JP4258386B2 - Insulation diagnostic device - Google Patents

Insulation diagnostic device Download PDF

Info

Publication number
JP4258386B2
JP4258386B2 JP2004008606A JP2004008606A JP4258386B2 JP 4258386 B2 JP4258386 B2 JP 4258386B2 JP 2004008606 A JP2004008606 A JP 2004008606A JP 2004008606 A JP2004008606 A JP 2004008606A JP 4258386 B2 JP4258386 B2 JP 4258386B2
Authority
JP
Japan
Prior art keywords
processing unit
phase
zero
value
peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004008606A
Other languages
Japanese (ja)
Other versions
JP2004239899A (en
Inventor
匡 谷川
洋一郎 谷口
康信 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004008606A priority Critical patent/JP4258386B2/en
Publication of JP2004239899A publication Critical patent/JP2004239899A/en
Application granted granted Critical
Publication of JP4258386B2 publication Critical patent/JP4258386B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Description

本発明は絶縁診断装置に係り、特に、電力系統におけるケーブル等の電気設備の絶縁劣化傾向を判断するものに好適な絶縁診断装置に関する。   The present invention relates to an insulation diagnosis apparatus, and more particularly to an insulation diagnosis apparatus suitable for determining an insulation deterioration tendency of electrical equipment such as a cable in a power system.

電気設備の絶縁劣化は、時間的に進展し、最終的には地絡事故や短絡事故に至る場合が多い。絶縁劣化の進展メカニズムは、複雑であるが、概ね次の2ケースのモードが一般的である。   Insulation deterioration of electrical equipment progresses with time, and often leads to a ground fault or a short-circuit accident. The progress mechanism of insulation deterioration is complicated, but the following two cases of modes are generally used.

まず、第1のケースは、ケーブル被覆や導体支持絶縁体の傷や劣化部分から電流が漏れ始め、その漏洩電流により発生する熱,圧力,イオン等により傷や劣化が進展し、漏洩電流が増加する場合である。   First, in the first case, current starts to leak from scratches and deteriorated parts of the cable sheathing and conductor support insulator, and damage and deterioration develop due to heat, pressure, ions, etc. generated by the leakage current, and the leakage current increases. This is the case.

他のケースは、ケーブル等に見られるケースで、絶縁物にツリー状に水分が浸透して一気に絶縁破壊が発生し、その後、絶縁回復する場合である。   The other case is a case found in cables and the like, in which water penetrates into the insulator in a tree shape, causing dielectric breakdown at a stretch, and then recovering insulation.

後者は間欠弧光地絡と言われ、現象が短時間で終了し、且つ再現性がないため、検出が難しい。   The latter is said to be an intermittent arc light ground fault and is difficult to detect because the phenomenon ends in a short time and is not reproducible.

しかし、最近の電気設備は、間欠弧光地絡電流を活線状態で検出する技術の要求と、設備計画停止の予定が立てられる、予測診断技術の要求がある。   However, recent electrical equipment has a demand for technology for detecting an intermittent arc optical ground fault current in a live line state and a demand for a predictive diagnosis technology that can be scheduled for a planned equipment stoppage.

従来は、接地電圧変成器(以降、GPTと略記する。)の中性点と大地との間に開閉装置を設け、通常運転時は閉路し、絶縁劣化診断時に開路して開閉装置の両極に直流電圧を印加し、電気設備から大地への漏洩電流を計測しその結果が予め定めた基準値を超過している場合には電気設備を停止させ、電力線の絶縁劣化を個々に検査していた。しかし、この装置で計測し異常と判断されたケーブルでも、実使用上は問題なく使用できるもの、あるいは正常と判断されても実使用では異常となるものが有った。これは、測定は直流で実施し、実使用は交流電圧で使用する条件の違いと印加電圧の微妙な違いによるものである。測定を実使用と同じ交流電圧で実施しようとしても電源等の試験装置が大型化し、しかも零相監視が必要となってしまう。   Conventionally, a switchgear is provided between the neutral point of the ground voltage transformer (hereinafter abbreviated as GPT) and the ground, and is closed during normal operation, and is opened during diagnosis of insulation deterioration. DC voltage was applied, the leakage current from the electrical equipment to the ground was measured, and if the result exceeded a predetermined reference value, the electrical equipment was stopped and the insulation deterioration of the power line was individually tested. . However, some cables measured with this device and judged to be abnormal can be used without any problem in actual use, or some cables may be abnormal in actual use even if judged normal. This is because the measurement is carried out with a direct current, and the actual use is due to the difference in conditions of use with an alternating voltage and the slight difference in applied voltage. Even if the measurement is carried out with the same AC voltage as in actual use, the test apparatus such as a power source becomes large and zero phase monitoring is required.

