JPH0727812A - Insulation diagnosing device - Google Patents
Insulation diagnosing deviceInfo
- Publication number
- JPH0727812A JPH0727812A JP5170334A JP17033493A JPH0727812A JP H0727812 A JPH0727812 A JP H0727812A JP 5170334 A JP5170334 A JP 5170334A JP 17033493 A JP17033493 A JP 17033493A JP H0727812 A JPH0727812 A JP H0727812A
- Authority
- JP
- Japan
- Prior art keywords
- insulation
- zero
- frequency
- phase current
- power system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Locating Faults (AREA)
- Emergency Protection Circuit Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、電力系統の絶縁診断装
置に係り、特に電気工作物の絶縁を常時監視し、絶縁劣
化地絡点を算定する絶縁診断装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulation diagnostic device for a power system, and more particularly to an insulation diagnostic device for constantly monitoring insulation of an electric work and calculating an insulation deterioration ground fault point.
【0002】[0002]
【従来の技術】電力ケーブルの絶縁劣化は、徐々に進展
し、最終的に地絡事故に至る場合が多い。絶縁劣化の進
展メカニズムは、概ね次の2ケースが一般的である。ま
ず、第1のケースは、電力ケーブル被覆や導体支持絶縁
体の損傷や劣化部分から電流が漏洩しはじめ、その漏洩
電流により発生する熱,圧力,イオン等により損傷や劣
化が進展するケースである。第2のケースは、ケーブル
等にみられる、絶縁物にツリー状に水分が浸透したのち
一気に絶縁破壊を発生するがその後、絶縁を回復する場
合である。後者は、間欠弧光地絡と呼ばれ、検出及び地
絡発生点の検出が難しい。しかし、最近の電気設備は、
間欠弧光地絡電流を活線状態で検出する技術の要求があ
る。2. Description of the Related Art Insulation deterioration of a power cable gradually progresses and eventually leads to a ground fault. In general, the following two cases are common as the mechanism of progress of insulation deterioration. First, in the first case, a current starts to leak from a damaged or deteriorated portion of the power cable coating or the conductor supporting insulator, and damage or deterioration progresses due to heat, pressure, ions, etc. generated by the leak current. . The second case is a case where, as seen in a cable or the like, a dielectric breakdown occurs at once after water penetrates into an insulator in a tree shape, but thereafter the insulation is restored. The latter is called an intermittent arc light ground fault, and it is difficult to detect the ground fault occurrence point. However, recent electrical equipment is
There is a demand for a technique for detecting an intermittent arc light ground fault current in a live state.
【0003】従来は、接地電圧変成器(以降、GPTと
略記する。)の中性点と大地との間に開閉装置を設け、
通常運転時は閉路し、絶縁劣化診断時に開路して開閉装
置の両極に直流電圧を印加し、電気設備から大地への漏
洩電流を計測しその結果が予め定めた基準値を超過して
いる場合には、電気設備を停止させ、電力線の絶縁劣化
を、個々に検査していた。Conventionally, a switchgear is provided between the neutral point of the ground voltage transformer (hereinafter abbreviated as GPT) and the ground,
When the circuit is closed during normal operation and opened during insulation deterioration diagnosis, a DC voltage is applied to both electrodes of the switchgear, and the leakage current from electrical equipment to the ground is measured, and the result exceeds a predetermined reference value. Had to stop the electrical equipment and individually inspect the power line for insulation deterioration.
【0004】また、特開平4−42726号公報では、
基準の線間電圧信号及びたの二相分の線間電圧信号のそ
れぞれと零相電流検出により地絡信号を取出しその位相
から地絡相を検出することにより地絡区間を判断してい
るが地点の検出はできない。Further, in Japanese Patent Laid-Open No. 4-42726,
The ground fault section is judged by extracting the ground fault signal by detecting the zero-phase current with each of the reference line voltage signal and the line voltage signals for the other two phases, and detecting the ground fault phase from that phase. The point cannot be detected.
【0005】[0005]
【発明が解決しようとする課題】従来技術では、絶縁劣
化検出後、電力設備を停止させた上で、改めて各部を切
り離して個々の部分の絶縁抵抗を測定する等の方法が取
られており、設備の保守に要する労力が大きかった。更
に、地絡事故発生時には、GPT中性点と大地間に高電
圧が発生するので、常時、絶縁監視装置を設置して、計
測を行う事ができず、定期的に短時間の診断を実施する
に止めざるを得ないため、急速に進展する絶縁劣化に対
処する事や、間欠弧光地絡時の地絡点の推定が難しかっ
た。In the prior art, after the insulation deterioration is detected, the power equipment is stopped, and then each part is separated and the insulation resistance of each part is measured again. The effort required to maintain the equipment was large. Furthermore, in the event of a ground fault, a high voltage is generated between the GPT neutral point and the ground, so it is not possible to install an insulation monitoring device at all times and perform measurements, and carry out regular short-term diagnostics. However, it was difficult to cope with the rapidly progressing insulation deterioration and to estimate the ground fault point during the intermittent arc light ground fault.
