JP2007285929A - Insulating monitoring device - Google Patents

Insulating monitoring device Download PDF

Info

Publication number
JP2007285929A
JP2007285929A JP2006114783A JP2006114783A JP2007285929A JP 2007285929 A JP2007285929 A JP 2007285929A JP 2006114783 A JP2006114783 A JP 2006114783A JP 2006114783 A JP2006114783 A JP 2006114783A JP 2007285929 A JP2007285929 A JP 2007285929A
Authority
JP
Japan
Prior art keywords
leakage current
detection device
current detection
feeder
bank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006114783A
Other languages
Japanese (ja)
Inventor
Gatsuruhiko Tanaka
賀鶴彦 田中
Atsushi Tanabe
敦 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIDORI DENSHI KK
Original Assignee
MIDORI DENSHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIDORI DENSHI KK filed Critical MIDORI DENSHI KK
Priority to JP2006114783A priority Critical patent/JP2007285929A/en
Publication of JP2007285929A publication Critical patent/JP2007285929A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To measure precisely a leakage current from each feeder which is a measuring object with a simple constitution. <P>SOLUTION: This device has the first leakage current detection device 3 for detecting always each leakage current from a plurality of banks B, the second leakage current detection device 5 for detecting each leakage current from each feeder F branched from one bank in each bank B among a plurality of feeders F branched respectively from each bank B, a switching means for switching a detection object by the second leakage current detection device 5, and a control means for controlling the switching means so that a leakage current from each feeder F branched from a bank B wherein a leakage current value detected by first leakage current detection device 3 exceeds a prescribed threshold is detected by the second leakage current detection device 5. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電気保安業務のための配電線や電路の絶縁の管理などを行う絶縁監視装置に係り、特に、複数のバンクとこれらの各バンクから枝別れしている複数のフィーダとで構成された受電設備全体における漏れ電流を検出するものに関する。   The present invention relates to an insulation monitoring apparatus that manages distribution lines and electrical circuit insulation for electrical security operations, and in particular, includes a plurality of banks and a plurality of feeders branched from these banks. The present invention relates to a device that detects leakage current in the entire power receiving facility.

従来、電路の対地間絶縁(「対地絶縁抵抗」ともいう)を監視するための絶縁監視装置(「地絡継電器」ともいう)として、たとえば、Io方式またはIgr方式を採用したものが知られている。   Conventionally, as an insulation monitoring device (also referred to as a “ground fault relay”) for monitoring insulation between a circuit and a ground (also referred to as “ground insulation resistance”), for example, one employing an Io method or an Igr method is known. Yes.

前記従来の監視装置において、複数のフィーダ(配電線;電路)のそれぞれにZCT(零相変流器)を設置し、これらの設置された各ZCTを順次切り換えて、前記各フィーダそれぞれの漏れ電流を監視する構成のものが知られている(たとえば特許文献1参照)。   In the conventional monitoring device, ZCT (Zero Phase Current Transformer) is installed in each of a plurality of feeders (distribution lines; electric circuit), and each installed ZCT is sequentially switched, and the leakage current of each of the feeders The thing of the structure which monitors is known (for example, refer patent document 1).

また、前記切り換えを採用しない方式の絶縁監視装置として、たとえば、複数のバンク(母線;電路)それぞれの漏れ電流と、前記各バンクのそれぞれから枝分かれした複数のフィーダの漏れ電流を検出すべく、前記各バンクおよび各フィーダのそれぞれにZCTを設置し、前記各バンクおよび各フィーダそれぞれの漏れ電流を検出する構成のものが採用されている。
実開昭61−182857号公報
In addition, as an insulation monitoring device of a method not adopting the switching, for example, in order to detect the leakage current of each of a plurality of banks (buses; electric circuit) and the leakage current of a plurality of feeders branched from each of the banks A configuration is adopted in which a ZCT is installed in each bank and each feeder and the leakage current of each bank and each feeder is detected.
Japanese Utility Model Publication No. 61-182857

ところで、前記特許文献1に記載の従来の絶縁監視装置では、検出対象(計測対象)のフィーダを順次切り換えているので、各フィーダの漏れ電流を計測することができない場合があるという問題がある。   By the way, in the conventional insulation monitoring apparatus described in Patent Document 1, since the feeders to be detected (measurement targets) are sequentially switched, there is a problem that the leakage current of each feeder may not be measured.

前記問題による弊害は、ケーブル被覆等の傷や劣化部分から電流が漏れ始めその漏洩電流によって発生する熱等で劣化等が進行し漏洩電流が増加するケース(劣化等によるケース)よりも、いわゆる間欠孤光地絡による場合のほうが顕著になる。   The adverse effect of the above problem is more so-called intermittent than the case in which current starts to leak from scratches and deteriorated parts of the cable sheath, etc., and the leakage current increases due to deterioration caused by the heat generated by the leakage current (case due to deterioration). The case with a solitary earth fault becomes more prominent.