また、(特許文献1)では、基準の線間電圧信号、及び他の2相分の線間電圧信号のそれぞれと零相電流検出により地絡信号を取り出し、その位相から地絡相を判断し、また零相電流により事故回線を判断しているが、間欠弧光地絡は持続時間が短いため検出が難しく地絡検出及び事故回線の判断はできなかった。   Further, in (Patent Document 1), a ground fault signal is extracted by detecting each of the reference line voltage signal and the other two-phase line voltage signals and zero-phase current, and the ground fault phase is determined from the phase. Moreover, although the fault line is judged by the zero-phase current, the intermittent arc light ground fault is difficult to detect because the duration is short, and the ground fault cannot be detected and the fault line cannot be judged.

また、(特許文献2)では、零相電圧,零相電流及び線間電圧を入力しているため、間欠弧光地絡であっても劣化相の判定と事故回線の特定を行えるが、ノイズなどによる微弱電流を検出してしまい、誤って間欠弧光地絡や事故回線と判断される場合があった。   In (Patent Document 2), since the zero-phase voltage, zero-phase current, and line voltage are input, it is possible to determine the deteriorated phase and identify the fault line even in the case of an intermittent arc light ground fault. In some cases, the weak current due to the fault was detected, and it was mistakenly determined as an intermittent arc light ground fault or an accident line.

特開平4−42726号公報JP-A-4-42726 特開平6−300807号公報JP-A-6-300807

このように上記従来の技術では、実使用状態では電力設備を停止させて絶縁劣化を検査する必要があり、しかも、検査結果が信頼性に乏しく、また、間欠弧光地絡時の地絡検出及び事故回線の判断が難しい嫌いがあった。   As described above, in the conventional technique, it is necessary to inspect the insulation deterioration by stopping the power equipment in the actual use state, and the inspection result is unreliable, and the ground fault detection at the time of the intermittent arc light ground fault and I hated it was difficult to judge the accident line.

本発明の目的は、実使用状態での電力設備を停止させることなく、絶縁劣化が診断できることは勿論、間欠弧光地絡発生時には、地絡発生の有無及び事故回線を特定できる絶縁診断装置を提供することにある。   The object of the present invention is to provide an insulation diagnostic device capable of identifying the occurrence of a ground fault and an accident line at the time of occurrence of an intermittent arc optical ground fault as well as being able to diagnose insulation deterioration without stopping the power equipment in actual use. There is to do.

本発明は、電力系統の線間電圧と、零相電圧,零相電流を検出して電気工作物の絶縁を診断する絶縁診断装置で、間欠弧光地絡を算出する演算処理部を備え、零相電流と零相電圧のピーク値の積和結果により事故回線を特定し、出力部より遠隔地からも事故回線の判断ができることを特徴とする。   The present invention is an insulation diagnostic apparatus for diagnosing insulation of an electric workpiece by detecting line voltage, zero phase voltage, and zero phase current of a power system, and includes an arithmetic processing unit that calculates an intermittent arc light ground fault, It is characterized in that the fault line can be identified from the output part from a remote place by specifying the fault line from the product sum of the peak values of the phase current and the zero phase voltage.

以上のように本発明によれば、実使用状態での電力設備を停止させることなく絶縁劣化の診断が可能となり、しかも、間欠弧光地絡発生時には、地絡発生の有無及び事故回線を特定できるので、重大事故を未然に防止できる効果がある。   As described above, according to the present invention, it is possible to diagnose insulation deterioration without stopping power equipment in actual use, and it is possible to identify the occurrence of a ground fault and an accident line when an intermittent arc light ground fault occurs. Therefore, it has the effect of preventing serious accidents.

本発明が適用される絶縁診断装置の概略構造を図1を用いて説明する。   A schematic structure of an insulation diagnostic apparatus to which the present invention is applied will be described with reference to FIG.

図1は、絶縁診断装置の構成を示している。入力部1で外部より信号を入力し、CPU3で演算処理を行い、入力信号及び演算結果はメモリ4に蓄積される。また、表示部5で演算結果や警報表示を行い、出力部6で演算結果や警報信号を外部出力できる構成となっている。   FIG. 1 shows the configuration of the insulation diagnostic apparatus. A signal is input from the outside by the input unit 1, the arithmetic processing is performed by the CPU 3, and the input signal and the arithmetic result are stored in the memory 4. In addition, the display unit 5 can display calculation results and alarms, and the output unit 6 can output the calculation results and alarm signals to the outside.