【0006】本発明の目的は、電力設備を停止せず、安
全でかつ常時、絶縁劣化を監視し、間欠弧光地絡発生時
には、地絡点を特定できる絶縁診断装置を提供すること
である。An object of the present invention is to provide an insulation diagnostic apparatus capable of safely and constantly monitoring insulation deterioration without stopping power equipment and identifying a ground fault point when an intermittent arc light ground fault occurs.
【0007】[0007]
【課題を解決するための手段】上記目的を達成するため
に、電力系統の零相電流を検出して電気工作物の絶縁を
診断する絶縁診断装置において、複数のフィーダのそれ
ぞれから検出された高周波電流の周波数を検出する周波
数検出手段と、前記高周波電流を入力し前記電力系統周
波数成分を取り出すバンドパスフィルタと、該周波数検
出手段の出力と前記電力系統の定数から間欠弧光地絡地
点を算出し、前記バンドパスフィルタの複数の出力を比
較して出力値が最大のフィーダを求める演算処理部を備
えたことを特徴とする絶縁診断装置としたのである。In order to achieve the above object, in an insulation diagnostic device for diagnosing insulation of an electric work by detecting a zero-phase current of a power system, a high frequency detected from each of a plurality of feeders. Frequency detecting means for detecting the frequency of the current, a bandpass filter for extracting the high frequency current and extracting the power system frequency component, and calculating the intermittent arc light ground fault point from the output of the frequency detecting means and the constant of the power system. The insulation diagnosis device is provided with an arithmetic processing unit that compares a plurality of outputs of the bandpass filter to obtain a feeder having the maximum output value.
【0008】複数のフィーダのそれぞれから検出された
零相電流の前記電力系統周波数成分を取り出すバンドパ
スフィルタと、該バンドパスフィルタの出力をN個の段
階的に設定されたレベルと比較してN段階に区分する演
算処理部を備えたことを特徴とする絶縁診断装置として
もよい。A bandpass filter for extracting the power system frequency component of the zero-phase current detected from each of the plurality of feeders, and the output of the bandpass filter is compared with N stepwise set levels to obtain N levels. The insulation diagnosis apparatus may be provided with an arithmetic processing unit for dividing into stages.
【0009】[0009]
【作用】このように構成することにより、本発明によれ
ば次の作用により上記の目的が達成される。一般に電力
系統においては、三相が不平衡になれば零相電流が流れ
るので零相電流を検出すれば系統の異常が発見できる。
間欠弧光地絡は地絡の継続が短いが電流は高周波である
特徴がある。検出された零相電流を高周波増幅してその
周波数を検出する。波高値の測定は困難であるが高周波
周波数の検出はゼロクロス間の時間を計測するなど多く
の手段が用いられる。この周波数は電力系統の浮遊容量
と測定点と間欠弧光地絡点の距離で定まるインダクタン
スの関数となり、周波数と前記距離との関係を決定する
ことができる。従って周波数から間欠弧光地絡地点を決
定できる。With this structure, the above-mentioned object can be achieved by the present invention by the following operations. Generally, in a power system, if three phases are unbalanced, a zero-phase current flows, and therefore a system abnormality can be found by detecting the zero-phase current.
The intermittent arc light ground fault is characterized in that the continuation of the ground fault is short, but the current is high frequency. The detected zero-phase current is amplified by high frequency to detect the frequency. Although it is difficult to measure the peak value, many means such as measuring the time between zero crossings are used for detecting the high frequency. This frequency is a function of the stray capacitance of the power system and the inductance determined by the distance between the measurement point and the intermittent arc light ground fault point, and the relationship between the frequency and the distance can be determined. Therefore, the intermittent arc light ground fault point can be determined from the frequency.
【0010】また、高周波電流を増幅し前記電力系統周
波数成分を取り出すバンドパスフィルタへ入力すると、
その出力の波高値は前記高周波電流の波高値に比例した
ものとなる。したがって、複数のフィーダがあるときは
この出力値をそれぞれ求めその中から最大値のフィーダ
を選ぶことにより間欠弧光地絡したフィーダを特定する
ことができる。When a high frequency current is amplified and input to a band pass filter for extracting the power system frequency component,
The peak value of the output is proportional to the peak value of the high frequency current. Therefore, when there are a plurality of feeders, it is possible to specify the feeder having the intermittent arc light ground fault by obtaining each output value and selecting the feeder having the maximum value from the output values.