すなわち、劣化等によるケースでは、漏洩電流が継続して発生する。一方、間欠孤光地絡は、被覆等の絶縁物にツリー状に水分が浸透して絶縁破壊が一気に発生するがその後絶縁が回復する場合があり、間欠孤光地絡では、漏れ電流が間欠的にしか発生しない場合が多い。したがって、間欠孤光地絡が起こるフィーダで、このフィーダが計測対象になったときに漏れ電流が発生していれば検出することができるが、間欠孤光地絡が起こるフィーダが計測対象になったときには漏れ電流が発生せず、計測対象でないときにのみ漏れ電流が発生するようになっていると、間欠孤光地絡が起こるフィーダでの漏れ電流を検出することができない。   That is, in the case of deterioration or the like, leakage current is continuously generated. On the other hand, intermittent solitary ground faults can cause insulation breakdown to occur at once when moisture penetrates into an insulator such as a cover in the form of a tree, but then the insulation may recover. In many cases, it only occurs. Therefore, a feeder in which an intermittent solitary ground fault is detected can be detected if a leakage current has occurred when this feeder becomes a measurement target, but a feeder in which an intermittent solitary ground fault occurs is a measurement target. If the leakage current does not occur at the time of occurrence and the leakage current is generated only when it is not the measurement target, it is impossible to detect the leakage current at the feeder in which the intermittent arc fault occurs.

そして、総てのフィーダにおいて異常なし(漏電の発生無し)という誤報が発生するおそれがある。また、前記問題は、Io方式に比べて計測に時間を要するIgr方式のほうが顕著である。   And all the feeders may generate a false report that there is no abnormality (no leakage). In addition, the above problem is more remarkable in the Igr method that requires more time for measurement than in the Io method.

そこで、総てのフィーダの漏れ電流を常時検出可能な絶縁監視装置を考えることができるが、このようにすると絶縁監視装置の構成が煩雑になるという問題がある。   Therefore, an insulation monitoring device that can always detect the leakage currents of all feeders can be considered, but there is a problem in that the configuration of the insulation monitoring device becomes complicated.

本発明は、前記問題点に鑑みてなされたものであり、簡素な構成で、計測対象となる各フィーダの漏れ電流を的確に計測することができる絶縁監視装置を提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object thereof is to provide an insulation monitoring device that can accurately measure the leakage current of each feeder to be measured with a simple configuration.

請求項1に記載の発明は、複数のバンクそれぞれの漏れ電流を常時検出する第1の漏れ電流検出装置と、前記各バンクのそれぞれから枝分かれした複数のフィーダのうちで、前記各バンクのうちの1つのバンクから枝分かれしている各フィーダそれぞれの漏れ電流を検出する第2の漏れ電流検出装置と、前記第2の漏れ電流検出装置による検出対象を切り換える切換手段と、前記第1の漏れ電流検出装置で検出した漏れ電流値が所定の閾値を超えたバンクが存在する場合、この閾値を超えたバンクから枝分かれしている各フィーダの漏れ電流を前記第2の漏れ電流検出装置で検出するように、前記切り換え手段を制御する制御手段とを有する絶縁監視装置である。   The invention according to claim 1 is a first leakage current detection device that constantly detects a leakage current of each of a plurality of banks, and a plurality of feeders branched from each of the banks. A second leakage current detecting device for detecting a leakage current of each feeder branched from one bank; a switching means for switching a detection target by the second leakage current detecting device; and the first leakage current detection. When there is a bank in which the leakage current value detected by the device exceeds a predetermined threshold, the second leakage current detection device detects the leakage current of each feeder branched from the bank exceeding the threshold. And an insulation monitoring device having control means for controlling the switching means.

請求項2に記載の発明は、請求項1に記載の絶縁監視装置において、前記各漏れ電流検出装置は、Igr方式により漏れ電流を検出する装置である絶縁監視装置である。   According to a second aspect of the present invention, in the insulation monitoring device according to the first aspect, each of the leakage current detection devices is an insulation monitoring device that is a device that detects a leakage current by an Igr method.

請求項3に記載の発明は、請求項1または請求項2に記載の絶縁監視装置において、前記制御手段は、前記切換手段による切り換えで、前記第2の漏れ電流検出装置の検出対象となる各フィーダにおける漏れ電流の閾値を、前記第2の漏れ電流検出装置に通知し、前記第2の漏れ電流検出装置は、前記通知に基づいて前記各フィーダの漏れ電流の状態を検出する絶縁監視装置である。   According to a third aspect of the present invention, in the insulation monitoring apparatus according to the first or second aspect, each of the control means is a detection target of the second leakage current detection apparatus by switching by the switching means. The leakage current threshold value in the feeder is notified to the second leakage current detection device, and the second leakage current detection device is an insulation monitoring device that detects the leakage current state of each feeder based on the notification. is there.

請求項4に記載の発明は、請求項1〜請求項3のいずれか1項に記載の絶縁監視装置において、前記制御手段は、前記第1の漏れ電流検出装置で検出した漏れ電流値が所定の閾値を超えたバンクが存在しない場合、前記第1の漏れ電流検出装置で検出した漏れ電流値が所定の閾値に近いバンクの各フィーダを前記第2の漏れ電流検出装置の検出対象とするように、前記切換手段を制御する絶縁監視装置である。   According to a fourth aspect of the present invention, in the insulation monitoring device according to any one of the first to third aspects, the control means has a predetermined leakage current value detected by the first leakage current detection device. When there is no bank exceeding the threshold value, the feeders in the bank whose leakage current value detected by the first leakage current detection device is close to a predetermined threshold value are set as detection targets of the second leakage current detection device. And an insulation monitoring device for controlling the switching means.

本発明によれば、簡素な構成で、計測対象となる各フィーダの漏れ電流を的確に計測することができるという効果を奏する。   According to the present invention, it is possible to accurately measure the leakage current of each feeder to be measured with a simple configuration.

図1は、本発明の実施形態に係る絶縁監視装置1の概略構成を示すブロック図である。   FIG. 1 is a block diagram showing a schematic configuration of an insulation monitoring apparatus 1 according to an embodiment of the present invention.