図2は、絶縁診断装置及び遠隔監視用現場監視装置を備えた高圧配電系統設備を示すもので、該図に示す高圧配電系統設備は、変圧器7に接続される遮断器8と、これに接続される母線15と、母線15から引き出される複数のフィーダ用遮断器9〜12,接地変圧器13,各相毎に配置された零相変流器50〜53とから概略構成されている。これらの高圧配電系統設備における絶縁劣化検出を行うため、零相変流器50〜53から零相電流I0、接地変圧器13から線間電圧と零相電圧を取り出して絶縁診断装置14に入力している。さらに検出結果を上位の現場監視装置16に出力し、現場監視装置16自体でWeb端18等、遠隔地に情報発信できる構成としている。 FIG. 2 shows a high-voltage distribution system facility equipped with an insulation diagnostic device and a remote monitoring field monitoring device. The high-voltage distribution system facility shown in the figure includes a circuit breaker 8 connected to a transformer 7 and The bus 15 is connected, a plurality of feeder circuit breakers 9 to 12 drawn from the bus 15, a grounding transformer 13, and zero-phase current transformers 50 to 53 arranged for each phase. In order to detect insulation deterioration in these high-voltage distribution system facilities, the zero-phase current I 0 is extracted from the zero-phase current transformers 50 to 53, the line voltage and the zero-phase voltage are extracted from the grounding transformer 13 and input to the insulation diagnostic device 14. is doing. Further outputs the detection result to the site monitoring apparatus 16 of the upper, Web terminal end 18 mag in situ monitoring device 16 itself, has a configuration that can transmit information to a remote location.

本発明の一実施例である絶縁診断装置14は、接地変圧器13から零相電圧V0と線間電圧V1−2,V2−3,V3−1を、零相変流器51〜54のいずれか1つから零相電流I0をそれぞれ信号として取り込む。その処理内容は図3に示すように、接地変圧器13の零相電圧V0の高周波電圧をPEAK−HOLD20で変換し、実効値・整定値処理部21で実効値演算及び整定値との比較演算を行い、整定値以上の時、線間電圧V1−2,V2−3,V3−1を位相シフト処理部36〜38で位相シフト変換し、ここで位相シフト変換された相電圧(R相,S相,T相電圧)との積総和を積・総和処理部26〜28で演算し、次いで最大値処理部29で最大値を演算し、結果を表示部33〜35で相別に表示する。PEAK−HOLD演算部は、線間電圧V1−2,V2−3,V3−1を位相シフト処理部36〜38で位相を30度シフトさせて相電圧に変換後、立り検出処理部22〜24で相電圧の立下りを検出し、結果をOR処理部25でORした信号によりPEAK−HOLDのリセットが行われる。相電圧に変換後、立下りでPEAK−HOLDをリセットする理由は、演算結果(相電圧とPEAK−HOLD値の積和演算)が最大の感度となるのは、相電圧の立下り前でも演算結果が低下するためである。 Insulation diagnostic device 14 according to an embodiment of the present invention provides zero-phase voltage V0 and line voltages V1-2, V2-3, and V3-1 from ground transformer 13 to any one of zero-phase current transformers 51-54. One of the zero-phase currents I0 is taken in as a signal. As shown in FIG. 3, the processing content is obtained by converting the high-frequency voltage of the zero-phase voltage V 0 of the grounding transformer 13 with the PEAK-HOLD 20, and calculating the effective value and comparing the set value with the effective value / setting value processing unit 21. When the set value is exceeded, the line voltages V1-2, V2-3 and V3-1 are subjected to phase shift conversion by the phase shift processing units 36 to 38, and the phase voltage (R phase, The sum of products with the S-phase and T-phase voltages is calculated by the product / sum processing units 26 to 28, then the maximum value is calculated by the maximum value processing unit 29, and the results are displayed by phase on the display units 33 to 35. PEAK-HOLD operation unit, the line voltage V1-2, V2-3, converted to V3-1 in phase voltage shifts the phase 30 degrees phase shift processing unit 36 to 38, Ri falling detection processing unit 22 The fall of the phase voltage is detected at ˜24, and the PEAK-HOLD is reset by a signal obtained by ORing the result by the OR processing unit 25. The reason for resetting PEAK-HOLD at the fall after the conversion to phase voltage is that the calculation result (the product-sum operation of the phase voltage and PEAK-HOLD value) is the maximum sensitivity, even before the fall of the phase voltage. It is because a result falls.

