unit 93. The threshold ranges TH1 and TH2 are updated as appropriate. This will be described in detail below.

図5は実施の形態による閾値更新部のフローチャートである。ステップS31では所定の初期化処理を行う。具体的には、無効通知の受信回数をカウントする無効数カウンタ=0、有効通知の受信回数をカウントする有効数カウンタ=0に初期化する。ステップS32では同期信号Sの発生(即ち、対地絶縁抵抗成分IgRの0位相に相当)を待ち、やがて発生すると、ステップS33では累積加算判定部93からの有効/無効のフラグ通知(即ち、対地絶縁抵抗成分IgRの終了位相に相当)を待つ。やがて、このフラグ通知があると、ステップS34では当該通知が無効フラグ=1か否かを判別し、YES(無効)の場合はステップS35で無効数カウンタに+1する。またNO(有効)の場合はステップS36で有効数カウンタに+1する。ステップS37では両カウンタの和≧L(例えば8)か否かを判別し、NOの場合はステップS32に戻り、上記処理を繰り返す。   FIG. 5 is a flowchart of the threshold update unit according to the embodiment. In step S31, a predetermined initialization process is performed. Specifically, an invalid number counter for counting the number of invalid notification receptions = 0 and an effective number counter for counting the number of valid notification receptions = 0 are initialized. In step S32, the generation of the synchronization signal S (that is, corresponding to the zero phase of the ground insulation resistance component IgR) is waited. Wait for the end phase of the resistance component IgR). Eventually, if there is this flag notification, it is determined in step S34 whether the notification is an invalid flag = 1, and if YES (invalid), the invalid number counter is incremented by one in step S35. If NO (valid), the effective number counter is incremented by 1 in step S36. In step S37, it is determined whether or not the sum of both counters ≧ L (for example, 8). If NO, the process returns to step S32 to repeat the above processing.

こうして、やがてステップS37の判別で両カウンタの和(即ち、フラグ通知の全発生回数)がL(=8)になると、フローはステップS38に進み、ここでは無効数カウンタ=Lか否かを判別する。YESの場合は、連続する基準信号8サイクル(0.4sec)分の累積加算結果SUMの全てが閾値TH1、TH2の範囲から逸脱していたことになるので、現時点の閾値範囲は狭すぎるとして、ステップS39ではこの閾値範囲を所定の割合で又は所定量だけ広くする。例えば、現時点の閾値TH1及び又はTH2に所定の比率(例えば1.1〜1.5等)を掛け、または現時点の閾値TH1及び又はTH2に一定の値を加算して閾値範囲を広くする。また、NOの場合はステップS39の処理をスキップする。   Thus, when the sum of both counters (that is, the total number of occurrences of flag notification) becomes L (= 8) in the determination in step S37, the flow proceeds to step S38, where it is determined whether or not the invalid number counter = L. To do. In the case of YES, all of the cumulative addition results SUM for 8 consecutive reference signal cycles (0.4 sec) have deviated from the ranges of the thresholds TH1 and TH2, so that the current threshold range is too narrow. In step S39, this threshold range is widened at a predetermined rate or by a predetermined amount. For example, the threshold value range is widened by multiplying the current threshold value TH1 and / or TH2 by a predetermined ratio (for example, 1.1 to 1.5) or adding a constant value to the current threshold value TH1 and / or TH2. If NO, the process of step S39 is skipped.

ステップS40では有効数カウンタ=Lか否かを判別し、YESの場合は、連続する基準信号8サイクル分の累積加算結果SUMの全てが閾値TH1、TH2の範囲内に入っていたことになるので、現時点の閾値範囲は広すぎるとして、ステップS41ではこの閾値範囲を所定の割合で又は所定量だけ狭くする。例えば、現時点の閾値TH1及び又はTH2に所定の比率(例えば0.6〜0.9等)を掛け、または現時点の閾値TH1及び又はTH2から一定の値を差し引いて閾値範囲を狭くする。また、NOの場合は、この区間内に有効と無効とが入り混じっていたことになるため、この閾値範囲は適正であるとして、更新は行わずにそのままステップS31に戻る。こうして、閾値範囲が現時点のノイズの大きさを反映した測定環境に自動的に適応するよう閾値範囲を更新する。   In step S40, it is determined whether or not the effective number counter = L. If YES, all the cumulative addition results SUM for eight consecutive reference signals are within the range of the thresholds TH1 and TH2. Assuming that the current threshold range is too wide, in step S41, the threshold range is narrowed at a predetermined rate or by a predetermined amount. For example, the threshold value range is narrowed by multiplying the current threshold value TH1 and / or TH2 by a predetermined ratio (for example, 0.6 to 0.9) or subtracting a certain value from the current threshold value TH1 or TH2. In the case of NO, since valid and invalid are mixed in this section, it is assumed that this threshold range is appropriate, and the process returns to step S31 without updating. In this way, the threshold range is updated so that the threshold range automatically adapts to the measurement environment reflecting the current noise magnitude.