【0011】また、常時は、バンドパスフィルタから出
力される基本周波数成分値を求め、予め絶縁劣化により
生ずる零相電流をn個の段階に分類したものと比較する
ことにより、常時絶縁状態の診断ができる。Further, normally, the value of the fundamental frequency component output from the bandpass filter is obtained, and the zero-phase current generated due to the insulation deterioration is compared with that which is classified into n stages in advance, thereby diagnosing the always isolated state. You can
【0012】[0012]
【実施例】以下、本発明の実施例を図面を参照して説明
する。図1は、本発明の一実施例とその対象となる電気
設備2の構成例を示している。まず、図に於いて対象と
なる電気設備2は、商用電源または、自家発電機等に接
続される受電部10と、これに接続される母線11と、
母線11から引き出される複数のフィーダ12と、フィ
ーダ12用遮断器13、零相変流器14とから構成され
ている。フィーダ12の先に電力ケーブルを用いて負荷
15へ電力を供給している。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of the present invention and a configuration example of an electric equipment 2 as a target thereof. First, in the figure, the target electric equipment 2 is a power receiving unit 10 connected to a commercial power source or an in-house generator, a bus bar 11 connected to the power receiving unit 10,
It is composed of a plurality of feeders 12 drawn from the bus bar 11, a circuit breaker 13 for the feeders 12, and a zero-phase current transformer 14. Power is supplied to the load 15 using a power cable at the tip of the feeder 12.
【0013】本発明の一実施例である絶縁監視装置1
は、電気設備2の各フィーダ12毎に設けられた零相変
流器14の零相電流信号16を取り込み、零相電流信号
16を増幅する増幅器17と、その出力信号を入力する
バンドパスフィルター18と、同じく零相電流信号16
を取り込み、高調波を含む前記信号16を増幅する高周
波増幅器21と、その出力信号を入力する周波数検出手
段22と、バンドパスフィルター18の出力信号及び、
周波数検出手段22の信号を取り込み間欠弧光地絡時の
地絡点を特定する演算を行なう演算処理部19と、演算
処理部19から出力により絶縁劣化したフィーダを示す
検出信号30と間欠弧光地絡時の地絡点を特定する検出
信号31を受けて診断結果を示す表示部20から構成さ
れている。Insulation monitoring device 1 according to an embodiment of the present invention
Is an amplifier 17 for taking in the zero-phase current signal 16 of the zero-phase current transformer 14 provided for each feeder 12 of the electric equipment 2 and amplifying the zero-phase current signal 16, and a bandpass filter for inputting the output signal thereof. 18 and the same zero-phase current signal 16
And a high-frequency amplifier 21 for amplifying the signal 16 including a harmonic, a frequency detecting means 22 for inputting the output signal thereof, an output signal of the band-pass filter 18, and
An arithmetic processing unit 19 which takes in a signal from the frequency detecting unit 22 and performs an operation for specifying a ground fault point at the time of intermittent arc light ground fault, a detection signal 30 indicating a feeder whose insulation is deteriorated by an output from the arithmetic processing unit 19, and an intermittent arc light ground fault. The display unit 20 is configured to display a diagnosis result in response to a detection signal 31 that specifies a ground fault point at time.
【0014】図2に、ケーブルの絶縁が劣化するとき零
相電流の時間的変化の一例を示す。一般にケーブルの絶
縁が劣化すると、零相電流が時間と共に増加する。零相
電流が、予め定められた値I2に達すると、保護装置に
より遮断器13が開放されるので零相電流がI2に達す
る前のI1の段階で、電気設備保守者に絶縁劣化の発生
を知らしめる事が出来れば、突然の電力供給停止は避け
られる。保護装置により遮断器13を開放する零相電流
I2は200ミリアンペア程度が一般的であり、電気設
備の保守者が余裕を持って対処するためには、零相電流
が数十ミリアンペアであるI1になったt1時点で、保守
作業を実施する必要がある。したがって、絶縁監視装置
としては、数ミリアンペア程度の零相電流を検出可能で
ある必要となる。そこで、本実施例における絶縁監視装
置の零相変流器14は、通常のものよりも高感度である
2ミリアンペアまで検出可能なように2次巻線の巻数を
多くしてある。FIG. 2 shows an example of the temporal change of the zero-phase current when the insulation of the cable deteriorates. Generally, when cable insulation deteriorates, zero-phase current increases with time. Zero-phase current reaches a value I 2 which is predetermined, zero-phase current because breaker 13 is opened at the stage in front of the I 1 reaching I 2 by the protective device, insulation deterioration in electrical equipment maintainer If it is possible to inform the occurrence of the power generation, sudden power supply interruption can be avoided. The zero-phase current I 2 for opening the circuit breaker 13 by the protection device is generally about 200 milliamperes, and the zero-phase current is several tens of milliamperes in order for the maintenance personnel of the electric equipment to deal with it with a margin. It is necessary to perform maintenance work at time t 1 when it becomes 1 . Therefore, the insulation monitoring device needs to be able to detect a zero-phase current of about several milliamperes. Therefore, in the zero-phase current transformer 14 of the insulation monitoring apparatus in this embodiment, the number of turns of the secondary winding is increased so that it can detect up to 2 milliamperes, which has higher sensitivity than a normal one.