一方、実効値・整定値処理部21で実効値演算及び整定値比較演算した結果を、R相,S相,T相相電圧と位相領域検出処理部39〜41で位相領域を比較演算し、OR処理部42でORした信号(例えばR相)と図6に示す相判別をするための領域(斜線部分のR相)とが一致し、タイマ処理部43にて零相電圧のPEAK−HOLD値5周期分の移動平均最大値が整定値を越えた場合、64K動作処理部44で64Kを動作させる構成としている。   On the other hand, the effective value calculation and the settling value comparison calculation result in the effective value / setting value processing unit 21 are compared with the R-phase, S-phase, and T-phase voltages and the phase region detection processing units 39 to 41 to compare and calculate the phase region. The signal ORed by the OR processing unit 42 (for example, R phase) coincides with the region for phase discrimination shown in FIG. 6 (the R phase in the shaded area), and the PEAK-HOLD of the zero phase voltage at the timer processing unit 43. When the moving average maximum value for 5 cycles exceeds the set value, the 64K operation processing unit 44 operates 64K.

図7に、タイマの演算例を示す。零相波形が図のように発生したとき、零相ピーク値は最大30Vとなるが、零相波形の5周期分の移動平均最大値は24Vとなり、1秒間あたりの零相移動平均最大値は24Vとなる。5周期分の移動平均最大値を判断材料にすることで、ノイズなどによる誤判断を防止できる。また、タイマの整定値は、過去の実験結果より間欠弧光地絡現象の発生頻度が0.1秒から0.5秒以内に多く、5秒以上発生することがないことに着目し1秒としている。よって、1秒経過する毎に零相ピーク値,零相移動平均最大値,1秒間あたりの零相移動平均最大値をリセットする。   FIG. 7 shows a calculation example of the timer. When the zero phase waveform is generated as shown in the figure, the zero phase peak value is 30 V at the maximum, but the moving average maximum value for 5 cycles of the zero phase waveform is 24 V, and the zero phase moving average maximum value per second is 24V. By using the moving average maximum value for five cycles as a determination material, erroneous determination due to noise or the like can be prevented. In addition, the settling value of the timer is set to 1 second, focusing on the fact that the occurrence frequency of the intermittent arc light ground fault is less than 0.1 seconds to 0.5 seconds, and it does not occur for more than 5 seconds. Yes. Therefore, every time 1 second elapses, the zero phase peak value, the zero phase moving average maximum value, and the zero phase moving average maximum value per second are reset.

以上のような演算を実施すると、間欠弧光地絡時発生する高周波の零相電圧を確実に検出でき、64K(間欠地絡過電圧継電器)を動作させることが可能となる。

When the above calculation is performed, a high-frequency zero-phase voltage generated during an intermittent arc light ground fault can be reliably detected, and a 64K (intermittent ground fault overvoltage relay ) can be operated.

更に、図2に示す零相変流器50〜53にいずれか1つの零相電流の高周波成分をPEAK−HOLD45で変換し、その結果とPEAK−HOLD20で演算された零相電圧を積和処理部46で積和演算し、結果が+であった場合はAND処理部47でAND演算し、64K動作処理部44の64Kが動作していれば事故回線表示部48で事故回線と表示する。積和処理部46の結果が+であれば事故回線と特定できる理由は、地絡時は事故点のある回路に向かって電流が流れるため、事故点のある零相電流と零相電圧が同位相となるが、事故点のない回線は零相電流と零相電圧が逆位相となるため、零相電圧と零相電流の積和を取ることにより、事故点を含むか含まないかが判断できる。よって、以上のような演算を実施すると、間欠弧光地絡時に、確実に事故回線か否かが判断できる。   Further, the high-frequency component of any one of the zero-phase currents is converted by PEAK-HOLD 45 into the zero-phase current transformers 50 to 53 shown in FIG. 2, and the result and the zero-phase voltage calculated by PEAK-HOLD 20 are summed. If the result is +, the AND processing unit 47 performs an AND operation. If 64K of the 64K operation processing unit 44 is operating, the accident line display unit 48 displays the accident line. If the result of the product-sum processing unit 46 is +, the fault line can be identified because the current flows toward the circuit at the fault point during a ground fault, so the zero-phase current and zero-phase voltage at the fault point are the same. Since the zero-phase current and zero-phase voltage are in opposite phases on a line that has a phase but no accident point, it is possible to determine whether the fault point is included or not by taking the product sum of the zero-phase voltage and zero-phase current. . Therefore, if the above calculation is performed, it can be reliably determined whether or not there is an accident line at the time of an intermittent arc light ground fault.