次に、このような閾値更新処理の一例を具体的に説明する。図6は実施の形態による閾値更新部の動作説明図である。レベル「0」を挟んで上下に閾値TH2、TH1が初期設定されているとする。時刻t1で始まる最初の基準信号8サイクル(0.4sec)の区間ではこの閾値TH1、TH2を使用して閾値判定が行われ、この例では連続する8つの累積加算結果SUMの全てがこの閾値範囲内にあるため、この閾値範囲は広いと判定され、次の区間では閾値範囲が狭くされている。また、次の区間では5番目と7番目の累積加算結果SUMのみがこの時点の閾値範囲から逸脱しているため、この閾値範囲は適正と判定され、そのまま維持される。   Next, an example of such a threshold update process will be specifically described. FIG. 6 is an explanatory diagram of the operation of the threshold update unit according to the embodiment. It is assumed that thresholds TH2 and TH1 are initially set up and down across the level “0”. In the section of the first reference signal 8 cycles (0.4 sec) starting at time t1, threshold determination is performed using the thresholds TH1 and TH2, and in this example, all of the eight consecutive cumulative addition results SUM are within this threshold range. Therefore, the threshold range is determined to be wide, and the threshold range is narrowed in the next section. In the next section, since only the fifth and seventh cumulative addition results SUM deviate from the threshold range at this time, this threshold range is determined to be appropriate and is maintained as it is.

一方、時刻t2で始まる最初の0.4secの区間では8回分の累積加算結果SUMの全てが現時点の閾値範囲を逸脱しているため、この閾値範囲は狭いと判定され、次の時点では閾値範囲が広くされている。以下、同様である。こうして、バッファメモリ92には現時点の測定環境に適した有用な測定信号Mのみが順次記憶されてゆく。なお、閾値範囲を広げる場合も、狭める場合も、共に所定の限界が定められており、これらを超えて閾値範囲を更新することはできないものとする。   On the other hand, in the first 0.4 sec section starting at time t2, since all of the eight cumulative addition results SUM deviate from the current threshold range, this threshold range is determined to be narrow, and at the next time point, the threshold range Has been widely used. The same applies hereinafter. Thus, only useful measurement signals M suitable for the current measurement environment are sequentially stored in the buffer memory 92. It should be noted that both the threshold range is widened and the threshold range is narrowed, a predetermined limit is set, and the threshold range cannot be updated beyond these limits.

次に図7を参照してバッファメモリ92の記憶態様を説明する。本実施の形態では、基準信号1サイクル(50ms)当たり32サンプルのレートで測定信号MをA/D変換すると共に、この様な測定信号Mを16サイクル(0.8sec、512サンプル)分集めてブロックデータB1と呼び、更にこの様なブロックデータを8ブロック(4096サンプル)分集めてグループデータG1と呼ぶ。このバッファメモリ92は、少なくとも1回のDFT演算で使用する基準信号n(例えば16サイクル×8ブロックB1〜B8=128)サイクル分の測定信号M(4096サンプル)に対して基準信号m(例えば16)サイクル分の空き容量B1’を加えた記憶容量を有しており、これらの限られた記憶容量を巡回的に使用する。   Next, the storage mode of the buffer memory 92 will be described with reference to FIG. In this embodiment, the measurement signal M is A / D converted at a rate of 32 samples per one cycle (50 ms) of the reference signal, and such measurement signals M are collected for 16 cycles (0.8 sec, 512 samples). This is called block data B1, and such block data is collected for 8 blocks (4096 samples) and called group data G1. The buffer memory 92 uses a reference signal m (for example, 16 samples) for a measurement signal M (4096 samples) for a reference signal n (for example, 16 cycles × 8 blocks B1 to B8 = 128) cycles used in at least one DFT operation. ) It has a storage capacity including the free capacity B1 ′ for the cycle, and uses these limited storage capacity cyclically.

