JP2011027449A - Leakage current measuring device - Google Patents

Leakage current measuring device Download PDF

Info

Publication number
JP2011027449A
JP2011027449A JP2009170764A JP2009170764A JP2011027449A JP 2011027449 A JP2011027449 A JP 2011027449A JP 2009170764 A JP2009170764 A JP 2009170764A JP 2009170764 A JP2009170764 A JP 2009170764A JP 2011027449 A JP2011027449 A JP 2011027449A
Authority
JP
Japan
Prior art keywords
leakage current
current
phase
ior
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009170764A
Other languages
Japanese (ja)
Other versions
JP5449895B2 (en
Inventor
Sadataka Miyajima
貞敬 宮島
Yusaku Miyata
雄作 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2009170764A priority Critical patent/JP5449895B2/en
Publication of JP2011027449A publication Critical patent/JP2011027449A/en
Application granted granted Critical
Publication of JP5449895B2 publication Critical patent/JP5449895B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To measure a leakage current of two distribution wires for taking-out and forming a single phase from three phases. <P>SOLUTION: A leakage current measuring device 1 which measures the leakage current (composite effective leakage current) Ior flowing through insulation resistances, concerning two distribution wires Lu and Lv in a three-phase three-wire system distribution line formed in Y connection includes: a voltage detection unit 2 for detecting the phase-to-phase voltage Vvu between the two distribution wires Lu and Lv; a current-voltage conversion unit 3 for detecting the composite current (composite leakage current) Io of the currents flowing through the two distribution wires Lu and Lv; and a processing unit 4 for calculating the difference θ in phase between the phase-to-phase voltage Vvu and the composite leakage current Io, and the value (Io) of the composite leakage current Io, and measuring the leakage current Ior on the basis of Ior=¾2×Io×sinθ¾. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、三相3線式配電線の絶縁検査などに使用される漏れ電流測定装置に関するものである。   The present invention relates to a leakage current measuring device used for insulation inspection of a three-phase three-wire distribution line.

この種の漏れ電流測定装置として、下記特許文献1に開示された漏れ電流測定装置(漏洩電流測定装置)が知られている。この漏れ電流測定装置では、電圧測定手段が星形配電方式の電源各相の線間電圧又は対地電圧を順次入力測定し、零相電流測定手段が電源から配電線やこの配電線に接続された負荷設備としての電気機器を通じて流れる対地漏洩電流である零相電流を測定し、信号処理手段が零相電流測定手段により測定した零相電流から、電圧測定手段により測定した星形(Y形)配電方式電源の入力された線間電圧又は対地電圧と同相方向の成分である有効成分及び有効成分と90度の位相差の無効成分とを順次入力された各電圧ごとに算出し、演算手段が信号処理手段により算出された零相電流の各電圧に対する有効成分及び無効成分、それに零相電流の値と電圧測定手段により入力された電圧若しくは設定された電圧の値から配電線や電気機器の対地絶縁抵抗を通じて流れる漏れ電流を演算する。   As this type of leakage current measuring apparatus, a leakage current measuring apparatus (leakage current measuring apparatus) disclosed in Patent Document 1 below is known. In this leakage current measuring device, the voltage measuring means sequentially inputs and measures the line voltage or ground voltage of each phase of the power supply of the star distribution system, and the zero phase current measuring means is connected to the distribution line and this distribution line from the power supply. Star-shaped (Y-type) distribution measured by voltage measuring means from the zero-phase current measured by the zero-phase current measuring means by the signal processing means by measuring the zero-phase current flowing through the electrical equipment as the load equipment. An effective component that is a component in the same phase as the line voltage or ground voltage input to the system power supply and an effective component and an invalid component with a phase difference of 90 degrees are calculated for each input voltage sequentially, and the calculation means outputs a signal The effective component and invalid component for each voltage of the zero-phase current calculated by the processing means, the value of the zero-phase current and the voltage input by the voltage measuring means or the set voltage value to the ground of the distribution line and electrical equipment It calculates a leakage current flowing through the edge resistance.

この場合、星形配電電源では、電圧をバランス状態の対地静電容量に印加したときに、各相の対地静電容量を流れる電流は大きさが同じで位相差が120度になり、三相分を合計した対地静電容量を流れる電流の電流値は0になる。一方、絶縁劣化の結果、対地絶縁抵抗を通じて流れる漏れ電流が発生した場合、この電流と対地静電容量を流れる電流との合成値が漏れ電流の合計である零相電流として計測されるが、対地静電容量を流れる電流の合成値は0であるので、上記の演算により、対地絶縁抵抗を通じて流れる漏れ電流が算出される。したがって、この漏れ電流測定装置では、星形配電方式配電線やそれに接続される電気機器の対地絶縁抵抗を通じて流れる漏れ電流を通電状態のまま安全に誤差の少ない状態で検出し得るようになっている。   In this case, in the star distribution power supply, when a voltage is applied to the grounded capacitance in a balanced state, the current flowing through the grounded capacitance of each phase has the same magnitude and a phase difference of 120 degrees, resulting in a three-phase The current value of the current flowing through the ground capacitance obtained by summing the minutes is zero. On the other hand, if a leakage current that flows through the ground insulation resistance occurs as a result of insulation deterioration, the combined value of this current and the current flowing through the ground capacitance is measured as a zero-phase current that is the sum of the leakage currents. Since the combined value of the current flowing through the capacitance is 0, the leakage current flowing through the ground insulation resistance is calculated by the above calculation. Therefore, in this leakage current measuring device, the leakage current flowing through the ground insulation resistance of the star-type distribution system distribution line and the electrical equipment connected thereto can be detected safely in a state with little error while being energized. .

特開2009−145122号公報(第5頁、第2図)JP 2009-145122 A (page 5, FIG. 2)

ところで、現在、提案されている三相3線式配電線についての漏れ電流測定装置は、上記の漏れ電流測定装置のように、三相分の電流の合計である零相電流を測定するものしか存在しておらず、三相から単相を取り出して構成される2本の配電線についての漏れ電流を測定し得る漏れ電流測定装置が存在していないため、このような単相の配電線についての漏れ電流を測定することができないという解決すべき課題が存在していた。   By the way, the currently proposed leakage current measuring device for a three-phase three-wire distribution line only measures a zero-phase current, which is the sum of currents for three phases, like the leakage current measuring device described above. Since there is no leakage current measuring device that can measure the leakage current of two distribution lines that are configured by taking out a single phase from three phases, such a single-phase distribution line There has been a problem to be solved that the leakage current cannot be measured.

