JPH08285903A - Insulation monitoring system - Google Patents

Insulation monitoring system

Info

Publication number
JPH08285903A
JPH08285903A JP8019852A JP1985296A JPH08285903A JP H08285903 A JPH08285903 A JP H08285903A JP 8019852 A JP8019852 A JP 8019852A JP 1985296 A JP1985296 A JP 1985296A JP H08285903 A JPH08285903 A JP H08285903A
Authority
JP
Japan
Prior art keywords
leakage current
current
frequency
monitoring system
insulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8019852A
Other languages
Japanese (ja)
Other versions
JP3355905B2 (en
Inventor
Toshihiko Miyauchi
俊彦 宮内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP01985296A priority Critical patent/JP3355905B2/en
Publication of JPH08285903A publication Critical patent/JPH08285903A/en
Application granted granted Critical
Publication of JP3355905B2 publication Critical patent/JP3355905B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To monitor the insulation deteriorated state by superimposing the measured voltage having different frequency from that of a power source in a circuit to be monitored, detecting the leakage current effective component of the same phase as that of the measured voltage from its unbalanced current, integrating it to a digital signal, and obtaining the insulation resistance. CONSTITUTION: The measured voltage Va of a single-phase AC is superposed by measured voltage superimposing means 50 connected in series with the ground line 5a of a power transformer 2. The leakage current to become an unbalanced component flowing from an equipment or a wiring to the ground flowing to the circuit to be monitored and the leakage current to become an unbalance component by a voltage Va are detected by unbalanced current detecting means 16. The means 16 detects the superimposed current of the current unbalanced component by the three-phase power source voltage and the leakage current Ig1 corresponding to the voltage Va , and the insulation resistance R1 of the simultaneously three phases indicating insulation deteriorated state is obtained by R1=Va /Ig1. Thus, the leakage current and the insulation resistance of the hot-line state can be monitored real time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、電源から給電さ
れる電気回路の絶縁劣化状態を、電気回路を運転停止す
ることなく監視する絶縁監視システムに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulation monitoring system for monitoring the insulation deterioration state of an electric circuit fed from a power source without stopping the operation of the electric circuit.

【0002】[0002]

【従来の技術】電源から給電される電気回路の絶縁劣化
状態を診断する従来の絶縁監視システムは、例えば図1
1に示すように電気回路を電源から切り離して絶縁抵抗
を測定して診断する方法が採られていた。図11におい
て、1は高電圧系統、2は電源変圧器、3は低電圧系統
主回路、4は低電圧系統主回路3を切り離す主回路開閉
器、5は低電圧系統主回路3を接地する接地抵抗であ
り、上記電源変圧器2の1線に接地導体5aを介して接
続されている。10は上記低電圧系統主回路3に接続さ
れた第1の負荷回路、11はこの負荷回路10を開閉す
る負荷回路開閉器、12は負荷回路10を開閉制御する
コンタクタ、13は負荷回路配線、14は例えば電動機
などの負荷、15は負荷回路10を接地する接地抵抗で
あり、負荷回路の1線に接地導体15aを介して接続さ
れている。16は負荷回路10の不平衡電流を検出する
例えば零相変流器からなる不平衡電流検出手段、8は電
動機などの負荷14を保護する回路保護装置である。2
0は低電圧系統主回路3に接続された第2の負荷回路、
30は第3の負荷回路であり、上記第1の負荷回路10
と同様に構成されている。
2. Description of the Related Art A conventional insulation monitoring system for diagnosing an insulation deterioration state of an electric circuit fed from a power source is shown in FIG.
As shown in FIG. 1, a method of disconnecting an electric circuit from a power source and measuring an insulation resistance to make a diagnosis has been adopted. In FIG. 11, 1 is a high voltage system, 2 is a power transformer, 3 is a low voltage system main circuit, 4 is a main circuit switch that disconnects the low voltage system main circuit 3, and 5 is a low voltage system main circuit 3 that is grounded. It is a grounding resistance and is connected to one wire of the power transformer 2 through a grounding conductor 5a. Reference numeral 10 is a first load circuit connected to the low-voltage system main circuit 3, 11 is a load circuit switch that opens and closes the load circuit 10, 12 is a contactor that controls opening and closing of the load circuit 10, 13 is load circuit wiring, Reference numeral 14 is a load such as an electric motor, and 15 is a ground resistance for grounding the load circuit 10, which is connected to one line of the load circuit via a ground conductor 15a. Reference numeral 16 is an unbalanced current detecting means for detecting an unbalanced current of the load circuit 10, which is, for example, a zero-phase current transformer, and 8 is a circuit protection device for protecting the load 14 such as an electric motor. Two
0 is the second load circuit connected to the low-voltage system main circuit 3,
Reference numeral 30 denotes a third load circuit, which is the first load circuit 10 described above.
Is configured similarly to.

【0003】電気回路の低電圧系統の絶縁劣化診断を行
う場合、低電圧系統主回路3と、負荷14を含む負荷回
路配線13とを区別して絶縁抵抗を測定することが必要
である、先ず負荷回路配線13の絶縁劣化を診断する場
合は、主回路開閉器4、負荷回路開閉器11、および負
荷回路10のコンタクタ12を開路して、低電圧系統主
回路3と負荷回路配線13を切り離す。そして切り離さ
れた負荷回路配線13の3相を一括して絶縁抵抗計91
により大地との間の絶縁抵抗を測定し絶縁劣化の診断を
行う。第2の負荷回路20、第3の負荷回路30につい
ても同様に絶縁抵抗を測定して絶縁劣化が診断される。
次に低電圧系統主回路3の絶縁劣化を診断する場合は、
負荷回路10,20,30の各負荷回路開閉器11を開
路し、低電圧系統主回路3の3相を一括して絶縁抵抗計
92により大地との間の絶縁抵抗を測定し、絶縁劣化の
診断を行う。
When diagnosing the insulation deterioration of the low voltage system of the electric circuit, it is necessary to distinguish the low voltage system main circuit 3 from the load circuit wiring 13 including the load 14 to measure the insulation resistance. When diagnosing insulation deterioration of the circuit wiring 13, the main circuit switch 4, the load circuit switch 11, and the contactor 12 of the load circuit 10 are opened to disconnect the low voltage system main circuit 3 and the load circuit wiring 13. Then, the insulation resistance tester 91 collectively collects the separated three phases of the load circuit wiring 13.
Insulation deterioration is diagnosed by measuring the insulation resistance with the ground. Similarly, the insulation resistance of the second load circuit 20 and the third load circuit 30 is also measured to diagnose insulation deterioration.
Next, when diagnosing the insulation deterioration of the low-voltage system main circuit 3,
The load circuit switches 11 of the load circuits 10, 20, 30 are opened, and the insulation resistance between the three phases of the low-voltage system main circuit 3 is measured together with the insulation resistance meter 92 to confirm that insulation deterioration has not occurred. Make a diagnosis.

【0004】[0004]

【発明が解決しようとする課題】従来の絶縁監視システ
ムは上記のように各開閉器を開路して被監視電気回路を
系統から切り離した後絶縁抵抗を測定するものであるた
め、多大の労力と経験を必要とし、加えて測定後の配線
ミスの心配もある。また、連続運転プラントなどにおい
てはプラントを止めることができず、1〜2年毎の定期
検査を待つしかないので長期間絶縁劣化診断ができない
という問題もある。
Since the conventional insulation monitoring system is to measure the insulation resistance after opening each switch as described above and disconnecting the monitored electric circuit from the system, a great deal of labor and labor is required. It requires experience, and there is also the risk of wiring mistakes after measurement. Further, in a continuously operating plant or the like, the plant cannot be stopped, and since there is no choice but to wait for a periodic inspection every 1 to 2 years, there is a problem that insulation deterioration diagnosis cannot be performed for a long period of time.

【0005】この発明は、上記問題点を解決するために
なされたものであり、被監視電気回路を停止することな
く、常時絶縁抵抗を測定し、絶縁劣化状況をリアルタイ
ムに把握した絶縁劣化診断が行える絶縁監視システムを
提供することを目的とする
The present invention has been made in order to solve the above-mentioned problems, and it is possible to perform insulation deterioration diagnosis in which the insulation resistance is constantly measured and the insulation deterioration state is grasped in real time without stopping the monitored electric circuit. The purpose is to provide an insulation monitoring system that can perform

【0006】[0006]

【課題を解決するための手段】この発明の請求項1に係
る絶縁監視システムは、電源から給電される被監視電気
回路に接地手段を介して電源周波数とは異なる周波数の
単相交流の計測電圧を重畳し、被監視電気回路に設けた
不平衡電流検出手段により検出された不平衡電流から漏
洩電流検出手段により計測電圧と同一周波数の成分で、
かつ計測電圧と同一位相である漏洩電流のうちの有効成
分を求め、この漏洩電流有効成分を積分するとともに漏
洩電流デジタル信号に変換して監視制御手段に伝送し、
監視制御手段において漏洩電流デジタル信号に基づいて
絶縁抵抗を求めて被監視電気回路の絶縁劣化状況を監視
し、制御するものである。
According to a first aspect of the present invention, there is provided an insulation monitoring system in which an electric voltage to be monitored is supplied from a power source through a grounding means through a grounding means to measure a single-phase AC voltage having a frequency different from a power source frequency. Is superimposed, and from the unbalanced current detected by the unbalanced current detection means provided in the monitored electric circuit, the component of the same frequency as the measured voltage by the leakage current detection means,
And the effective component of the leakage current having the same phase as the measured voltage is obtained, and this effective component of the leakage current is integrated and converted into a leakage current digital signal and transmitted to the monitoring control means,
The monitoring control means obtains the insulation resistance based on the leakage current digital signal to monitor and control the insulation deterioration state of the monitored electric circuit.

【0007】この発明の請求項2に係る絶縁監視システ
ムは、請求項1に記載の絶縁監視システムの漏洩電流有
効成分から計測電圧と同一周波数の成分を検出し、計測
電圧に同期した信号により同期検波して検出するもので
ある。
An insulation monitoring system according to a second aspect of the present invention detects a component having the same frequency as the measurement voltage from the leakage current effective component of the insulation monitoring system according to the first aspect, and synchronizes with a signal synchronized with the measurement voltage. It is detected and detected.

【0008】この発明の請求項3に係る絶縁監視システ
ムは、請求項1または請求項2に記載の絶縁監視システ
ムの計測電圧の周波数を電源周波数よりも低い周波数と
したものである。
According to a third aspect of the present invention, the insulation monitoring system according to the first or second aspect of the invention has a frequency of the measured voltage that is lower than the power supply frequency.

【0009】この発明の請求項4に係る絶縁監視システ
ムは、請求項1または請求項2に記載の絶縁監視システ
ムの計測電圧の周波数を電源周波数よりも高い150〜
500Hzの間の任意の周波数としたものである。
An insulation monitoring system according to a fourth aspect of the present invention has a frequency of a measured voltage of the insulation monitoring system according to the first or second aspect of the invention, which is higher than the power supply frequency by 150 to 150.
It is an arbitrary frequency between 500 Hz.

【0010】この発明の請求項5に係る絶縁監視システ
ムは、電源から給電される被監視電気回路に接地手段を
介して電源周波数とは異なる2種類の周波数の単相交流
の計測電圧を重畳し、被監視電気回路に設けた不平衡電
流検出手段により検出された不平衡電流から各計測電圧
と同一周波数の成分をそれぞれ検出し、この各計測電圧
に対応する不平衡電流から被監視電気回路の漏洩電流の
うちの有効成分を漏洩電流検出手段により演算して求
め、この漏洩電流有効成分を積分するとともに漏洩電流
デジタル信号に変換して監視制御手段に伝送し、監視制
御手段において漏洩電流デジタル信号に基づいて絶縁抵
抗を求めて被監視電気回路の絶縁劣化状況を監視し、制
御するものである。
An insulation monitoring system according to a fifth aspect of the present invention superimposes a single-phase alternating-current measurement voltage of two kinds of frequencies different from a power supply frequency on a monitored electric circuit fed from a power supply via a grounding means. , A component of the same frequency as each measured voltage is detected from the unbalanced current detected by the unbalanced current detection means provided in the monitored electric circuit, and the unbalanced current of the monitored electric circuit is detected from the unbalanced current corresponding to each measured voltage. The effective component of the leakage current is calculated by the leakage current detecting means, the effective component of the leakage current is integrated, converted into a leakage current digital signal and transmitted to the monitoring control means, and the leakage current digital signal is sent to the monitoring control means. The insulation resistance of the monitored electric circuit is monitored and controlled by obtaining the insulation resistance based on the above.