更に、この図7を参照してCR分離部95の動作を説明する。このCR分離部95は、基本的には、同期信号Sの所定タイミング(即ち、基準信号Bの90°遅れ位相に相当)に同期し、基準信号n(=128)サイクル分の測定信号Mを使用したDFT演算により該測定信号Mに含まれる対地絶縁抵抗成分IgRと対地静電容量成分IgCとを分離する。この対地絶縁抵抗成分IgRはsin関数を使用して分離でき、また対地静電容量成分IgCはcos関数を使用して同時に分離できる。ところで、このようなDFT演算は4096サンプル分の測定信号Mが使用可能となる6.4sec置きに行っても良いが、これでは6.4sec置きにしか対地絶縁抵抗成分IgRが算出されないため、時間分解能が悪い。   Further, the operation of the CR separation unit 95 will be described with reference to FIG. The CR separation unit 95 basically synchronizes with a predetermined timing of the synchronization signal S (that is, corresponding to a 90 ° delayed phase of the reference signal B), and outputs the measurement signal M for the reference signal n (= 128) cycles. The ground insulation resistance component IgR and the ground capacitance component IgC included in the measurement signal M are separated by the used DFT calculation. The ground insulation resistance component IgR can be separated using a sin function, and the ground capacitance component IgC can be separated simultaneously using a cos function. By the way, such a DFT calculation may be performed every 6.4 sec when the measurement signal M for 4096 samples can be used. However, since the ground insulation resistance component IgR is calculated only every 6.4 sec, the time The resolution is bad.

そこで、好ましくは、このCR分離部95は、同期信号Sの所定タイミングに同期し、該基準信号m(=16)サイクル分ずつずらした各基準信号n(=128)サイクル分の測定信号Mを使用したDFT演算により該測定信号に含まれる対地絶縁抵抗成分IgRと対地静電容量成分IgCとを分離する。   Therefore, preferably, the CR separation unit 95 synchronizes with the predetermined timing of the synchronization signal S and outputs the measurement signal M for each reference signal n (= 128) cycles shifted by the reference signal m (= 16) cycles. The ground insulation resistance component IgR and the ground capacitance component IgC included in the measurement signal are separated by the used DFT calculation.

これを図7に従って具体的に言うと、最初はグループG1の測定信号Mを使用したDFT演算により該測定信号に含まれる対地絶縁抵抗成分IgR1と対地静電容量成分IgC1とを分離し、次に、グループG2の測定信号Mを使用したDFT演算により該測定信号に含まれるIgR2とIgC2とを分離する。なお、この時点ではバッファメモリ92の先頭1ブロック(B1)分のメモリが空きになっているため、新たに入力する測定信号Mはこの空き領域(図のB2’で示す)に順次記憶されている。以下同様にして進み、こうして限られたメモリの有効利用を図っている。   Specifically, according to FIG. 7, first, the ground insulation resistance component IgR1 and the ground capacitance component IgC1 included in the measurement signal are separated by DFT calculation using the measurement signal M of the group G1, and then , IgR2 and IgC2 included in the measurement signal are separated by DFT calculation using the measurement signal M of group G2. At this time, since the memory for the first block (B1) of the buffer memory 92 is empty, the newly input measurement signal M is sequentially stored in this empty area (indicated by B2 ′ in the figure). Yes. In the same manner, the process proceeds in the same manner as described above so as to effectively use the limited memory.