本発明は、かかる課題に鑑みてなされたものであり、三相から単相を取り出して構成される2本の配電線についての漏れ電流を測定し得る漏れ電流測定装置を提供することを主目的とする。   The present invention has been made in view of such problems, and it is a main object of the present invention to provide a leakage current measuring apparatus capable of measuring leakage current of two distribution lines configured by taking out a single phase from three phases. And

上記目的を達成すべく請求項1記載の漏れ電流測定装置は、Y結線で構成された三相3線式配電線におけるいずれか2つの配電線についての絶縁抵抗の漏れ電流Iorを測定する漏れ電流測定装置であって、前記2つの配電線間の相間電圧を検出する電圧検出部と、前記2つの配電線に流れる電流の合成電流を検出する電流検出部と、前記相間電圧および前記合成電流の間の位相差θ、並びに当該合成電流の電流値Ioを算出すると共に、下記式(1)に基づいて前記漏れ電流Iorを測定する処理部とを備えている。
Ior=|2×Io×sinθ| ・・・・ (1)
In order to achieve the above object, the leakage current measuring apparatus according to claim 1 is configured to measure a leakage current Ior of an insulation resistance of any two distribution lines in a three-phase three-wire distribution line constituted by Y connection. A measuring device for detecting a phase voltage between the two distribution lines; a current detection unit for detecting a combined current of currents flowing through the two distribution lines; and the interphase voltage and the combined current And a processing unit for calculating the leakage current Ior based on the following formula (1).
Ior = | 2 × Io × sin θ | (1)

また、請求項2記載の漏れ電流測定装置は、請求項1記載の漏れ電流測定装置において、前記処理部は、前記測定した漏れ電流Iorと予め規定された規格値とを比較して、前記2つの配電線についての絶縁状態を判別する。   The leakage current measuring device according to claim 2 is the leakage current measuring device according to claim 1, wherein the processing unit compares the measured leakage current Ior with a predetermined standard value, Determine the insulation state for one distribution line.

また、請求項3記載の漏れ電流測定装置は、請求項1または2記載の漏れ電流測定装置において、前記処理部は、前記位相差θが予め規定された規定角度範囲と比較して、当該基準角度範囲外となったときに表示部にエラー表示させる。   Further, the leakage current measuring apparatus according to claim 3 is the leakage current measuring apparatus according to claim 1 or 2, wherein the processing unit compares the phase difference θ with a predetermined angle range that is defined in advance. An error is displayed on the display when the angle is out of the range.

請求項1記載の漏れ電流測定装置によれば、Y結線で構成された三相3線式配電線におけるいずれか2つの配電線間の相間電圧とこの2つの配電線の合成電流(相電流が打ち消されるため、実質的に合成無効漏れ電流および合成有効漏れ電流が合成されてなる合成漏れ電流となる)Ioとの間の位相差θ、合成電流Ioおよび上記式(1)に基づいて、この2つの配電線についての絶縁抵抗の漏れ電流(合成有効漏れ電流)Iorを精度良く測定することができる。   According to the leakage current measuring apparatus of the first aspect, the interphase voltage between any two distribution lines and the combined current (phase current of the two distribution lines) in a three-phase three-wire distribution line constituted by Y connection. Since this is canceled out, the combined reactive leakage current and the combined effective leakage current become a combined leakage current (the combined leakage current) and Io, the combined current Io and the above equation (1) based on this It is possible to accurately measure the leakage current (synthetic effective leakage current) Ior of the insulation resistance for the two distribution lines.

また、請求項2記載の漏れ電流測定装置によれば、測定した合成有効漏れ電流Iorと予め規定された規格値とを処理部が比較して、2つの配電線についての絶縁状態を判別するため、この判別の結果を表示部などに表示させることで、漏れ電流測定装置のオペレータは、2つの配電線の絶縁状態の良否を確実かつ容易に認識することができる。   According to the leakage current measuring apparatus of claim 2, the processing unit compares the measured combined effective leakage current Ior and a predetermined standard value to determine the insulation state between the two distribution lines. By displaying the result of this determination on the display unit or the like, the operator of the leakage current measuring device can reliably and easily recognize the quality of the insulation state of the two distribution lines.

また、請求項3記載の漏れ電流測定装置によれば、位相差θが予め規定された規定角度範囲外のときに、処理部が表示部にエラー表示させるため、漏れ電流測定装置のオペレータが、2つの配電線が低圧側三相巻線における本来接続されるべき三相端子以外の端子に誤接続されているか、または例えば2つの配電線の合成電流を測定するための電流検出プローブのこの各配電線への装着方向が誤っている可能性のあることを確実かつ容易に認識することができる。   Further, according to the leakage current measuring device of claim 3, when the phase difference θ is outside the prescribed angle range defined in advance, the processing unit displays an error on the display unit. The two distribution lines are misconnected to terminals other than the three-phase terminals to be originally connected in the low-voltage side three-phase winding, or each of these current detection probes for measuring, for example, the combined current of the two distribution lines It is possible to reliably and easily recognize that the mounting direction to the distribution line may be wrong.

漏れ電流測定装置1の構成を示す構成図である。1 is a configuration diagram showing a configuration of a leakage current measuring device 1. FIG. 絶縁抵抗の漏れ電流(合成有効漏れ電流)Iorについての測定原理を説明するためのベクトル図である(Ioruのみが存在している場合)。It is a vector diagram for demonstrating the measurement principle about the leakage current (synthetic effective leakage current) Ior of an insulation resistance (when only Ioru exists). 絶縁抵抗の漏れ電流(合成有効漏れ電流)Iorについての測定原理を説明するためのベクトル図である(Iorvのみが存在している場合)。It is a vector diagram for demonstrating the measurement principle about the leakage current (synthesis effective leakage current) Ior of an insulation resistance (when only Iorv exists).

以下、漏れ電流測定装置の最良の形態について、添付図面を参照して説明する。   Hereinafter, the best mode of a leakage current measuring apparatus will be described with reference to the accompanying drawings.

最初に、漏れ電流測定装置1の構成について、図面を参照して説明する。   First, the configuration of the leakage current measuring apparatus 1 will be described with reference to the drawings.