【0011】この発明の請求項6に係る絶縁監視システ
ムは、請求項5に記載の絶縁監視システムの2種類の計
測電圧の周波数を電源周波数よりも低い周波数としたも
のである。
According to a sixth aspect of the present invention, in the insulation monitoring system according to the fifth aspect, the frequencies of the two types of measurement voltages are set to frequencies lower than the power supply frequency.

【0012】この発明の請求項7に係る絶縁監視システ
ムは、請求項5に記載の絶縁監視システムの2種類の計
測電圧の周波数を電源周波数よりも高い150〜500
Hzの間の任意の周波数としたものである。
An insulation monitoring system according to a seventh aspect of the present invention has a frequency of two types of measurement voltages of the insulation monitoring system according to the fifth aspect, which is 150 to 500 higher than the power supply frequency.
It is an arbitrary frequency between Hz.

【0013】この発明の請求項8に係る絶縁監視システ
ムは、電源から給電される被監視電気回路に接地手段を
介して直流の計測電圧を重畳し、被監視電気回路に設け
た不平衡電流検出手段により検出された不平衡電流から
漏洩電流検出手段により電源周波数成分および高周波成
分を除去して漏洩電流を検出し、これを漏洩電流デジタ
ル信号に変換し、この信号を監視制御手段に伝送し、監
視制御手段において漏洩電流デジタル信号に基づいて絶
縁抵抗を求めて被監視電気回路の絶縁劣化状況を監視
し、制御するものである。
In the insulation monitoring system according to the eighth aspect of the present invention, the DC measurement voltage is superimposed on the monitored electric circuit fed from the power source through the grounding means, and the unbalanced current detection provided in the monitored electric circuit. The leakage current detection means removes the power supply frequency component and the high frequency component from the unbalanced current detected by the means to detect the leakage current, converts this to a leakage current digital signal, and transmits this signal to the monitoring control means, The monitoring control means obtains the insulation resistance based on the leakage current digital signal to monitor and control the insulation deterioration state of the monitored electric circuit.

【0014】この発明の請求項9に係る絶縁監視システ
ムは、請求項1乃至請求項8に記載の絶縁監視システム
の計測電圧重畳手段及び漏洩電流検出手段が、監視制御
手段により制御されるようにしたものである。
In the insulation monitoring system according to claim 9 of the present invention, the measurement voltage superposing means and the leakage current detecting means of the insulation monitoring system according to claims 1 to 8 are controlled by the monitoring control means. It was done.

【0015】この発明の請求項10に係る絶縁監視シス
テムは、請求項1乃至請求項9のいずれかに記載の絶縁
監視システムの監視制御手段に、一定時間毎の漏洩電流
値を記憶し、この漏洩電流値の変化を常時監視するとと
もに、予め設定された限界値を越えたとき警報を出す機
能を備えたものである。
An insulation monitoring system according to a tenth aspect of the present invention stores a leakage current value for every fixed time in the monitoring control means of the insulation monitoring system according to any one of the first to ninth aspects. It is equipped with a function of constantly monitoring the change in the leakage current value and issuing an alarm when the preset limit value is exceeded.

【0016】この発明の請求項11に係る絶縁監視シス
テムは、請求項1乃至請求項10のいずれかに記載の絶
縁監視システムの漏洩電流検出手段に、漏洩電流有効成
分を一定時間をもって平均化処理する機能を備えたもの
である。
According to an eleventh aspect of the present invention, the insulation monitoring system according to any one of the first to tenth aspects uses the leakage current detecting means of the insulation monitoring system for averaging the effective components of the leakage current for a certain period of time. It has a function to do.

【0017】この発明の請求項12に係る絶縁監視シス
テムは、請求項1乃至請求項11のいずれかに記載の絶
縁監視システムの監視制御手段に、漏洩電流有効成分を
グラフ化する機能を備えたものである。
According to a twelfth aspect of the present invention, the insulation monitoring system according to any one of the first to eleventh aspects is provided with a function of graphing the effective component of the leakage current in the monitoring control means of the insulation monitoring system. It is a thing.

【0018】この発明の請求項13に係る絶縁監視シス
テムは、請求項1乃至請求項12のいずれかに記載の絶
縁監視システムの監視制御手段に、漏洩電流有効成分と
漏洩電流無効成分とをあわせてグラフ化する機能を備え
たものである。
According to a thirteenth aspect of the present invention, there is provided an insulation monitoring system according to any one of the first to twelfth aspects, wherein the insulation control system monitoring control means has a leakage current effective component and a leakage current reactive component. It is equipped with a function to make a graph.

【0019】各発明の作用について以下に説明する。請
求項1における絶縁監視システムは、電源から給電され
る被監視電気回路に、電源周波数とは異なる周波数の単
相交流の計測電圧を重畳し、不平衡電流検出手段により
検出された不平衡電流から計測電圧と同一周波数の成分
で、かつ計測電圧と同一位相である漏洩電流のうちの有
効成分を漏洩電流検出手段により検出し、この漏洩電流
有効成分を積分して漏洩電流デジタル信号に変換し、こ
れを監視制御手段に伝送し、監視制御手段において漏洩
電流デジタル信号に基づいて絶縁抵抗を求めて被監視電
気回路の絶縁劣化状況を監視し、制御するようにしたの
で、正確な漏洩電流が監視制御手段に伝送され、リアル
タイムに被監視電気回路の絶縁劣化状況を監視すること
ができる。
The operation of each invention will be described below. The insulation monitoring system according to claim 1 superimposes a measurement voltage of a single-phase alternating current having a frequency different from a power supply frequency on a monitored electric circuit fed from a power source, and detects the unbalanced current detected by the unbalanced current detecting means. The component of the same frequency as the measured voltage, and the effective component of the leakage current having the same phase as the measured voltage is detected by the leakage current detection means, and this leakage current effective component is integrated and converted into a leakage current digital signal, This is transmitted to the monitoring control means, and the monitoring control means obtains the insulation resistance based on the leakage current digital signal to monitor and control the insulation deterioration state of the monitored electric circuit, so that the accurate leakage current can be monitored. It is transmitted to the control means, and the insulation deterioration status of the monitored electric circuit can be monitored in real time.

【0020】この発明の請求項2に係る絶縁監視システ
ムは、請求項1に記載の絶縁監視システムにおいて計測
電圧と同一周波数の成分を検出し、計測電圧に同期した
信号により同期検波するので漏洩電流有効成分の検出精
度が高くなる。
The insulation monitoring system according to a second aspect of the present invention detects a component having the same frequency as the measurement voltage in the insulation monitoring system according to the first aspect, and synchronously detects the component with a signal synchronized with the measurement voltage. The detection accuracy of the active ingredient is increased.

【0021】この発明の請求項3に係る絶縁監視システ
ムは、請求項1または請求項2に記載の絶縁監視システ
ムにおいて、計測電圧の周波数を電源周波数よりも低い
周波数としたので、被監視電気回路に生じる高周波成分
の影響が少ない状態で漏洩電流が検出できる。
An insulation monitoring system according to a third aspect of the present invention is the insulation monitoring system according to the first or second aspect, wherein the frequency of the measured voltage is set to a frequency lower than the power supply frequency, and thus the monitored electric circuit. The leakage current can be detected in a state in which the influence of the high frequency component generated in is small.

【0022】この発明の請求項4における絶縁監視シス
テムは、請求項1また請求項2に記載の絶縁監視システ
ムにおいて、計測電圧の周波数を電源周波数よりも高い
150〜500Hzとしたので、インバータ制御される
被監視電気回路においても正確な漏洩電流が検出され、
リアルタイムに絶縁劣化状況を監視することができる。
An insulation monitoring system according to a fourth aspect of the present invention is an inverter monitoring system, since the frequency of the measurement voltage is 150 to 500 Hz higher than the power supply frequency in the insulation monitoring system according to the first or second aspect. Accurate leakage current is detected even in the monitored electric circuit,
Insulation deterioration status can be monitored in real time.

【0023】この発明の請求項5における絶縁監視シス
テムは、電源から給電される被監視電気回路に、電源周
波数とは異なる2種類の周波数の単相交流の計測電圧を
重畳し、不平衡電流検出手段により検出された不平衡電
流から各計測電圧と同一周波数の成分をれぞれ検出し、
この各計測電圧に対応する不平衡電流から被監視電気回
路の漏洩電流のうち有効成分を漏洩電流検出手段により
演算して求め、この漏洩電流有効成分を積分して漏洩電
流デジタル信号に変換し、これを監視制御手段に伝送
し、監視制御手段において漏洩電流デジタル信号に基づ
いて絶縁抵抗を求めて被監視電気回路の絶縁劣化状況を
監視し、制御するようにしたので、計測電圧に同期した
信号による同期検波をするまでもなく漏洩電流有効成分
が検出され、簡単な演算により絶縁抵抗を求めることが
できる。
In the insulation monitoring system according to the fifth aspect of the present invention, the unbalanced current detection is performed by superposing the measurement voltage of the single-phase AC having two kinds of frequencies different from the power supply frequency on the monitored electric circuit fed from the power supply. Each component of the same frequency as each measured voltage is detected from the unbalanced current detected by the means,
From the unbalanced current corresponding to each measured voltage, the effective component of the leakage current of the monitored electric circuit is calculated by the leakage current detecting means, and this leakage current effective component is integrated and converted into a leakage current digital signal, This is transmitted to the monitoring control means, and the monitoring control means obtains the insulation resistance based on the leakage current digital signal to monitor and control the insulation deterioration status of the monitored electric circuit. It is possible to detect the effective component of the leakage current without performing the synchronous detection by and to obtain the insulation resistance by a simple calculation.

【0024】この発明の請求項6における絶縁監視シス
テムは、請求項5に記載の絶縁監視システムにおいて2
種類の計測電圧の周波数を電源周波数よりも低い周波数
としたので、被監視電気回路に生じる高周波成分の影響
が少ない状態となり、より正確な漏洩電流が検出でき
る。
An insulation monitoring system according to a sixth aspect of the present invention is the insulation monitoring system according to the fifth aspect.
Since the frequency of each kind of measurement voltage is set to be lower than the power supply frequency, the influence of the high frequency component generated in the monitored electric circuit is reduced, and more accurate leakage current can be detected.

【0025】この発明の請求項7における絶縁監視シス
テムは、請求項5に記載の絶縁監視システムにおいて2
種類の計測電圧の周波数を電源周波数よりも高い150
〜500Hzの間の任意の周波数としたので、インバー
タ制御される被監視電気回路においても、正確な漏洩電
流を検出することができる。
The insulation monitoring system according to a seventh aspect of the present invention is the same as the insulation monitoring system according to the fifth aspect.
The frequency of the measured voltage of each type is higher than the power frequency.
Since the frequency is set to an arbitrary value between ˜500 Hz, the leak current can be accurately detected even in the inverter-controlled monitored electric circuit.

【0026】この発明の請求項8における絶縁監視シス
テムは、電源から給電される被監視電気回路に直流の計
測電圧を重畳し、不平衡電流手段により検出した不平衡
電流から漏洩電流検出手段により電源周波数成分および
高周波成分を除去して漏洩電流を検出し、これを漏洩電
流デジタル信号に変換し、この漏洩電流デジタル信号を
監視制御手段に伝送し、監視制御手段において漏洩電流
デジタル信号に基づいて絶縁抵抗を求めて被監視電気回
路の絶縁劣化状況を監視し、制御するようにしたので、
正確な漏洩電流が監視制御手段に伝送され、リアルタイ
ムに負荷回路の絶縁劣化状況を監視することができる。
In the insulation monitoring system according to claim 8 of the present invention, a DC measurement voltage is superimposed on the monitored electric circuit fed from the power source, and the leakage current detecting means supplies the power to the unbalanced current detected by the unbalanced current means. Leakage current is detected by removing the frequency component and high frequency component, this is converted into a leakage current digital signal, this leakage current digital signal is transmitted to the monitoring control means, and the monitoring control means insulates based on the leakage current digital signal. Since the resistance deterioration is sought to monitor and control the insulation deterioration status of the monitored electric circuit,
Accurate leakage current is transmitted to the monitoring control means, and the insulation deterioration status of the load circuit can be monitored in real time.

【0027】この発明の請求項9における絶縁監視シス
テムは、請求項1乃至請求項8のいずれかに記載の絶縁
監視システムにおいて計測電圧重畳手段及び漏洩電流検
出手段を、監視制御手段により制御するようにしたの
で、絶縁監視システムとして効率的な運用ができる。
An insulation monitoring system according to a ninth aspect of the present invention is such that the measurement voltage superposing means and the leakage current detecting means are controlled by the monitoring control means in the insulation monitoring system according to any one of the first to eighth aspects. Since it has been set, it can be operated efficiently as an insulation monitoring system.