また、本実施の形態では、6.4sec分の測定信号Mを使用してDFT演算を行うため、DFT演算の基本周波数f0は略0.156Hzとなる。DFT演算では基本周波数f0の整数倍の周波数成分を求めることが可能であるから、この基本周波数f0=0.156HzはDFT演算の周波数分解能となる。これに基づき、各周波数成分を測定信号Mの周波数20Hzの周辺で見てみると、127×f0の周波数成分が19.844Hz、128×f0の周波数成分が丁度20.00Hz、129×f0の周波数成分が20.156Hzとなり、小電力の監視信号Wを使用した場合でも、その測定信号M(20.00Hz)の対地絶縁抵抗成分IgRを極めて高い周波数分解能で高精度に検出できることが分かる。   In this embodiment, since the DFT calculation is performed using the measurement signal M for 6.4 sec, the fundamental frequency f0 of the DFT calculation is approximately 0.156 Hz. Since frequency components that are integral multiples of the fundamental frequency f0 can be obtained in the DFT operation, this fundamental frequency f0 = 0.156 Hz is the frequency resolution of the DFT operation. Based on this, when each frequency component is viewed around the frequency 20 Hz of the measurement signal M, the frequency component of 127 × f0 is 19.844 Hz, the frequency component of 128 × f0 is just the frequency of 20.00 Hz, and the frequency of 129 × f0. The component is 20.156 Hz, and it can be seen that the ground insulation resistance component IgR of the measurement signal M (20.00 Hz) can be detected with very high frequency resolution with high accuracy even when the monitoring signal W with low power is used.

また、本実施の形態では0.8sec置きに対地絶縁抵抗成分IgRが得られるため、ユーザは高い時間分解能で絶縁状態を監視できる。また、対地静電容量成分IgCも0.8sec置きに得られるため、対地静電容量成分抑制御のフィードバック応答も速い。   In the present embodiment, since the ground insulation resistance component IgR is obtained every 0.8 sec, the user can monitor the insulation state with high time resolution. Further, since the ground capacitance component IgC is also obtained every 0.8 sec, the feedback response of the ground capacitance component suppression control is fast.

更に、上記0.8sec置きに求められた測定信号Mの対地絶縁抵抗成分IgRは図2の重み付け処理部96に入力される。そして、この重み付け処理部96は、今回の対地絶縁抵抗成分信号IgRが前回の対地絶縁抵抗成分信号IgRよりも所定以上の割合で増加した場合は、今回の対地絶縁抵抗成分信号IgRに1よりも小さい重み付けをして今回対地絶縁抵抗成分信号IgRとし、それ以外の場合は、今回の対地絶縁抵抗成分信号IgRをそのまま今回の対地絶縁抵抗成分信号IgRとする。以下、具体的に説明する。    Further, the ground insulation resistance component IgR of the measurement signal M obtained every 0.8 sec is input to the weighting processing unit 96 of FIG. Then, when the current ground insulation resistance component signal IgR increases at a predetermined rate or more than the previous ground insulation resistance component signal IgR, the weighting processing unit 96 sets the current ground insulation resistance component signal IgR to be less than 1. The current ground insulation resistance component signal IgR is weighted with a small weight, and in other cases, the current ground insulation resistance component signal IgR is directly used as the current ground insulation resistance component signal IgR. This will be specifically described below.

図8に実施の形態による重み付け処理部の動作説明図を示す。図において、時刻t1より6.4sec経過した時点で最初の絶縁抵抗成分IgR1が得られ、その値が表示部101に表示される。更に、その0.8sec後には2番目の絶縁抵抗成分IgR2が得られるが、これは前回の抵抗成分IgR1よりも小さいのでそのままの値が表示される。更に、次の絶縁抵抗成分IgR3は前回の絶縁抵抗成分IgR2よりも大きいが、所定の増分限界θを超えていないので、そのままの値が表示される。   FIG. 8 is a diagram for explaining the operation of the weighting processing unit according to the embodiment. In the figure, the first insulation resistance component IgR1 is obtained when 6.4 seconds have elapsed from time t1, and the value is displayed on the display unit 101. Furthermore, after 0.8 sec, the second insulation resistance component IgR2 is obtained. Since this is smaller than the previous resistance component IgR1, the value is displayed as it is. Further, the next insulation resistance component IgR3 is larger than the previous insulation resistance component IgR2, but since it does not exceed the predetermined increment limit θ, the value is displayed as it is.