【0015】しかし、零相電流信号16は、基本周波数
の波形に高調波やノイズが重畳した波形になっている。
本装置では、基本周波数の波形成分が小さな領域を扱わ
ねばならないためバンドパスフィルタ18に要求される
性能としては、基本周波数を中心とし、Q=5程度が必
要となる。零相電流信号16は、増幅器17により所定
のレベルまで増幅され、バンドパスフィルタ18により
基本周波数成分が抽出された後演算部19に入力され
る。演算部19では、前記入力信号に基づいて絶縁劣化
が生じたケーブルの特定とその絶縁劣化の程度の推定を
行う。However, the zero-phase current signal 16 has a waveform in which harmonics and noise are superimposed on the waveform of the fundamental frequency.
In this device, since a region in which the waveform component of the fundamental frequency is small must be handled, the performance required of the bandpass filter 18 is about Q = 5 with the fundamental frequency at the center. The zero-phase current signal 16 is amplified to a predetermined level by the amplifier 17, and the fundamental frequency component is extracted by the bandpass filter 18 and then input to the calculation unit 19. The calculation unit 19 identifies the cable in which the insulation deterioration has occurred and estimates the degree of the insulation deterioration based on the input signal.
【0016】絶縁劣化が、生じていない状態でもフィー
ダを構成する各相の浮遊容量に不揃いがあるため零相電
流が各フィーダに流れる。この状態で特定のフィーダに
絶縁劣化状態が発生した場合は、その地絡電流によりフ
ィーダに流れる電流ベクトルが大きくなる。その他のフ
ィーダの零相電流ベクトルは、絶縁劣化フィーダと比べ
逆方向となる。従って劣化フィーダの特定のためには、
各零相電流の大きさと方向を検出すればよい。また絶縁
劣化は、フィーダ全体が劣化している場合がほとんど
で、劣化位置の検出をする必要性は無い。Even if the insulation deterioration does not occur, the zero-phase current flows in each feeder because the stray capacitances of each phase constituting the feeder are not uniform. If an insulation deterioration state occurs in a specific feeder in this state, the current vector flowing in the feeder becomes large due to the ground fault current. The zero-phase current vectors of the other feeders are in the opposite direction compared to the insulation deterioration feeder. Therefore, to identify the deterioration feeder,
The magnitude and direction of each zero-phase current may be detected. Insulation deterioration is almost always caused by deterioration of the entire feeder, and there is no need to detect the deterioration position.
【0017】図3(a)は間欠弧光地絡電流波形の例
を、図3(b)はバンドパスフィルタ18に印加される
高周波電流のピーク電流とバンドパスフィルタ出力の最
大値との関係の一例を示したものである。増幅器17と
バンドパスフィルタ18は、図3(a)に示すようなバ
ンドパス周波数の10倍以上の高周波電流が印加される
とき、図3(b)に示すように入力された高周波電流の
ピーク電流とバンドパスフィルタ18出力の最大値は、
比例する関係がある。従って演算処理部19に於いて
は、各バンドパスフィルタ18出力の実効値を算出し、
その値が最大となるフィーダを検出しすればよく、更に
そのフィーダ電流の方向が他のフィーダと比較し逆方向
となっている事を検出してもよい。FIG. 3A shows an example of the intermittent arc light ground fault current waveform, and FIG. 3B shows the relationship between the peak current of the high frequency current applied to the bandpass filter 18 and the maximum value of the bandpass filter output. This is an example. The amplifier 17 and the bandpass filter 18 receive the peak of the high frequency current input as shown in FIG. 3B when the high frequency current of 10 times or more the bandpass frequency as shown in FIG. 3A is applied. The maximum value of the current and the output of the bandpass filter 18 is
There is a proportional relationship. Therefore, in the arithmetic processing section 19, the effective value of each bandpass filter 18 output is calculated,
It suffices to detect the feeder having the maximum value, and further to detect that the direction of the feeder current is in the opposite direction as compared with other feeders.