【0028】この発明の請求項10に係る絶縁監視シス
テムは、請求項1乃至請求項9のいずれかに記載の絶縁
監視システムの監視制御手段に、一定期間毎の漏洩電流
値を記憶し、この漏洩電流値の変化を常時監視するとと
もに、予め設定された限界値を越えたとき警報を出す機
能を備えたので、リアルタイムに負荷回路の劣化状況を
監視することができる。
An insulation monitoring system according to a tenth aspect of the present invention stores the leakage current value for every fixed period in the monitoring control means of the insulation monitoring system according to any one of the first to ninth aspects. Since the change of the leakage current value is constantly monitored and the alarm is issued when the preset limit value is exceeded, the deterioration status of the load circuit can be monitored in real time.

【0029】この発明の請求項11に係る絶縁監視シス
テムは、請求項1乃至請求項10のいずれかに記載の絶
縁監視システムの漏洩電流検出手段に、漏洩電流有効成
分を一定時間をもって平均化処理する機能を備えたの
で、絶縁抵抗値のドリフトを除去した精度の高い絶縁劣
化状況を監視することができる。
In the insulation monitoring system according to claim 11 of the present invention, the leakage current detecting means of the insulation monitoring system according to any one of claims 1 to 10 averages the effective components of the leakage current for a certain period of time. Since it has a function to do so, it is possible to monitor the insulation deterioration state with high accuracy by removing the drift of the insulation resistance value.

【0030】この発明の請求項12に係る絶縁監視シス
テムは、請求項1乃至請求項11のいずれかに記載の絶
縁監視システムの監視制御手段に、漏洩電流有効成分を
グラフ化する機能を備えたので、絶縁劣化の進行状況を
正確に把握することができる。
According to a twelfth aspect of the present invention, the insulation monitoring system according to any one of the first to eleventh aspects is provided with a function of graphing the effective component of the leakage current in the monitoring control means of the insulation monitoring system. Therefore, it is possible to accurately grasp the progress of insulation deterioration.

【0031】この発明の請求項13に係る絶縁監視シス
テムは、請求項1乃至請求項12のいずれかに記載の絶
縁監視システムの監視制御手段に、漏洩電流有効成分と
漏洩電流無効成分とをあわせてグラフ化する機能を備え
たので、精度の高い絶縁劣化のトレンドを把握すること
ができる。
According to a thirteenth aspect of the present invention, there is provided an insulation monitoring system according to any one of the first to twelfth aspects, in which the effective component of the leakage current and the reactive component of the leakage current are combined with the monitoring control means of the insulation monitoring system. Since it is equipped with a function to graph it, it is possible to grasp the trend of insulation deterioration with high accuracy.

【0032】[0032]

【発明の実施の形態】以下、この発明の実施の形態につ
いて説明する。 実施の形態1.図1は、この発明の実施の一形態を示す
構成図である。図1において、1〜5、5a、10〜1
5、15a、16、20、30は図11に示す従来例と
同一または同一機能を有するものであるので説明は省略
する。6は負荷回路10、20、30が接続された低電
圧系統主回路3に設けられた不平衡電流を検出する例え
ば零相変流器からなる不平衡電流検出手段、18は第1
の負荷回路10を保護する回路保護装置でありその詳細
を図2に示す。50は電源周波数と異なる任意の周波数
の単相交流の計測電圧を重畳する計測電圧重畳手段、5
1は詳細を図3に示す計測電圧に同期した信号を発生す
る計測電圧同期信号発生手段、52は監視制御手段、5
8は不平衡電流検出手段6に接続された回路保護装置1
8と同一に構成された回路保護装置である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. Embodiment 1. FIG. 1 is a configuration diagram showing an embodiment of the present invention. In FIG. 1, 1-5, 5a, 10-1
5, 15a, 16, 20, and 30 are the same as or have the same functions as those of the conventional example shown in FIG. Reference numeral 6 is an unbalanced current detecting means, which is, for example, a zero-phase current transformer, for detecting an unbalanced current provided in the low voltage system main circuit 3 to which the load circuits 10, 20, 30 are connected, and 18 is a first
2 is a circuit protection device for protecting the load circuit 10 of FIG. Reference numeral 50 denotes a measurement voltage superimposing means for superimposing a measurement voltage of a single-phase alternating current having an arbitrary frequency different from the power supply frequency, 5
Reference numeral 1 is a measurement voltage synchronizing signal generating means for generating a signal in synchronization with the measurement voltage shown in detail in FIG.
8 is a circuit protection device 1 connected to the unbalanced current detection means 6
8 is a circuit protection device configured in the same manner.

【0033】計測電圧重畳手段50は、電源変圧器2の
接地導体5aに直列に接続され、電源周波数とは異なる
周波数の単相交流の計測電圧Vaを発生して、低電圧系
統主回路3、負荷回路10、20、30からなる被監視
電気回路に重畳する。計測電圧同期信号発生手段51
は、図3に示すように重畳した計測電圧Vaの周波数以
外の周波数成分を除去する不要信号除去手段51aと、
計測電圧の周期を信号とする計測電圧同期信号Igrs
を出力するゼロクロスコンパレータ51bとにより構成
されている。
The measurement voltage superimposing means 50 is connected in series to the ground conductor 5a of the power supply transformer 2, generates a single-phase AC measurement voltage Va of a frequency different from the power supply frequency, and outputs the low-voltage system main circuit 3, The load circuit 10, 20 and 30 are superposed on the monitored electric circuit. Measured voltage synchronization signal generation means 51
Is an unnecessary signal removing means 51a for removing frequency components other than the frequency of the measurement voltage Va superimposed as shown in FIG.
Measurement voltage synchronization signal Igrs having a cycle of the measurement voltage as a signal
And a zero-cross comparator 51b that outputs

【0034】計測電圧重畳手段50には、接地回路にC
T、PTなどの一方の巻線を直列に接続して他方の巻線
から計測電圧を加える方法、接地抵抗にコンデンサを介
して電流を流して計測電圧を重畳する方法などがある。
The measuring voltage superimposing means 50 has a C in the ground circuit.
There are a method of connecting one winding such as T and PT in series and applying a measurement voltage from the other winding, and a method of flowing a current through a ground resistance through a capacitor to superimpose the measurement voltage.

【0035】回路保護装置18は、図2に示すように、
不平衡電流検出手段16が検出した計測電圧Vaによる
電流を含む不平衡電流Iglから計測電圧Vaの周波数
以外の周波数成分を除去して計測電圧Vaに対応する電
流Iglaを検出する不要信号除去手段18aと、同期
信号伝送線61を通して受信した計測電圧同期信号発生
手段51からの計測電圧同期信号IgrsによりIgl
aを同期検波して漏洩電流Iglaのうち有効成分Ig
r1 を検出する同期検波手段18bと、漏洩電流有効成
分Igr1 を積分して漏洩電流有効成分Igr1 に比例
した直流信号に変換する積分手段18cと、漏洩電流有
効成分Igr1 に比例した直流信号を漏洩電流デジタル
信号に変換するとともに、これを予め設定された警報限
界値およびトリップ限界値と比較し、警報限界値を越え
たときには警報表示手段18fにより警報信号を出力さ
せ、トリップ限界値を越えた時にはトリップ信号を入出
力手段18gに出力する演算手段18dと、漏洩電流デ
ジタル信号を電流信号伝送線60を介して監視制御手段
52に出力する伝送子局18eとで構成されている。
The circuit protection device 18, as shown in FIG.
Unwanted signal removing means 18a for removing the frequency component other than the frequency of the measurement voltage Va from the unbalanced current Ig1 including the current by the measurement voltage Va detected by the unbalanced current detection means 16 and detecting the current Igla corresponding to the measurement voltage Va. And the measured voltage synchronization signal Igrs from the measured voltage synchronization signal generation means 51 received through the synchronization signal transmission line 61, Igl.
a is detected synchronously and the effective component Ig of the leakage current Igla is detected.
The synchronous detection means 18b for detecting r1, the integrating means 18c for integrating the leakage current effective component Igr1 and converting it into a DC signal proportional to the leakage current effective component Igr1, and the DC signal proportional to the leakage current effective component Igr1. While converting into a digital signal, this is compared with a preset alarm limit value and trip limit value, and when the alarm limit value is exceeded, an alarm signal is output by the alarm display means 18f, and when the trip limit value is exceeded, tripping is performed. It is composed of a computing means 18d for outputting a signal to the input / output means 18g and a transmission slave station 18e for outputting a leakage current digital signal to the monitoring control means 52 via the current signal transmission line 60.

【0036】警報表示手段18fには、蛍光表示管、E
L,CRTなどの発光により表示するものと、ブザー、
スピーカなどの音を出すものがある。
The alarm display means 18f includes a fluorescent display tube, E
L, CRT, etc. that display by light emission, buzzer,
Some speakers make sounds.

【0037】監視制御手段52は、被監視電気回路から
離れたところに位置する電気室などに設けられ、上記回
路保護装置18からの漏洩電流デジタル信号を伝送線6
0を通して受信する伝送親局52aと、漏洩電流デジタ
ル信号を記憶するとともに表示する機能と絶縁劣化特性
を出力する機能を備えた監視制御装置52bとからなっ
ている。
The monitoring control means 52 is provided in an electric room or the like located away from the monitored electric circuit, and the leakage current digital signal from the circuit protection device 18 is transmitted through the transmission line 6.
It is composed of a transmission master station 52a for receiving through 0, and a monitoring control device 52b having a function of storing and displaying a leakage current digital signal and a function of outputting insulation deterioration characteristics.

【0038】次に図4にしたがって動作について説明す
る。電源変圧器2の接地線5aに直列に接続された計測
電圧重畳手段50から、単相交流の計測電圧Vaが重畳
され、被監視電気回路には、三相各線に三相の電源電圧
に計測電圧Vaが重畳した電圧が課電される。被監視電
気回路には、電源からの三相電圧による電流と計測電圧
Vaによる電流とが重畳して流れる。この重畳電流には
三相電圧による三相が平衡した負荷電流と、被監視電気
回路に接続された機器および配線から大地に流れる不平
衡成分となる漏洩電流と、計測電圧Vaによる不平衡成
分となる漏洩電流とが含まれるが、この不平衡成分を不
平衡電流検出手段16により検出する。不平衡電流検出
手段16には三相平衡電流は検出されないので、三相の
電源電圧による電流の不平衡成分と、単相の計測電圧V
aに対応する漏洩電流とが重畳された電流として検出さ
れる。被監視電気回路の絶縁劣化状況を示す三相一括の
絶縁抵抗Rg1 は、計測電圧Vaによる漏洩電流Ig1
を検出し、Rg1 =Va/Ig1 の関係より求めること
ができる。
Next, the operation will be described with reference to FIG. The measurement voltage superimposing means 50 connected in series to the ground wire 5a of the power transformer 2 superimposes the measurement voltage Va of the single-phase alternating current, and the monitored electric circuit measures the three-phase power supply voltage on each of the three-phase lines. A voltage on which the voltage Va is superimposed is applied. In the monitored electric circuit, a current due to the three-phase voltage from the power source and a current due to the measurement voltage Va are superimposed and flow. The superimposed current includes a load current in which three phases are balanced by a three-phase voltage, a leakage current that is an unbalanced component that flows from the equipment and wiring connected to the monitored electric circuit to the ground, and an unbalanced component due to the measurement voltage Va. However, the unbalanced component is detected by the unbalanced current detecting means 16. Since the three-phase balanced current is not detected by the unbalanced current detecting means 16, the unbalanced component of the current due to the three-phase power supply voltage and the measured voltage V of the single phase.
The leakage current corresponding to a is detected as a superimposed current. The insulation resistance Rg1 of the three-phase batch indicating the insulation deterioration state of the monitored electric circuit is the leakage current Ig1 due to the measurement voltage Va.
And Rg1 = Va / Ig1.