以下同様にして進み、この例では第5番目の絶縁抵抗成分IgR5が4番目の抵抗成分IgR4に対する所定の増分限界θを上回るため、この絶縁抵抗成分IgR5に所定の倍率(例えば0.6〜0.8)が掛けられて新たな絶縁抵抗成分IgR5’に変換され、この値が表示部101に表示される。また同様にして、第8番目の絶縁抵抗成分IgR8も所定の増分限界θを上回るため所定の倍率が掛けられて新たな絶縁抵抗成分IgR8’となり、この値が表示部101に表示される。こうして、瞬間的なノイズ成分の急増に伴う絶縁抵抗成分IgRの急増は有効に緩和されることとなり、監視者に不安定感を与えない。   Thereafter, the process proceeds in the same manner. In this example, since the fifth insulation resistance component IgR5 exceeds a predetermined increment limit θ with respect to the fourth resistance component IgR4, the insulation resistance component IgR5 has a predetermined magnification (for example, 0.6 to 0). .8) is multiplied to be converted into a new insulation resistance component IgR5 ′, and this value is displayed on the display unit 101. Similarly, since the eighth insulation resistance component IgR8 exceeds the predetermined increment limit θ, it is multiplied by a predetermined magnification to become a new insulation resistance component IgR8 ', and this value is displayed on the display unit 101. Thus, the sudden increase in the insulation resistance component IgR accompanying the instantaneous increase in the noise component is effectively mitigated, and the monitor is not unstable.

更に、時刻t2からのケースでは、第16番目の絶縁抵抗成分IgR16の生成後、続く各測定信号Mの絶縁抵抗成分IgR17〜IgR27については、途中のIgR22以外は、通常の絶縁劣化に伴い比較的緩やかに上昇している。この場合は、何れも所定の増分限界θを超えないので、重み付け処理を受けることもなくそのままの抵抗値で表示される。そして、この例では所定閾値TH3を超えた後の、例えば4回目(IgR27)の時点で漏電判定部97により絶縁不良ALMが検出され、その旨の「警報」が警報出力部103に出力される。また、負荷2等における急な短絡事故に伴い、得られた各絶縁抵抗成分IgRが一様かつ急峻に上昇したような場合は、僅かな時間遅れはあるものの、実際上速やかに且つ確実に絶縁不良ALMが検出される。   Furthermore, in the case from the time t2, after the generation of the 16th insulation resistance component IgR16, the insulation resistance components IgR17 to IgR27 of each measurement signal M that follows are comparatively caused by normal insulation deterioration except for IgR22 on the way. It is rising moderately. In this case, since neither of them exceeds the predetermined increment limit θ, the resistance value is displayed as it is without being subjected to weighting processing. In this example, after the predetermined threshold value TH3 is exceeded, for example, at the fourth time (IgR27), the leakage determination unit 97 detects the insulation failure ALM, and an “alarm” to that effect is output to the alarm output unit 103. . In addition, in the case where each obtained insulation resistance component IgR rises uniformly and steeply due to a sudden short circuit accident in the load 2 etc., although there is a slight time delay, it is practically promptly and reliably insulated. A defective ALM is detected.

なお、上記実施の形態では連続する基準信号8サイクル(0.4sec)毎に閾値範囲の判定を行ったが、これに限らない。閾値範囲の判定周期は任意に設定できる。また、上記実施の形態では一例の数値例を伴って各部の動作を具体的に説明したが、本発明がこれらの数値例に限定されないことは言うまでも無い。   In the above embodiment, the threshold range is determined every 8 consecutive reference signal cycles (0.4 sec). However, the present invention is not limited to this. The determination range of the threshold range can be arbitrarily set. In the above embodiment, the operation of each unit has been specifically described with an example of numerical values. However, it goes without saying that the present invention is not limited to these numerical examples.

実施の形態による絶縁監視装置のブロック図である。It is a block diagram of the insulation monitoring apparatus by embodiment. 実施の形態による演算処理部のブロック図である。It is a block diagram of the arithmetic processing part by embodiment. 実施の形態による累積加算判定部のフローチャートである。It is a flowchart of the accumulation addition determination part by embodiment. 実施の形態による累積加算判定部の動作説明図である。It is operation | movement explanatory drawing of the accumulation addition determination part by embodiment. 実施の形態による閾値更新部のフローチャートである。It is a flowchart of the threshold value update part by embodiment. 実施の形態による閾値更新部の動作説明図である。It is operation | movement explanatory drawing of the threshold value update part by embodiment. 実施の形態によるCR分離部の動作説明図である。It is operation | movement explanatory drawing of CR isolation | separation part by embodiment. 実施の形態による重み付け処理部の動作説明図である。It is operation | movement explanatory drawing of the weighting process part by embodiment. 従来技術を説明する図である。It is a figure explaining a prior art.