また、図1に示す出力部6より、メモリ4に記憶した計測値,事故回線,判定結果,警報の情報を遠隔監視用の現場監視装置16などの外部装置に出力し、遠隔地においても計測値,事故回線,判定結果,警報の情報を参照可能としている。   Further, the output unit 6 shown in FIG. 1 outputs the measurement value, the accident line, the determination result, and the alarm information stored in the memory 4 to an external device such as a remote monitoring field monitoring device 16 for measurement even in a remote place. Values, accident lines, judgment results, and alarm information can be referenced.

図4は、絶縁診断装置及び遠隔監視用現場監視装置を備えた電気設備の構成例を示している。図2との違いは、電気設備と絶縁監視装置との接続構成が異なっており、図2では各フィーダに1つ絶縁診断装置があったのに対し、図4では全体で絶縁診断装置が1つとなっている。   FIG. 4 shows an example of the configuration of an electrical facility provided with an insulation diagnostic device and a remote monitoring site monitoring device. The difference from FIG. 2 is that the connection configuration of the electrical equipment and the insulation monitoring device is different. In FIG. 2, there is one insulation diagnostic device for each feeder, whereas in FIG. It has become one.

本発明の一実施例である絶縁診断装置14′は、図4に示すような非接地系の高圧配電系統設備において、接地変圧器13から零相電圧と線間電圧を、また複数の零相変流器
50〜53からそれぞれ検出された零相電流I01〜I04を信号として取り込む。
An insulation diagnostic apparatus 14 'according to an embodiment of the present invention is configured to output a zero-phase voltage and a line voltage from a ground transformer 13 and a plurality of zero-phase voltages in a non-grounded high-voltage distribution system facility as shown in FIG. The zero-phase currents I 0 1 to I 0 4 detected from the current transformers 50 to 53 are taken in as signals.

図5は、絶縁診断装置14′の機能ブロック図を示している。図3との違いは、零相電流の入力が複数となっているため、それに伴いPEAK−HOLD85〜88,積和処理部89〜92,AND処理部93〜96,事故回線表示部97〜100が零相電流の入力回路分準備されており、事故回線の判断が複数同時に可能な構成となっている。   FIG. 5 shows a functional block diagram of the insulation diagnostic device 14 ′. The difference from FIG. 3 is that there are a plurality of zero-phase current inputs. Accordingly, PEAK-HOLD 85-88, product-sum processing units 89-92, AND processing units 93-96, and fault line display units 97-100. Are prepared for the zero-phase current input circuit, and a plurality of fault lines can be determined simultaneously.

本発明の一実施例である絶縁診断装置14′の処理内容は、図5に示すように、接地変圧器13の零相電圧V0の高周波電圧をPWAK−HOLD60で変換し、実効値,整定値処理部61で実効値演算及び整定値との比較演算を行い、整定値以上の時、線間電圧
V1−2,V2−3,V3−1を位相シフト処理部76〜78で位相シフト変換し、ここで位相シフト変換された相電圧(R相,S相,T相電圧)との積総和を積・総和処理部
66〜68で演算し、次いで最大値処理部69で最大値を演算し、結果を64K動作演算結果とAND処理部70〜72でAND演算し、結果を表示部73〜75で相別に表示する。PEAK−HOLD演算部は、線間圧力V1−2,V2−3,V3−1を位相シフト処理部76〜78で位相を30度シフトさせて相電圧に変換後、立下り検出処理部62〜64で相電圧の立下りを検出し、結果をOR処理部65でORした信号によりPEAK−HOLDのリセットが行われる。立下りでPEAK−HOLDをリセットする理由は、絶縁診断装置14で説明と同様の理由による。
As shown in FIG. 5, the processing contents of the insulation diagnostic device 14 'according to one embodiment of the present invention are obtained by converting the high-frequency voltage of the zero-phase voltage V0 of the grounding transformer 13 with the PWAK-HOLD 60, and obtaining the effective value and the settling value. The processing unit 61 performs an effective value calculation and a comparison calculation with a set value. When the set value is exceeded, the line voltages V1-2, V2-3, and V3-1 are phase-shifted by the phase shift processing units 76 to 78. Here, the product sum with the phase voltage (R phase, S phase, T phase voltage) subjected to phase shift conversion is calculated by the product / sum processing units 66 to 68, and then the maximum value is calculated by the maximum value processing unit 69. The result is ANDed with the 64K operation calculation result by the AND processing units 70 to 72, and the result is displayed for each phase on the display units 73 to 75. The PEAK-HOLD calculation unit shifts the line pressures V1-2, V2-3, and V3-1 to phase voltages by shifting the phase by 30 degrees by the phase shift processing units 76 to 78, and then falls detection processing units 62 to The fall of the phase voltage is detected at 64, and PEAK-HOLD is reset by a signal obtained by ORing the result by the OR processing unit 65. The reason for resetting PEAK-HOLD at the falling edge is the same as that explained in the insulation diagnostic apparatus 14.