【0018】次に、上述した演算処理部19での演算結
果により特定された絶縁劣化フィーダの零相電流の絶対
値を、n個の段階的基準電流値と比較することにより絶
縁劣化の程度を判定することもできる。絶縁劣化フィー
ダを特定する信号30とそのフィーダの絶縁劣化の程度
をn段階で示す信号31が演算処理部19より表示部2
0に送られ、表示部20では、絶縁劣化が生じたフィー
ダの名称あるいは番号の表示と、そのフィーダの絶縁劣
化の程度をn段階で示す表示がされる。Next, the degree of insulation deterioration is determined by comparing the absolute value of the zero-phase current of the insulation deterioration feeder specified by the calculation result in the above-described calculation processing unit 19 with n stepwise reference current values. It can also be determined. A signal 30 specifying the insulation deterioration feeder and a signal 31 indicating the degree of insulation deterioration of the feeder in n steps are displayed by the arithmetic processing unit 19 on the display unit 2.
The display unit 20 displays the name or number of the feeder having insulation deterioration and the degree of insulation deterioration of the feeder in n stages.
【0019】次に間欠弧光地絡電流の地絡点を特定する
手段について説明する。図4に間欠弧光地絡電流波形と
地絡点までのケーブル長との関係を示す。図4(a)は
地絡電流波形を示し、図中の波形に付したA、B、及び
Cは図4(b)に示したように、地絡地点までのケーブ
ル長を示すものである。地絡点までのケーブル長が大き
い程地絡電流の振動周波数が低くなる。Next, a means for identifying the ground fault point of the intermittent arc light ground fault current will be described. Fig. 4 shows the relationship between the intermittent arc light ground fault current waveform and the cable length to the ground fault point. FIG. 4A shows a ground fault current waveform, and A, B and C attached to the waveforms in the figure show the cable length up to the ground fault point as shown in FIG. 4B. . The longer the cable length to the ground fault point, the lower the vibration frequency of the ground fault current.
【0020】間欠弧光地絡電流が流れることにより零相
電流信号16が発生するので、その信号を高周波増幅器
21で増幅した後に周波数検出手段22で地絡電流の振
動周波数を検出する。零相変流器14の周波数特性を高
周波(通常50KHzから1MHz)まで伝達可能とす
るには、零相変流器14の負担を小さくする必要があ
り、そのために高周波増幅器21で微少信号電流を増幅
し零相変流器14の入力インピーダンスを低下させてい
る。Since the zero-phase current signal 16 is generated due to the flow of the intermittent arc light ground fault current, the frequency detecting means 22 detects the oscillation frequency of the ground fault current after amplifying the signal by the high frequency amplifier 21. In order to transfer the frequency characteristics of the zero-phase current transformer 14 to a high frequency (normally 50 KHz to 1 MHz), it is necessary to reduce the load on the zero-phase current transformer 14, and therefore, the high-frequency amplifier 21 generates a small signal current. It is amplified to reduce the input impedance of the zero-phase current transformer 14.
【0021】間欠弧光地絡模擬試験を実施し、下記現象
を発見した。 (1)間欠弧光地絡電流は、母線側の浮遊容量(Cb)
及び他フィーダの浮遊容量(Cx)の合計容量Ct=C
b+Cxに依存する。 (2)地絡フィーダのケーブル総延長をM(Km)と
し、地絡点までの距離をM1(km)とすると、間欠弧
光地絡電流は、M1に依存する。 (3)間欠弧光地絡電流の共振周波数は、Ct*Lの自
乗に反比例する。ここに、Lはケーブルのリアクタン
ス。 (4)間欠弧光地絡電流のピーク値は、Ctの自乗に比
例し、M1の自乗に反比例する。An intermittent arc light ground fault simulation test was carried out and the following phenomenon was discovered. (1) The intermittent arc light ground fault current is the stray capacitance (Cb) on the bus side.
And total capacitance of stray capacitance (Cx) of other feeders Ct = C
Depends on b + Cx. (2) If the total cable length of the ground fault feeder is M (Km) and the distance to the ground fault point is M 1 (km), the intermittent arc light ground fault current depends on M 1 . (3) The resonant frequency of the intermittent arc light ground fault current is inversely proportional to the square of Ct * L. Where L is the reactance of the cable. (4) The peak value of the intermittent arc light ground fault current is proportional to the square of Ct and inversely proportional to the square of M 1 .