図1に示す漏れ電流測定装置1は、電圧検出部2、電流検出部3、処理部4、記憶部5および出力部6を備え、例えば、変圧器の低圧側三相巻線11がY形に結線された交流電源12の三相端子U,Vに接続される2つの配電線Lu,Lvについての絶縁抵抗の漏れ電流(以下、「合成有効漏れ電流」ともいう)Iorを測定可能に構成されている。この場合、交流電源12は、一例として、商用周波数の三相交流電圧(中性点Nに対して位相が120°ずつずれる相電圧Vu,Vv,Vw)を発生させると共に、発生させた相電圧Vu,Vv,Vwを三相端子U,V,Wから出力する。この構成により、交流電源12は、配電線Lu,Lvが接続された三相端子U,V間に相間電圧Vvuを出力して、配電線Lu,Lv間に接続された負荷14に対して相電流Ivuを供給する。また、本例では一例として、交流電源12の各三相端子U,V,Wには、接地用コンデンサ13が接続されている。配電線Luと接地との間には、対地静電容量Cuおよび対地漏れ抵抗Ruが存在し、配電線Lvと接地との間には、対地静電容量Cvおよび対地漏れ抵抗Rvが存在している。   1 includes a voltage detection unit 2, a current detection unit 3, a processing unit 4, a storage unit 5, and an output unit 6. For example, a low-voltage side three-phase winding 11 of a transformer has a Y shape. Insulation resistance leakage current (hereinafter also referred to as “composite effective leakage current”) Ior for two distribution lines Lu and Lv connected to the three-phase terminals U and V of the AC power supply 12 connected to Has been. In this case, as an example, the AC power supply 12 generates a three-phase AC voltage of commercial frequency (phase voltages Vu, Vv, Vw whose phases are shifted by 120 ° with respect to the neutral point N) and the generated phase voltage. Vu, Vv, and Vw are output from the three-phase terminals U, V, and W. With this configuration, the AC power supply 12 outputs an interphase voltage Vvu between the three-phase terminals U and V to which the distribution lines Lu and Lv are connected, and a phase is applied to the load 14 connected between the distribution lines Lu and Lv. A current Ivu is supplied. In this example, as an example, a grounding capacitor 13 is connected to each of the three-phase terminals U, V, W of the AC power supply 12. A ground capacitance Cu and a ground leakage resistance Ru exist between the distribution line Lu and the ground, and a ground capacitance Cv and a ground leakage resistance Rv exist between the distribution line Lv and the ground. Yes.

電圧検出部2は、図1に示すように、一対の電圧検出プローブ21,21を介して配電線Lu,Lvに接続される。また、電圧検出部2は、一対の電圧検出プローブ21,21を介して相間電圧Vvuを検出して、処理部4に出力する。電流検出部3は、配電線Lu,Lvに予め決められた向きで装着された電流トランス型の電流検出プローブ22を介して、配電線Lu,Lvに流れる相電流Ivu、対地静電容量Cuを経由して接地に流れる漏れ電流(以下、「無効漏れ電流」ともいう)Iocu、対地漏れ抵抗Ruを経由して接地に流れる漏れ電流(以下、「有効漏れ電流」ともいう)Ioru、対地静電容量Cvを経由して接地に流れる漏れ電流(以下、「無効漏れ電流」ともいう)Iocv、および対地漏れ抵抗Rvを経由して接地に流れる漏れ電流(以下、「有効漏れ電流」ともいう)Iorvの合成漏れ電流Ioを検出すると共に、電圧信号Viに変換して処理部4に出力する。この場合、負荷14に流れる相電流Ivuは、図1に示すように、配電線Luと配電線Lvとに逆向きに流れる(電流検出プローブ22内を逆方向に流れる)ことになる。このため、電流検出プローブ22での電流検出に際しては、両配電線Lu,Lvを流れる相電流Ivuが打ち消されるため、電流検出プローブ22で検出される電流は、上記2つの無効漏れ電流Iocu,Iocvと2つの有効漏れ電流Ioru,Iorvとが合成された合成漏れ電流Ioとなる。   As shown in FIG. 1, the voltage detection unit 2 is connected to the distribution lines Lu and Lv via a pair of voltage detection probes 21 and 21. Further, the voltage detection unit 2 detects the interphase voltage Vvu via the pair of voltage detection probes 21, 21 and outputs it to the processing unit 4. The current detection unit 3 obtains the phase current Ivu flowing through the distribution lines Lu and Lv and the ground capacitance Cu through the current transformer type current detection probe 22 attached to the distribution lines Lu and Lv in a predetermined direction. Leakage current (hereinafter also referred to as “invalid leakage current”) Iocu via the ground, leakage current flowing to ground via the ground leakage resistance Ru (hereinafter also referred to as “effective leakage current”) Ioru, ground electrostatic A leakage current flowing to the ground via the capacitance Cv (hereinafter also referred to as “invalid leakage current”) Iocv and a leakage current flowing to the ground via the ground leakage resistance Rv (hereinafter also referred to as “effective leakage current”) Iorv The combined leakage current Io is detected and converted into a voltage signal Vi and output to the processing unit 4. In this case, the phase current Ivu flowing in the load 14 flows in the opposite direction (flows in the current detection probe 22 in the opposite direction) to the distribution line Lu and the distribution line Lv, as shown in FIG. For this reason, when the current is detected by the current detection probe 22, the phase current Ivu flowing through the two distribution lines Lu and Lv is canceled out, so that the current detected by the current detection probe 22 is the above two invalid leakage currents Iocu and Iocv. And two effective leakage currents Ioru and Iorv are combined leakage current Io.

処理部4は、例えば、2つのA/D変換器およびCPU(いずれも図示せず)を備えて構成されている。この構成により、処理部4は、電圧検出部2から出力される相間電圧Vvuを一方のA/D変換器で相間電圧波形データDvに変換すると共に、電流検出部3から出力される電圧信号Viを他方のA/D変換器で電流波形データDiに変換して、記憶部5に記憶させるA/D変換処理を実行する。また、処理部4は、電流波形データDiに基づいて合成漏れ電流Ioを算出する電流算出処理と、相間電圧波形データDvおよび電流波形データDiに基づいて、相間電圧Vvuと合成漏れ電流Ioとの間の位相差θを算出する位相差算出処理とを実行する。また、処理部4は、下記式(1)に基づいて、配電線Lu,Lvについての絶縁抵抗の合成有効漏れ電流Ior(有効漏れ電流Ioru,Iorvの合成電流)を算出(測定)する漏れ電流算出処理を実行する。
Ior=|2×Io×sinθ| ・・・・ (1)
なお、|x|は、数値xの絶対値を示している。
For example, the processing unit 4 includes two A / D converters and a CPU (both not shown). With this configuration, the processing unit 4 converts the interphase voltage Vvu output from the voltage detection unit 2 into the interphase voltage waveform data Dv by one A / D converter, and also outputs the voltage signal Vi output from the current detection unit 3. Is converted into current waveform data Di by the other A / D converter, and A / D conversion processing to be stored in the storage unit 5 is executed. Further, the processing unit 4 calculates a combined leakage current Io based on the current waveform data Di, and calculates the interphase voltage Vvu and the combined leakage current Io based on the interphase voltage waveform data Dv and the current waveform data Di. And a phase difference calculation process for calculating a phase difference θ between them. In addition, the processing unit 4 calculates (measures) a leakage current that calculates (measures) a combined effective leakage current Ior of the insulation resistance (the combined current of the effective leakage currents Ioru and Iorv) on the distribution lines Lu and Lv based on the following formula (1). Execute the calculation process.
Ior = | 2 × Io × sin θ | (1)
| X | indicates the absolute value of the numerical value x.

以下において、上記式(1)の算出根拠について図2,3を参照して説明する。   Hereinafter, the calculation basis of the above formula (1) will be described with reference to FIGS.