一方、実効値・整定値処理部61で実効値演算及び整定値との比較演算をした結果を、R相,S相,T相相電圧と位相領域検出処理部79〜81で位相領域を比較演算し、OR処理部82でORした信号と図6に示す領域と演算結果が一致し、タイマ処理部83にて零相電圧のPEAK−HOLD値5周期分の移動平均最大値が整定値を越えた場合、64K動作処理部84で64Kを動作させる構成としている。零相電圧のPEAK−HOLD値5周期分の移動平均最大値を判断材料にした理由と整定値については絶縁診断装置14と同様である。   On the other hand, the result of comparison between the effective value calculation and the settling value in the effective value / setting value processing unit 61 is compared with the phase region in the R-phase, S-phase, and T-phase voltages and the phase region detection processing units 79 to 81. The signal calculated by the OR processing unit 82 and the result shown in FIG. 6 coincide with the result shown in FIG. 6, and the moving average maximum value for the PEAK-HOLD value 5 periods of the zero-phase voltage is set to the set value in the timer processing unit 83. If it exceeds, 64K operation processing unit 84 is configured to operate 64K. The reason why the moving average maximum value for five periods of the PEAK-HOLD value of the zero-phase voltage is used as a judgment material and the settling value are the same as those of the insulation diagnostic device 14.

更に、零相変流器51〜54それぞれの零相電流の高周波成分をPEAK−HOLD85〜88で変換し、その結果とPEAK−HOLD60で演算された零相電圧を積和処理部89〜92で積和演算し、結果が+であった場合はAND処理部93〜96でAND演算し、64動作処理部84の64Kが動作していれば、事故回線表示部97〜100で事故回線と表示する。積和処理部89〜92の結果が+であれば事故回線と特定できる理由は、地絡時は事故点のある回線に向かって電流が流れるため、事故点のある回線は、零相電流と零相電圧が同位相となるが、事故点のない回線は零相電流と零相電圧が逆位相となるため、零相電圧と零相電流の積和を取ることにより、事故点を含む回線が判断できる。   Further, the high-frequency components of the zero-phase current of each of the zero-phase current transformers 51 to 54 are converted by PEAK-HOLD 85 to 88, and the result and the zero-phase voltage calculated by PEAK-HOLD 60 are converted by product-sum processing units 89 to 92. When the sum of products is calculated and the result is +, AND processing is performed by the AND processing units 93 to 96. To do. If the result of the sum-of-products processing unit 89 to 92 is +, the reason why the fault line can be identified is that current flows toward the faulty line at the time of a ground fault. Zero-phase voltage is in phase, but there is no fault point on the line. Zero-phase current and zero-phase voltage are in opposite phase. Can be judged.

また、絶縁診断装置14と同様に、メモリ4に記憶した計測値,事故回線,判定結果,警報の情報を遠隔監視用の現場監視装置16などの外部装置に出力し、遠隔地においても計測値,事故回線,判定結果,警報の情報を参照可能としている。   Similarly to the insulation diagnosis device 14, the measurement value, the accident line, the determination result, and the alarm information stored in the memory 4 are output to an external device such as a remote monitoring field monitoring device 16, and the measurement value is also obtained at a remote location. , Accident line, judgment result, alarm information can be referred.

本発明の絶縁診断装置の一実施例を示したブロック図である。It is the block diagram which showed one Example of the insulation diagnostic apparatus of this invention. 本発明の一実施例の絶縁診断装置を備えた電気設備の構成例を示した図である。It is the figure which showed the structural example of the electrical equipment provided with the insulation diagnostic apparatus of one Example of this invention. 本発明の絶縁診断装置の一実施例における演算処理を示すブロック図である。It is a block diagram which shows the arithmetic processing in one Example of the insulation diagnostic apparatus of this invention. 本発明の他の実施例の絶縁診断装置を備えた電気設備の構成を示した図である。It is the figure which showed the structure of the electrical installation provided with the insulation diagnostic apparatus of the other Example of this invention. 本発明の絶縁診断装置の他の実施例における演算処理を示すブロック図である。It is a block diagram which shows the arithmetic processing in the other Example of the insulation diagnostic apparatus of this invention. 本発明の絶縁診断装置の一実施例における動作位相領域の説明図である。It is explanatory drawing of the operation | movement phase area | region in one Example of the insulation diagnostic apparatus of this invention. 本発明の絶縁診断装置の一実施例におけるタイマ演算例の説明図である。It is explanatory drawing of the example of a timer calculation in one Example of the insulation diagnostic apparatus of this invention.