【0022】間欠弧光地絡現象は、ケーブルのLとCの
共振振動波形であり、電流とその周波数は一般的には、
次の数式1及び数式2で表される。The intermittent arc light ground fault phenomenon is a resonance vibration waveform of L and C of the cable, and the current and its frequency are generally
It is expressed by the following formulas 1 and 2.
【0023】[0023]
【数1】I=K1*V/(√(L/C)) I:電流,C=Ct,V=Cの電圧,K1=係数## EQU1 ## I = K 1 * V / (√ (L / C)) I: current, C = Ct, voltage of V = C, K 1 = coefficient
【0024】[0024]
【数2】f=K2/(2π*(√(L*C)) f:周
波数,C=Ct,K2=係数 一方、地絡点までのケーブル長をM1とすると、Lは、
次式で表される。## EQU2 ## f = K 2 / (2π * (√ (L * C)) f: frequency, C = Ct, K 2 = coefficient On the other hand, if the cable length to the ground fault is M 1 , then L is
It is expressed by the following equation.
【0025】[0025]
【数3】L=K3*M1 K3=ケーブルによる係数 数式2及び数式3より数式4が導かれる。Equation 3] L = K 3 * M 1 K 3 = Equation 4 from the coefficient Equations 2 and 3 by the cable is guided.
【0026】[0026]
【数4】M1=K/((2πf)2*C) K=係数 従って、零相電流を零相変流器14で検出後、その周波
数を検出し、演算処理部19で数式4を演算する事によ
り地絡点までの距離が推定出来る。## EQU4 ## M 1 = K / ((2πf) 2 * C) K = coefficient Therefore, after the zero-phase current is detected by the zero-phase current transformer 14, its frequency is detected, and the arithmetic processing unit 19 calculates the equation 4 The distance to the ground fault can be estimated by calculation.
【0027】上述した演算結果により特定された間欠弧
光地絡電流が流れたフィーダと、そのフィーダの地絡発
生地点の位置推定結果を示す信号31が演算部19より
表示部20に送られ、表示部20では、絶縁劣化により
間欠弧光地絡が発生したフィーダの名称叉は、番号の表
示と、その位置をケーブル長で示す表示がなされる。電
気設備の保守員は、表示装置の内容に従い、早急なる修
理あるいは修理の計画を行う。A signal indicating the feeder in which the intermittent arc light ground fault current specified by the above calculation result flows and the position estimation result of the ground fault occurrence point of the feeder is sent from the calculation unit 19 to the display unit 20 and displayed. In the section 20, the name or number of the feeder in which the intermittent arc light ground fault has occurred due to the insulation deterioration and the position thereof are displayed by the cable length. The maintenance staff of the electric equipment makes an immediate repair or a plan of repair according to the contents of the display device.
【0028】[0028]
【発明の効果】以上のように、本発明によれば、フィー
ダ単位での間欠弧光地絡地点の推定ができ、常時、絶縁
劣化の診断が可能となる効果を生じる。As described above, according to the present invention, the intermittent arc light ground fault point can be estimated for each feeder, and the insulation deterioration can be constantly diagnosed.
【図1】本発明の一実施例の構成を示したものである。FIG. 1 shows the configuration of an embodiment of the present invention.
【図2】絶縁劣化による零相電流の時間変化の1例を示
す図である。FIG. 2 is a diagram showing an example of a change over time of a zero-phase current due to insulation deterioration.
【図3】(a)間欠弧光地絡電流波形と(b)間欠弧光
地絡電流を入力したときのバンドパスフィルター出力特
性を示した図である。FIG. 3 is a diagram showing output characteristics of a bandpass filter when (a) an intermittent arc light ground fault current waveform and (b) an intermittent arc light ground fault current are input.
【図4】(a)間欠弧光地絡電流波形と地絡点までのケ
ーブル長の関係と、(b)地絡点までのケーブル長と間
欠弧光地絡電流周波数の関係を示した図である。FIG. 4 is a diagram showing (a) the relationship between the intermittent arc light ground fault current waveform and the cable length up to the ground fault point, and (b) the relationship between the cable length up to the ground fault point and the intermittent arc light ground fault current frequency. .