絶縁監視装置1は、複数のバンク(母線;電路)Bおよびこれらの各バンクBから枝分かれしている複数のフィーダ(配電線;電路)Fからの漏電(漏れ電流)を計測し監視する装置であり、第1の漏れ電流検出装置3を備えている。図1では、バンクBの数を8つとし(バンクB1〜B8)、それぞれのバンクから8つのフィーダが枝分かれしているものを例として掲げている。より詳しく説明すれば、1つ目のバンクB1から8つのフィーダF11〜F18が枝分かれしており、2つ目のバンクB2から8つのフィーダF21〜F28が枝分かれしており、・・・、8つ目のバンクB8から8つのフィーダF81〜F88が枝分かれしているものを例として掲げている。なお、各フィーダFには、モータや照明等の負荷が接続されるようになっている。   The insulation monitoring device 1 is a device that measures and monitors leakage (leakage current) from a plurality of banks (buses; electric circuits) B and a plurality of feeders (distribution lines; electric circuits) F branched from the banks B. Yes, a first leakage current detection device 3 is provided. In FIG. 1, the number of banks B is eight (banks B1 to B8), and eight feeders are branched from each bank as an example. More specifically, eight feeders F11 to F18 are branched from the first bank B1, and eight feeders F21 to F28 are branched from the second bank B2. As an example, eight feeders F81 to F88 are branched from the eye bank B8. Each feeder F is connected to a load such as a motor or lighting.

絶縁監視装置1の漏れ電流検出装置3は、複数のバンクBそれぞれの漏れ電流を常時検出することができるようになっている。すなわち、漏れ電流検出装置3は、装置本体部4を備え、この装置本体部4には、たとえば8つの監視ユニット41〜48が設けられている。また、各バンクB1〜B8のそれぞれには、零相変流器(ZCT)Z1〜Z8が設けられている。各零相変流器Z(Z1〜Z8)の検出結果は、信号線を介して各監視ユニット41〜48に送られ(たとえば、バンクB1の零相変流器Z1による検出結果は監視ユニット41に送られ)、各バンクB(B1〜B8)それぞれの漏れ電流を活線状態のままで常時検出(対地間絶縁状態を監視)するようになっている。   The leakage current detection device 3 of the insulation monitoring device 1 can always detect the leakage current of each of the plurality of banks B. That is, the leakage current detection device 3 includes a device main body 4, and the device main body 4 is provided with, for example, eight monitoring units 41 to 48. Each of the banks B1 to B8 is provided with zero-phase current transformers (ZCT) Z1 to Z8. The detection result of each zero-phase current transformer Z (Z1 to Z8) is sent to each monitoring unit 41 to 48 via a signal line (for example, the detection result by the zero-phase current transformer Z1 in the bank B1 is the monitoring unit 41). The leakage current of each bank B (B1 to B8) is always detected in a live state (monitoring the ground insulation state).

また、絶縁監視装置1には、漏れ電流検出装置5が設けられており、この漏れ電流検出装置5は、各バンクBのそれぞれから枝分かれした複数のフィーダFのうちで、各バンクBのうちの1つのバンクから枝分かれしている各フィーダFそれぞれの漏れ電流を検出することができるようになっている。   In addition, the insulation monitoring device 1 is provided with a leakage current detection device 5, and the leakage current detection device 5 is a plurality of feeders F branched from each of the banks B. The leakage current of each feeder F branched from one bank can be detected.

すなわち、漏れ電流検出装置5は、装置本体部6を備え、この装置本体部6には、たとえば8つの監視ユニット61〜68が設けられている。また、各フィーダF(F11〜F18、F21〜F28、・・・、F81〜F88)のそれぞれには、各零相変流器Z(Z11〜Z18、Z21〜Z28、・・・、Z81〜Z88)が設けられている。各零相変流器Zの検出結果は、信号線を介して各監視ユニット61〜68に送られ、各フィーダFそれぞれの漏れ電流を常時検出するようになっている。   That is, the leakage current detection device 5 includes a device main body 6, and the device main body 6 is provided with, for example, eight monitoring units 61 to 68. In addition, each of the feeders F (F11 to F18, F21 to F28,..., F81 to F88) has zero phase current transformers Z (Z11 to Z18, Z21 to Z28,..., Z81 to Z88). ) Is provided. The detection result of each zero-phase current transformer Z is sent to each monitoring unit 61-68 via a signal line, and the leakage current of each feeder F is always detected.

また、絶縁監視装置1には、漏れ電流検出装置5による検出対象を切り換える切換手段の例である切り換えスイッチSW1〜SW8が設けられている。切り換えスイッチSW1〜SW8のうちの所定の1つ切り換えスイッチのみを閉じる(接続)することによって、漏れ電流検出装置5の計測対象を変えることができるようになっている。   In addition, the insulation monitoring device 1 is provided with changeover switches SW1 to SW8 which are examples of switching means for switching a detection target by the leakage current detection device 5. By closing (connecting) only one of the change-over switches SW1 to SW8, the measurement target of the leakage current detection device 5 can be changed.