符号の説明Explanation of symbols

1…入力部、2…電源部、3…CPU、4…メモリ、5…表示部、6…出力部、7…変圧器、8…遮断器、9〜12…フィーダ用遮断器、13…接地変圧器、14…絶縁診断装置、15…母線、16…現場監視装置、19…遠隔監視センタ、21…実効値・整定値処理部、36〜38…位相シフト処理部、39〜41…位相領域検出処理部、43…タイマ処理部、44…64K動作処理部、45…PEAK−HOLD、46…積和処理部、47…AND処理部、51〜54…零相変流器。


DESCRIPTION OF SYMBOLS 1 ... Input part, 2 ... Power supply part, 3 ... CPU, 4 ... Memory, 5 ... Display part, 6 ... Output part, 7 ... Transformer, 8 ... Circuit breaker, 9-12 ... Feeder circuit breaker, 13 ... Grounding Transformer, 14 ... Insulation diagnostic device, 15 ... Busbar, 16 ... Field monitoring device, 19 ... Remote monitoring center, 21 ... Effective value / settling value processing unit, 36-38 ... Phase shift processing unit, 39-41 ... Phase region Detection processing unit, 43 ... timer processing unit, 44 ... 64K operation processing unit, 45 ... PEAK-HOLD, 46 ... product-sum processing unit, 47 ... AND processing unit, 51-54 ... zero-phase current transformer.


Claims (2)

接地変圧器からの零相電圧を信号として取り込み、該零相電圧の高周波電圧をPEAK−HOLD処理する第1のPEAK−HOLD処理部と、複数の零相変流器のいずれか1つからの零相電流を信号として取り込み、該零相電流の高周波電流をPEAK−HOLD処理する第2のPEAK−HOLD処理部と、
前記第1のPEAK−HOLD処理部でPEAK−HOLD処理した結果と前記零相電圧の高周波電圧の実効値演算及び整定値との比較演算を行う実効値・整定値処理部と、
該実効値・整定値処理部での整定値との比較演算が整定値以上の場合に、前記接地変圧器から取り込まれる線間電圧を位相シフト変換する位相シフト処理部と、
該位相シフト処理部で前記線間電圧の位相をシフトさせて相電圧に変換したら該相電圧の立下りを検出する立下り検出処理部と、
該立下り検出処理部での検出結果をOR処理し、このOR処理した信号により前記PEAK−HOLDをリセットする第1のOR処理部と、
前記実効値・整定値処理部で実効値演算及び整定値比較演算した結果を、相電圧の位相領域と比較演算する位相領域検出処理部と、
該位相領域検出処理部での演算結果した結果をOR処理する第2のOR処理部と、
該第2のOR処理部でOR処理された信号と前記相電圧の位相領域とが一致し、前記零相電圧のPEAK−HOLD値5周期分の移動平均最大値が整定値を越えた場合、64Kを動作させる64K動作処理部と、
前記第1のPEAK−HOLD処理部での処理結果と前記第2のPEAK−HOLD処理部での処理結果を積和演算する積・和処理部と、
該積・和処理部での演算結果が正であること及び前記64K動作処理部で64Kが動作していることのAND条件で事故回線と表示する事故回線表示部と、
を備えていることを特徴とする絶縁診断装置。
A first PEAK-HOLD processing unit that takes in a zero-phase voltage from the grounding transformer as a signal and performs PEAK-HOLD processing on the high-frequency voltage of the zero-phase voltage, and one of a plurality of zero-phase current transformers A second PEAK-HOLD processing unit that takes in the zero-phase current as a signal and performs PEAK-HOLD processing on the high-frequency current of the zero-phase current;
An effective value / settling value processing unit that performs a comparison operation between the result of PEAK-HOLD processing by the first PEAK-HOLD processing unit and the effective value calculation and settling value of the high-frequency voltage of the zero-phase voltage;
A phase shift processing unit that performs phase shift conversion of the line voltage taken from the grounding transformer when the comparison operation with the set value in the effective value / set value processing unit is equal to or more than the set value;
When the phase shift processing unit shifts the phase of the line voltage and converts it to a phase voltage, a falling detection processing unit detects the falling of the phase voltage;
A first OR processing unit that ORs the detection result in the falling detection processing unit and resets the PEAK-HOLD by the ORed signal;
A phase region detection processing unit that compares and calculates the result of the effective value calculation and the settling value comparison calculation in the effective value / setting value processing unit, and the phase region of the phase voltage;
A second OR processing unit that performs an OR process on the result of the calculation in the phase region detection processing unit;
When the signal subjected to OR processing in the second OR processing unit matches the phase region of the phase voltage, and the moving average maximum value for the PEAK-HOLD value of 5 periods of the zero phase voltage exceeds the set value, A 64K operation processing unit for operating 64K;
A product / sum processing unit that performs a product-sum operation on the processing result in the first PEAK-HOLD processing unit and the processing result in the second PEAK-HOLD processing unit;
An accident line display unit that displays an accident line under an AND condition that the result of calculation in the product / sum processing unit is positive and 64K is operating in the 64K operation processing unit;
An insulation diagnostic apparatus comprising:
前記零相電圧のPEAK−HOLD値5周期分の移動平均最大値が整定値を越えたことを判断するタイマ処理部を備え、該タイマ処理部の動作タイマの時限を0.1〜1.0秒に設定したことを特徴とする請求項1記載の絶縁診断装置。   A timer processing unit for determining that the moving average maximum value for five periods of the PEAK-HOLD value of the zero-phase voltage has exceeded the settling value, and setting the time limit of the operation timer of the timer processing unit to 0.1 to 1.0. The insulation diagnostic apparatus according to claim 1, wherein the insulation diagnosis apparatus is set to seconds.
JP2004008606A 2003-01-17 2004-01-16 Insulation diagnostic device Expired - Lifetime JP4258386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004008606A JP4258386B2 (en) 2003-01-17 2004-01-16 Insulation diagnostic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003008968 2003-01-17
JP2004008606A JP4258386B2 (en) 2003-01-17 2004-01-16 Insulation diagnostic device