低圧側三相巻線11がY形に結線された交流電源12から配電線を介して交流電圧を供給する構成では、絶縁不良が発生した際に、三相端子U,V,Wに接続された配電線のうちの1つの配電線の絶縁状態が際立って劣化し、他の2つの配電線は健全な場合が殆どであることが知られている。したがって、図1に示すように、低圧側三相巻線11がY形に結線された交流電源12の三相端子U,Vに接続される2つの配電線Lu,Lvについても、絶縁不良が発生した場合には、いずれか一方の配電線の絶縁状態が際立って劣化し、他方の配電線は健全であると考えられる。つまり、2つの配電線Lu,Lvにおいて絶縁不良が発生した場合(絶縁状態が劣化した場合)に発生する有効漏れ電流は、有効漏れ電流Ioru,Iorvのうちのいずれか一方のみであると考えられる。また、配電線Lu,Lvの各対地静電容量Cu,Cvは、絶縁不良の発生の有無に関わらずバランスが取れた状態で存在していると考えられる。つまり、各無効漏れ電流Iocu,Iocvは同じ電流値であると考えられる。   In the configuration in which the AC voltage is supplied from the AC power source 12 in which the low-voltage side three-phase winding 11 is connected to the Y shape via the distribution line, when the insulation failure occurs, it is connected to the three-phase terminals U, V, and W. It is known that the insulation state of one of the distribution lines is significantly deteriorated, and the other two distribution lines are mostly healthy. Therefore, as shown in FIG. 1, insulation failure is also caused in the two distribution lines Lu and Lv connected to the three-phase terminals U and V of the AC power source 12 in which the low-voltage side three-phase winding 11 is connected in a Y shape. When it occurs, it is considered that the insulation state of one of the distribution lines is significantly deteriorated, and the other distribution line is healthy. That is, it is considered that the effective leakage current that occurs when insulation failure occurs in the two distribution lines Lu and Lv (when the insulation state deteriorates) is only one of the effective leakage currents Ioru and Iorv. . Further, it is considered that the ground capacitances Cu and Cv of the distribution lines Lu and Lv exist in a balanced state regardless of whether or not insulation failure occurs. In other words, the reactive leakage currents Iocu and Iocv are considered to have the same current value.

まず、有効漏れ電流Ioruのみが生じて、絶縁不良が発生している場合(配電線Luに絶縁不良が発生している場合)について、図2を参照して説明する。なお、発生していない有効漏れ電流Iorvについては破線で示している。また、各相電圧Vu,Vv,Vwおよび相間電圧Vvuについても発明の理解を容易にするため、破線で示している。なお、以下において各ベクトルの角度は、相間電圧Vvuを基準(0°)として、反時計回り方向に回転したときの角度で表記するものとする。   First, the case where only the effective leakage current Ioru has occurred and an insulation failure has occurred (when an insulation failure has occurred in the distribution line Lu) will be described with reference to FIG. The effective leakage current Iorv that has not occurred is indicated by a broken line. The phase voltages Vu, Vv, Vw and the interphase voltage Vvu are also shown by broken lines in order to facilitate understanding of the invention. In the following, the angle of each vector is expressed as an angle when rotated counterclockwise with the interphase voltage Vvu as a reference (0 °).

図2に示すように、配電線Luについての無効漏れ電流Iocuは、有効漏れ電流Ioru(相電圧Vuと同位相(330°))に対して位相が90°進んでおり、また配電線Lvについての無効漏れ電流Iocvは、有効漏れ電流Iorv(相電圧Vvと同位相(210°))に対して位相が90°進んでいる。また、上記したように、両無効漏れ電流Iocu,Iocvの電流値は同じである。このため、両無効漏れ電流Iocu,Iocvの合成無効漏れ電流Iocは、相間電圧Vvuと同位相(0°)となっている。この場合、各漏れ電流Iocu,Ioru,Iocv,Iorvの合成漏れ電流Ioは、有効漏れ電流Iorvがゼロであり、各無効漏れ電流Iocu,Iocvの合成無効漏れ電流がIocであることから、ベクトル和でIo=Ioc+Ioruと表される。有効漏れ電流Ioruは、上記したように、相電圧Vuと同じ角度(330°)上に存在するため、合成漏れ電流Ioは、同図に示すように、相間電圧Vvuを基準とした330°から360°までの30°の範囲内に存在することになる。   As shown in FIG. 2, the reactive leakage current Iocu for the distribution line Lu is 90 ° ahead of the effective leakage current Ioru (the same phase (330 °) as the phase voltage Vu), and the distribution line Lv. The reactive leakage current Iocv is advanced by 90 ° with respect to the effective leakage current Iorv (the same phase (210 °) as the phase voltage Vv). Further, as described above, the current values of both reactive leakage currents Iocu and Iocv are the same. Therefore, the combined reactive leakage current Ioc of both reactive leakage currents Iocu and Iocv is in phase (0 °) with the interphase voltage Vvu. In this case, the combined leakage current Io of the leakage currents Iocu, Ioru, Iocv, and Iorv is zero, and the combined reactive leakage current of the reactive leakage currents Iocu and Iocv is Ioc. Is expressed as Io = Ioc + Ioru. Since the effective leakage current Ioru exists on the same angle (330 °) as the phase voltage Vu as described above, the combined leakage current Io starts from 330 ° with reference to the interphase voltage Vvu as shown in FIG. It will be in the range of 30 ° up to 360 °.

ここで、合成漏れ電流Ioの先端から相間電圧Vvuと同位相の仮想直線L1上に下ろした垂線aの長さは、|Io×sinθ|となる。また、有効漏れ電流Ioruの先端から仮想直線L1上に下ろした垂線bの長さは、垂線aと同じ長さである。また、有効漏れ電流Ioruと仮想直線L1との成す角度は30°である。したがって、有効漏れ電流Ioruの長さ(電流値)は、|2×b|=|2×Io×sinθ|で表される。また、配電線Lvについての有効漏れ電流Iorvがゼロであることから、有効漏れ電流Ioruが、配電線Lu,Lvについての絶縁抵抗の合成有効漏れ電流Iorとなる。したがって、上記式(1)が成り立つ。   Here, the length of the perpendicular line a drawn from the tip of the combined leakage current Io onto the virtual straight line L1 having the same phase as the interphase voltage Vvu is | Io × sin θ |. Moreover, the length of the perpendicular line b dropped on the virtual straight line L1 from the tip of the effective leakage current Ioru is the same length as the perpendicular line a. The angle formed by the effective leakage current Ioru and the virtual straight line L1 is 30 °. Therefore, the length (current value) of the effective leakage current Ioru is represented by | 2 × b | = | 2 × Io × sin θ |. Further, since the effective leakage current Iorv for the distribution line Lv is zero, the effective leakage current Ioru becomes the combined effective leakage current Ior of the insulation resistance for the distribution lines Lu and Lv. Therefore, the above formula (1) is established.