符号の説明Explanation of symbols

1 変圧器(受電変圧器)
2 負荷
3 第1の電路
4 B種接地線
5 第2の電路
10 絶縁監視装置
20 監視信号発生部
21 発振器(OSC)
22 増幅器
30 注入手段(重畳トランス:CT)
40 基準信号検出手段
41 商用成分除去部
42 バッファアンプ(BA)
43 バンドパスフィルタ(BPF)
44 差動増幅器(AMP)
45 スイッチト・キャパシタ・フィルタ(SCF)
50 検出手段(零相変流器:ZCT)
60 測定信号検出手段
61 ヘッドアンプ
62 ローパスフィルタ(LPF)
63 A/D変換器
70 同期信号生成部
80 抑圧信号生成部
90 演算処理部(MPU)
1 Transformer (Receiving transformer)
2 Load 3 1st electric circuit 4 B class grounding wire 5 2nd electric circuit 10 Insulation monitoring device 20 Monitoring signal generation part 21 Oscillator (OSC)
22 Amplifier 30 Injection means (superimposed transformer: CT)
40 Reference signal detection means 41 Commercial component removal unit 42 Buffer amplifier (BA)
43 Band pass filter (BPF)
44 Differential Amplifier (AMP)
45 Switched Capacitor Filter (SCF)
50 Detection means (Zero phase current transformer: ZCT)
60 Measurement signal detection means 61 Head amplifier 62 Low pass filter (LPF)
63 A / D converter 70 Synchronization signal generator 80 Suppression signal generator 90 Arithmetic processor (MPU)

Claims (6)

受電変圧器のB種接地線に対して商用周波数とは異なる周波数の監視信号を注入する監視信号注入手段と、
前記変圧器の低圧側電路と大地を介して前記B種接地線に環流する漏れ電流を検出する電流検出手段と、
前記検出された漏れ電流から商用周波数及びその高調波等の不要成分を除去して漏れ電流の監視信号成分に相当する測定信号を検出する測定信号検出手段と、
前記低圧側電路のD種接地点を基準とする前記B種接地線からの基準入力より前記注入された監視信号に相当する基準信号を検出する基準信号検出手段と、
前記基準信号の所定位相に同期し、該基準信号mサイクル分ずつずらした各基準信号n(>m)サイクル分の測定信号を使用したDFT演算により該測定信号に含まれる対地絶縁抵抗成分を順次抽出する抵抗成分抽出手段と、を備えることを特徴とする絶縁監視装置。
Monitoring signal injection means for injecting a monitoring signal having a frequency different from the commercial frequency into the B-type ground line of the power receiving transformer;
Current detecting means for detecting a leakage current circulating in the B-type ground line via the low-voltage side electric circuit and the ground of the transformer;
Measurement signal detection means for detecting a measurement signal corresponding to a monitoring signal component of the leakage current by removing unnecessary components such as a commercial frequency and its harmonics from the detected leakage current;
A reference signal detecting means for detecting a reference signal corresponding to the injected monitoring signal from a reference input from the B-type grounding line with respect to a D-type grounding point of the low-voltage side electric circuit;
A ground insulation resistance component included in the measurement signal is sequentially obtained by DFT calculation using the measurement signal for each reference signal n (> m) cycles that are shifted by m cycles of the reference signal in synchronization with a predetermined phase of the reference signal. An insulation monitoring device comprising: a resistance component extracting means for extracting.
前記基準信号の所定位相に同期し、該基準信号mサイクル分ずつずらした各基準信号nサイクル分の測定信号を使用したDFT演算により前記測定信号に含まれる対地静電容量成分を順次抽出する容量成分抽出手段と、該抽出した対地静電容量成分信号に基づき前記漏れ電流の監視信号成分に含まれる対地静電容量成分を打ち消すための抑圧信号を生成して前記電流検出手段の抑圧部に供給する抑圧信号生成手段とを備え、
前記抵抗成分抽出手段は、前記漏れ電流の監視信号成分に含まれる対地静電容量成分を抑圧された状態の測定信号に基づいて該測定信号に含まれる対地絶縁抵抗成分を抽出することを特徴とする請求項1記載の絶縁監視装置。
Capacitance for sequentially extracting ground capacitance components included in the measurement signal by DFT calculation using the measurement signals for n cycles of the reference signal that are shifted by m cycles of the reference signal in synchronization with the predetermined phase of the reference signal A component extraction unit and a suppression signal for canceling out the ground capacitance component included in the monitoring signal component of the leakage current based on the extracted ground capacitance component signal and supplying the suppression signal to the suppression unit of the current detection unit Suppression signal generation means for
The resistance component extraction unit extracts a ground insulation resistance component included in the measurement signal based on a measurement signal in a state where the ground capacitance component included in the monitoring signal component of the leakage current is suppressed. The insulation monitoring apparatus according to claim 1.
前記検出された測定信号を順次記憶すると共に、少なくとも1回のDFT演算で使用する基準信号nサイクル分の測定信号に対して基準信号mサイクル分の空き容量を加えた記憶容量を有し、該記憶容量を巡回して使用されるバッファメモリを備え、
前記抵抗成分抽出手段は、前記バッファメモリの測定信号を使用してDFT演算を行うことを特徴とする請求項1記載の絶縁監視装置。
The detected measurement signals are sequentially stored, and have a storage capacity obtained by adding a free capacity for m reference signal cycles to measurement signals for n reference signal cycles used in at least one DFT operation, It has a buffer memory that is used to cycle through the storage capacity,
The insulation monitoring apparatus according to claim 1, wherein the resistance component extraction unit performs DFT calculation using a measurement signal of the buffer memory.
前記基準信号mサイクル分ずつずらしたタイミングで発生する各対地絶縁抵抗成分信号を実時間で画面に表示する表示手段を備えることを特徴とする請求項1又は2記載の絶縁監視装置。   3. The insulation monitoring apparatus according to claim 1, further comprising display means for displaying each ground insulation resistance component signal generated at a timing shifted by the reference signal m cycles on a screen in real time. 前記基準信号検出手段は、前記B種接地線の基準入力から商用周波数成分信号を抽出するバンドパスフィルタと、前記B種接地線の基準入力から前記バンドパスフィルタで抽出した商用周波数成分信号を除去する商用成分除去手段と、該商用周波数成分信号を除去された基準入力から前記監視信号の周波数成分に相当する基準信号を抽出するフィルタ手段と、を備えることを特徴とする請求項1記載の絶縁監視装置。   The reference signal detection means removes a commercial frequency component signal extracted from the reference input of the type B ground line by a band pass filter and a commercial frequency component signal extracted by the band pass filter from the reference input of the type B ground line. 2. The insulation according to claim 1, further comprising: a commercial component removing unit configured to extract a reference signal corresponding to a frequency component of the monitoring signal from a reference input from which the commercial frequency component signal has been removed. Monitoring device. 前記検出した漏れ電流の測定信号を前記基準信号の1サイクル分に渡って累積加算する累積加算手段と、前記累積加算手段の累積加算結果が所定の閾値範囲を逸脱しているか否かを判定する判定手段とを備え、
前記抵抗成分抽出手段は、前記基準信号の所定位相に同期し、前記判定手段により所定の閾値範囲を逸脱しないと判定された基準信号を使用したDFT演算により該測定信号に含まれる対地絶縁抵抗成分を抽出することを特徴とする請求項1記載の絶縁監視装置。
A cumulative addition unit that cumulatively adds the measurement signal of the detected leakage current over one cycle of the reference signal, and determines whether or not the cumulative addition result of the cumulative addition unit deviates from a predetermined threshold range. Determination means,
The resistance component extraction unit is synchronized with a predetermined phase of the reference signal, and the ground insulation resistance component included in the measurement signal by DFT calculation using the reference signal determined not to deviate from the predetermined threshold range by the determination unit The insulation monitoring apparatus according to claim 1, wherein:
JP2008152865A 2008-06-11 2008-06-11 Insulation monitoring device Pending JP2009300158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008152865A JP2009300158A (en) 2008-06-11 2008-06-11 Insulation monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008152865A JP2009300158A (en) 2008-06-11 2008-06-11 Insulation monitoring device

Publications (1)

Publication Number Publication Date
JP2009300158A true JP2009300158A (en) 2009-12-24

Family

ID=41547226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008152865A Pending JP2009300158A (en) 2008-06-11 2008-06-11 Insulation monitoring device

Country Status (1)

Country Link
JP (1) JP2009300158A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300157A (en) * 2008-06-11 2009-12-24 Midori Anzen Co Ltd Insulation monitoring device
JP2010038786A (en) * 2008-08-06 2010-02-18 Midori Anzen Co Ltd Insulation monitoring device
JP2010038787A (en) * 2008-08-06 2010-02-18 Midori Anzen Co Ltd Insulation monitoring device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6410392A (en) * 1987-07-03 1989-01-13 Yokogawa Electric Corp Time series data collecting device
JPH03231162A (en) * 1990-02-06 1991-10-15 Fujitsu Ltd Apparatus for measuring resistance value
JPH08285903A (en) * 1995-02-13 1996-11-01 Mitsubishi Electric Corp Insulation monitoring system
JPH1078461A (en) * 1996-09-02 1998-03-24 Toyo Commun Equip Co Ltd Measuring method for insulation resistance
JP2000028671A (en) * 1998-07-07 2000-01-28 Toyo Commun Equip Co Ltd Insulation detector
JP2004229417A (en) * 2003-01-23 2004-08-12 Mitsubishi Electric Corp Controlling equipment of electric vehicle
JP2005181148A (en) * 2003-12-19 2005-07-07 Midori Anzen Co Ltd Insulation monitoring device
JP2009300157A (en) * 2008-06-11 2009-12-24 Midori Anzen Co Ltd Insulation monitoring device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6410392A (en) * 1987-07-03 1989-01-13 Yokogawa Electric Corp Time series data collecting device
JPH03231162A (en) * 1990-02-06 1991-10-15 Fujitsu Ltd Apparatus for measuring resistance value
JPH08285903A (en) * 1995-02-13 1996-11-01 Mitsubishi Electric Corp Insulation monitoring system
JPH1078461A (en) * 1996-09-02 1998-03-24 Toyo Commun Equip Co Ltd Measuring method for insulation resistance
JP2000028671A (en) * 1998-07-07 2000-01-28 Toyo Commun Equip Co Ltd Insulation detector
JP2004229417A (en) * 2003-01-23 2004-08-12 Mitsubishi Electric Corp Controlling equipment of electric vehicle
JP2005181148A (en) * 2003-12-19 2005-07-07 Midori Anzen Co Ltd Insulation monitoring device
JP2009300157A (en) * 2008-06-11 2009-12-24 Midori Anzen Co Ltd Insulation monitoring device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300157A (en) * 2008-06-11 2009-12-24 Midori Anzen Co Ltd Insulation monitoring device
JP2010038786A (en) * 2008-08-06 2010-02-18 Midori Anzen Co Ltd Insulation monitoring device
JP2010038787A (en) * 2008-08-06 2010-02-18 Midori Anzen Co Ltd Insulation monitoring device

Similar Documents

Publication Publication Date Title
JP2010038787A (en) Insulation monitoring device
JP5308724B2 (en) Insulation monitoring device
JP2011033538A (en) Method and apparatus for diagnosis of partial discharge in gas insulated switchgear
WO2017218042A1 (en) Apparatus for and method of providing measurements of uncertainty in respect of a transfer function
JP2010281673A (en) System and method for measuring partial discharge voltage
JP2013036884A (en) Insulation monitoring method and insulation monitor
JP5314354B2 (en) Insulation monitoring device
JP2009300158A (en) Insulation monitoring device
JP2010066162A (en) Insulation monitoring apparatus
JP6778514B2 (en) Impedance measuring device and impedance measuring method
KR100920153B1 (en) Measurement Device of leakage current ohmic value on power line And Method Thereof
JP2008157838A (en) Insulation monitoring device
JP7130918B2 (en) Apparatus, system and method for detecting partial discharge
JP4421762B2 (en) Ground resistance measuring device
JP6126372B2 (en) Ground resistance meter, ground resistance measurement method, and program
JP7009025B2 (en) Voltage measuring device, voltage measuring method
JP2000193708A (en) Method and apparatus for monitoring of insulation of floating electric circuit
JP2011149959A (en) Insulation monitoring device
JP2017083379A (en) Impedance measuring device and impedance measuring method
KR101075484B1 (en) Measurement Device of leakage current ohmic value on power line And Method Thereof
JP7276009B2 (en) DISCHARGE DETECTION DEVICE AND DISCHARGE DETECTION METHOD
KR101918559B1 (en) Method and apparatus for measuring power using maximum instantaneous power and minimum instantaneous power
JP6749625B1 (en) Withstanding voltage test equipment
JP6341812B2 (en) Measuring apparatus and signal type discrimination method
JP4998706B2 (en) Transformer internal abnormality diagnosis method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130618