Publications (2)

Publication Number Publication Date
JP2004239899A JP2004239899A (en) 2004-08-26
JP4258386B2 true JP4258386B2 (en) 2009-04-30

Family

ID=32964803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004008606A Expired - Lifetime JP4258386B2 (en) 2003-01-17 2004-01-16 Insulation diagnostic device

Country Status (1)

Country Link
JP (1) JP4258386B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2476002B1 (en) * 2009-09-09 2015-05-27 Siemens Aktiengesellschaft Fault detection in energy supply networks having an unearthed or resonant-earthed star point
CN103337833B (en) * 2013-06-17 2015-08-05 山东电力工程咨询院有限公司 A kind of method of grounded transformer protection action

Also Published As

Publication number Publication date
JP2004239899A (en) 2004-08-26

Similar Documents

Publication Publication Date Title
KR100876651B1 (en) Method of leakage current break and measurement leakage current use phase calculation
US9933487B2 (en) System and method for detecting, localizing, and quantifying stator winding faults in AC motors
US8963556B2 (en) System and method for detecting excess voltage drop in three-phase AC circuits
US10191102B2 (en) Automatic current transformer polarity correction
US20150276827A1 (en) System and method for detecting, localizing and quantifying excess voltage drop in three-phase ac circuits
KR100231522B1 (en) Monitoring apparatus for gis
KR102260550B1 (en) Facility health monitoring method by measuring the electric circuit constant inside the power facility in operation
KR102063833B1 (en) Busbar monitoring device of switchgear
KR101535923B1 (en) An electric distributing board with diagnosis function of electric power quality through monitoring carbonization of power cable and dischare of power apparatus connecting parts
KR101475002B1 (en) An incoming and distributing board based on powerless temperature sensor
CN106918757A (en) A kind of method of discrimination of Secondary Circuit of Potential Transformer integrity
EP3306328A1 (en) System for detecting and indicating partial discharges and voltage
JP4258386B2 (en) Insulation diagnostic device
JP2912990B2 (en) Insulation diagnostic equipment
KR101816896B1 (en) Automatic Diagnosis System and Method for Electric Distribution Network
JP2958594B2 (en) Insulation deterioration diagnosis device
TWI231079B (en) Insulation diagnostic device
KR101377190B1 (en) Phase identification appratus and method of of leakage and arc on switchgear
CN209746073U (en) Information acquisition device for monitoring ground fault of power distribution network
KR20100072455A (en) Method for determining by detecting inpulse originated from arc
JP4121979B2 (en) Non-grounded circuit insulation monitoring method and apparatus
KR100231523B1 (en) Monitoring method for gis
JP2010130811A (en) Fine ground fault detector and method of detecting fine ground fault
JP2007285929A (en) Insulating monitoring device
KR101510624B1 (en) Switchgear with accident prevention features

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051020

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4258386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term