次に、有効漏れ電流Iorvのみが生じて、絶縁不良が発生している場合(配電線Lvに絶縁不良が発生している場合)について、図3を参照して説明する。なお、各相電圧Vu,Vv,Vwおよび相間電圧Vvuについては、破線で示している。   Next, the case where only the effective leakage current Iorv occurs and an insulation failure occurs (when the insulation failure occurs in the distribution line Lv) will be described with reference to FIG. The phase voltages Vu, Vv, Vw and the interphase voltage Vvu are indicated by broken lines.

図3に示すように、各無効漏れ電流Iocu,Iocvの合成無効漏れ電流Iocは図2と同じ状態(相間電圧Vvuと同位相の状態)で存在している。このため、この合成無効漏れ電流Iocと有効漏れ電流Iorv(相電圧Vvと同位相(210°))とを合成してなる合成漏れ電流Ioは、同図に示すように、相間電圧Vvuを基準とした210°から360°までの150°の範囲内に存在することになる。ここで、合成漏れ電流Ioの先端から相間電圧Vvuと同位相の仮想直線L1上に下ろした垂線aの長さは、|Io×sinθ|となる。また、有効漏れ電流Iorvの先端から仮想直線L1上に下ろした垂線cの長さは、垂線aと同じ長さである。また、有効漏れ電流Iorvと仮想直線L1との成す角度は30°である。したがって、有効漏れ電流Iorvの長さ(電流値)についても、|2×c|=|2×Io×sinθ|となる。また、有効漏れ電流Ioruがゼロであることから、有効漏れ電流Iorvが、配電線Lu,Lvについての絶縁抵抗の合成有効漏れ電流Iorとなる。したがって、上記式(1)が成り立つ。   As shown in FIG. 3, the combined reactive leakage current Ioc of the reactive leakage currents Iocu and Iocv exists in the same state as in FIG. 2 (the same phase as the interphase voltage Vvu). Therefore, the combined leakage current Io obtained by combining the combined invalid leakage current Ioc and the effective leakage current Iorv (the same phase (210 °) as the phase voltage Vv) is based on the interphase voltage Vvu as shown in FIG. It exists in the range of 150 degrees from 210 degrees to 360 degrees. Here, the length of the perpendicular line a drawn from the tip of the combined leakage current Io onto the virtual straight line L1 having the same phase as the interphase voltage Vvu is | Io × sin θ |. Further, the length of the perpendicular line c dropped from the tip of the effective leakage current Iorv onto the virtual straight line L1 is the same length as the perpendicular line a. The angle formed by the effective leakage current Iorv and the virtual straight line L1 is 30 °. Therefore, the length (current value) of the effective leakage current Iorv is also | 2 × c | = | 2 × Io × sin θ |. In addition, since the effective leakage current Ioru is zero, the effective leakage current Iorv becomes the combined effective leakage current Ior of the insulation resistance for the distribution lines Lu and Lv. Therefore, the above formula (1) is established.

記憶部5は、ROMおよびRAM等の半導体メモリで構成されている。また、記憶部5には、処理部4のための動作プログラム、合成有効漏れ電流Ior算出用の上記式(1)、および合成有効漏れ電流Iorについての規格値Iref(例えば、1mA)が予め記憶されている。また、記憶部5は、処理部4によってワークメモリとして使用されて、相間電圧波形データDvおよび電流波形データDiが記憶される。出力部6は、一例として、ディスプレイ装置(例えばLCD)などの表示装置を備えて表示部として構成されている。この構成により、出力部6は、処理部4の実施した漏れ電流算出処理の結果(合成有効漏れ電流Ior)および絶縁状態の判別結果を表示する。   The storage unit 5 includes a semiconductor memory such as a ROM and a RAM. Further, the storage unit 5 stores in advance an operation program for the processing unit 4, the above formula (1) for calculating the combined effective leakage current Ior, and a standard value Iref (for example, 1 mA) for the combined effective leakage current Ior. Has been. In addition, the storage unit 5 is used as a work memory by the processing unit 4 and stores interphase voltage waveform data Dv and current waveform data Di. For example, the output unit 6 includes a display device such as a display device (for example, an LCD) and is configured as a display unit. With this configuration, the output unit 6 displays the result of the leakage current calculation process performed by the processing unit 4 (the combined effective leakage current Ior) and the determination result of the insulation state.

続いて、漏れ電流測定装置1の動作について説明する。なお、予め、一対の電圧検出プローブ21,21が配電線Lu,Lvに接続され、かつ電流検出プローブ22が配電線Lu,Lvに予め決められた向きで装着されているものとする。   Subsequently, the operation of the leakage current measuring apparatus 1 will be described. It is assumed that a pair of voltage detection probes 21 and 21 are connected to the distribution lines Lu and Lv in advance, and the current detection probe 22 is attached to the distribution lines Lu and Lv in a predetermined direction.

漏れ電流測定装置1の作動状態において、電圧検出部2は、一対の電圧検出プローブ21,21を介して相間電圧Vvuを検出して、処理部4に出力する。また、電流検出部3は、電流トランス型の電流検出プローブ22を介して、配電線Lu,Lvに流れる合成漏れ電流Ioを検出すると共に、電圧信号Viに変換して処理部4に出力する。   In the operating state of the leakage current measuring apparatus 1, the voltage detection unit 2 detects the interphase voltage Vvu via the pair of voltage detection probes 21, 21 and outputs it to the processing unit 4. The current detection unit 3 detects the combined leakage current Io flowing through the distribution lines Lu and Lv via the current transformer type current detection probe 22, converts it into a voltage signal Vi, and outputs it to the processing unit 4.

処理部4は、まず、相間電圧Vvuおよび電圧信号Viを入力しつつ、商用周波数の所定周期分以上、A/D変換処理を実行して、相間電圧Vvuを相間電圧波形データDvに変換して、記憶部5に記憶させると共に、電圧信号Viを電流波形データDiに変換して、記憶部5に記憶させる。次いで、処理部4は、電流算出処理を実行して、記憶部5に記憶されている電流波形データDiに基づいて合成漏れ電流Ioの電流値(以下では、「電流値Io」ともいう)を算出して、記憶部5に記憶させる。続いて、処理部4は、位相差算出処理を実行して、記憶部5に記憶されている相間電圧波形データDvおよび電流波形データDiに基づいて、相間電圧Vvuと合成漏れ電流Ioとの間の位相差θを算出して、記憶部5に記憶させる。   The processing unit 4 first performs an A / D conversion process for a predetermined period or more of the commercial frequency while inputting the interphase voltage Vvu and the voltage signal Vi to convert the interphase voltage Vvu into interphase voltage waveform data Dv. The voltage signal Vi is converted into current waveform data Di and stored in the storage unit 5 while being stored in the storage unit 5. Next, the processing unit 4 executes a current calculation process, and based on the current waveform data Di stored in the storage unit 5, the current value of the combined leakage current Io (hereinafter also referred to as “current value Io”). Calculate and store in the storage unit 5. Subsequently, the processing unit 4 executes a phase difference calculation process, and based on the interphase voltage waveform data Dv and the current waveform data Di stored in the storage unit 5, between the interphase voltage Vvu and the combined leakage current Io. Is calculated and stored in the storage unit 5.