【0039】不平衡電流検出手段16が検出した不平衡
電流から電源電圧と同一周波数の成分の電流および被監
視電気回路に発生しているノイズ雑音電流を不要信号除
去手段18aで取り除くことにより、計測電圧Vaに対
応する漏洩電流Iglaが得られる。この漏洩電流Ig
laはいうまでもなく第1の負荷回路10の大地静電容
量を介して流れる充電電流Igclと絶縁抵抗Rglを
介して流れる漏洩電流有効成分Igrlとの和となる
が、この漏洩電流Iglaを計測電圧Vaの位相に合わ
せて同期検波することにより、漏洩電流有効成分Igr
1 が求められる。この同期検波は計測電圧Vaをゼロク
ロスコンパレーター51b(図3参照)により方形波に
変換した計測電圧同期信号Igrsにより同期検波する
ことにより精度の高い漏洩電流有効成分が得られる。
Measurement is performed by removing unnecessary current removing means 18a from the unbalanced current detected by the unbalanced current detecting means 16 to remove the current of the component having the same frequency as the power supply voltage and the noise noise current generated in the monitored electric circuit. A leakage current Igla corresponding to the voltage Va is obtained. This leakage current Ig
Needless to say, la is the sum of the charging current Igcl flowing through the ground capacitance of the first load circuit 10 and the leakage current effective component Igrl flowing through the insulation resistance Rgl, and this leakage current Igla is measured. By performing synchronous detection in accordance with the phase of the voltage Va, the leakage current effective component Igr
1 is required. In this synchronous detection, a highly accurate leak current effective component is obtained by synchronously detecting the measurement voltage Va by the zero-cross comparator 51b (see FIG. 3) and converting the measurement voltage synchronization signal Igrs into a square wave.

【0040】漏洩電流有効成分Igr1 を積分手段18
cにより積分し、演算手段18dにてA/D変換して漏
洩電流有効成分Igr1 に比例したデジタル信号に変換
し、この信号を伝送子局18eから伝送線60を介して
監視制御手段52に伝送するとともに、予め設定してい
る値と比較し、この値を越えれば警報表示手段18fに
より警報表示する。また、漏洩電流有効成分Igr1 に
比例したデジタル信号が、例えば負荷14の運転ができ
ない設定値を越えると、入出力手段18gを介してコン
タクタ12の開放制御を行う。
The leak current effective component Igr1 is integrated by the integrating means 18
It is integrated by c and A / D converted by the calculating means 18d to be converted into a digital signal proportional to the leakage current effective component Igr1, and this signal is transmitted from the transmission slave station 18e to the monitoring control means 52 via the transmission line 60. At the same time, the value is compared with a preset value, and if this value is exceeded, the alarm display means 18f displays an alarm. When the digital signal proportional to the effective leakage current component Igr1 exceeds a set value at which the load 14 cannot be operated, the contactor 12 is opened via the input / output means 18g.

【0041】監視制御手段52は、漏洩電流有効成分I
gr1に比例したデジタル信号から絶縁抵抗を求め、測
定のつど記憶するとともに表示するものであり、絶縁劣
化状況をリアルタイムに監視することができる。また、
記憶データから絶縁劣化特性を出力することもできる。
なお上記説明は第1の負荷回路10の診断について述べ
たが、第2の負荷回路20、第3の負荷回路30につい
ても同様に診断できることが上記説明に準じて明らかで
あろう。また、低電圧系統主回路3を含む回路全体を一
括して診断する場合は回路保護装置18と同一の構成を
もつ回路保護装置58を用いて同様に行うことができ
る。
The monitoring control means 52 is configured to detect the leakage current effective component I
Insulation resistance is obtained from a digital signal proportional to gr1 and is stored and displayed each time measurement is performed, so that the insulation deterioration status can be monitored in real time. Also,
It is also possible to output the insulation deterioration characteristic from the stored data.
Although the above description has described the diagnosis of the first load circuit 10, it will be apparent according to the above description that the second load circuit 20 and the third load circuit 30 can be similarly diagnosed. Further, when diagnosing the entire circuit including the low-voltage system main circuit 3 in a lump, the circuit protection device 58 having the same configuration as the circuit protection device 18 can be used in the same manner.

【0042】このように構成された絶縁監視システム
は、被監視電気回路の漏洩電流がデジタル信号に変換さ
れて、常時監視制御手段52に入力され、しかも監視制
御手段52を現場である被監視電気回路から離れた電気
室に設けているので、広範な被監視電気回路を電気室に
おいて集中的に、しかもリアルタイムに負荷回路の絶縁
抵抗が監視できるものであり、定期的に負荷回路の絶縁
劣化特性を出力して以後の特性を容易に推定することが
できる。また、漏洩電流がデジタル信号に変換されて伝
送されるので、伝送による減衰の影響がなく正確な監視
ができる利点がある。ところで、上記の構成においては
説明の都合上計測電圧同期信号発生手段51を回路保護
装置18とは別に設けるものとしているが、計測電圧同
期信号発生手段51を回路保護装置18内に組み込んで
も同様に動作させることができる。
In the insulation monitoring system configured as described above, the leakage current of the monitored electric circuit is converted into a digital signal and continuously input to the monitoring control means 52, and the monitoring control means 52 is connected to the monitored electrical equipment on site. Since it is installed in the electrical room away from the circuit, it is possible to monitor the insulation resistance of the load circuit in real time in a concentrated manner in a wide range of monitored electrical circuits. Can be output to easily estimate the subsequent characteristics. Further, since the leakage current is converted into a digital signal and transmitted, there is an advantage that there is no influence of attenuation due to the transmission and accurate monitoring is possible. By the way, in the above configuration, the measurement voltage synchronization signal generating means 51 is provided separately from the circuit protection device 18 for the sake of convenience of description, but the measurement voltage synchronization signal generation means 51 may be incorporated in the circuit protection device 18 in the same manner. It can be operated.

【0043】また上記構成では、計測電圧の周波数を電
源電圧の周波数と異なる任意の周波数としたが、一般的
に負荷回路には、電源周波数よりも高い周波数のノイズ
電圧が多く発生するものであり、計測電圧の周波数を電
源電圧の周波数よりも高く設定するとノイズ電圧を完全
に除去することが困難となる。このことから、計測電圧
の周波数を電源電圧の周波数よりも低い周波数に選定す
ることにより、ノイズ電圧の除去が容易となり絶縁抵抗
の検出精度がより高くなる。
Further, in the above configuration, the frequency of the measurement voltage is set to an arbitrary frequency different from the frequency of the power supply voltage. However, in general, a lot of noise voltage having a frequency higher than the power supply frequency is generated in the load circuit. If the frequency of the measurement voltage is set higher than the frequency of the power supply voltage, it becomes difficult to completely remove the noise voltage. Therefore, by selecting the frequency of the measurement voltage to be lower than the frequency of the power supply voltage, the noise voltage can be easily removed and the detection accuracy of the insulation resistance becomes higher.

【0044】上記のように計測電圧の周波数は電源周波
数よりも低くするのが望ましい、不平衡電流検出手段
6、16として零相変流器が用いられる場合は、零相変
流器の感度が下がらない程度の周波数であること、また
計測電圧重畳手段50にCTを用いる場合は、周波数が
低いほどCTを大きくしなければならないなどの条件を
考えると10〜30Hz程度が実用的であるが、これに
限られるものではない
As described above, it is desirable that the frequency of the measured voltage is lower than the power supply frequency. When a zero-phase current transformer is used as the unbalanced current detecting means 6 and 16, the sensitivity of the zero-phase current transformer is high. A frequency of about 10 to 30 Hz is practical, considering that the frequency does not decrease, and if CT is used for the measurement voltage superimposing means 50, CT must be increased as the frequency is lower. It is not limited to this

【0045】上記構成では電源変圧器の負荷側巻線は三
角結線の一線を接地する場合について説明したが、負荷
側巻線が星形結線の時は中性点に接続された接地線に計
測電圧重畳手段を付加することにより同様に動作させる
ことができる。さらに上記説明では被監視電気回路が接
地系統である場合を例示したが、非接地系統であっても
計測電圧をGTP(ギャップ付電圧変成器)等により重
畳させることにより、同様に診断することができる。
In the above configuration, the load side winding of the power transformer is described as grounding one of the triangular connection wires. However, when the load side winding is star connection, the ground wire connected to the neutral point is measured. The same operation can be performed by adding a voltage superimposing means. Further, in the above description, the case where the monitored electric circuit is the ground system has been exemplified, but even in the non-ground system, the same diagnosis can be performed by superimposing the measured voltage by the GTP (voltage transformer with a gap) or the like. it can.

【0046】実施の形態2.実施の形態1では、計測電
圧Vaの周波数を電源電圧の周波数と異なる任意の周波
数とし、望ましくは電源電圧の周波数よりも低く設定す
ることにより漏洩電流の検出精度を高くできる例を示し
た。しかし負荷回路にインバータによって周波数制御さ
れる電動機などを含む場合には、インバータによる周波
数制御を行うため周波数の制御範囲が電源周波数よりも
低い場合が多く、高くても100Hz前後にとどまる場
合が多い。このような場合は計測電圧の周波数を電源周
波数より低い値に選択すると、負荷回路のノイズ電圧の
周波数と一致することがあり計測電圧の周波数のみを検
出するのが困難となるので、計測電圧の周波数を電源周
波数よりも高くする必要がある。
Embodiment 2. In the first embodiment, the frequency of the measured voltage Va is set to an arbitrary frequency different from the frequency of the power supply voltage, and preferably set to be lower than the frequency of the power supply voltage to increase the detection accuracy of the leakage current. However, when the load circuit includes an electric motor whose frequency is controlled by an inverter, the frequency control range is often lower than the power supply frequency because the frequency control is performed by the inverter, and the frequency control range is often around 100 Hz at the highest. In such a case, if the frequency of the measured voltage is selected to be lower than the power supply frequency, it may be the same as the frequency of the noise voltage of the load circuit, making it difficult to detect only the frequency of the measured voltage. The frequency needs to be higher than the power supply frequency.

【0047】一方、インバータにはキャリヤ周波数が存
在し、その周波数成分は600Hz〜10kHz程度の
基本波およびその高調波成分であるので、計測電圧の周
波数の上限を600Hz以下にする必要がある。また不
平衡電流検出手段である零相変流器の検出感度を考える
と500Hz以上は好ましくない。したがってインバー
タによって周波数制御される負荷を含む被監視電気回路
にあっては、計測電圧の周波数を150〜500Hzの
範囲の任意の周波数とするのがよく、特に200Hz前
後とするのが望ましい。この周波数を選択するとインバ
ータ制御の負荷回路においても漏洩電流の検出精度を確
保できる。回路の構成は図1に示す実施の形態1の場合
と同じ構成でよい。
On the other hand, since the inverter has a carrier frequency and its frequency components are the fundamental wave of about 600 Hz to 10 kHz and its harmonic components, the upper limit of the frequency of the measured voltage must be 600 Hz or less. Further, considering the detection sensitivity of the zero-phase current transformer which is the unbalanced current detection means, 500 Hz or higher is not preferable. Therefore, in the monitored electric circuit including the load whose frequency is controlled by the inverter, the frequency of the measured voltage is preferably set to an arbitrary frequency within the range of 150 to 500 Hz, and particularly preferably around 200 Hz. If this frequency is selected, the leakage current detection accuracy can be secured even in an inverter-controlled load circuit. The circuit configuration may be the same as that of the first embodiment shown in FIG.

【0048】実施の形態3.実施の形態1および実施の
形態2では、常時計測電圧Vaを重畳する構成とした
が、漏洩電流は常時測定する必要はなく、一定の間隔で
計測すればよいものであり、実施の形態3は計測電圧V
aを漏洩電流を計測する時のみ計測電圧重畳手段50お
よび回路保護装置18内の漏洩電流検出手段18a、1
8bを動作させるものであり、その構成図を図5に示
す。図5において53は監視制御手段であり、図1の監
視制御装置52bに計測電圧重畳手段50および回路保
護装置18内の漏洩電流検出手段18a、18bに対す
る動作指令信号を出力する機能を加えた監視制御装置5
3bと、この動作指令信号および漏洩電流有効成分の信
号を送受信する伝送親局53aとにより構成される。5
4は計測電圧重畳手段50に対する動作指令信号を受信
し計測電圧同期信号Igrsを送信する伝送子局、62
は上記動作指令信号および漏洩電流有効成分信号を伝送
するための信号伝送線である。
Embodiment 3. In the first and second embodiments, the configuration is such that the measurement voltage Va is always superimposed, but the leakage current does not have to be always measured, and it is sufficient to measure it at regular intervals. Measured voltage V
Only when measuring the leakage current of a, the measured voltage superimposing means 50 and the leakage current detecting means 18a, 1 in the circuit protection device 18
8b is operated, and its block diagram is shown in FIG. In FIG. 5, reference numeral 53 is a monitoring control means, which is a monitoring control apparatus 52b of FIG. 1 having a function of outputting operation command signals to the measured voltage superposition means 50 and the leakage current detection means 18a and 18b in the circuit protection device 18. Control device 5
3b and a transmission master station 53a for transmitting and receiving the operation command signal and the leak current effective component signal. 5
Reference numeral 4 denotes a transmission slave station that receives an operation command signal for the measurement voltage superimposing means 50 and transmits a measurement voltage synchronization signal Igrs, 62.
Is a signal transmission line for transmitting the operation command signal and the leakage current effective component signal.