より詳しく説明すると、切り換えスイッチSW1は、8つのスイッチSW11〜SW18で構成されており、他のスイッチSW2〜SW8も同様に構成されている。そして、たとえば、切り換えスイッチSW1の各スイッチSW11〜SW18を閉じ、他の切り換えスイッチSW2〜SW8を総て開いておくことにより、各零相変流器Z11〜Z18が漏れ電流検出装置5の各監視ユニット61〜68に接続され、バンクB1から枝別れしている各フィーダF11〜F18の漏れ電流を同時に計測することができるようになっている。   More specifically, the changeover switch SW1 is composed of eight switches SW11 to SW18, and the other switches SW2 to SW8 are similarly configured. Then, for example, by closing the switches SW11 to SW18 of the changeover switch SW1 and opening all of the other changeover switches SW2 to SW8, each of the zero-phase current transformers Z11 to Z18 is monitored by the leakage current detection device 5. The leakage currents of the feeders F11 to F18 connected to the units 61 to 68 and branching from the bank B1 can be measured simultaneously.

さらに、絶縁監視装置1には、制御装置(CT切り換えコントローラー)7が設けられている。制御装置7は、出力手段の例であるLCD表示器71、接点出力部75、通信ポート77および入力手段の例である操作スイッチ73、通信ポート77を備えている。また、制御装置7は、たとえばRS−485を介して、漏れ電流検出装置3から信号を受け取り、この受け取った信号に基づいて、各切り換えスイッチSW1〜SW8を切り換え、漏れ電流検出装置5による計測対象のフィーダFを決めるような制御をするようになっている。   Further, the insulation monitoring device 1 is provided with a control device (CT switching controller) 7. The control device 7 includes an LCD display 71 that is an example of output means, a contact output unit 75, a communication port 77, an operation switch 73 that is an example of input means, and a communication port 77. In addition, the control device 7 receives a signal from the leakage current detection device 3 via, for example, RS-485, switches the changeover switches SW1 to SW8 based on the received signal, and is measured by the leakage current detection device 5. The feeder F is controlled so as to determine the feeder F.

すなわち、漏れ電流検出装置3で検出した漏れ電流値が所定の閾値を超えたバンクBが存在する場合(たとえば、バンクB2が閾値を超えた場合)、この閾値を超えたバンクB2から枝分かれしている各フィーダF21〜F28の漏れ電流を漏れ電流検出装置5で検出するように、切り換えスイッチSW2(各スイッチSW21〜SW28)のみを閉じ、他の切り換えスイッチSW1、SW3〜SW8を開くような制御をするようになっている。   That is, when there is a bank B in which the leakage current value detected by the leakage current detection device 3 exceeds a predetermined threshold (for example, when the bank B2 exceeds the threshold), the bank B2 is branched from the bank B2 exceeding this threshold. Control is performed such that only the changeover switch SW2 (each switch SW21 to SW28) is closed and the other changeover switches SW1, SW3 to SW8 are opened so that the leakage current detection device 5 detects the leakage current of each feeder F21 to F28. It is supposed to be.

そして、漏れ電流検出装置5の計測対象になった各フィーダF21〜F28のうちで漏れ電流の値が閾値を超えたフィーダFを特定するようになっている。   And the feeder F in which the value of the leakage current exceeded the threshold among each feeder F21-F28 used as the measuring object of the leakage current detection apparatus 5 is specified.

このようにして計測された結果は、前記出力手段の例であるLCD表示器71で表示され、もしくは、接点出力部75や通信ポート77を介して中央監視盤CWに出力されるようになっている。   The results measured in this way are displayed on the LCD display 71 as an example of the output means, or are output to the central monitoring panel CW via the contact output unit 75 and the communication port 77. Yes.

ところで、各漏れ電流検出装置3、5は、たとえば、Io方式ではなくIgr方式により漏れ電流を検出するように構成されている。ここで、Io方式とは、零相変流器に計測対象である電線を一括で貫通させて、50Hz/60Hz(商用周波数)の実際に系統外に流れている地絡電流(漏洩電流)を検出する方式であり、Igr方式とは、商用周波数とは異なる周波数(たとえは20Hz程度の周波数)の交流信号(交流電圧)を計測対象である電線にB種接地工事の接地線に電磁結合した重畳変成器でもって注入し、電路と大地間に流れる漏れ電流である地絡電流を接地線に設けたZCT(零相変流器;「CT」とも標記する)で検出し、検出した信号の中から対地絶縁抵抗成分に起因する電流成分を抽出(有効分検出)し、各種の演算を行い真の絶縁抵抗を監視する方式であり、OA機器やFA機器などが多数使用されている電気設備ではIo方式に比べ漏れ電流を高い精度で検出することができるものである。なお、Igr方式の詳細は、たとえば、特開平9−318684号公報に、より詳しく記載されている。   By the way, each of the leakage current detection devices 3 and 5 is configured to detect the leakage current not by the Io method but by the Igr method, for example. Here, the Io method means that a ground fault current (leakage current) actually flowing outside the system at 50 Hz / 60 Hz (commercial frequency) is obtained by letting a wire to be measured pass through a zero-phase current transformer all at once. This is a detection method, and the Igr method electromagnetically couples an AC signal (AC voltage) of a frequency different from the commercial frequency (for example, a frequency of about 20 Hz) to the measurement target wire to the ground wire of the class B grounding work. A ground fault current that is a leakage current flowing between the electric circuit and the earth is detected by a ZCT (zero phase current transformer; also indicated as “CT”) provided on the ground line, and the detected signal This is a system that extracts the current component due to the ground insulation resistance component from the inside (detects the effective component), performs various calculations and monitors the true insulation resistance, and electrical equipment where many OA and FA devices are used Then, leakage current compared to Io method There are those that can be detected with accuracy. The details of the Igr method are described in more detail in, for example, Japanese Patent Laid-Open No. 9-318684.