最後に、処理部4は、漏れ電流算出処理を実行する。この漏れ電流算出処理では、処理部4は、まず、合成漏れ電流Ioの電流値Io、位相差θおよび上記式(1)を記憶部5から読み出すと共に、電流値Ioおよび位相差θを式(1)に代入して、配電線Lu,Lvについての合成有効漏れ電流Iorを算出(測定)する。次いで、処理部4は、記憶部5から合成有効漏れ電流Iorについての規格値Irefを読み出すと共に、算出した合成有効漏れ電流Iorをこの規格値Irefと比較して、合成有効漏れ電流Iorが規格値Iref以上のときには、算出した合成有効漏れ電流Iorと共に、規格値Iref以上の合成有効漏れ電流Iorが発生している旨(絶縁状態が不良である旨)の判別結果を出力部6に表示させる。一方、処理部4は、算出した合成有効漏れ電流Iorをこの規格値Irefと比較して、合成有効漏れ電流Iorが規格値Iref未満のときには、算出した合成有効漏れ電流Iorと共に、合成有効漏れ電流が規格値未満である旨(絶縁状態が良好である旨)の判別結果を出力部6に表示させる。   Finally, the processing unit 4 executes a leakage current calculation process. In this leakage current calculation process, the processing unit 4 first reads out the current value Io, the phase difference θ and the above equation (1) of the combined leakage current Io from the storage unit 5, and calculates the current value Io and the phase difference θ by the equation ( Substituting into 1), the combined effective leakage current Ior for the distribution lines Lu and Lv is calculated (measured). Next, the processing unit 4 reads the standard value Iref for the composite effective leakage current Ior from the storage unit 5 and compares the calculated composite effective leakage current Ior with the standard value Iref so that the composite effective leakage current Ior is the standard value. When the value is equal to or greater than Iref, the output unit 6 displays a determination result indicating that the combined effective leakage current Ior greater than the standard value Iref is generated together with the calculated combined effective leakage current Ior (that the insulation state is defective). On the other hand, the processing unit 4 compares the calculated combined effective leakage current Ior with the standard value Iref. When the combined effective leakage current Ior is less than the standard value Iref, the processing unit 4 combines the calculated combined effective leakage current Ior and the combined effective leakage current Ior. Is displayed on the output unit 6 to indicate that is less than the standard value (that the insulation state is good).

このように、この漏れ電流測定装置1によれば、相間電圧Vvuと合成漏れ電流Ioとの間の位相差θ、合成漏れ電流Ioおよび上記式(1)に基づいて、Y形に結線された交流電源12の三相端子U,Vに接続される2つの配電線Lu,Lvについての絶縁抵抗の漏れ電流(合成有効漏れ電流)Iorを精度良く測定することができる。   As described above, according to the leakage current measuring apparatus 1, the Y-shaped wire is connected based on the phase difference θ between the interphase voltage Vvu and the combined leakage current Io, the combined leakage current Io, and the above equation (1). It is possible to accurately measure the leakage current (synthetic effective leakage current) Ior of the insulation resistance of the two distribution lines Lu and Lv connected to the three-phase terminals U and V of the AC power supply 12.

また、この漏れ電流測定装置1によれば、測定した合成有効漏れ電流Iorと予め規定された規格値Irefとを処理部4が比較して、この比較結果を出力部6に表示させることで、漏れ電流測定装置1のオペレータは、配電線Lu,Lvの絶縁状態の良否を確実かつ容易に認識することができる。   Further, according to the leakage current measuring apparatus 1, the processing unit 4 compares the measured combined effective leakage current Ior with the standard value Iref defined in advance, and displays the comparison result on the output unit 6, The operator of the leakage current measuring apparatus 1 can reliably and easily recognize the quality of the insulation state of the distribution lines Lu and Lv.

なお、交流電源12の三相端子U,Vに接続される2つの配電線Lu,Lvについての絶縁抵抗の合成有効漏れ電流Iorを測定する例を挙げて説明したが、図示はしないが、交流電源12の三相端子V,Wに2つの配電線Lv,Lwを接続する構成、および交流電源12の三相端子W,Uに2つの配電線Lw,Luを接続する構成においても、漏れ電流測定装置1を用いて、上記した配電線Lu,Lvについての合成有効漏れ電流Iorを測定するのと同様にして、相間電圧Vwv(またはVuw)と合成漏れ電流Ioとの間の位相差θ、合成漏れ電流Ioおよび上記式(1)に基づいて、配電線Lv,Lwや配電線Lw,Luについての絶縁抵抗の漏れ電流(合成有効漏れ電流)Iorを精度良く測定することができる。また、測定された合成有効漏れ電流Iorと規格値Irefとの比較によって絶縁状態を判別することもできる。また、処理部4が、測定した合成有効漏れ電流Iorを規格値Irefと比較して、絶縁状態まで判別する構成について上記したが、測定した合成有効漏れ電流Iorと規格値Irefとの比較を実施することなく、合成有効漏れ電流Iorを出力部6に出力する構成を採用することもできる。この構成においても、測定された合成有効漏れ電流Iorは出力部6によって出力(本例では表示)されるため、漏れ電流測定装置1のオペレータは、2つの配電線についての合成有効漏れ電流Iorを知ることができ、自分で規格値Irefと比較することにより、2つの配電線についての絶縁状態を判別することができる。   In addition, although demonstrated by giving the example which measures the synthetic | combination effective leakage current Ior of the insulation resistance about the two distribution lines Lu and Lv connected to the three-phase terminals U and V of the AC power supply 12, although not shown, the AC Even in the configuration in which the two distribution lines Lv and Lw are connected to the three-phase terminals V and W of the power supply 12 and the configuration in which the two distribution lines Lw and Lu are connected to the three-phase terminals W and U of the AC power supply 12, The phase difference θ between the interphase voltage Vwv (or Vuw) and the combined leakage current Io is measured in the same manner as measuring the combined effective leakage current Ior for the distribution lines Lu and Lv using the measuring device 1. Based on the combined leakage current Io and the above equation (1), the leakage current (synthetic effective leakage current) Ior of the insulation resistance for the distribution lines Lv, Lw and the distribution lines Lw, Lu can be measured with high accuracy. Further, it is possible to determine the insulation state by comparing the measured combined effective leakage current Ior and the standard value Iref. In addition, the processing unit 4 compares the measured combined effective leakage current Ior with the standard value Iref to determine the insulation state. However, the processing unit 4 compares the measured combined effective leakage current Ior with the standard value Iref. It is also possible to employ a configuration in which the combined effective leakage current Ior is output to the output unit 6 without doing so. Even in this configuration, since the measured combined effective leakage current Ior is output (displayed in this example) by the output unit 6, the operator of the leakage current measuring apparatus 1 determines the combined effective leakage current Ior for the two distribution lines. It is possible to know, and by comparing with the standard value Iref yourself, it is possible to determine the insulation state of the two distribution lines.