【0049】この実施の形態では動作指令、計測指令お
よび漏洩電流有効成分信号が伝送線62によって伝送さ
れるので、信号発信位置から受信位置までの差によって
時間差が生じることがあるが、これに対しては、発信側
または受信側にて動作時刻の調整を行うことで対応でき
る。このように構成すると、絶縁監視システムとして、
監視制御手段53からの動作指令によって一定時間毎に
漏洩電流の計測が行われるので、システムとして効率的
に動作させることができる。
In this embodiment, since the operation command, the measurement command, and the leakage current effective component signal are transmitted by the transmission line 62, a time difference may occur due to the difference from the signal transmission position to the reception position. This can be dealt with by adjusting the operating time on the sending side or the receiving side. With this configuration, as an insulation monitoring system,
Since the leakage current is measured at regular intervals according to the operation command from the monitoring control means 53, the system can be operated efficiently.

【0050】実施の形態4.上記実施の形態1および実
施の形態2では計測電圧Vaの周波数が任意の周波数の
一種類であったが、この実施の形態4は、任意の2種類
の周波数f1 、f2を選択し、それぞれの計測電圧Va
は同一値とし、それぞれの計測電圧Vaに対応する不平
衡電流を検出し、この2つの不平衡電流値から漏洩電流
有効成分Igr1 を演算して求める構成のものである。
Fourth Embodiment In the above-described first and second embodiments, the frequency of the measured voltage Va is one kind of arbitrary frequency, but in the fourth embodiment, two kinds of frequencies f 1 and f 2 are selected, Each measured voltage Va
Has the same value, the unbalanced currents corresponding to the respective measured voltages Va are detected, and the effective leakage current component Igr1 is calculated from these two unbalanced current values.

【0051】図6は、任意の2種類の周波数f1 、f2
を選択して、漏洩電流有効成分Igr1 を検出する実施
の形態4の構成図である。1〜5、5a、6、10〜1
5、15a、20、30、50は実施の形態1の図1と
同一であり説明は省略する。19、59は2種類の周波
数f1 、f2 の計測電圧Vaによる漏洩電流有効成分I
gr1 を演算により求める漏洩電流検出手段を備えた回
路保護装置である。53は監視制御手段であり、伝送親
局53aと漏洩電流デジタル信号を記憶するとともに表
示する機能と絶縁劣化特性を出力する機能を備え、計測
電圧重畳手段50及び回路保護装置19、59内の漏洩
電流検出手段に動作指令信号を出す機能も備えた監視制
御装置53bとにより構成されている。54は信号伝送
線62を介して監視制御手段53からの動作指令信号を
受ける伝送子局である。
FIG. 6 shows two arbitrary frequencies f 1 and f 2.
FIG. 9 is a configuration diagram of a fourth embodiment in which the effective leakage current component Igr1 is detected by selecting (1). 1-5, 5a, 6, 10-1
5, 15a, 20, 30, and 50 are the same as those of the first embodiment shown in FIG. 19, 59 are the leakage current effective components I due to the measured voltages Va of two types of frequencies f 1 and f 2.
It is a circuit protection device provided with a leakage current detection means for calculating gr1 by calculation. Reference numeral 53 is a monitoring control means, which has a function of storing and displaying the leakage current digital signal with the transmission master station 53a and a function of outputting the insulation deterioration characteristic, and leaks in the measurement voltage superimposing means 50 and the circuit protection devices 19 and 59. The monitor control device 53b also has a function of outputting an operation command signal to the current detection means. Reference numeral 54 is a transmission slave station that receives an operation command signal from the monitor control means 53 via the signal transmission line 62.

【0052】次に動作について説明する。被監視電気回
路の絶縁抵抗をR、大地静電容量をC、計測電圧をVa
とすると、周波数f1 のときの電流Ig10、周波数f2
のときの電流Ig20は(式1)(式2)のようになる。 Ig10=Va /R+j2 πf1CVa ‥‥‥‥‥‥‥‥‥‥‥‥‥‥(式1) Ig20=Va /R+j2 πf2CVa ‥‥‥‥‥‥‥‥‥‥‥‥‥‥(式2) V a /R=Igrl であり周波数に関係しない。2 πf1CVa =I
gc1 、2πf2CVa =Igc2 とし、(式1)(式2)の絶対値
の関係は次の(式3)(式4)のようになる。 (Ig10)2=(Igrl)2+(Igc1)2‥‥‥‥‥‥‥‥‥‥‥‥‥‥(式3) (Ig20)2=(Igrl)2+(Igc2)2‥‥‥‥‥‥‥‥‥‥‥‥‥‥(式4) (式3)(式4)より(式5)の関係が得られる。 (Igrl)2=(Ig10)2-(Igc1)2 (Igrl)2=(Ig20)2-(Igc2)2 (Ig10)2-(Igc1)2=(Ig20)2-(Igc2)2‥‥‥‥‥‥‥‥‥‥(式5) 周波数f1 、f2 の計測電圧Vaが等しいときの被監視
電気回路の対地静電容量Cに流れる電流の関係は次の
(式6)の関係にある。 Igc1=Igc2 ・ f1/f2 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥(式6) (式6)の関係を(5式)に代入して整理すると(式
7)が得られる。 (Ig20)2-(Ig10)2=(Igc2)2{1-(f1/f2)2} (Igc2)2= {(Ig20)2-(Ig10)2 }/ {1-(f1/f2)2}‥‥‥(式7) (式7)を(式4)に代入して整理すると(式8)が得
られる。 (Igrl)2= {(Ig10)2-(Ig20)2(f1/f2)2 }/ {1-(f1/f2)2} Igrl=[{(Ig10)2-(Ig20)2(f1/f2)2 }/ {1-(f1/f2)2}]0.5‥(式8) (式8)の関係から漏洩電流有効成分Igrを求めるこ
とができる。
Next, the operation will be described. The insulation resistance of the monitored electric circuit is R, the ground capacitance is C, and the measurement voltage is V a
When the current Ig 10 when the frequency f 1, the frequency f 2
At that time, the current Ig 20 becomes as shown in (Equation 1) and (Equation 2). Ig 10 = V a / R + j2 πf 1 CV a ‥‥‥‥‥‥‥‥‥‥‥‥‥‥ (Equation 1) Ig 20 = V a / R + j2 πf 2 CV a ‥‥‥‥‥‥‥‥‥‥ ‥‥‥‥‥‥‥‥‥‥ (Equation 2) V a / R = Igrl and does not relate to the frequency. 2 πf 1 CV a = I
When gc 1 and 2πf 2 CV a = Igc 2 , the absolute values of (Equation 1) and (Equation 2) are expressed by the following (Equation 3) and (Equation 4). (Ig 10 ) 2 = (Igrl) 2 + (Igc 1 ) 2 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥ (Equation 3) (Ig 20 ) 2 = (Igrl) 2 + (Igc 2 ) 2 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥ (Equation 4) From (Equation 3) (Equation 4), the relationship of (Equation 5) is obtained. (Igrl) 2 = (Ig 10 ) 2- (Igc 1 ) 2 (Igrl) 2 = (Ig 20 ) 2- (Igc 2 ) 2 (Ig 10 ) 2- (Igc 1 ) 2 = (Ig 20 ) 2- (Igc 2 ) 2 ‥‥‥‥‥‥‥‥‥‥‥ (Equation 5) When the measured voltages Va at the frequencies f 1 and f 2 are the same, the relationship between the current flowing through the electrostatic capacitance C to the ground of the monitored electric circuit is as follows. (Formula 6) Igc 1 = Igc 2 · f 1 / f 2 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ (Equation 6) Substituting the relationship of (Equation 6) into (Equation 5) and rearranging ( Equation 7) is obtained. (Ig 20 ) 2- (Ig 10 ) 2 = (Igc 2 ) 2 {1- (f 1 / f 2 ) 2 } (Igc 2 ) 2 = {(Ig 20 ) 2- (Ig 10 ) 2 } / { 1- (f 1 / f 2 ) 2 } (Equation 7) Substituting (Equation 7) into (Equation 4) and rearranging yields (Equation 8). (Igrl) 2 = {(Ig10) 2- (Ig 20 ) 2 (f 1 / f 2 ) 2 } / {1- (f 1 / f 2 ) 2 } Igrl = [{(Ig10) 2- (Ig 20 ) 2 (f 1 / f 2 ) 2 } / {1- (f 1 / f 2 ) 2 }] 0.5 (Equation 8) The leakage current effective component Igr can be obtained from the relationship of (Equation 8).

【0053】この周波数の異なる2種類の計測電圧で漏
洩電流有効成分Igrlを検出するものである本実施の
形態によれば、実施の形態1の回路構成に比較して、計
測電圧同期信号発生手段51、不要信号除去手段18a
および同期検波手段18bが不要であり、回路構成が簡
単になる。
According to the present embodiment, in which the leak current effective component Igrl is detected by the two types of measurement voltages having different frequencies, the measurement voltage synchronizing signal generating means is different from the circuit configuration of the first embodiment. 51, unnecessary signal removing means 18a
Further, the synchronous detection means 18b is not required, and the circuit configuration becomes simple.

【0054】この構成においても、実施の形態3と同様
に、計測電圧重畳手段50及び回路保護装置19,59
内の漏洩電流検出手段を漏洩電流測定時のみに動作させ
るように構成すれば絶縁監視システムとして効率的に運
用できる。
Also in this configuration, similarly to the third embodiment, the measurement voltage superposing means 50 and the circuit protection devices 19, 59 are provided.
If the leakage current detecting means therein is configured to operate only when measuring the leakage current, the insulation monitoring system can be efficiently operated.

【0055】実施の形態5.図7は直流の計測電圧を重
畳するものである。図7において、1〜4、10〜1
5、15a、20、30は実施の形態1と同一であり説
明は省略する。70は直流の計測電圧Vdを重畳する計
測電圧重畳手段であり、図8に示すように接地導体75
に直列に接続された抵抗体70aの両端に直流電圧Vd
を加え直流電流を流して直流電圧を重畳する構成であ
る。71は負荷回路10に設けられた電流検出手段であ
り、交流、直流が重畳した電流を検出するものであり、
具体的にはDCCT、ホールCT等により構成される。
72は監視制御手段であり、伝送親局72aと、監視制
御装置72bとで構成されている。73は監視制御手段
72から送られる計測電圧重畳手段70に対する動作指
令信号を受信する伝送子局である。78は図9に詳細を
示す回路保護装置であり、電流検出手段71が検出した
電流から不要信号を除去して漏洩電流を検出する不要信
号除去手段78aと、この漏洩電流をデジタル信号に変
換し、予め設定された警報限界値およびトリップ限界値
と比較し、警報限界値を越えたときには警報信号を警報
表示手段78fに出力し、トリップ限界値を越えた時に
はトリップ制御信号を入出力手段78gに出力する演算
手段78dと、上記漏洩電流デジタル信号を上記監視制
御手段72に出力する伝送子局78eとにより構成され
ている。76は低電圧系統主回路3に設けられた電流検
出手段であり、上記電流検出手段71と同じ構成のも
の、また79は低電圧系統主回路3に設けられた回路保
護装置であり、上記回路保護装置78と同じ構成であ
る。
Embodiment 5. In FIG. 7, the DC measurement voltage is superimposed. In FIG. 7, 1-4, 10-1
Reference numerals 5, 15a, 20, and 30 are the same as those in the first embodiment, and a description thereof will be omitted. Reference numeral 70 denotes a measurement voltage superimposing means for superimposing the DC measurement voltage Vd, and as shown in FIG.
DC voltage Vd across the resistor 70a connected in series with the
Is added and a DC current is caused to flow to superimpose a DC voltage. Reference numeral 71 denotes a current detection means provided in the load circuit 10, which detects a current in which alternating current and direct current are superimposed,
Specifically, it is composed of DCCT, Hall CT and the like.
Reference numeral 72 denotes a monitor control means, which is composed of a transmission master station 72a and a monitor control device 72b. Reference numeral 73 is a transmission slave station that receives an operation command signal for the measurement voltage superimposing means 70 sent from the monitoring control means 72. Reference numeral 78 denotes a circuit protection device shown in detail in FIG. 9, which includes an unnecessary signal removing means 78a for removing an unnecessary signal from the current detected by the current detecting means 71 to detect a leakage current, and the leakage current converted into a digital signal. , Compares the preset alarm limit value and trip limit value, outputs an alarm signal to the alarm display means 78f when the alarm limit value is exceeded, and outputs a trip control signal to the input / output means 78g when the trip limit value is exceeded. It is composed of a computing means 78d for outputting and a transmission slave station 78e for outputting the leakage current digital signal to the monitoring control means 72. Reference numeral 76 is a current detection means provided in the low voltage system main circuit 3, which has the same configuration as the current detection means 71, and 79 is a circuit protection device provided in the low voltage system main circuit 3. It has the same configuration as the protection device 78.