1 絶縁監視装置 2 電気設備 10 受電部 11 母線 12 フィーダ 13 遮断器 14 零相変流器 15 負荷 17 増幅器 18 バンドパスフィルタ 19 演算処理部 20 表示部 21 高周波増幅器 22 周波数検出手段 DESCRIPTION OF SYMBOLS 1 Insulation monitoring apparatus 2 Electric equipment 10 Power receiving section 11 Bus 12 Feeder 13 Circuit breaker 14 Zero-phase current transformer 15 Load 17 Amplifier 18 Band pass filter 19 Calculation processing section 20 Display section 21 High frequency amplifier 22 Frequency detecting means
Claims (4)
物の絶縁を診断する絶縁診断装置において、フィーダか
ら検出された零相電流の周波数を検出する周波数検出手
段と、該周波数検出手段の出力と前記電力系統の定数か
ら間欠弧光地絡地点を算出する演算処理部を備えたこと
を特徴とする絶縁診断装置。1. An insulation diagnostic device for diagnosing insulation of an electric work by detecting a zero-phase current of a power system, and a frequency detecting means for detecting a frequency of the zero-phase current detected from a feeder, and the frequency detecting means. An insulation diagnosis apparatus comprising an arithmetic processing unit for calculating an intermittent arc light ground fault point from the output of the electric power system and a constant of the electric power system.
物の絶縁を診断する絶縁診断装置において、複数のフィ
ーダのそれぞれから検出された零相電流の周波数を検出
する周波数検出手段と、前記零相電流を入力し前記電力
系統周波数成分を取り出すバンドパスフィルタと、前記
周波数検出手段の出力と前記電力系統の定数から間欠弧
光地絡地点を算出し前記バンドパスフィルタの複数の出
力を比較して出力値が最大のフィーダを求める演算処理
部を備えたことを特徴とする絶縁診断装置。2. An insulation diagnostic device for diagnosing insulation of an electric work by detecting a zero-phase current of a power system, and frequency detection means for detecting a frequency of the zero-phase current detected from each of a plurality of feeders. A bandpass filter for inputting the zero-phase current and extracting the power system frequency component, and calculating an intermittent arc light ground fault point from the output of the frequency detecting means and a constant of the power system and comparing a plurality of outputs of the bandpass filter. An insulation diagnosis device comprising an arithmetic processing unit for obtaining a feeder having the maximum output value.
物の絶縁を診断する絶縁診断装置において、複数のフィ
ーダのそれぞれから検出された零相電流の前記電力系統
周波数成分を取り出すバンドパスフィルタと、該バンド
パスフィルタの出力をN個の段階的に設定されたレベル
と比較してN段階に区分する演算処理部を備えたことを
特徴とする絶縁診断装置。3. A band pass for extracting the power system frequency component of the zero phase current detected from each of a plurality of feeders in an insulation diagnosis device for diagnosing insulation of an electric work by detecting a zero phase current of the power system. An insulation diagnosis apparatus comprising: a filter; and an arithmetic processing unit that compares the output of the band pass filter with N levels set in stages and divides the output into N stages.
絶縁ケーブルであることを特徴とする絶縁診断装置。4. The insulation diagnostic device according to claim 1, wherein the feeder is an insulated cable.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5170334A JP2912990B2 (en) | 1993-07-09 | 1993-07-09 | Insulation diagnostic equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5170334A JP2912990B2 (en) | 1993-07-09 | 1993-07-09 | Insulation diagnostic equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0727812A true JPH0727812A (en) | 1995-01-31 |
JP2912990B2 JP2912990B2 (en) | 1999-06-28 |
Family
ID=15903017
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5170334A Expired - Lifetime JP2912990B2 (en) | 1993-07-09 | 1993-07-09 | Insulation diagnostic equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2912990B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0965567A (en) * | 1995-08-22 | 1997-03-07 | Nippon Kouatsu Electric Co | Earth discriminant device in high-voltage distribution system |
KR19980069423A (en) * | 1997-02-28 | 1998-10-26 | 이대원 | Electrical Equipment Fault Diagnosis Device Using Frequency Characteristics and Its Method |
KR100401594B1 (en) * | 2001-07-19 | 2003-10-17 | 엘지전선 주식회사 | Partial discharge measurement system auto-selecting time and frequency domain |
KR20060057294A (en) * | 2004-11-23 | 2006-05-26 | 휴먼엘텍 주식회사 | Apparatus for detection of arc signal using arc coupling |
CN102175951A (en) * | 2011-01-18 | 2011-09-07 | 广州思泰信息技术有限公司 | Distribution network fault detection system |
JP2013145158A (en) * | 2012-01-13 | 2013-07-25 | Chugoku Electric Power Co Inc:The | Dc earth fault detecting device and dc earth fault detecting method |
CN104297615A (en) * | 2014-09-24 | 2015-01-21 | 国家电网公司 | Method for detecting intermittent ground fault on basis of zero-sequence current randomness recognition |
CN113009302A (en) * | 2021-03-18 | 2021-06-22 | 奇瑞新能源汽车股份有限公司 | Method and device for positioning insulation fault of high-voltage system of electric automobile |
CN113933750A (en) * | 2021-10-18 | 2022-01-14 | 广东电网有限责任公司东莞供电局 | Method, device, equipment and storage medium for detecting high-resistance earth fault of power distribution network |
-
1993