また、上記したように、交流電源12における変圧器の低圧側三相巻線11の三相端子U,Vに配電線Lu,Lvが接続され、かつこの配電線Lu,Lvに電流検出プローブ22が予め決められた向きで装着されているときには、合成漏れ電流Ioは、図2に示す相間電圧Vvuを基準とした330°から360°までの30°の範囲内、および図3に示す相間電圧Vvuを基準とした210°から360°までの150°の範囲内のいずれか、すなわち相間電圧Vvuを基準とした210°から360°までの150°の角度範囲内に常に存在することになる。したがって、この角度範囲を規定角度範囲θrefとして予め記憶部5に記憶させておき、処理部4が、位相差算出処理で算出した相間電圧Vvuと合成漏れ電流Ioとの間の位相差θと規定角度範囲θrefとを比較して、位相差θがこの規定角度範囲θref外のときに、配電線Lu,Lvが低圧側三相巻線11の三相端子U,V以外の端子に誤接続されているか、または電流検出プローブ22の配電線Lu,Lvへの装着方向が誤っている可能性がある旨の表示(エラー表示)を出力部6に表示させる構成を採用することもできる。また、低圧側三相巻線11の三相端子V,Wに接続される2つの配電線Lv,Lwや、三相端子W,Uに接続される2つの配電線Lw,Luについても、配電線Lv,Lwについては相間電圧Vwvを基準とし、配電線Lw,Lvについては相間電圧Vuwを基準とすることにより、いずれの場合も規定角度範囲θrefを上記した配電線Lu,Lvの場合と同様の210°から360°までの150°の角度範囲とすることができる。このため、2つの配電線Lv,Lwや、2つの配電線Lw,Luについても、配電線Lu,Lvの場合と同様にして、これら2つの配電線の低圧側三相巻線11の三相端子U,V,Wへの誤接続の可能性や、電流検出プローブ22のこの2つの配電線への誤装着などの可能性を判別することができる。   Further, as described above, the distribution lines Lu and Lv are connected to the three-phase terminals U and V of the low-voltage side three-phase winding 11 of the transformer in the AC power supply 12, and the current detection probe 22 is connected to the distribution lines Lu and Lv. Is mounted in a predetermined orientation, the combined leakage current Io is within a range of 30 ° from 330 ° to 360 ° with reference to the interphase voltage Vvu shown in FIG. 2, and the interphase voltage shown in FIG. It always exists within the range of 150 ° from 210 ° to 360 ° with respect to Vvu, that is, within the range of 150 ° from 210 ° to 360 ° with reference to the interphase voltage Vvu. Therefore, this angle range is stored in the storage unit 5 in advance as the specified angle range θref, and the processing unit 4 specifies the phase difference θ between the interphase voltage Vvu calculated by the phase difference calculation process and the combined leakage current Io. Compared with the angle range θref, when the phase difference θ is outside the specified angle range θref, the distribution lines Lu and Lv are erroneously connected to terminals other than the three-phase terminals U and V of the low-voltage side three-phase winding 11. It is also possible to adopt a configuration in which the output unit 6 displays a display (error display) indicating that there is a possibility that the current detection probe 22 is attached to the distribution lines Lu and Lv. In addition, the two distribution lines Lv and Lw connected to the three-phase terminals V and W of the low-voltage side three-phase winding 11 and the two distribution lines Lw and Lu connected to the three-phase terminals W and U are also distributed. The electric wires Lv and Lw are based on the interphase voltage Vwv, and the distribution wires Lw and Lv are based on the interphase voltage Vuw, so that in both cases, the specified angle range θref is the same as in the case of the distribution wires Lu and Lv described above. An angle range of 150 ° from 210 ° to 360 ° can be set. For this reason, the two distribution lines Lv, Lw and the two distribution lines Lw, Lu are also three-phase of the low-voltage side three-phase winding 11 of these two distribution lines in the same manner as the distribution lines Lu, Lv. The possibility of erroneous connection to the terminals U, V, and W and the possibility of erroneous attachment of the current detection probe 22 to these two distribution lines can be determined.

また、各三相端子U,V,Wに接地用コンデンサ13が接続される構成の交流電源12を例に挙げて説明したが、中性点Nが接地される構成の交流電源についても、漏れ電流測定装置1を用いて、2つの配電線についての合成有効漏れ電流Iorを測定したり、測定した合成有効漏れ電流Iorに基づいてこの2つの配電線の絶縁状態を判別したり、これらの2つの配電線の低圧側三相巻線11の三相端子U,V,Wへの誤接続の可能性や、電流検出プローブ22のこの2つの配電線への誤装着などの可能性を判別したりすることができるのは勿論である。   Further, although the AC power supply 12 having the configuration in which the grounding capacitor 13 is connected to each of the three-phase terminals U, V, and W has been described as an example, the AC power supply having the configuration in which the neutral point N is grounded is also leaked. The current measuring device 1 is used to measure the combined effective leakage current Ior for the two distribution lines, to determine the insulation state of the two distribution lines based on the measured combined effective leakage current Ior, Determine the possibility of incorrect connection of three distribution lines to the three-phase terminals U, V, W of the low-voltage side three-phase winding 11 and the possibility of incorrect mounting of the current detection probe 22 to these two distribution lines. Of course, it can be done.

1 漏れ電流測定装置
2 電圧検出部
3 電流検出部
4 処理部
Ior 漏れ電流
Iref 規格値
Lu,Lv 配電線
Vvu 相間電圧
DESCRIPTION OF SYMBOLS 1 Leakage current measuring apparatus 2 Voltage detection part 3 Current detection part 4 Processing part Ior Leakage current Iref Standard value Lu, Lv Distribution line Vvu Interphase voltage

Claims (3)

Y結線で構成された三相3線式配電線におけるいずれか2つの配電線についての絶縁抵抗の漏れ電流Iorを測定する漏れ電流測定装置であって、
前記2つの配電線間の相間電圧を検出する電圧検出部と、
前記2つの配電線に流れる電流の合成電流を検出する電流検出部と、
前記相間電圧および前記合成電流の間の位相差θ、並びに当該合成電流の電流値Ioを算出すると共に、下記式(1)に基づいて前記漏れ電流Iorを測定する処理部とを備えている漏れ電流測定装置。
Ior=|2×Io×sinθ| ・・・・ (1)
A leakage current measuring device for measuring a leakage current Ior of an insulation resistance for any two distribution lines in a three-phase three-wire distribution line constituted by Y connection,
A voltage detector for detecting an interphase voltage between the two distribution lines;
A current detection unit for detecting a combined current of currents flowing through the two distribution lines;
A leakage unit that calculates a phase difference θ between the interphase voltage and the combined current and a current value Io of the combined current and measures the leakage current Ior based on the following equation (1). Current measuring device.
Ior = | 2 × Io × sin θ | (1)
前記処理部は、前記測定した漏れ電流Iorと予め規定された規格値とを比較して、前記2つの配電線についての絶縁状態を判別する請求項1記載の漏れ電流測定装置。   The leakage current measuring device according to claim 1, wherein the processing unit compares the measured leakage current Ior with a standard value defined in advance to determine an insulation state of the two distribution lines. 前記処理部は、前記位相差θが予め規定された規定角度範囲と比較して、当該基準角度範囲外となったときに表示部にエラー表示させる請求項1または2記載の漏れ電流測定装置。   The leakage current measuring device according to claim 1, wherein the processing unit displays an error on the display unit when the phase difference θ is out of the reference angle range as compared with a predetermined angle range defined in advance.
JP2009170764A 2009-07-22 2009-07-22 Leakage current measuring device Expired - Fee Related JP5449895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009170764A JP5449895B2 (en) 2009-07-22 2009-07-22 Leakage current measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009170764A JP5449895B2 (en) 2009-07-22 2009-07-22 Leakage current measuring device