【0056】なお図7では、電流検出手段71および回
路保護装置78を負荷回路10に設けた場合を示した
が、他の負荷回路20、30にも設けることにより、各
負荷回路毎の絶縁劣化状況を集中して監視することがで
きることはいうまでもなく、また低電圧系統主回路3に
設けた電流検出手段76および回路保護装置79を用い
れば各負荷回路を含む回路全体を一括して監視すること
ができる。
Although FIG. 7 shows the case where the current detection means 71 and the circuit protection device 78 are provided in the load circuit 10, the insulation deterioration of each load circuit is also provided by providing the other load circuits 20 and 30. Needless to say, it is possible to collectively monitor the situation, and if the current detection means 76 and the circuit protection device 79 provided in the low-voltage system main circuit 3 are used, the entire circuit including each load circuit can be collectively monitored. can do.

【0057】この実施の形態のように計測電圧を直流に
すれば、被監視電気回路の静電容量に関係がなくなり、
計測電圧による電流は漏洩電流のみであるから電流検出
手段が簡単になるという利点がある。
If the measured voltage is set to direct current as in this embodiment, it has nothing to do with the capacitance of the monitored electric circuit,
Since the current due to the measured voltage is only the leakage current, there is an advantage that the current detecting means can be simplified.

【0058】実施の形態6.上記各実施の形態において
は、リアルタイムに漏洩電流を計測、演算し絶縁監視を
行うものとしたが、一般的に電気回路の絶縁抵抗値は長
期的には徐々に低下していくが短期的にみればドリフト
特性を持っている。そこで漏洩電流検出手段に平均化処
理機能を付加し、漏洩電流データを一定時間をもって平
均化処理をすることにより検出精度を一層向上させるこ
とができる。平均化の時間は、被監視電気回路の構成、
環境、負荷の種類等の条件を考慮した任意の値を設定す
ればよい。
Sixth Embodiment In each of the above-described embodiments, the leakage current is measured and calculated in real time to perform insulation monitoring. Generally, the insulation resistance value of the electric circuit gradually decreases in the long term, but in the short term. If you look at it, it has drift characteristics. Therefore, by adding an averaging processing function to the leakage current detecting means and averaging the leakage current data over a fixed time, the detection accuracy can be further improved. The averaging time depends on the configuration of the monitored electrical circuit,
Any value may be set in consideration of conditions such as the environment and the type of load.

【0059】実施の形態7.また上記各実施の形態にお
いて、監視制御手段52、53、72にグラフ化処理機
能を付加し、漏洩電流検出手段から随時伝送されてくる
絶縁監視用データである漏洩電流をグラフ化することに
より、絶縁劣化の進行状況を正確に把握することができ
る。さらにグラフの時間軸を変えて表示する信号処理機
能を持たせることにより絶縁劣化の原因が特定できる。
その方法としては、劣化の原因として例えば、水の侵
入、自然劣化、突発事故等が考えられるが、予め記憶さ
れているこれら劣化原因のそれぞれの劣化曲線をもと
に、どの劣化パターン相当するかを類推すればよい。ま
た劣化部位の特定についても予め特定部位の劣化パター
ンを記憶しておけば特定部位を類推することが出来る。
さらに、それらの結果を印字出力することにより絶縁劣
化による部品更新の際、改めてどの部位かを診断する必
要がなくなり労力を削減することが出来る。
Embodiment 7. Further, in each of the above-described embodiments, by adding a graphing processing function to the monitoring control means 52, 53, 72 and graphing the leakage current which is the insulation monitoring data transmitted from the leakage current detection means at any time, It is possible to accurately grasp the progress of insulation deterioration. Furthermore, the cause of the insulation deterioration can be specified by providing a signal processing function of displaying the graph by changing the time axis of the graph.
As the method, the cause of deterioration may be, for example, water intrusion, natural deterioration, sudden accident, etc., but which deterioration pattern corresponds based on the respective deterioration curves of these deterioration causes stored in advance. Can be analogized. Further, regarding the specification of the deteriorated portion, if the deterioration pattern of the specified portion is stored in advance, the specified portion can be inferred.
Further, by printing out those results, it is not necessary to diagnose which part again when updating the parts due to insulation deterioration, and the labor can be reduced.

【0060】実施の形態8.さらに上記各実施の形態に
おいては、漏洩電流有効成分により絶縁劣化状況を診断
するものとしているが、漏洩電流無効成分を導出し、こ
のデータを漏洩電流有効成分をあわせてグラフ化するこ
とにより、さらに精度の高い絶縁劣化のトレンドが把握
でき、劣化原因の類推、劣化部位の特例を行うことがで
きる。
Embodiment 8. Furthermore, in each of the above-mentioned embodiments, the insulation deterioration status is diagnosed by the effective component of the leakage current, but the reactive component of the leakage current is derived, and this data is further graphed together with the effective component of the leakage current. Highly accurate trend of insulation deterioration can be grasped, analogy of the cause of deterioration, and special cases of deteriorated parts can be performed.

【0061】実施の形態9.上記各実施の形態におい
て、算出された零相電流有効成分Igrデータをもと
に、図10に示すように外部に設けられた環境状態を検
出する為の温度センサ80、湿度センサ81および気圧
センサ82の出力に基づいて補正を行う。
Ninth Embodiment In each of the above-described embodiments, a temperature sensor 80, a humidity sensor 81, and a barometric sensor for detecting an environmental condition provided outside as shown in FIG. 10 based on the calculated zero-phase current effective component Igr data. Correction is performed based on the output of 82.

【0062】このような、構成とすることにより、本実
施の形態では、温度や湿度あるいは気圧等環境条件によ
って変化する絶縁抵抗を考慮して、斯かる環境条件を各
センサで取りこみ、補正をかけるので、さらに検出精度
を向上できる。尚、各センサの出力を回路保護装置に入
力して補正をかけるようにしてもよい。
With such a configuration, in the present embodiment, each sensor takes in and corrects such environmental conditions in consideration of the insulation resistance that changes depending on the environmental conditions such as temperature, humidity or atmospheric pressure. Therefore, the detection accuracy can be further improved. The output of each sensor may be input to the circuit protection device for correction.

【0063】実施の形態10.実施の形態4において
は、任意の2種類の周波数を選択したが、低圧系統主回
路に、各種高調波成分が多く含まれる場合は、それが誤
差原因となる可能性がある。本実施の形態は、回路保護
装置18においてあらかじめ系統の電流をFFT演算す
ることにより、ノイズ成分の少ない周波数帯域を検出し
て、その周波数を重畳周波数とすることにより、精度の
高い零相電流有効成分Igrを算出できる。もちろん、
回路保護装置18に、FFT演算機能がなくても、最初
に人がFFTアナライザ等により計測した値をもとに重
畳周波数を決定してもよい。
Embodiment 10. In the fourth embodiment, any two kinds of frequencies are selected. However, if the low-voltage system main circuit contains a large amount of various harmonic components, it may cause an error. In the present embodiment, the circuit protection device 18 performs FFT operation on the system current in advance to detect a frequency band with a small noise component and use that frequency as the superposition frequency to enable highly accurate zero-phase current effective. The component Igr can be calculated. of course,
Even if the circuit protection device 18 does not have the FFT calculation function, the superposition frequency may be determined based on the value first measured by a person using an FFT analyzer or the like.

【0064】[0064]

【発明の効果】この発明の請求項1に係る絶縁監視シス
テムは、電源から給電される被監視電気回路に電源周波
数とは異なる周波数の単相交流の計測電圧を重畳し、不
平衡電流検出手段により検出された不平衡電流から計測
電圧と同一の周波数の成分で、かつ計測電圧と同一位相
である漏洩電流有効成分を検出し、これを積分して漏洩
電流デジタル信号に変換し、この漏洩電流デジタル信号
に基づいて、監視制御手段において絶縁抵抗を求めて被
監視電気回路の絶縁劣化状況を監視し、制御するように
したので、被監視電気回路の活線状態の漏洩電流または
絶縁抵抗が、リアルタイムに監視でき、絶縁劣化状況か
ら点検、更新の時期を簡単に予測することができる。
The insulation monitoring system according to claim 1 of the present invention superimposes a single-phase alternating-current measurement voltage of a frequency different from the power supply frequency on the monitored electric circuit fed from the power supply, and the unbalanced current detecting means. The leak current effective component which has the same frequency component as the measurement voltage and the same phase as the measurement voltage is detected from the unbalanced current detected by, and the leak current effective component is integrated and converted into the leak current digital signal. Since the monitoring control means obtains the insulation resistance based on the digital signal to monitor and control the insulation deterioration status of the monitored electric circuit, the leakage current or the insulation resistance of the monitored electric circuit in the live line state is It can be monitored in real time, and the time of inspection and renewal can be easily predicted from the insulation deterioration status.

【0065】この発明の請求項2に係る絶縁監視システ
ムは、請求項1または請求項2の絶縁監視システムにお
ける漏洩電流有効成分を、計測電圧と同一周波数の成分
を検出するとともに、これを計測電圧に同期した信号に
より同期検波して検出するようにしたので、漏洩電流の
検出精度が高くなる。
The insulation monitoring system according to claim 2 of the present invention detects the effective component of the leakage current in the insulation monitoring system according to claim 1 or 2 as a component having the same frequency as the measured voltage, and measures this as the measured voltage. Since the synchronous detection is performed by the signal synchronized with the detection, the leakage current detection accuracy is improved.

【0066】この発明の請求項3に係る絶縁監視システ
ムは、請求項1または請求項2の絶縁監視システムのお
ける計測電圧の周波数を電源周波数よりも低い周波数と
したので、被監視電気回路に生じる高調波成分の影響が
少ない状態で漏洩電流が検出され、検出精度の高い漏洩
電流が得られる。
In the insulation monitoring system according to claim 3 of the present invention, the frequency of the measured voltage in the insulation monitoring system according to claim 1 or 2 is set to a frequency lower than the power supply frequency. The leak current is detected in a state where the influence of the harmonic component is small, and the leak current with high detection accuracy is obtained.

【0067】この発明の請求項4に係る絶縁監視システ
ムは、請求項1また請求項2の絶縁監視システムにおけ
る計測電圧の周波数を、電源周波数よりも高い150〜
500Hzの間の任意の周波数としたので、ノイズ電圧
の低周波成分が多いインバータ制御される電動機などを
負荷にもる場合においても正確な漏洩電流または絶縁抵
抗がリアルタイムに監視でき、絶縁劣化状況から点検、
更新時期を簡単に予測することができる。
In the insulation monitoring system according to claim 4 of the present invention, the frequency of the measurement voltage in the insulation monitoring system according to claim 1 or 2 is set to 150 to higher than the power supply frequency.
Since an arbitrary frequency between 500 Hz is used, accurate leakage current or insulation resistance can be monitored in real time even when an inverter-controlled electric motor, which has many low-frequency components of noise voltage, is used as a load, and insulation deterioration can be prevented. inspection,
Renewal time can be easily predicted.

【0068】この発明の請求項5に係る絶縁監視システ
ムは、電源から給電される被監視電気回路に電源周波数
とは異なる2種類の周波数の単相交流の計測電圧を重畳
し、不平衡電流検出手段により検出された不平衡電流か
ら各計測電圧と同一周波数の成分を検出し、各計測電圧
に対応するそれぞれの不平衡電流から被監視電気回路の
漏洩電流有効成分を演算して求め、これを積分して漏洩
電流デジタル信号に変換し、この漏洩電流デジタル信号
に基づいて、監視制御手段において絶縁抵抗を求めて被
監視電気回路の絶縁劣化状況を監視し、制御するように
したので、漏洩電流有効成分の検出が簡単な絶縁監視シ
ステムが得られ、しかも正確な漏洩電流または絶縁抵抗
がリアルタイムに監視でき、絶縁劣化状況から点検、更
新時期を簡単に予測することができる。
In the insulation monitoring system according to the fifth aspect of the present invention, the unbalanced current detection is performed by superimposing the measurement voltage of the single-phase AC of two kinds of frequencies different from the power supply frequency on the monitored electric circuit fed from the power supply. The component of the same frequency as each measured voltage is detected from the unbalanced current detected by the means, and the leakage current effective component of the monitored electric circuit is calculated from each unbalanced current corresponding to each measured voltage. It is integrated and converted into a leakage current digital signal, and based on this leakage current digital signal, the monitoring control means obtains the insulation resistance to monitor and control the insulation deterioration state of the monitored electric circuit. An insulation monitoring system that can easily detect effective components can be obtained, and an accurate leakage current or insulation resistance can be monitored in real time. It can be.

【0069】この発明の請求項6に係る絶縁監視システ
ムは、請求項5に記載の絶縁監視システムにおける2種
類の計測電圧の周波数を、電源周波数よりも低い周波数
としたので、被監視電気回路に生じる高調波成分の影響
が少ない状態で漏洩電流が検出され、検出精度の高い漏
洩電流が得られる。
In the insulation monitoring system according to claim 6 of the present invention, the frequencies of the two types of measurement voltages in the insulation monitoring system according to claim 5 are set to frequencies lower than the power supply frequency. The leak current is detected in a state where the influence of the generated harmonic component is small, and the leak current with high detection accuracy is obtained.

【0070】この発明の請求項7に係る絶縁監視システ
ムは、請求項5に記載の絶縁監視システムにおける2種
類の計測電圧の周波数を、電源周波数よりも高い150
〜500Hzの間の異なる任意の周波数としたので、イ
ンバータ制御される負荷をもつ場合においても、正確な
漏洩電流を検出することができる。
According to a seventh aspect of the present invention, an insulation monitoring system according to the fifth aspect is configured so that the frequencies of the two types of measurement voltages in the insulation monitoring system are higher than the power supply frequency by 150.
Since the frequency is set to a different arbitrary value between .about.500 Hz, the accurate leakage current can be detected even when the inverter-controlled load is included.

【0071】この発明の請求項8に係る絶縁監視システ
ムは、電源から給電される被監視電気回路に直流の計測
電圧を重畳し、不平衡電流検出手段により検出された不
平衡電流から電源周波数成分および高周波成分を除去し
て被監視電気回路の漏洩電流を検出し、これを漏洩電流
デジタル信号に変換し、この漏洩電流デジタル信号に基
づいて、監視制御手段において絶縁抵抗を求めて被監視
電気回路の絶縁劣化状況を監視し、制御するようにした
ので、正確な漏洩電流または絶縁抵抗がリアルタイムに
監視でき、絶縁劣化状況から点検、更新時期を簡単に予
測することができる。
The insulation monitoring system according to claim 8 of the present invention superimposes a direct current measurement voltage on a monitored electric circuit fed from a power source, and calculates the power frequency component from the unbalanced current detected by the unbalanced current detecting means. And the high-frequency component is removed to detect the leak current of the monitored electric circuit, the leak current is converted into a digital signal of the leak current, and the monitoring control means obtains the insulation resistance based on the leak current digital signal, and the monitored electric circuit Since the insulation deterioration situation is monitored and controlled, the accurate leakage current or insulation resistance can be monitored in real time, and the inspection and update timing can be easily predicted from the insulation deterioration situation.

【0072】この発明の請求項9に係る絶縁監視システ
ムは、請求項1乃至請求項8に記載の絶縁監視システム
において計測電圧重畳手段及び漏洩電流検出手段を監視
制御手段により制御するようにしたので、一定時間毎の
漏洩電流の計測が可能となる絶縁監視システムとして効
率的な運用ができる。
According to the ninth aspect of the insulation monitoring system of the present invention, in the insulation monitoring system according to the first to eighth aspects, the measurement voltage superposing means and the leakage current detecting means are controlled by the monitoring control means. , It can be operated efficiently as an insulation monitoring system that can measure leakage current at regular intervals.

【0073】この発明の請求項10に係る絶縁監視シス
テムは、請求項1乃至請求項9のいずれかに記載の絶縁
監視システムの監視制御手段に、一定期間毎の漏洩電流
値を記憶し、この漏洩電流値の変化を常時監視するとと
もに予め設定された限界値を越えたとき警報を出す機能
を備えたので、定期的に絶縁劣化状況が出力でき、この
絶縁劣化状況から点検、更新時期を簡単に予測すること
ができる。
An insulation monitoring system according to a tenth aspect of the present invention stores the leakage current value for each fixed period in the monitoring control means of the insulation monitoring system according to any one of the first to ninth aspects. Since it is equipped with a function that constantly monitors changes in the leakage current value and issues an alarm when a preset limit value is exceeded, it is possible to output the insulation deterioration status on a regular basis, and it is easy to check and update the insulation deterioration status from this status. Can be predicted.

【0074】この発明の請求項11に係る絶縁監視シス
テムは、請求項1乃至請求項10のいずれかに記載の絶
縁監視システムの漏洩電流検出手段に、漏洩電流有効成
分を一定時間をもって平均化処理する機能を備えたの
で、絶縁抵抗値の短期的なドリフトによる影響を避ける
ことができ、精度高く絶縁劣化状況を監視することがで
きる。
In the insulation monitoring system according to claim 11 of the present invention, the leakage current detecting means of the insulation monitoring system according to any one of claims 1 to 10 averages the effective components of the leakage current for a certain period of time. Since it has a function to do so, it is possible to avoid the influence of a short-term drift of the insulation resistance value, and it is possible to monitor the insulation deterioration state with high accuracy.

【0075】この発明の請求項12に係る絶縁監視シス
テムは、請求項1乃至請求項11のいずれかに記載の絶
縁監視システムの監視制御手段に、漏洩電流有効成分を
グラフ化する機能を備えたので、過去からの絶縁劣化の
進行状況を正確に把握することができる。
According to a twelfth aspect of the insulation monitoring system of the present invention, the monitoring control means of the insulation monitoring system according to any one of the first to eleventh aspects is provided with a function of graphing the effective component of the leakage current. Therefore, the progress of insulation deterioration from the past can be accurately grasped.

【0076】この発明の請求項13に係る絶縁監視シス
テムは、請求項1乃至請求項12のいずれかに記載の絶
縁監視システムの監視制御手段に、漏洩電流有効成分と
漏洩電流無効成分とをあわせてグラフ化する機能を備え
たので、大地静電容量まで取り込んだより精度の高い絶
縁劣化のトレンドを把握することができる。
An insulation monitoring system according to a thirteenth aspect of the present invention includes a monitoring control means of the insulation monitoring system according to any one of the first to twelfth aspects, in which a leakage current effective component and a leakage current reactive component are combined. Since it is equipped with a function for graphing, it is possible to grasp the trend of insulation deterioration with higher accuracy including the ground capacitance.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明による絶縁監視システムに係る実施
の形態1の構成を示す構成図である。
FIG. 1 is a configuration diagram showing a configuration of a first embodiment of an insulation monitoring system according to the present invention.

【図2】 図1に示す回路保護装置の内部構成を示すブ
ロック図である。
FIG. 2 is a block diagram showing an internal configuration of the circuit protection device shown in FIG.

【図3】 図1に示す計測電圧重畳手段の構成を示すブ
ロック図である。
FIG. 3 is a block diagram showing a configuration of a measurement voltage superposing means shown in FIG.

【図4】 図1に示す絶縁監視システムの動作を説明す
るための説明図である。
FIG. 4 is an explanatory diagram for explaining the operation of the insulation monitoring system shown in FIG. 1.

【図5】 この発明による絶縁監視システムに係る実施
の形態3の構成を示す構成図である。
FIG. 5 is a configuration diagram showing a configuration of a third embodiment of the insulation monitoring system according to the present invention.

【図6】 この発明による絶縁監視システムに係る実施
の形態4の構成を示す構成図である。
FIG. 6 is a configuration diagram showing a configuration of a fourth embodiment of the insulation monitoring system according to the present invention.

【図7】 この発明による絶縁監視システムに係る実施
の形態5の構成を示す構成図である。
FIG. 7 is a configuration diagram showing a configuration of a fifth embodiment of the insulation monitoring system according to the present invention.

【図8】 図7に示す計測電圧重畳手段の構成を示す構
成図である。
8 is a configuration diagram showing a configuration of a measurement voltage superimposing means shown in FIG.

【図9】 図7に用いられる回路保護装置の構成を示す
構成図である。
9 is a configuration diagram showing a configuration of a circuit protection device used in FIG. 7. FIG.

【図10】 実施の形態9に示す回路保護装置の内部構
成を示すブロック図である。
FIG. 10 is a block diagram showing an internal configuration of a circuit protection device shown in a ninth embodiment.

【図11】 従来の絶縁監視システムの構成を示す構成
図である。
FIG. 11 is a configuration diagram showing a configuration of a conventional insulation monitoring system.

【符号の説明】[Explanation of symbols]

2 電源変圧器 6 不平衡電
流検出手段 11 負荷回路開閉器 12 コンタ
クタ 13 負荷回路配線 14 負荷 15 接地抵抗 16 不平衡
電流検出手段 18 回路保護装置 50 計測電
圧重畳手段 51 計測電圧同期信号発生手段 52 監視制
御手段 52a 伝送親局 52b 監視
制御装置 53 監視制御手段 54 伝送子
局 60 電流信号伝送線 61 同期信
号伝送線 62 信号伝送線 70 計測電
圧重畳手段 71 電流検出手段 72 監視制
御手段 76 電流検出手段 78 負荷回
路保護装置 79 回路保護装置 80 温度セ
ンサ 81 湿度センサ 82 気圧セ
ンサ
2 power transformer 6 unbalanced current detection means 11 load circuit switch 12 contactor 13 load circuit wiring 14 load 15 earth resistance 16 unbalanced current detection means 18 circuit protection device 50 measurement voltage superposition means 51 measurement voltage synchronization signal generation means 52 monitoring Control means 52a Transmission master station 52b Monitoring control device 53 Monitoring control means 54 Transmission slave station 60 Current signal transmission line 61 Synchronous signal transmission line 62 Signal transmission line 70 Measured voltage superposing means 71 Current detection means 72 Monitoring control means 76 Current detection means 78 Load circuit protection device 79 Circuit protection device 80 Temperature sensor 81 Humidity sensor 82 Barometric pressure sensor