また、制御装置7は、前記切換手段による切り換えで、漏れ電流検出装置5の検出対象となる各フィーダFにおける漏れ電流の閾値および、各フィーダFの電路電圧を、漏れ電流検出装置5に通知するようになっている。漏れ電流検出装置5は、前記通知に基づいて各フィーダFの漏れ電流の状態を検出するようになっている。   Further, the control device 7 notifies the leakage current detection device 5 of the leakage current threshold value of each feeder F to be detected by the leakage current detection device 5 and the electric circuit voltage of each feeder F by switching by the switching means. It is like that. The leakage current detection device 5 detects the leakage current state of each feeder F based on the notification.

なお、各フィーダFにおける漏れ電流の閾値および各フィーダFの電路電圧は、前記入力手段の例である操作スイッチ73や通信ポート77とたとえばRS−232Cで接続されるパソコンPCにより制御装置7に入力され、制御装置7の記憶装置(図示せず)に記憶されるようになっている。そして、適宜、漏れ電流検出装置5に送られるようになっている。   In addition, the threshold value of the leakage current in each feeder F and the electric circuit voltage of each feeder F are input to the control device 7 by a personal computer PC connected to the operation switch 73 and the communication port 77 which are examples of the input means, for example, via RS-232C. And stored in a storage device (not shown) of the control device 7. And it is suitably sent to the leakage current detection device 5.

次に、絶縁監視装置1の動作について説明する。   Next, the operation of the insulation monitoring device 1 will be described.

図2は、絶縁監視装置1の動作を示すフローチャートである。   FIG. 2 is a flowchart showing the operation of the insulation monitoring apparatus 1.

まず、各バンクBや各フィーダFは商用電源に接続され、各フィーダFに負荷が接続されている場合には、この負荷が稼動しているかもしくは休止しているものとする。   First, each bank B and each feeder F are connected to a commercial power source, and when a load is connected to each feeder F, it is assumed that this load is operating or is at rest.

制御装置7の制御の下、漏れ電流検出装置3が各バンクBの漏れ電流を常時監視し(S1)、漏れ電流の値が閾値を超えたバンクBがあるか否かを判断する(S3)。なお、各バンクBにおける漏れ電流の閾値等は、予め漏れ電流検出装置3に入力され記憶されているものであるが、各フィーダFの場合と同様に、制御装置7の入力手段で入力し、漏れ電流検出装置3に通知してもよい。   Under the control of the control device 7, the leakage current detection device 3 constantly monitors the leakage current of each bank B (S1), and determines whether there is a bank B whose leakage current value exceeds the threshold (S3). . In addition, although the threshold value of the leakage current in each bank B is input and stored in advance in the leakage current detection device 3, it is input by the input means of the control device 7 as in the case of each feeder F, The leakage current detection device 3 may be notified.

漏れ電流の値が閾値を超えたバンクBが存在する場合には、閾値を超えたバンクBから枝別れしている各フィーダFの漏れ電流を検出するように、切り換えスイッチSW1〜SW8を切り換え(S5)、漏れ電流検出装置5で測定対象になった各フィーダFの漏れ電流を監視(計測)する(S7)。たとえば、バンクB8における漏れ電流が閾値を超えた場合には、各スイッチSW81〜SW88を閉じ、他のスイッチSW11〜SW18、・・・、SW71〜SW78を開き、各フィーダF81〜F88を計測対象にする。   When there is a bank B in which the value of the leakage current exceeds the threshold value, the changeover switches SW1 to SW8 are switched so as to detect the leakage current of each feeder F branched from the bank B exceeding the threshold value ( S5), monitoring (measuring) the leakage current of each feeder F that is the measurement target in the leakage current detection device 5 (S7). For example, when the leakage current in the bank B8 exceeds the threshold value, the switches SW81 to SW88 are closed, the other switches SW11 to SW18,..., SW71 to SW78 are opened, and the feeders F81 to F88 are set as measurement targets. To do.

続いて、計測対象になっている各フィーダFのうちで、漏れ電流の値が閾値を超えたフィーダFが存在するか否かを判断し(S9)、漏れ電流の値が閾値を超えたフィーダFが存在する場合には、このフィーダの番号等のフィーダを特定する信号を中央監視盤CWに出力する(S11)。   Subsequently, it is determined whether or not there is a feeder F whose leakage current value exceeds the threshold among the feeders F to be measured (S9), and the feeder whose leakage current value exceeds the threshold. If F exists, a signal for identifying the feeder such as the feeder number is output to the central monitoring panel CW (S11).

なお、上述のようにバンクB8における漏れ電流が閾値を超えた場合には、各スイッチSW81〜SW88を同時かつ一括で閉じるようにすることも可能である。   As described above, when the leakage current in the bank B8 exceeds the threshold value, the switches SW81 to SW88 can be closed simultaneously and collectively.

絶縁監視装置1によれば、漏れ電流検出装置3で複数のバンクBそれぞれの漏れ電流を常時検出し、漏れ電流検出装置3で検出した漏れ電流値が所定の閾値を超えたバンクBが存在する場合、この閾値を超えたバンクBから枝分かれしている各フィーダFの漏れ電流を漏れ電流検出装置5で検出するので、従来よりも少ない個数の漏れ電流検出装置ですなわち簡素な構成で、総てのバンクBやフィーダFの漏れ電流を的確に検出することができる。そして、漏れ電流が間欠的にしか発生しない間欠孤光地絡をも容易に検出することができる。   According to the insulation monitoring device 1, the leakage current detection device 3 always detects the leakage current of each of the plurality of banks B, and there is a bank B in which the leakage current value detected by the leakage current detection device 3 exceeds a predetermined threshold. In this case, since the leakage current of each feeder F branched from the bank B exceeding the threshold value is detected by the leakage current detection device 5, the number of leakage current detection devices is smaller than that of the prior art, that is, with a simple configuration, The leakage current of the bank B and the feeder F can be accurately detected. Further, it is possible to easily detect an intermittent solitary ground fault in which a leakage current is generated only intermittently.

たとえば、図1に示すように、バンクBが8つ、各バンクBのそれぞれから枝別れしているフィーダFが8つである場合、総てのフィーダFの漏れ電流を的確に検出すべく、切り換えをしない従来の方式を採用すると、少なくともフィーダ64個分の高価な監視ユニット(41等)を必要とするが、絶縁監視装置1であれば、バンク8個分とフィーダ8個分の合計16個分の監視ユニット41〜48、61〜68があればよい。   For example, as shown in FIG. 1, when there are eight banks B and eight feeders F branching from each bank B, in order to accurately detect the leakage current of all the feeders F, If the conventional method without switching is adopted, an expensive monitoring unit (41 or the like) for at least 64 feeders is required. However, in the case of the insulation monitoring apparatus 1, a total of 16 for 8 banks and 8 feeders. There may be only one monitoring unit 41 to 48, 61 to 68.

また、絶縁監視装置1によれば、大きなタイムラグを発生させることなく、総てのバンクBやフィーダFの正確な漏れ電流(漏洩電流)を検出することができる。   Moreover, according to the insulation monitoring apparatus 1, it is possible to detect the accurate leakage current (leakage current) of all the banks B and feeders F without causing a large time lag.

すなわち、Io方式を採用した場合には、漏電の検知に1秒程度しか要しないが、Igr式を採用した場合には、前述のとおり有効分検出の演算などを行うために漏電の検知にIo方式よりも長い10秒程度要し、特許文献1に記載の従来の方式では、8つのフィーダの漏電を検出するのに80秒を要することになる。しかし、絶縁監視装置1によれば、特に各スイッチを同時かつ一括で閉じるように構成することで、漏れ電流を高い精度で正確に検出することができるIgr方式を採用しているにもかかわらず、タイムラグがほとんど発生しないようになっている。   That is, when the Io method is adopted, it takes only about 1 second to detect the leakage, but when the Igr method is adopted, the Io method is used to detect the leakage in order to perform the calculation of the effective component as described above. It takes about 10 seconds longer than the method, and the conventional method described in Patent Document 1 requires 80 seconds to detect the leakage of eight feeders. However, according to the insulation monitoring apparatus 1, the Igr method that can accurately detect the leakage current with high accuracy by adopting a configuration that closes the switches simultaneously and collectively is adopted. , Almost no time lag occurs.

また、絶縁監視装置1によれば、各フィーダFにおける漏れ電流の閾値等を、漏れ電流検出装置5に通知し、前記通知に基づいて各フィーダFの漏れ電流の状態を検出するので、各フィーダFでの漏れ電流の閾値が異なっている場合であっても、各フィーダFの漏れ電流を正確に検出することができる。   Further, according to the insulation monitoring device 1, the leakage current threshold value of each feeder F is notified to the leakage current detection device 5, and the state of leakage current of each feeder F is detected based on the notification. Even if the threshold values of the leakage current at F are different, the leakage current of each feeder F can be accurately detected.

なお、絶縁監視装置1において、漏れ電流検出装置3で検出した漏れ電流値が所定の閾値を超えたバンクBが存在しない場合であっても、制御装置7の制御の下、漏れ電流検出装置3で検出した漏れ電流値が所定の閾値に近いバンクBの各フィーダFを漏れ電流検出装置5の検出対象とするようにしてもよい。   In the insulation monitoring device 1, even when there is no bank B whose leakage current value detected by the leakage current detection device 3 exceeds a predetermined threshold, the leakage current detection device 3 under the control of the control device 7. Each of the feeders F in the bank B in which the leakage current value detected in step S is close to a predetermined threshold value may be set as a detection target of the leakage current detection device 5.

このように、たとえ各バンクBにおいて漏れ電流の値が閾値を超えていなくても、漏れ電流の値が閾値に近いバンクBの各フィーダFを計測対象にすることにより、漏れ電流の値が閾値を超える前に、フィーダFの配線の劣化等を事前に知ることができ、メンテナンスに役立てることができる。   Thus, even if the value of the leakage current does not exceed the threshold value in each bank B, the value of the leakage current is set to the threshold value by setting each feeder F of the bank B whose leakage current value is close to the threshold value to be measured. Before exceeding, it is possible to know in advance the deterioration of the wiring of the feeder F, etc., which can be used for maintenance.

さらに、たとえ各バンクBにおいて漏れ電流の値が閾値を超えていなくても、漏れ電流の値が閾値に近いバンクBの各フィーダFのうちの一部のフィーダFにおいて、漏れ電流の値が閾値を超えていることも想定されるが、このような場合において、前記一部のフィーダFを確実に発見することがでる。   Further, even if the leakage current value does not exceed the threshold value in each bank B, the leakage current value is a threshold value in some of the feeders F of the bank B whose leakage current value is close to the threshold value. However, in this case, it is possible to surely find the partial feeder F.

また、漏れ電流検出装置3で検出した漏れ電流値が所定の閾値を超えたバンクBが存在しない場合、制御装置7の制御の下、漏れ電流検出装置5の検出対象を単に順次切り換えるようにしてもよい。   When there is no bank B whose leakage current value detected by the leakage current detection device 3 exceeds a predetermined threshold, the detection target of the leakage current detection device 5 is simply switched sequentially under the control of the control device 7. Also good.

なお、図1において、各バンクBから枝分かれしているフィーダFの数が互いに異なっていてもよいし、さらに、前記切り換え手段を適宜変更し、漏れ電流検出装置3と漏れ電流検出装置5とを兼用するようにしてもよい。   In FIG. 1, the number of feeders F branching from each bank B may be different from each other, and the switching means is changed as appropriate so that the leakage current detection device 3 and the leakage current detection device 5 are You may make it also use.

また、絶縁監視装置1では、バンクBからフィーダFが枝分かれしており、バンクBとフィーダFの2階層における漏れ電流を検出しているが、漏れ電流検出装置や切り換え手段を適宜変更することで、各フィーダFからさらに配線が枝別れして3階層以上になっている場合にも、本実施形態に係る絶縁監視装置を適用することができる。   In addition, in the insulation monitoring device 1, the feeder F is branched from the bank B, and the leakage current in the two layers of the bank B and the feeder F is detected. By changing the leakage current detection device and the switching means as appropriate, The insulation monitoring device according to the present embodiment can also be applied when the wiring is further branched from each feeder F to have three or more layers.

本発明の実施形態に係る絶縁監視装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the insulation monitoring apparatus which concerns on embodiment of this invention. 絶縁監視装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of an insulation monitoring apparatus.

符号の説明Explanation of symbols

1 絶縁監視装置
3、5 漏れ電流検出装置
7 制御装置
B バンク
F フィーダ
Z 零相変流器
1 Insulation monitoring device 3, 5 Leakage current detection device 7 Control device B Bank F Feeder Z Zero-phase current transformer

Claims (4)

複数のバンクそれぞれの漏れ電流を常時検出する第1の漏れ電流検出装置と;
前記各バンクのそれぞれから枝分かれした複数のフィーダのうちで、前記各バンクのうちの1つのバンクから枝分かれしている各フィーダそれぞれの漏れ電流を検出する第2の漏れ電流検出装置と;
前記第2の漏れ電流検出装置による検出対象を切り換える切換手段と;
前記第1の漏れ電流検出装置で検出した漏れ電流値が所定の閾値を超えたバンクが存在する場合、この閾値を超えたバンクから枝分かれしている各フィーダの漏れ電流を前記第2の漏れ電流検出装置で検出するように、前記切り換え手段を制御する制御手段と;
を有することを特徴とする絶縁監視装置。
A first leakage current detection device that constantly detects the leakage current of each of the plurality of banks;
A second leakage current detection device that detects a leakage current of each of the feeders branched from one of the banks among the plurality of feeders branched from each of the banks;
Switching means for switching a detection target by the second leakage current detection device;
When there is a bank in which the leakage current value detected by the first leakage current detection device exceeds a predetermined threshold, the leakage current of each feeder branched from the bank exceeding the threshold is used as the second leakage current. Control means for controlling said switching means for detection by a detection device;
An insulation monitoring device comprising:
請求項1に記載の絶縁監視装置において、
前記各漏れ電流検出装置は、Igr方式により漏れ電流を検出する装置であることを特徴とする絶縁監視装置。
The insulation monitoring device according to claim 1,
Each said leakage current detection apparatus is an apparatus which detects a leakage current by an Igr system, The insulation monitoring apparatus characterized by the above-mentioned.
請求項1または請求項2に記載の絶縁監視装置において、
前記制御手段は、前記切換手段による切り換えで、前記第2の漏れ電流検出装置の検出対象となる各フィーダにおける漏れ電流の閾値を、前記第2の漏れ電流検出装置に通知し、前記第2の漏れ電流検出装置は、前記通知に基づいて前記各フィーダの漏れ電流の状態を検出することを特徴とする絶縁監視装置。
In the insulation monitoring device according to claim 1 or 2,
The control means notifies the second leakage current detection device of a leakage current threshold value in each feeder to be detected by the second leakage current detection device by switching by the switching means, and the second leakage current detection device. An insulation monitoring apparatus, wherein the leakage current detection apparatus detects a state of leakage current of each feeder based on the notification.
請求項1〜請求項3のいずれか1項に記載の絶縁監視装置において、
前記制御手段は、前記第1の漏れ電流検出装置で検出した漏れ電流値が所定の閾値を超えたバンクが存在しない場合、前記第1の漏れ電流検出装置で検出した漏れ電流値が所定の閾値に近いバンクの各フィーダを前記第2の漏れ電流検出装置の検出対象とするように、前記切換手段を制御することを特徴とする絶縁監視装置。


In the insulation monitoring apparatus according to any one of claims 1 to 3,
When there is no bank in which the leakage current value detected by the first leakage current detection device exceeds a predetermined threshold, the control means detects the leakage current value detected by the first leakage current detection device as a predetermined threshold. The insulation monitoring device is characterized in that the switching means is controlled so that each feeder in a bank close to is a detection target of the second leakage current detection device.


JP2006114783A 2006-04-18 2006-04-18 Insulating monitoring device Pending JP2007285929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006114783A JP2007285929A (en) 2006-04-18 2006-04-18 Insulating monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006114783A JP2007285929A (en) 2006-04-18 2006-04-18 Insulating monitoring device

Publications (1)

Publication Number Publication Date
JP2007285929A true JP2007285929A (en) 2007-11-01

Family

ID=38757833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006114783A Pending JP2007285929A (en) 2006-04-18 2006-04-18 Insulating monitoring device

Country Status (1)

Country Link
JP (1) JP2007285929A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015206741A (en) * 2014-04-23 2015-11-19 一般財団法人関東電気保安協会 insulation monitoring device
CN113009302A (en) * 2021-03-18 2021-06-22 奇瑞新能源汽车股份有限公司 Method and device for positioning insulation fault of high-voltage system of electric automobile
JP7456868B2 (en) 2020-07-06 2024-03-27 矢崎エナジーシステム株式会社 Connection body deterioration diagnosis device and connection body deterioration diagnosis method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03155326A (en) * 1989-11-08 1991-07-03 Daihen Corp Method and equipment for detecting direction of grounded electric line
JPH09224294A (en) * 1996-02-15 1997-08-26 Toshiba Meter Techno Kk Insulation supervisory equipment
JPH09318684A (en) * 1996-05-31 1997-12-12 Midori Anzen Co Ltd Insulation monitor
JPH1010184A (en) * 1996-06-21 1998-01-16 Toyo Commun Equip Co Ltd Abnormal insulation detector
JPH1118283A (en) * 1997-06-27 1999-01-22 Mitsubishi Electric Corp Breaker provided with leak alarm function
JPH1151995A (en) * 1997-08-08 1999-02-26 Toshiba Meter Techno Kk Insulation state monitoring device
JP2000111616A (en) * 1998-10-02 2000-04-21 Nec Corp Test method of logical circuit and test device of logical circuit
JP2001027907A (en) * 1999-05-18 2001-01-30 General Electric Co <Ge> Method for predicting abnormal state via intelligent electronic device
JP2001202587A (en) * 1999-11-02 2001-07-27 Metropolitan Expressway Public Corp Long period continuous measuring device for structure
JP2002131361A (en) * 2000-10-23 2002-05-09 Koha Co Ltd Wiring short circuit detecting device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03155326A (en) * 1989-11-08 1991-07-03 Daihen Corp Method and equipment for detecting direction of grounded electric line
JPH09224294A (en) * 1996-02-15 1997-08-26 Toshiba Meter Techno Kk Insulation supervisory equipment
JPH09318684A (en) * 1996-05-31 1997-12-12 Midori Anzen Co Ltd Insulation monitor
JPH1010184A (en) * 1996-06-21 1998-01-16 Toyo Commun Equip Co Ltd Abnormal insulation detector
JPH1118283A (en) * 1997-06-27 1999-01-22 Mitsubishi Electric Corp Breaker provided with leak alarm function
JPH1151995A (en) * 1997-08-08 1999-02-26 Toshiba Meter Techno Kk Insulation state monitoring device
JP2000111616A (en) * 1998-10-02 2000-04-21 Nec Corp Test method of logical circuit and test device of logical circuit
JP2001027907A (en) * 1999-05-18 2001-01-30 General Electric Co <Ge> Method for predicting abnormal state via intelligent electronic device
JP2001202587A (en) * 1999-11-02 2001-07-27 Metropolitan Expressway Public Corp Long period continuous measuring device for structure
JP2002131361A (en) * 2000-10-23 2002-05-09 Koha Co Ltd Wiring short circuit detecting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015206741A (en) * 2014-04-23 2015-11-19 一般財団法人関東電気保安協会 insulation monitoring device
JP7456868B2 (en) 2020-07-06 2024-03-27 矢崎エナジーシステム株式会社 Connection body deterioration diagnosis device and connection body deterioration diagnosis method
CN113009302A (en) * 2021-03-18 2021-06-22 奇瑞新能源汽车股份有限公司 Method and device for positioning insulation fault of high-voltage system of electric automobile
CN113009302B (en) * 2021-03-18 2023-03-21 奇瑞新能源汽车股份有限公司 Method and device for positioning insulation fault of high-voltage system of electric automobile

Similar Documents

Publication Publication Date Title
US7969696B2 (en) Ground fault detection and localization in an ungrounded or floating DC electrical system
AU2016289494B2 (en) Method and testing device for testing wiring of transformers
KR20120091141A (en) System and method for polyphase ground-fault circuit-interrupters
US10191102B2 (en) Automatic current transformer polarity correction
JP2012512621A (en) Protection system for IT power distribution system with floating reference conductor
US9714974B2 (en) Device for detecting open phase of connection line of standby transformer in nuclear power plant by using Rogowski coil
US9209617B2 (en) Device and method for preventing arc flashes
US20160061872A1 (en) Non-destructive short circuit testing for electrically operated circuit breakers
AU2013224729A1 (en) Testing a fuse
JP2007285929A (en) Insulating monitoring device
US6765390B2 (en) Diagnostic wiring verification tester
KR101816896B1 (en) Automatic Diagnosis System and Method for Electric Distribution Network
KR20170051984A (en) Before using electrical short circuit resistance measuring device for applying distribution board
US11385268B2 (en) Bypass detection modules and related devices and methods
Yi et al. An novel in-service cable dielectric loss measurement
KR20100072455A (en) Method for determining by detecting inpulse originated from arc
EP1134865B1 (en) Detecting wire break in electrical network
CN110703031B (en) Method for locating arc faults and protection device for electrical apparatus implementing the method
JP4258386B2 (en) Insulation diagnostic device
TWI231079B (en) Insulation diagnostic device
JP2010151488A (en) Device and system for detecting ground fault
KR20170001884A (en) Detecting method and a device for degradation of electric wire insulation
SE527895C2 (en) Method and apparatus for controlled reconnection of circuit breakers
KR20160074987A (en) Live line cable insulation monitoring apparatus
KR101668434B1 (en) Monitoring system for electric power apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111213