- 1993-07-09 JP JP5170334A patent/JP2912990B2/en not_active Expired - Lifetime
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0965567A (en) * | 1995-08-22 | 1997-03-07 | Nippon Kouatsu Electric Co | Earth discriminant device in high-voltage distribution system |
KR19980069423A (en) * | 1997-02-28 | 1998-10-26 | 이대원 | Electrical Equipment Fault Diagnosis Device Using Frequency Characteristics and Its Method |
KR100401594B1 (en) * | 2001-07-19 | 2003-10-17 | 엘지전선 주식회사 | Partial discharge measurement system auto-selecting time and frequency domain |
KR20060057294A (en) * | 2004-11-23 | 2006-05-26 | 휴먼엘텍 주식회사 | Apparatus for detection of arc signal using arc coupling |
CN102175951A (en) * | 2011-01-18 | 2011-09-07 | 广州思泰信息技术有限公司 | Distribution network fault detection system |
JP2013145158A (en) * | 2012-01-13 | 2013-07-25 | Chugoku Electric Power Co Inc:The | Dc earth fault detecting device and dc earth fault detecting method |
CN104297615A (en) * | 2014-09-24 | 2015-01-21 | 国家电网公司 | Method for detecting intermittent ground fault on basis of zero-sequence current randomness recognition |
CN104297615B (en) * | 2014-09-24 | 2017-02-01 | 国家电网公司 | Method for detecting intermittent ground fault on basis of zero-sequence current randomness recognition |
CN113009302A (en) * | 2021-03-18 | 2021-06-22 | 奇瑞新能源汽车股份有限公司 | Method and device for positioning insulation fault of high-voltage system of electric automobile |
CN113009302B (en) * | 2021-03-18 | 2023-03-21 | 奇瑞新能源汽车股份有限公司 | Method and device for positioning insulation fault of high-voltage system of electric automobile |
CN113933750A (en) * | 2021-10-18 | 2022-01-14 | 广东电网有限责任公司东莞供电局 | Method, device, equipment and storage medium for detecting high-resistance earth fault of power distribution network |
CN113933750B (en) * | 2021-10-18 | 2023-08-04 | 广东电网有限责任公司东莞供电局 | Method, device, equipment and storage medium for detecting high-resistance ground fault of power distribution network |
Also Published As
Publication number | Publication date |
---|---|
JP2912990B2 (en) | 1999-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FI115488B (en) | Method and apparatus for detecting a breaking earth fault in a power distribution network | |
US8823307B2 (en) | System for detecting internal winding faults of a synchronous generator, computer program product and method | |
US4771355A (en) | System and method for arc detection in dynamoelectric machines | |
JP3704532B2 (en) | Method and apparatus for determining a ground fault on a conductor of an electric machine | |
RU2660128C2 (en) | Method of the transformer phase failure condition detecting | |
US9046563B2 (en) | Arcing event detection | |
JP5256757B2 (en) | Micro ground fault detector | |
KR200401675Y1 (en) | Low Voltage On-Line Insulation Monitoring System | |
KR100823724B1 (en) | Apparatus and method for detecting stator winding groundwall insulation condition of inverter-fed AC motor | |
JP2912990B2 (en) | Insulation diagnostic equipment | |
JP4871511B2 (en) | Interrupt insulation measuring device | |
JP5163452B2 (en) | Fine ground fault detection device and fine ground fault detection method | |
JP2958594B2 (en) | Insulation deterioration diagnosis device | |
JPH07245869A (en) | Insulation deterioration detection device for electric equipment | |
JPH04220573A (en) | Low-voltage system line wire insulation monitoring method | |
KR200318656Y1 (en) | Power Condensor Diagnostic System Using Neutral Current | |
JPH04212076A (en) | Method and device for abnormal diagnostic method of electrical equipment | |
JPH0894698A (en) | Method and system for standardizing intermittent arc ground fault section in high voltage power distribution system with non-grounded neutral point | |
JP2003161756A (en) | Insulation diagnostic apparatus | |
JP4258386B2 (en) | Insulation diagnostic device | |
TWI231079B (en) | Insulation diagnostic device | |
JP2018072277A (en) | Ground voltage detection device | |
JPH04208868A (en) | Uninterruptible insulation diagnostic apparatus | |
JPS63294214A (en) | Monitor system of insulation of power distribution facility | |
JPH0554913B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080416 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090416 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090416 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100416 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110416 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120416 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120416 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130416 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140416 Year of fee payment: 15 |
|
EXPY | Cancellation because of completion of term |