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 電源から給電される被監視電気回路に、
接地手段を介して電源周波数とは異なる周波数の単相交
流の計測電圧を重畳する計測電圧重畳手段と、上記被監
視電気回路に流れる不平衡電流を検出する不平衡電流検
出手段と、この不平衡電流検出手段が検出した不平衡電
流から上記計測電圧と同一周波数の成分で、かつ上記計
測電圧と同一位相である漏洩電流のうち有効成分を検出
する漏洩電流検出手段と、この漏洩電流有効成分を積分
し漏洩電流デジタル信号に変換する演算手段と、上記漏
洩電流デジタル信号に基づいて上記被監視電気回路を監
視、制御する監視制御手段とからなる絶縁監視システ
ム。
1. A monitored electrical circuit fed from a power supply,
A measurement voltage superimposing means for superimposing a measurement voltage of a single-phase alternating current having a frequency different from the power supply frequency via a grounding means, an unbalanced current detecting means for detecting an unbalanced current flowing in the monitored electric circuit, and this unbalanced Leakage current detection means for detecting an effective component of the leakage current having the same frequency as the measurement voltage and having the same phase as the measurement voltage from the unbalanced current detected by the current detection means, and the leakage current effective component An insulation monitoring system comprising an arithmetic means for integrating and converting into a leakage current digital signal, and a monitoring control means for monitoring and controlling the monitored electric circuit based on the leakage current digital signal.
【請求項2】 漏洩電流検出手段は計測電圧と同一周波
数の成分を検出する手段と、計測電圧に同期した信号を
出力する計測電圧同期信号発生手段の出力信号により同
期検波する手段とからなることを特徴とする請求項1に
記載の絶縁監視システム。
2. The leakage current detecting means comprises means for detecting a component having the same frequency as the measurement voltage, and means for synchronously detecting the output signal of the measurement voltage synchronization signal generating means for outputting a signal in synchronization with the measurement voltage. The insulation monitoring system according to claim 1, wherein:
【請求項3】 計測電圧の周波数は電源周波数よりも低
い周波数であることを特徴とする請求項1または請求項
2に記載の絶縁監視システム。
3. The insulation monitoring system according to claim 1, wherein the frequency of the measurement voltage is lower than the power supply frequency.
【請求項4】 計測電圧の周波数は電源周波数よりも高
い150〜500Hzの間の任意の周波数であることを
特徴とする請求項1または請求項2に記載の絶縁監視シ
ステム。
4. The insulation monitoring system according to claim 1, wherein the frequency of the measured voltage is any frequency between 150 and 500 Hz higher than the power supply frequency.
【請求項5】 電源から給電される被監視電気回路に、
接地手段を介して電源周波数とは異なる2種類の周波数
の単相交流の計測電圧を重畳する計測電圧重畳手段と、
上記被監視電気回路に流れる不平衡電流を検出する不平
衡電流検出手段と、この不平衡電流検出手段が検出した
不平衡電流から上記各計測電圧と同一周波数の成分をそ
れぞれ検出し、この各計測電圧に対応する不平衡電流か
ら被監視電気回路の漏洩電流のうちの有効成分を演算し
て求める漏洩電流検出手段と、上記漏洩電流有効成分を
積分して漏洩電流デジタル信号に変換する演算手段と、
上記漏洩電流デジタル信号に基づいて上記被監視電気回
路を監視、制御する監視制御手段とからなる絶縁監視シ
ステム。
5. A monitored electrical circuit fed from a power supply,
Measurement voltage superimposing means for superimposing single-phase alternating-current measurement voltages of two kinds of frequencies different from the power supply frequency via the grounding means,
An unbalanced current detecting means for detecting an unbalanced current flowing in the monitored electric circuit, and a component having the same frequency as each of the measured voltages is detected from the unbalanced current detected by the unbalanced current detecting means. Leakage current detection means for calculating the effective component of the leakage current of the monitored electric circuit from the unbalanced current corresponding to the voltage, and calculation means for integrating the leakage current effective component and converting it into a leakage current digital signal. ,
An insulation monitoring system comprising: monitoring control means for monitoring and controlling the monitored electric circuit based on the leakage current digital signal.
【請求項6】 2種類の計測電圧の周波数は電源周波数
よりも低い周波数であることを特徴とする請求項5に記
載の絶縁監視システム。
6. The insulation monitoring system according to claim 5, wherein the frequencies of the two types of measurement voltages are lower than the power supply frequency.
【請求項7】 2種類の計測電圧の周波数は電源周波数
よりも高い150〜500Hzの間の異なる任意の周波
数であることを特徴とする請求項5に記載の絶縁監視シ
ステム。
7. The insulation monitoring system according to claim 5, wherein the frequencies of the two types of measurement voltages are different frequencies between 150 and 500 Hz, which are higher than the power supply frequency.
【請求項8】 電源から給電される被監視電気回路に、
接地手段を介して直流の計測電圧を重畳する計測電圧重
畳手段と、上記被監視電気回路に流れる不平衡電流を検
出する不平衡電流検出手段と、この不平衡電流検出手段
が検出した不平衡電流から電源周波数成分および高周波
成分を除去して被監視電気回路の漏洩電流を検出する漏
洩電流検出手段と、この漏洩電流を漏洩電流デジタル信
号に変換する演算手段と、上記漏洩電流デジタル信号に
基づいて上記被監視電気回路を監視、制御する監視制御
手段とからなる絶縁監視システム。
8. A monitored electrical circuit fed from a power supply,
A measurement voltage superimposing means for superimposing a DC measurement voltage through the grounding means, an unbalanced current detecting means for detecting an unbalanced current flowing in the monitored electric circuit, and an unbalanced current detected by the unbalanced current detecting means. Based on the leakage current digital signal, a leakage current detection means for detecting the leakage current of the monitored electric circuit by removing the power source frequency component and the high frequency component from the leakage current, a calculation means for converting the leakage current into a leakage current digital signal, An insulation monitoring system comprising a monitoring control means for monitoring and controlling the monitored electric circuit.
【請求項9】 計測電圧重畳手段及び漏洩電流検出手段
は、監視制御手段により制御されることを特徴とする請
求項1乃至請求項8のいずれかに記載の絶縁監視システ
ム。
9. The insulation monitoring system according to claim 1, wherein the measurement voltage superposing means and the leakage current detecting means are controlled by the monitoring control means.
【請求項10】 監視制御手段に、一定期間毎の漏洩電
流値を記憶し、この漏洩電流値の変化を常時監視すると
ともに予め設定された限界値を越えたときに警報を出す
機能を備えたことを特徴とする請求項1乃至請求項9の
いずれかに記載の絶縁監視システム。
10. The monitoring control means is provided with a function of storing a leakage current value for each fixed period, constantly monitoring a change in the leakage current value, and issuing an alarm when a preset limit value is exceeded. The insulation monitoring system according to any one of claims 1 to 9, wherein:
【請求項11】 漏洩電流検出手段に、漏洩電流有効成
分を一定時間をもって平均化処理する平均化処理機能を
備えたことを特徴とする請求項1乃至請求項10のいず
れかに記載の絶縁監視システム。
11. The insulation monitoring according to claim 1, wherein the leakage current detecting means is provided with an averaging processing function for averaging the effective components of the leakage current over a fixed period of time. system.
【請求項12】 監視制御手段に、漏洩電流有効成分を
グラフ化するグラフ化機能を備えたことを特徴とする請
求項1乃至請求項11のいずれかに記載の絶縁監視シス
テム。
12. The insulation monitoring system according to claim 1, wherein the monitoring control means has a graphing function for graphing the effective component of the leakage current.
【請求項13】 監視制御手段に、漏洩電流有効成と漏
洩電流無効成分とをあわせてグラフ化するグラフ化機能
を備えたことを特徴とする請求項1乃至請求項12のい
ずれかに記載の絶縁監視システム。
13. The monitoring control means is provided with a graphing function for graphing together the leakage current active component and the leakage current reactive component, according to any one of claims 1 to 12. Insulation monitoring system.
JP01985296A 1995-02-13 1996-02-06 Insulation monitoring system Expired - Fee Related JP3355905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01985296A JP3355905B2 (en) 1995-02-13 1996-02-06 Insulation monitoring system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2404895 1995-02-13
JP7-24048 1995-02-13
JP01985296A JP3355905B2 (en) 1995-02-13 1996-02-06 Insulation monitoring system

Publications (2)

Publication Number Publication Date
JPH08285903A true JPH08285903A (en) 1996-11-01
JP3355905B2 JP3355905B2 (en) 2002-12-09

Family

ID=26356716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01985296A Expired - Fee Related JP3355905B2 (en) 1995-02-13 1996-02-06 Insulation monitoring system

Country Status (1)

Country Link
JP (1) JP3355905B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006138691A (en) * 2004-11-11 2006-06-01 Netindex Inc Method and apparatus of detecting leakage current
JP2007127462A (en) * 2005-11-02 2007-05-24 Hitachi Industrial Equipment Systems Co Ltd Insulation level monitoring device
KR100740826B1 (en) * 2004-08-05 2007-07-19 김영일 A detection device of insulation resistance for non-interruption of electric power and hot-line
JP2009198188A (en) * 2008-02-19 2009-09-03 Kyoritsu Electrical Instruments Works Ltd Ground resistance meter
JP2009300158A (en) * 2008-06-11 2009-12-24 Midori Anzen Co Ltd Insulation monitoring device
JP2009300157A (en) * 2008-06-11 2009-12-24 Midori Anzen Co Ltd Insulation monitoring device
JP2010038787A (en) * 2008-08-06 2010-02-18 Midori Anzen Co Ltd Insulation monitoring device
JP2010038786A (en) * 2008-08-06 2010-02-18 Midori Anzen Co Ltd Insulation monitoring device
JP2010066162A (en) * 2008-09-11 2010-03-25 Midori Anzen Co Ltd Insulation monitoring apparatus
DE112010000959T5 (en) 2009-03-05 2012-08-09 Mitsubishi Electric Corporation Device for detecting insulation degradation
JP2012154668A (en) * 2011-01-24 2012-08-16 Mitsubishi Electric Corp Abnormality detection device and abnormality detection method for generator motor
WO2014192217A1 (en) * 2013-05-27 2014-12-04 タナシン電機株式会社 Leakage current calculation device and method for calculating leakage current
JP2018004329A (en) * 2016-06-28 2018-01-11 株式会社トーエネック Ground capacitance measurement device and ground capacitance measurement method
JP2018082548A (en) * 2016-11-16 2018-05-24 三菱電機株式会社 Remote monitoring system
JP2020091250A (en) * 2018-12-07 2020-06-11 タナシン電機株式会社 Leakage current detection device and ground leakage current detection method

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100740826B1 (en) * 2004-08-05 2007-07-19 김영일 A detection device of insulation resistance for non-interruption of electric power and hot-line
JP2006138691A (en) * 2004-11-11 2006-06-01 Netindex Inc Method and apparatus of detecting leakage current
JP2007127462A (en) * 2005-11-02 2007-05-24 Hitachi Industrial Equipment Systems Co Ltd Insulation level monitoring device
JP2009198188A (en) * 2008-02-19 2009-09-03 Kyoritsu Electrical Instruments Works Ltd Ground resistance meter
JP2009300158A (en) * 2008-06-11 2009-12-24 Midori Anzen Co Ltd Insulation monitoring device
JP2009300157A (en) * 2008-06-11 2009-12-24 Midori Anzen Co Ltd Insulation monitoring device
JP2010038787A (en) * 2008-08-06 2010-02-18 Midori Anzen Co Ltd Insulation monitoring device
JP2010038786A (en) * 2008-08-06 2010-02-18 Midori Anzen Co Ltd Insulation monitoring device
JP2010066162A (en) * 2008-09-11 2010-03-25 Midori Anzen Co Ltd Insulation monitoring apparatus
US9335380B2 (en) 2009-03-05 2016-05-10 Mitsubishi Electric Corporation Device for detecting insulation degradation
DE112010000959T5 (en) 2009-03-05 2012-08-09 Mitsubishi Electric Corporation Device for detecting insulation degradation
JP2012154668A (en) * 2011-01-24 2012-08-16 Mitsubishi Electric Corp Abnormality detection device and abnormality detection method for generator motor
JP2014228519A (en) * 2013-05-27 2014-12-08 タナシン電機株式会社 Leak current calculation device and leak current calculation method
TWI474014B (en) * 2013-05-27 2015-02-21 Tanashin Denki Co Leakage current calculating device and leakage current calculating method
KR20150131395A (en) * 2013-05-27 2015-11-24 다나신덴기가부시키가이샤 Leakage current calculation device and method for calculating leakage current
CN105264393A (en) * 2013-05-27 2016-01-20 德利信电机株式会社 Leakage current calculation device and method for calculating leakage current
WO2014192217A1 (en) * 2013-05-27 2014-12-04 タナシン電機株式会社 Leakage current calculation device and method for calculating leakage current
US9465065B2 (en) 2013-05-27 2016-10-11 Tanashin Denki Co., Ltd. Leakage current calculation device and method for calculating leakage current
JP2018004329A (en) * 2016-06-28 2018-01-11 株式会社トーエネック Ground capacitance measurement device and ground capacitance measurement method
JP2018082548A (en) * 2016-11-16 2018-05-24 三菱電機株式会社 Remote monitoring system
JP2020091250A (en) * 2018-12-07 2020-06-11 タナシン電機株式会社 Leakage current detection device and ground leakage current detection method

Also Published As

Publication number Publication date
JP3355905B2 (en) 2002-12-09

Similar Documents

Publication Publication Date Title
JP3355905B2 (en) Insulation monitoring system
US8823307B2 (en) System for detecting internal winding faults of a synchronous generator, computer program product and method
JP5544517B2 (en) Leakage current measuring device and measuring method in electrical equipment
JP3441596B2 (en) Insulation deterioration diagnosis device
JP2008164374A (en) Device and method for measuring leakage current
KR200401675Y1 (en) Low Voltage On-Line Insulation Monitoring System
CN106597349A (en) CVT measurement error on-line monitoring method and CVT measurement error on-line monitoring system based on secondary voltage
JP5380702B2 (en) Leakage current measuring device and measuring method
JP2018021812A (en) Device and method for measuring leakage current
JP5477020B2 (en) Leakage current measuring device and measuring method in electrical equipment
KR101923109B1 (en) Distributing center capable of diagnosing capacitor
JP2000028671A (en) Insulation detector
KR100219013B1 (en) Insulation monitoring system
JP2011149959A (en) Insulation monitoring device
JP2023021267A (en) Detection device, method, and program
JPH0894683A (en) System for monitoring insulation of low voltage non-grounded system
JP4527346B2 (en) Insulation state monitoring method and device
JPH0727812A (en) Insulation diagnosing device
JP2003299215A (en) Method for validity check of current transformer in switchgear, computer program and device, and switchgear provided with the device
KR20070024361A (en) Low voltage on-line insulation monitoring system
KR20070024362A (en) Low voltage on-line insulation monitoring system
KR20080015752A (en) Low voltage on-line insulation monitoring system
JP2003344476A (en) Insulation monitor
EP1198717B1 (en) Apparatus and method for fault detection on conductors
KR200401672Y1 (en) Low Voltage On-Line Insulation Monitoring System

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees