JP2001215247A - Leakage current measuring instrument - Google Patents

Leakage current measuring instrument

Info

Publication number
JP2001215247A
JP2001215247A JP2000022922A JP2000022922A JP2001215247A JP 2001215247 A JP2001215247 A JP 2001215247A JP 2000022922 A JP2000022922 A JP 2000022922A JP 2000022922 A JP2000022922 A JP 2000022922A JP 2001215247 A JP2001215247 A JP 2001215247A
Authority
JP
Japan
Prior art keywords
circuit
voltage
leakage current
current
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000022922A
Other languages
Japanese (ja)
Inventor
Toyoji Ahei
豊次 阿閉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SORONJU JAPAN KK
Original Assignee
SORONJU JAPAN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SORONJU JAPAN KK filed Critical SORONJU JAPAN KK
Priority to JP2000022922A priority Critical patent/JP2001215247A/en
Publication of JP2001215247A publication Critical patent/JP2001215247A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PROBLEM TO BE SOLVED: To determine whether the state of insulation of an electric apparatuses is defective by measuring only a leakage current (Igr) component owing to equivalent insulation resistance to the ground. SOLUTION: This instrument has a current-transformer sensor 2 for detecting a leakage current flowing through a measured electric line 1 or a grounding line, a current/voltage converting circuit 3 for converting an output signal of the sensor 2 into a voltage signal, a voltage amplifying circuit 4 for amplifying the output signal of the circuit 3, a voltage dividing/amplifying circuit 6 connected to a voltage line of the line 1 to divide and amplify the circuit voltage of the voltage line, a multiplying circuit 5 for multiplying the output of the circuit 4 by the output of the circuit 6, a low-pass filter 7 for removing harmonic components from the output of the circuit 5, a leakage-current displaying circuit 8 for displaying a leakage current signal Igr or output signal of the filter 7, a leakage-current comparing/determining circuit 9 for determining whether the current signal is above or below a prescribed value, and a determined result displaying circuit 10 for displaying a result determined by the circuit 9.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、漏洩電流を計測す
ることにより電気機器の絶縁状態の良否を判定する漏洩
電流測定装置に関し、特に等価対地絶縁抵抗の高抵に反
比例する漏洩電流の成分のみを計測することができる漏
洩電流測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a leakage current measuring device for determining the quality of an insulation state of an electric device by measuring the leakage current, and more particularly to a leakage current component which is inversely proportional to the equivalent ground insulation resistance. The present invention relates to a leakage current measuring device capable of measuring the leakage current.

【0002】[0002]

【従来の技術】従来、電気機器や電気器具類の絶縁状態
の良否を判定するには、リーク・クランプ・テスタを用
いるか、絶縁抵抗計を用いて計測を行なっていた。
2. Description of the Related Art Hitherto, in order to judge the quality of insulation of electric equipment and electric appliances, measurement has been carried out using a leak clamp tester or an insulation resistance meter.

【0003】[0003]

【発明が解決しようとする課題】ところで、従来のリー
ク・クランプ・テスタを用いて漏洩電流を計測しようと
すると、対地静電容量による漏洩電流(Igc)と等価対
地絶縁抵抗による漏洩電流(Igr)の両方を測定してし
まい、真に電気機器・器具類の絶縁状態の良否に関係す
るIgrのみを測定できないという問題があった。
By the way, when trying to measure the leakage current using a conventional leak clamp tester, the leakage current (Igc) due to the capacitance to ground and the leakage current (Igr) due to the equivalent insulation resistance to ground are measured. However, there is a problem that only Igr, which is truly related to the quality of insulation of electrical equipment and appliances, cannot be measured.

【0004】また、絶縁抵抗計を用いて電気機器や器具
類の絶縁状態の良否を計測しようとすると、電気機器類
を一旦停電させて線路と接地間の絶縁抵抗を測定する必
要があった。
In order to measure the insulation state of electrical equipment and appliances using an insulation resistance meter, it is necessary to temporarily stop the electrical equipment and measure the insulation resistance between the line and ground.

【0005】本発明は、このような従来の技術が有する
課題を解決するために提案されたものであり、電気機器
類の動作を停止させることなく測定を行なえ、等価対地
絶縁抵抗による漏洩電流(Igr)成分のみを計測して電
気機器類の絶縁状態の良否を判定することができる漏洩
電流測定装置を提供することを目的とする。
The present invention has been proposed in order to solve the problems of the prior art, and can perform measurement without stopping the operation of electrical equipment, and can measure the leakage current (equivalent to the equivalent ground insulation resistance). It is an object of the present invention to provide a leakage current measuring device capable of measuring only the Igr) component and determining whether the insulation state of electric equipment is good or not.

【0006】[0006]

【課題を解決するための手段】この目的を達成するため
に本発明による漏洩電流測定装置は、被測定電線路また
は接地線にクランプされ、被測定電線路または接地線に
流れる漏れ電流を検出するカレントトランスセンサと、
このカレントトランスセンサの出力信号を電圧信号に変
換する電流電圧変換回路と、この電流電圧変換回路の出
力信号を増幅する電圧増幅回路と、被測定電線路の電圧
線に接続され、この電圧線の回路電圧を分圧するととも
に、増幅する電圧分圧増幅回路と、上記電圧増幅回路の
出力と上記電圧分圧増幅回路の出力とを掛け合わせる乗
算回路と、この乗算回路の出力信号から高調波成分を除
去するローパスフィルタと、このローパスフィルタの出
力信号である漏れ電流信号を表示する漏れ電流表示回路
と、上記漏れ電流信号が規定値を超えるか規定値以下で
あるかを判定する漏れ電流比較判定回路と、この漏れ電
流比較判定回路の判定結果を表示する判定結果表示回路
とを有する構成としてある。
In order to achieve this object, a leakage current measuring device according to the present invention detects a leakage current which is clamped on a measured electric wire or a ground wire and flows through the measured electric wire or a ground wire. A current transformer sensor,
A current-voltage conversion circuit for converting the output signal of the current transformer sensor into a voltage signal, a voltage amplification circuit for amplifying the output signal of the current-voltage conversion circuit, and a voltage line of the electric wire to be measured; A voltage dividing circuit that divides and amplifies a circuit voltage, a multiplying circuit that multiplies an output of the voltage amplifying circuit by an output of the voltage dividing amplifying circuit, and a harmonic component from an output signal of the multiplying circuit. A low-pass filter to be removed, a leakage current display circuit for displaying a leakage current signal which is an output signal of the low-pass filter, and a leakage current comparison / judgment circuit for judging whether the leakage current signal exceeds a prescribed value or less than a prescribed value And a judgment result display circuit for displaying the judgment result of the leakage current comparison judgment circuit.

【0007】上述した構成によれば、被測定電線路また
は接地線に流れる漏れ電流を電圧信号に変換した後増幅
して乗算回路に加え、被測定電線路の電圧線に加えられ
た電圧を分圧増幅して乗算回路に入力し、乗算回路で両
信号を掛け合わせることにより、高調波を含む漏れ電流
信号を得ることができる。この乗算回路の出力信号をロ
ーパスフィルタを通して高調波を除去すれば、被測定電
線路または接地線に流れる等価対地絶縁抵抗による漏れ
電流(Igr)成分のみを検出することができる。漏れ電
流(Igr)成分は、表示回路に表示されるとともに、漏
れ電流の比較判定結果が表示回路に表示される。
According to the above-described configuration, the leakage current flowing through the measured electric wire or the ground line is converted into a voltage signal, then amplified and added to the multiplying circuit, and the voltage applied to the voltage line of the measured electric wire is divided. The voltage is amplified and input to the multiplication circuit, and the multiplication circuit multiplies both signals to obtain a leakage current signal including harmonics. If harmonics are removed from the output signal of this multiplying circuit through a low-pass filter, it is possible to detect only a leakage current (Igr) component caused by an equivalent ground insulation resistance flowing through the electric line or the ground line to be measured. The leakage current (Igr) component is displayed on the display circuit, and the result of the comparison of the leakage current is displayed on the display circuit.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づき詳細に説明する。図1のブロック図に、本発明
による漏洩電流測定装置の一実施形態を示す。この図
で、被測定電線路1の全体にクランプされるカレントト
ランスセンサ(CTセンサ)2の出力(漏れ電流ig)
は、電流電圧変換回路3に送られる。この電流電圧変換
回路3の出力は、電圧増幅回路4で増幅された後に、乗
算回路5に送られる。一方、被測定電線路1の電圧線に
接続されるリレーの被切換え接片RY1−1は、回路電
圧判断選択回路11によって切り換えられる。この回路
電圧判断選択回路11の出力は、測定回路電圧表示回路
12に送られ、被測定電線路1の電圧線の回路電圧が1
00Vのときは、緑色の表示灯LED3が点灯され、回
路電圧が200Vのときは、赤色の表示灯LED4が点
灯されるようになっている。また、被測定電線路1の電
圧線の回路電圧は、リレーの被切換え接片RY1−1を
介して電圧分圧増幅回路6に送られ、この電圧分圧増幅
回路6の出力が乗算回路5に送られる。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of a leakage current measuring device according to the present invention. In this figure, the output (leakage current ig) of a current transformer sensor (CT sensor) 2 clamped on the entire electric line 1 to be measured.
Is sent to the current-voltage conversion circuit 3. The output of the current-voltage conversion circuit 3 is sent to a multiplication circuit 5 after being amplified by a voltage amplification circuit 4. On the other hand, the switching contact piece RY1-1 of the relay connected to the voltage line of the electric wire 1 to be measured is switched by the circuit voltage determination selection circuit 11. The output of the circuit voltage judgment and selection circuit 11 is sent to the measurement circuit voltage display circuit 12 and the circuit voltage of the voltage line of the electric wire under test 1 becomes 1
When the voltage is 00V, the green indicator LED3 is turned on, and when the circuit voltage is 200V, the red indicator LED4 is turned on. Further, the circuit voltage of the voltage line of the electric wire under test 1 is sent to the voltage dividing amplifier circuit 6 via the switched contact piece RY1-1 of the relay, and the output of the voltage dividing amplifier circuit 6 is multiplied by the multiplying circuit 5 Sent to

【0009】電圧増幅回路4と電圧分圧増幅回路6の両
出力(vy,vz)が掛け合わされる乗算回路5では、
高調波成分を含む漏れ電流信号が得られる。この乗算回
路5に接続されるアクティブローパスフィルタ7では、
この高調波成分が除去され、真に絶縁の良否に関係する
等価対地絶縁抵抗による漏れ電流(Igr)成分が得られ
る。
In the multiplication circuit 5 in which both outputs (vy, vz) of the voltage amplification circuit 4 and the voltage division amplification circuit 6 are multiplied,
A leakage current signal including a harmonic component is obtained. In the active low-pass filter 7 connected to the multiplication circuit 5,
This harmonic component is removed, and a leakage current (Igr) component due to the equivalent ground insulation resistance that is truly related to insulation quality is obtained.

【0010】アクティブローパスフィルタ7から出力さ
れる漏れ電流信号は、表示回路8に表示されるととも
に、漏れ電流比較判定回路9に送られる。この漏れ電流
比較判定回路9に接続される判定結果表示回路10で
は、漏れ電流(Igr)が規格値の30mA以下のときは
緑色の表示灯LED1を点灯させ、漏れ電流(Igr)が
30mAを超えるとき赤色の表示灯LED2を点灯させ
て警報を発するようになっている。
The leakage current signal output from the active low-pass filter 7 is displayed on a display circuit 8 and sent to a leakage current comparison / judgment circuit 9. In the determination result display circuit 10 connected to the leakage current comparison determination circuit 9, when the leakage current (Igr) is equal to or less than the standard value of 30 mA, the green indicator LED1 is turned on, and the leakage current (Igr) exceeds 30 mA. At this time, the red indicator light LED2 is turned on to issue an alarm.

【0011】つぎに、図2の図示による漏洩電流測定装
置の具体的な回路構成を説明する。この図で、カレント
トランスセンサ2が接続される抵抗R1,R2は、電流
電圧変換回路3を構成している。この電流電圧変換回路
3が接続される次段の演算増幅器A2と回路素子は、電
圧増幅回路4を構成している。一方、被測定電線路1の
電圧線に接続される演算増幅器A12と回路素子、ナン
ド回路D2、リレーRY1は、回路電圧判断選択回路1
1を構成している。また、リレーの被切換え接片RY1
−2と抵抗は、表示灯LED3,LED4を点灯させる
測定回路電圧表示回路12を構成している。また、被測
定電線路1の電圧線にリレーRY1の被切換え接片RY
1−1を介して接続される抵抗R3,R4,R5,VR
1、演算増幅器A1、回路素子は、電圧分圧増幅回路6
を構成している。
Next, a specific circuit configuration of the leakage current measuring device shown in FIG. 2 will be described. In this figure, the resistors R1 and R2 to which the current transformer sensor 2 is connected constitute a current-voltage conversion circuit 3. The operational amplifier A2 and the circuit element at the next stage to which the current-voltage conversion circuit 3 is connected constitute a voltage amplification circuit 4. On the other hand, the operational amplifier A12 and the circuit element, the NAND circuit D2, and the relay RY1, which are connected to the voltage line of the electric wire 1 to be measured, are connected to the circuit voltage judgment selection circuit 1
1. Further, the switched contact piece RY1 of the relay
-2 and the resistance constitute a measurement circuit voltage display circuit 12 for lighting the indicator lamps LED3 and LED4. Further, the switching contact piece RY of the relay RY1 is connected to the voltage line of the electric wire 1 to be measured.
Resistances R3, R4, R5, VR connected via 1-1
1, the operational amplifier A1, the circuit element is a voltage dividing amplifier circuit 6
Is composed.

【0012】また、演算増幅器A3,A4,A5,A
6、トランジスタTr1,Tr2、回路素子は、電圧増
幅回路4と電圧分圧増幅回路6の両出力を掛け合わせる
乗算回路5を構成している。この乗算回路5で、抵抗R
6,VR2は後述する電圧vxを与えるものである。さ
らに、演算増幅回路A7と回路素子は、乗算回路5の出
力信号Vout から高調波成分を除去し、等価対地絶縁抵
抗による漏れ電流(Igr)成分のみを取り出すアクティ
ブローパスフィルタ7を構成している。
The operational amplifiers A3, A4, A5, A
6. The transistors Tr1 and Tr2 and the circuit elements constitute a multiplication circuit 5 for multiplying both outputs of the voltage amplification circuit 4 and the voltage division amplification circuit 6. In this multiplication circuit 5, the resistance R
6, VR2 gives a voltage vx to be described later. Further, the operational amplifier circuit A7 and the circuit elements constitute an active low-pass filter 7 for removing harmonic components from the output signal Vout of the multiplying circuit 5 and extracting only a leakage current (Igr) component due to an equivalent ground insulation resistance.

【0013】ディジタルメータDP1は、アクティブロ
ーパスフィルタ7から出力される漏れ電流(Igr)をデ
ィジタル表示する表示回路8を構成している。また、演
算増幅器A8,A9,A10と回路素子は、漏れ電流比
較判定回路9を構成している。この漏れ電流比較判定回
路9が接続される演算増幅器A11と回路素子、ナンド
回路D1は、表示灯LED1,LED2の一方を選択的
に点灯させる判定結果表示回路10を構成している。
The digital meter DP1 constitutes a display circuit 8 for digitally displaying the leakage current (Igr) output from the active low-pass filter 7. The operational amplifiers A8, A9, and A10 and the circuit elements constitute a leakage current comparison and determination circuit 9. The operational amplifier A11 to which the leakage current comparison and determination circuit 9 is connected, the circuit element, and the NAND circuit D1 constitute a determination result display circuit 10 for selectively turning on one of the indicator lights LED1 and LED2.

【0014】つぎに、本発明の基本的な考え方を説明す
る。まず、被測定電線路1の電圧線の回路電圧の瞬時値
をv、漏れ電流の瞬時値をigとすると、vとigは次
式で与えられる。 v=Vm ・sin ωt …(1) ig=Im ・sin (ωt +θ) …(2) ここで、Vm は電圧の最大値であり、Im は電流の最大
値である。続いて、電圧分圧増幅回路6と電圧増幅回路
4の出力電圧信号vz,vyは、 vz=(Vm /n)A1 sin ωt …(3) ここで、nは分圧比であり、A1 は電圧分圧増幅回路6
の電圧増幅率である。 vy=(Im /K1 )R1 A2 ・sin (ωt +θ) …(4) ここで、K1 は変流器を構成するカレントトランスセン
サ2の変流比であり、R1 は電圧変換用入力抵抗であ
る。また、A2 は電圧増幅回路4の電圧増幅率である。
Next, the basic concept of the present invention will be described. First, assuming that the instantaneous value of the circuit voltage of the voltage line of the electric line 1 to be measured is v and the instantaneous value of the leakage current is ig, v and ig are given by the following equations. v = Vm · sin ωt (1) ig = Im · sin (ωt + θ) (2) where Vm is the maximum value of the voltage and Im is the maximum value of the current. Subsequently, the output voltage signals vz and vy of the voltage dividing amplifier circuits 6 and 4 are as follows: vz = (Vm / n) A1 sin ωt (3) where n is a voltage dividing ratio and A1 is a voltage. Voltage dividing amplifier 6
Is the voltage amplification factor. vy = (Im / K1) R1 A2 .sin (.omega.t + .theta.) (4) where K1 is the current transformer ratio of the current transformer sensor 2 constituting the current transformer, and R1 is the input resistance for voltage conversion. . A2 is a voltage amplification factor of the voltage amplification circuit 4.

【0015】続いて、電圧増幅回路4と電圧分圧増幅回
路6の両出力vz,vyを掛け合わせる乗算回路の出力
信号Vout は、次式で与えられる。 Vout =(vy/10)(vz/vx)) =C・vy・vz …(5) ここで、C=(1/10vx)である。この(5)式
に、(3)式、(4)式を代入すると、 Vout =C(Im /K1 )R1 A2 ・sin(ωt +θ)(Vm /n) A1 sin ωt =K0 Vm Im ・sin (ωt +θ)・sin ωt …(6) ここで、定数K0 =(CR1 A1 A2 )/(K1 n)で
ある。また、電圧実効値をV、漏れ電流実効値をIg と
すると、Vm ,Im は、 Vm =√2・V Im =√2・Ig であるから、両式を(6)に代入すると、Vout =K0
(2VIg )・sin (ωt +θ)・sin ωt となる。こ
こで、α=ωt +θ、β=ωt とすると、 Vout =2K0 VIg ・sin α・sin β となる。
Subsequently, the output signal Vout of the multiplication circuit which multiplies both outputs vz and vy of the voltage amplification circuit 4 and the voltage division amplification circuit 6 is given by the following equation. Vout = (vy / 10) (vz / vx)) = C ・ vy ・ vz (5) where C = (1 / 10vx). By substituting equations (3) and (4) into equation (5), Vout = C (Im / K1) R1A2.sin (.omega.t + .theta.) (Vm / n) A1 sin.omega.t = K0 Vm Im.sin (Ωt + θ) · sin ωt (6) Here, the constant K0 = (CR1 A1 A2) / (K1 n). If the effective value of the voltage is V and the effective value of the leakage current is Ig, Vm and Im are Vm = √2 · V Im = √2 · Ig. Therefore, when both equations are substituted into (6), Vout = K0
(2VIg) · sin (ωt + θ) · sin ωt. Here, if α = ωt + θ and β = ωt, Vout = 2K0 VIg · sin α · sin β

【0016】続いて、三角関数の積を和に変換する公式
より、 Vout =2K0 VIg {cos (α−β)−cos (α+β)}/2 …(7)と なる。ここで、 α−β=(ωt +θ)−ωt =θ α+β=(ωt +θ)+ωt =2ωt +θ であるから、(7)式は、 Vout =K0 VIg {cos θ−cos (2ωt +θ)} …(8)と なる。 この(8)式で表現される信号電圧Vout を演算増幅器
A7を使用したアクティブローパスフィルタ7に加える
と、(8)式の括弧内の第二項の2倍の周波数2ωt で
変動する項を遮断することができ、第一項のみが出力信
号として得られる。
Subsequently, from the formula for converting the product of the trigonometric functions into a sum, Vout = 2K0 VIg {cos (α-β) -cos (α + β)} / 2 (7) Here, .alpha .-. Beta. = (. Omega.t + .theta.)-. Omega.t = .theta..alpha. +. Beta. = (. Omega.t + .theta.) +. Omega.t = 2.omega.t + .theta. (8) When the signal voltage Vout expressed by the equation (8) is added to the active low-pass filter 7 using the operational amplifier A7, the term that fluctuates at a frequency 2ωt that is twice the second term in the parentheses in the equation (8) is cut off. And only the first term is obtained as an output signal.

【0017】したがって、Vout は周波数(時間)に無
関係の直流分のみとなる。 ここで、K2 =K0 Vとする。このように、出力信号V
out は等価対地絶縁抵抗による漏れ電流(Igr=Ig・c
os θ)に比例する。もし、K2 =1となるように入力
抵抗R1 、電圧増幅率A1 ,A2 、電圧vxを定める
と、 Vout =Igr となり、ディジタルメータDP1に漏れ電流Igrを直接
表示させて、指示値を読むことができる。
Therefore, Vout is only a DC component irrespective of the frequency (time). Here, it is assumed that K2 = K0 V. Thus, the output signal V
out is the leakage current (Igr = Ig · c) due to equivalent ground insulation resistance.
os θ). If the input resistance R1, the voltage amplification factors A1 and A2, and the voltage vx are determined so that K2 = 1, Vout = Igr, and it is possible to directly display the leakage current Igr on the digital meter DP1 and read the indicated value. it can.

【0018】このように本発明によれば、原理的に漏れ
電流Ig 全体に含まれている対地静電容量による電流I
gcを除外して、絶縁抵抗値に直接関係する抵抗性(有効
分)電流分Igrを分離測定できる。
As described above, according to the present invention, in principle, the current I due to the ground capacitance contained in the entire leakage current Ig is obtained.
Excluding gc, the resistance (effective component) current Igr directly related to the insulation resistance value can be separately measured.

【0019】つぎに、上述した漏洩電流測定装置の測定
方法を説明する。まず、図3に示すように負荷13に接
続される電源が単相2線式の場合はつぎのように測定を
行なう。初めに、低圧検電器により被測定電線路1の電
圧線(L相)と接地線(N相)を識別する。続いて、被
測定電線路1に漏洩電流測定装置の電圧成分入力端子T
1 ,T2 を接続する。この際、電圧成分入力端子の中性
線端子T2 を被測定電線路1の接地線側に接続する。続
いて、被測定電線路1にカレントトランスセンサ2をク
ランプし、ディジタルメータDP1の表示を読み取る。
このとき、負荷13のD種接地されている接地線16に
カレントトランスセンサ2をクランプしてもよい。
Next, a measuring method of the above-described leakage current measuring device will be described. First, when the power supply connected to the load 13 is a single-phase two-wire system as shown in FIG. 3, the measurement is performed as follows. First, the voltage line (L-phase) and the ground line (N-phase) of the electric line 1 to be measured are identified by the low-voltage detector. Subsequently, the voltage component input terminal T of the leakage current measuring device is
1 and T2 are connected. At this time, the neutral terminal T2 of the voltage component input terminal is connected to the ground line side of the electric line 1 to be measured. Subsequently, the current transformer sensor 2 is clamped to the electric line 1 to be measured, and the display of the digital meter DP1 is read.
At this time, the current transformer sensor 2 may be clamped to the ground line 16 of the load 13 which is grounded to the D-class.

【0020】つぎに、図4に示すように負荷14に接続
される電源が単相3線式の場合を説明する。まず、低圧
検電器によって被測定電線路1の各電圧線(R相、T
相)と中性線(N相)を識別する。続いて、被測定電線
路1に漏洩電流測定装置の電圧成分入力端子T1 ,T2
を接続する。この際、電圧成分入力端子の中性線端子T
2 を被測定電線路1の中性線(接地線)側に接続する。
続いて、被測定電線路1にカレントトランスセンサ2を
クランプし、ディジタルメータDP1の表示を読み取
る。このとき、負荷14の接地線16にカレントトラン
スセンサ2をクランプしてもよい。
Next, a case where the power supply connected to the load 14 is a single-phase three-wire system as shown in FIG. 4 will be described. First, the low-voltage detector detects each voltage line (R phase, T
Phase) and neutral line (N-phase). Subsequently, the voltage component input terminals T1, T2 of the leakage current measuring device are connected to the electric line 1 to be measured.
Connect. At this time, the neutral terminal T of the voltage component input terminal
2 is connected to the neutral line (ground line) side of the electric line 1 to be measured.
Subsequently, the current transformer sensor 2 is clamped to the electric line 1 to be measured, and the display of the digital meter DP1 is read. At this time, the current transformer sensor 2 may be clamped to the ground line 16 of the load 14.

【0021】つぎに、図5に示すように負荷15に接続
される電源が三相3線式の場合を説明する。単相3線式
に手順は同じであるが、三相のR,S,Tの各相の電圧
を低圧検電器にて点検し、電位ゼロのB種接地されてい
る相に電圧成分入力端子の中性線端子T2 を接続する。
続いて、被測定電線路1にカレントトランスセンサ2を
クランプし、ディジタルメータDP1の表示を読み取
る。このとき、負荷15の接地線16にカレントトラン
スセンサ2をクランプしてもよい。
Next, a case where the power supply connected to the load 15 is a three-phase three-wire system as shown in FIG. 5 will be described. The procedure is the same as that of the single-phase three-wire system, but the voltage of each of the three phases R, S, and T is checked with a low-voltage detector, and the voltage component input terminal is connected to the grounded phase of zero-type B. Neutral terminal T2.
Subsequently, the current transformer sensor 2 is clamped to the electric line 1 to be measured, and the display of the digital meter DP1 is read. At this time, the current transformer sensor 2 may be clamped to the ground line 16 of the load 15.

【0022】[0022]

【発明の効果】以上説明したように本発明によれば、電
気機器や器具類の絶縁状態の良否をその機器・器具自体
を停電することなく、漏洩電流を測定することにより判
断できるという利点がある。また、真に絶縁の良否に関
係する等価対地絶縁抵抗の高低に反比例する漏洩電流の
成分のみを計測して表示することができ、高度の熟練・
経験を必要とせずに簡易に電気機器・器具類の絶縁状態
を判断できるという利点がある。
As described above, according to the present invention, there is an advantage that the quality of insulation of electric equipment or appliances can be determined by measuring leakage current without power failure of the equipment / apparatus itself. is there. In addition, it is possible to measure and display only the component of leakage current that is truly inversely proportional to the level of equivalent ground insulation resistance that is related to the quality of insulation.
There is an advantage that the insulation state of the electric device / equipment can be easily determined without requiring any experience.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による漏洩電流測定装置の一実施形態を
示すブロック図である。
FIG. 1 is a block diagram showing an embodiment of a leakage current measuring device according to the present invention.

【図2】上記漏洩電流測定装置の具体的な回路構成を示
す回路図である。
FIG. 2 is a circuit diagram showing a specific circuit configuration of the leakage current measuring device.

【図3】電源が単相2線式の場合の測定方法を示す説明
図である。
FIG. 3 is an explanatory diagram showing a measuring method when a power supply is a single-phase two-wire system.

【図4】電源が単相3線式の場合の測定方法を示す説明
図である。
FIG. 4 is an explanatory diagram showing a measurement method when a power supply is a single-phase three-wire system.

【図5】電源が三相3線式の場合の測定方法を示す説明
図である。
FIG. 5 is an explanatory diagram showing a measuring method when a power supply is a three-phase three-wire system.

【符号の説明】[Explanation of symbols]

1 被測定電線路 2 カレントトランスセンサ 3 電流電圧変換回路 4 電圧増幅回路 5 乗算回路 6 電圧分圧増幅回路 7 アクティブローパスフィルタ 8 表示回路 9 漏れ電流比較判定回路 10 判定結果表示回路 11 回路電圧判断選択回路 12 測定回路電圧表示回路 13,14,15 負荷 16 接地線 LED1,LED2 表示灯 REFERENCE SIGNS LIST 1 electric wire to be measured 2 current transformer sensor 3 current-voltage conversion circuit 4 voltage amplification circuit 5 multiplication circuit 6 voltage division amplification circuit 7 active low-pass filter 8 display circuit 9 leakage current comparison and judgment circuit 10 judgment result display circuit 11 circuit voltage judgment selection Circuit 12 Measurement circuit Voltage display circuit 13, 14, 15 Load 16 Ground wire LED1, LED2 Indicator light

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被測定電線路または接地線にクランプさ
れ、被測定電線路または接地線に流れる漏れ電流を検出
するカレントトランスセンサと、 このカレントトランスセンサの出力信号を電圧信号に変
換する電流電圧変換回路と、 この電流電圧変換回路の出力信号を増幅する電圧増幅回
路と、 被測定電線路の電圧線に接続され、この電圧線の電圧を
分圧するとともに、増幅する電圧分圧増幅回路と、 上記電圧増幅回路の出力と上記電圧分圧増幅回路の出力
とを掛け合わせる乗算回路と、 この乗算回路の出力信号から高調波成分を除去するロー
パスフィルタと、 このローパスフィルタの出力信号である漏れ電流信号を
表示する漏れ電流表示回路と、 上記漏れ電流信号が規定値を超えるか規定値以下である
かを判定する漏れ電流比較判定回路と、 この漏れ電流比較判定回路の判定結果を表示する判定結
果表示回路とを有することを特徴とする漏洩電流測定装
置。
1. A current transformer sensor that is clamped on a measured electric wire or ground line and detects a leakage current flowing through the measured electric wire line or ground line, and a current voltage that converts an output signal of the current transformer sensor into a voltage signal. A conversion circuit; a voltage amplification circuit that amplifies an output signal of the current-voltage conversion circuit; and a voltage division amplification circuit that is connected to a voltage line of the electric wire to be measured and divides and amplifies the voltage of the voltage line. A multiplying circuit that multiplies the output of the voltage amplifying circuit by the output of the voltage dividing amplifying circuit; a low-pass filter that removes a harmonic component from an output signal of the multiplying circuit; a leakage current that is an output signal of the low-pass filter A leakage current display circuit for displaying a signal; and a leakage current comparison / judgment circuit for judging whether the leakage current signal is over a specified value or less than a specified value. , Leakage current measurement apparatus characterized by comprising a determination result display circuit for displaying the determination result of the leakage current comparison judgment circuit.
JP2000022922A 2000-01-31 2000-01-31 Leakage current measuring instrument Pending JP2001215247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000022922A JP2001215247A (en) 2000-01-31 2000-01-31 Leakage current measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000022922A JP2001215247A (en) 2000-01-31 2000-01-31 Leakage current measuring instrument

Publications (1)

Publication Number Publication Date
JP2001215247A true JP2001215247A (en) 2001-08-10

Family

ID=18549153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000022922A Pending JP2001215247A (en) 2000-01-31 2000-01-31 Leakage current measuring instrument

Country Status (1)

Country Link
JP (1) JP2001215247A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006134678A1 (en) 2005-06-14 2006-12-21 Ohno, Takemi System and method for detecting leak current
JP2007085708A (en) * 2005-09-26 2007-04-05 Sanwa System Kk Control device, method and program
EP1855122A1 (en) * 2005-01-31 2007-11-14 Toyotsugu Atoji Leak current breaker and method
US7353123B2 (en) 2001-10-04 2008-04-01 Hitachi, Ltd. Leakage current or resistance measurement method, and monitoring apparatus and monitoring system of the same
JP2010002403A (en) * 2008-06-23 2010-01-07 Mitsubishi Electric Corp Apparatus for monitoring state of electric current leaking from arrester
JP2010025743A (en) * 2008-07-18 2010-02-04 Multi Keisokuki Kk Insulation monitor and insulation monitoring method
JP2011027449A (en) * 2009-07-22 2011-02-10 Hioki Ee Corp Leakage current measuring device
KR101227659B1 (en) 2011-10-06 2013-01-29 주식회사 위너스 Concent built in line isolation monitor
JP2013174613A (en) * 2010-04-12 2013-09-05 Toyoji Ahei Leak current detection device and method
TWI418808B (en) * 2008-03-31 2013-12-11 Tokyo Weld Co Ltd Capacitor leakage current measurement method and capacitor leakage measuring device
CN106443291A (en) * 2015-08-04 2017-02-22 浙江诺尔康神经电子科技股份有限公司 Electric leakage detecting device and electric leakage detecting method for artificial cochlear implantation prosthesis
CN108061838A (en) * 2017-12-18 2018-05-22 淄博职业学院 A kind of leakage tests method for ensureing user's normal electricity consumption
RU2755341C2 (en) * 2017-04-14 2021-09-15 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-Морского Флота "Военно-морская академия им. Адмирала Флота Советского Союза Н.Г. Кузнецова" Method for determining power released in current leaks to case at place of damage to insulation of phases of electrical network with insulated neutral
JP2023057072A (en) * 2021-10-08 2023-04-20 Igr技研株式会社 Leak current blocking device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7353123B2 (en) 2001-10-04 2008-04-01 Hitachi, Ltd. Leakage current or resistance measurement method, and monitoring apparatus and monitoring system of the same
US8009394B2 (en) 2005-01-31 2011-08-30 Toyotsugu Atoji Leak current breaker and method
EP1855122A1 (en) * 2005-01-31 2007-11-14 Toyotsugu Atoji Leak current breaker and method
EP2453246A1 (en) 2005-01-31 2012-05-16 Toyotsugu Atoji Leak current detector and method
EP1855122A4 (en) * 2005-01-31 2011-03-09 Toyotsugu Atoji Leak current breaker and method
EP1898225A1 (en) * 2005-06-14 2008-03-12 Ohno, Takemi System and method for detecting leak current
WO2006134678A1 (en) 2005-06-14 2006-12-21 Ohno, Takemi System and method for detecting leak current
EP1898225A4 (en) * 2005-06-14 2011-07-13 Ohno Takemi System and method for detecting leak current
JP2007085708A (en) * 2005-09-26 2007-04-05 Sanwa System Kk Control device, method and program
TWI418808B (en) * 2008-03-31 2013-12-11 Tokyo Weld Co Ltd Capacitor leakage current measurement method and capacitor leakage measuring device
JP2010002403A (en) * 2008-06-23 2010-01-07 Mitsubishi Electric Corp Apparatus for monitoring state of electric current leaking from arrester
JP2010025743A (en) * 2008-07-18 2010-02-04 Multi Keisokuki Kk Insulation monitor and insulation monitoring method
JP2011027449A (en) * 2009-07-22 2011-02-10 Hioki Ee Corp Leakage current measuring device
JP2013174613A (en) * 2010-04-12 2013-09-05 Toyoji Ahei Leak current detection device and method
KR101227659B1 (en) 2011-10-06 2013-01-29 주식회사 위너스 Concent built in line isolation monitor
CN106443291A (en) * 2015-08-04 2017-02-22 浙江诺尔康神经电子科技股份有限公司 Electric leakage detecting device and electric leakage detecting method for artificial cochlear implantation prosthesis
RU2755341C2 (en) * 2017-04-14 2021-09-15 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-Морского Флота "Военно-морская академия им. Адмирала Флота Советского Союза Н.Г. Кузнецова" Method for determining power released in current leaks to case at place of damage to insulation of phases of electrical network with insulated neutral
CN108061838A (en) * 2017-12-18 2018-05-22 淄博职业学院 A kind of leakage tests method for ensureing user's normal electricity consumption
CN108061838B (en) * 2017-12-18 2019-12-10 浙江长生滤清器有限公司 Electric leakage test method for ensuring normal electricity consumption of user
JP2023057072A (en) * 2021-10-08 2023-04-20 Igr技研株式会社 Leak current blocking device
JP7270945B2 (en) 2021-10-08 2023-05-11 Igr技研株式会社 Leakage current interrupter

Similar Documents

Publication Publication Date Title
JP2001215247A (en) Leakage current measuring instrument
EP1586910B1 (en) Method of and device for insulation monitoring
KR100896091B1 (en) Measuring instrument for a resistive electric leakage current
KR100725857B1 (en) The device to measure the ground resistance using the leakage current in the ground conductor
KR20030042661A (en) Apparatus for measuring leakage current
JP2002131362A (en) Leakage current measurement device
AU695365B2 (en) Electrical apparatus with wide dynamic range for monitoring and protecting electric power systems
JP3410043B2 (en) Current detection system
JP2962244B2 (en) PCB passive element isolation measurement circuit
US20230160933A1 (en) Method and device for determining the resistive component of the leakage current impedance in the alternating current network
CA2376732A1 (en) A current-comparator-based four-terminal resistance bridge for power frequencies
RU2313799C1 (en) Mode of controlling reduction of resistance of insulation in a line of feeding voltage to a load and an arrangement for its execution
JPH08247857A (en) Input device for temperature detecting resistor
JP3545886B2 (en) Insulation resistance measuring device
JP3964538B2 (en) Impedance measuring device
JP2011027453A (en) Semiconductor test apparatus and semiconductor test method
JPH05297038A (en) Grounding-resistance testing instrument
JP3577912B2 (en) Electronic circuit inspection equipment
JPH09257848A (en) Maintenance inspecting apparatus for electric circuit
JP4092718B2 (en) Withstand voltage test equipment
JPH11295362A (en) Impedance measuring apparatus
CN210323192U (en) Load power detection circuit
KR100196822B1 (en) Method and device for driving a digital multimeter accomplishing a function of wattmeter
KR100802094B1 (en) Electrical measurement meter
WO1986003301A1 (en) A static, electric apparatus for measuring power and energy drawn from a power supply network