Publications (2)

Publication Number Publication Date
JP2011027449A true JP2011027449A (en) 2011-02-10
JP5449895B2 JP5449895B2 (en) 2014-03-19

Family

ID=43636381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009170764A Expired - Fee Related JP5449895B2 (en) 2009-07-22 2009-07-22 Leakage current measuring device

Country Status (1)

Country Link
JP (1) JP5449895B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108155A1 (en) 2011-02-10 2012-08-16 パナソニック株式会社 Base station device and transmitting method
JP2012191841A (en) * 2011-03-10 2012-10-04 Tesla Motors Inc Apparatus for improving charging efficiency using selectable isolation
JP2017020913A (en) * 2015-07-10 2017-01-26 株式会社日立産機システム Insulation monitoring device and inverter device
CN107152928A (en) * 2016-03-04 2017-09-12 精工爱普生株式会社 Angular velocity detection circuit, angular speed detecting apparatus, electronic equipment and moving body
JP2018004596A (en) * 2016-07-08 2018-01-11 東北電力株式会社 Ground fault detector
WO2022131087A1 (en) 2020-12-14 2022-06-23 株式会社SoBrain Inspection device, inspection method, and inspection program
JP7353002B1 (en) 2023-05-08 2023-09-29 株式会社SoBrain Measuring device, measuring method and measuring program
CN117008070A (en) * 2023-10-07 2023-11-07 成都世源频控技术股份有限公司 Radar simulator with electric leakage detection function

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04151570A (en) * 1990-03-30 1992-05-25 Hokuriku Denki Hoan Kyokai Method for measuring effective component of leaking current and inspecting-current generating device used in this measurement
JPH0729477U (en) * 1993-10-28 1995-06-02 株式会社ムサシ電機計器製作所 Insulation leakage current measuring device
JP2001215247A (en) * 2000-01-31 2001-08-10 Soronju Japan:Kk Leakage current measuring instrument
JP2009069065A (en) * 2007-09-14 2009-04-02 Hioki Ee Corp Device for measuring effective leakage current

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04151570A (en) * 1990-03-30 1992-05-25 Hokuriku Denki Hoan Kyokai Method for measuring effective component of leaking current and inspecting-current generating device used in this measurement
JPH0729477U (en) * 1993-10-28 1995-06-02 株式会社ムサシ電機計器製作所 Insulation leakage current measuring device
JP2001215247A (en) * 2000-01-31 2001-08-10 Soronju Japan:Kk Leakage current measuring instrument
JP2009069065A (en) * 2007-09-14 2009-04-02 Hioki Ee Corp Device for measuring effective leakage current

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108155A1 (en) 2011-02-10 2012-08-16 パナソニック株式会社 Base station device and transmitting method
JP2012191841A (en) * 2011-03-10 2012-10-04 Tesla Motors Inc Apparatus for improving charging efficiency using selectable isolation
JP2017020913A (en) * 2015-07-10 2017-01-26 株式会社日立産機システム Insulation monitoring device and inverter device
CN107152928A (en) * 2016-03-04 2017-09-12 精工爱普生株式会社 Angular velocity detection circuit, angular speed detecting apparatus, electronic equipment and moving body
JP2018004596A (en) * 2016-07-08 2018-01-11 東北電力株式会社 Ground fault detector
WO2022131087A1 (en) 2020-12-14 2022-06-23 株式会社SoBrain Inspection device, inspection method, and inspection program
JP7353002B1 (en) 2023-05-08 2023-09-29 株式会社SoBrain Measuring device, measuring method and measuring program
CN117008070A (en) * 2023-10-07 2023-11-07 成都世源频控技术股份有限公司 Radar simulator with electric leakage detection function
CN117008070B (en) * 2023-10-07 2023-12-19 成都世源频控技术股份有限公司 Radar simulator with electric leakage detection function

Also Published As

Publication number Publication date
JP5449895B2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
JP5449895B2 (en) Leakage current measuring device
KR101748554B1 (en) Leakage current calculation device and leakage current calculation method
KR100876651B1 (en) Method of leakage current break and measurement leakage current use phase calculation
JP5544517B2 (en) Leakage current measuring device and measuring method in electrical equipment
CN107710008B (en) Method and apparatus for commissioning voltage sensors and branch current sensors for branch monitoring systems
JP2011128041A (en) Property monitoring apparatus for current transformer or electric transformer
JP6373019B2 (en) Simulated power supply device and normal weighing confirmation device
CN107636481B (en) Method and apparatus for commissioning voltage sensors and branch current sensors for branch monitoring systems
KR20180015566A (en) Leakage current measuring method and leakage current measuring apparatus
JP2007071774A (en) Insulation measuring method and apparatus therefor
JP5477020B2 (en) Leakage current measuring device and measuring method in electrical equipment
JP4993728B2 (en) Effective leakage current measuring instrument
JP2017194465A (en) Monitoring device
KR101909379B1 (en) Leakage current measuring method and leakage current measuring apparatus
JP2009058235A (en) Leak current measuring instrument for electric path and electric apparatus, and its method
JP2018155535A (en) Insulation monitoring device, method, and program
JP7199651B2 (en) Detection device, method and program
JP5679480B2 (en) Indirect AC megger measuring instrument and insulation resistance measuring method
JPS62209371A (en) Method and apparatus for live wire type measurement of insulation resistance
JP6907167B2 (en) High-voltage insulation monitoring device and high-voltage insulation monitoring method
JP2008145155A (en) Apparatus for detecting resistance component current of zero-phase current and leakage monitoring apparats
JP5101334B2 (en) Leakage current measuring device
JP2014010077A (en) Testing device for insulation monitoring device, insulation monitoring device and testing method for insulation monitoring device
JP6656009B2 (en) Power measuring device and power measuring method
JP5713132B2 (en) Electronic indicator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131225

R150 Certificate of patent or registration of utility model

Ref document number: 5449895

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees