JPH0945537A - Monitoring device for insulating state of high-voltage apparatus - Google Patents

Monitoring device for insulating state of high-voltage apparatus

Info

Publication number
JPH0945537A
JPH0945537A JP7215319A JP21531995A JPH0945537A JP H0945537 A JPH0945537 A JP H0945537A JP 7215319 A JP7215319 A JP 7215319A JP 21531995 A JP21531995 A JP 21531995A JP H0945537 A JPH0945537 A JP H0945537A
Authority
JP
Japan
Prior art keywords
voltage
leakage current
discharge
frequency
current transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7215319A
Other languages
Japanese (ja)
Other versions
JP3082132B2 (en
Inventor
Masao Murata
正雄 村田
Koichi Hirakawa
功一 平川
Yoshiji Kagohara
義二 篭原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP07215319A priority Critical patent/JP3082132B2/en
Publication of JPH0945537A publication Critical patent/JPH0945537A/en
Application granted granted Critical
Publication of JP3082132B2 publication Critical patent/JP3082132B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To realize a monitoring device which is applied to a high-voltage apparatus and to various degradation patterns and by which an insulating state can be monitored and judged accurately. SOLUTION: A CTL (a low-frequency current transformer) 4 and a CTH (a high-frequency current transformer) 5 are installed at a first-kind grounding line 3 at a high- voltage apparatus 2. An insulating-state monitoring device 1, to which the detection current of the CTL 4 is input, detects data on the current value in one cycle of a high-voltage-apparatus application voltage of a leakage current by a leakage-current detection means 20, it stores the data into a memory L 10, it detects data on the peak value and on the generation timing of every peak of a pulse current due to a partial discharge by using a partial-discharge detection means 21, and it stores the data into a memory H 16. Then, a control means by a microcomputer 11 computes a leakage current value on the basis of data on the leakage current, it computes a maximum, discharge amount, a total-discharge electric charge amount, the number of discharge pulses and a discharge phase due to the partial discharge on the basis of data on the partial discharge, and it judges an insulation abnormality when a prescribed value for judgment is exceeded in them.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高電圧機器の絶縁
状態を把握する絶縁状態監視装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulation state monitoring device for grasping the insulation state of high voltage equipment.

【0002】[0002]

【従来の技術】近年、キュービクルなどの受変電機器に
は負荷開閉器、変圧器、高圧コンデンサ、計器用変成
器、および計器用変流器などの高電圧機器が使用されて
おり、機器が故障して急に停電した場合には、種々の問
題が発生するとともに経済的な損失が大きく、また、火
災などの二次災害も発生する。従来、二次災害を防ぐた
めに地絡継電器を設けるなどの対策を採用し、また、高
電圧機器の絶縁状態の点検をこまめに実施している。最
近では急な停電を防止する目的で、負荷管理や機器の温
度管理とともに、機器の絶縁監視が重要視されるように
なってきた。
2. Description of the Related Art In recent years, high voltage equipment such as load switches, transformers, high voltage capacitors, instrument transformers, and instrument current transformers have been used in cubicle and other power receiving and transforming equipment, causing equipment failure. In the event of a sudden power failure, various problems will occur, economic loss will be great, and a secondary disaster such as a fire will occur. Conventionally, measures such as installing a ground fault relay have been adopted to prevent secondary disasters, and the insulation state of high-voltage equipment is frequently inspected. Recently, in order to prevent a sudden power failure, load insulation and equipment temperature management as well as equipment insulation monitoring have become important.

【0003】以下、従来の高電圧機器の絶縁状態監視装
置について図面を参照しながら説明する。図9は従来の
高電圧機器の絶縁状態監視装置の一例の構成を示すブロ
ック図である。図9に示したように、変圧器95の低圧
側の一線を第2種接地し、その接地線96に低周波CT
(以下、CTLと称す)97を設け、その出力信号から
漏れ電流検出器98により漏れ電流を検出して低圧側の
絶縁状態を監視している。また、第2種接地線に10HZ
程度の周波数の別電源を使用し、低圧側の抵抗分の漏れ
電流を測定する手段も採用されている。
A conventional insulation state monitoring device for high voltage equipment will be described below with reference to the drawings. FIG. 9 is a block diagram showing the configuration of an example of a conventional insulation state monitoring device for high-voltage equipment. As shown in FIG. 9, one line of the low voltage side of the transformer 95 is grounded to the second type, and a low frequency CT is connected to the ground line 96.
(Hereinafter referred to as CTL) 97 is provided, and the leakage current detector 98 detects the leakage current from the output signal thereof to monitor the insulation state on the low voltage side. Also, 10HZ for the second type ground wire
A means for measuring the leakage current of the resistance component on the low voltage side is also adopted by using another power supply of a certain frequency.

【0004】一方、高電圧部の絶縁異常の活線中の常時
測定にはアンテナ法による部分放電の検出が検討され、
また、第1種接地線にCTを設けて部分放電を検出する
手段も試みられている。
On the other hand, the detection of partial discharge by the antenna method has been considered for the continuous measurement of the insulation abnormality of the high voltage part during the live line.
Also, a means for detecting partial discharge by providing a CT on the first-type ground line has been attempted.

【0005】[0005]

【発明が解決しようとする課題】このような従来のCT
Lを変圧器の低圧側の第2種接地線に設けて漏れ電流を
検出する絶縁状態監視装置は、簡単で安価な手段ではあ
るが、低圧側の絶縁状態の検出に限られた手段であると
ともに、ロボットなどのインバータ回路や接地線に電流
を逃がす回路を含む負荷があったり、大地間に静電容量
の大きい負荷がある場合は、漏れ電流がとくに大きくな
り、その値だけで絶縁異常の正確な判定が難しい。この
場合には、漏れ電流の異常判定値を大きくする必要があ
り、大きい漏れ電流を検出してからでは機器が故障停止
に至るまでの時間が短いので故障対策がとりにくい。ま
た、第2種接地線に別電源を設ける手段は、複雑で高価
であるとともに、上記の手段と同様に変圧器の低圧側の
絶縁異常だけを検出する手段であり、高電圧側の絶縁異
常の検出および他の高電圧機器に適用できない。
[Problems to be Solved by the Invention] Such a conventional CT
The insulation state monitoring device for detecting the leakage current by providing L to the second type ground wire on the low voltage side of the transformer is a simple and inexpensive means, but is a means limited to the detection of the insulation state on the low voltage side. At the same time, if there is a load including an inverter circuit such as a robot or a circuit that releases current to the ground line, or if there is a load with a large capacitance between the ground, the leakage current becomes particularly large, and that value alone may cause insulation failure. Accurate judgment is difficult. In this case, it is necessary to increase the abnormality determination value of the leakage current, and it is difficult to take a countermeasure against the failure because the time from the detection of the large leakage current to the failure stop of the device is short. Further, the means for providing a separate power source for the second type grounding wire is complicated and expensive, and is a means for detecting only the insulation abnormality on the low voltage side of the transformer as in the above-mentioned means, and the insulation abnormality on the high voltage side. Not applicable to detection and other high voltage equipment.

【0006】一方、高圧側については、アンテナ法によ
り部分放電を検出する手段は、電磁波ノイズの影響で検
出が難しく、さらに高価で複雑な装置が必要となる。ま
た、第1種接地線にCTを設けて部分放電を検出する手
段は、ノイズ対策のために低周波狭帯域(数100KHZ
)の信号をアナログ的に取り出し、パルス信号の最大
値を校正パルスと比較することによって部分放電の最大
電荷量を決めていた。この手段では1MHZ 以上の高周波
成分を含む部分放電パルスを検出できないことや、レベ
ルは小さいが数が多い放電パルスが無視され、単に分放
電発生があったか否かの有無判定程度に終わり、絶縁異
常の程度が的確に判定されていなかった。また、CTや
信号処理回路の周波数特性にメガヘルツ以上の信号処理
を考慮していないなどのためにノイズの影響を大きく受
け、信号とノイズの比すなわちSNの大きな信号を得ら
れず、実用化が難しかった。また、部分放電信号は故障
の初期の段階で検出されることが多いので、部分放電信
号が検出されてから5年以上故障しない場合もあり、ま
た、水を被ったような機器のように沿面の抵抗値低下が
全面的に発生した場合は部分放電よりも漏れ電流の方が
的確に絶縁異常を検出できる場合もあって、1つの手段
だけでは的確な判断が困難な場合もある。
On the other hand, on the high voltage side, the means for detecting partial discharge by the antenna method is difficult to detect due to the influence of electromagnetic wave noise, and requires an expensive and complicated device. Further, a means for detecting partial discharge by providing a CT on the first-class grounding line is a low frequency narrow band (several 100 KHZ) as a noise countermeasure.
) Was taken out in an analog manner, and the maximum value of the pulse signal was compared with the calibration pulse to determine the maximum charge amount of partial discharge. This method cannot detect partial discharge pulses containing high-frequency components of 1 MHz or higher, and ignores discharge pulses with a small number but a large number, and simply ends up with the presence / absence determination of whether or not a partial discharge has occurred, and thus an insulation abnormality is detected. The degree was not accurately determined. Further, since the frequency characteristics of CT and the signal processing circuit do not consider signal processing of megahertz or higher, it is greatly affected by noise, and a signal having a large signal-to-noise ratio, that is, SN, cannot be obtained. was difficult. In addition, since the partial discharge signal is often detected in the early stage of the failure, it may not fail for more than 5 years after the partial discharge signal is detected. When the decrease in the resistance value occurs entirely, the leakage current may detect the insulation abnormality more accurately than the partial discharge, and it may be difficult to make an accurate determination with only one means.

【0007】本発明は上記の課題を解決するもので、変
圧器だけでなく、キュービクルなどの受変電機器におけ
る負荷開閉機、変圧器、高圧コンデンサ、計器用変成
器、および計器用変流器などの種々の高電圧機器に適用
して絶縁異常を的確に検出できるとともに、部分放電の
信号量として最大放電電荷量、総放電電荷量、放電パル
ス数、機器印加電圧に対する放電位相範囲などの種々の
部分放電劣化パターンにも対応でき、さらに、1つの処
理装置で多くの機器の絶縁監視をでき、既設の設備に活
線状態で後付けでき、検出結果を表示や中監盤など他の
装置に通信できて使い勝手がよく、一般の電気部品を使
用して安価で簡単な構成の高電圧機器の絶縁状態監視装
置を提供することを目的とする。
The present invention is to solve the above problems, and not only a transformer, but also a load switch, a transformer, a high voltage capacitor, an instrument transformer, and an instrument current transformer in a power receiving and transforming device such as a cubicle. It can be applied to various high-voltage equipment to accurately detect insulation abnormalities, and it can also be used as a signal quantity for partial discharge, such as maximum discharge charge quantity, total discharge charge quantity, discharge pulse number, and discharge phase range for equipment applied voltage. It can also support partial discharge deterioration patterns, can monitor the insulation of many devices with one processing device, can be retrofitted to existing equipment in a live state, and display the detection results and communicate to other devices such as the central control board. It is an object of the present invention to provide an insulation condition monitoring device for a high voltage device which is easy to use and convenient, and which uses general electric components and is inexpensive and has a simple structure.

【0008】[0008]

【課題を解決するための手段】請求項1に係わる本発明
は、高電圧機器の第1種接地線に低周波変流器と高周波
変流器とを挿入して設け、前記低周波変流器の出力から
低周波成分からなる漏れ電流の電流値に係わるデータを
前記高電圧機器の印加電圧の1周期間について抽出する
漏れ電流検出手段と、前記高周波変流器の出力から高周
波成分からなるパルス電流のピーク値および発生タイミ
ングに係わるデータを前記1周期間について抽出する部
分放電検出手段と、前記漏れ電流データから漏れ電流値
を演算するとともに、前記パルス性電流データから部分
放電の信号量として、前記ピーク値に対応する電荷量か
ら最大放電電荷量と総放電電荷量、前記パルスの数から
放電パルス数、前記相対位相の範囲から部分放電が発生
した放電位相範囲をそれぞれ演算し、前記漏れ電流値お
よび前記部分放電信号量においてそれぞれに対応する所
定値を越えるものがあるとき絶縁異常と判定する判定手
段とを備え、漏れ電流値と部分放電信号量とにより絶縁
状態を監視するようにした高電圧機器の絶縁状態監視装
置であり、また、請求項2に係わる本発明は、高電圧機
器の第1種接地線に低周波から高周波まで検出する広帯
域の変流器を設け、前記変流器の出力から高周波成分ま
で含む漏れ電流の漏れ電流値に係わるデータを前記高圧
機器の印加電圧の1周期間について抽出する漏れ電流検
出手段と、前記漏れ電流データから漏れ電流値を演算
し、その値が所定値を越えたときに絶縁異常と判定する
判定手段とを備え、高周波成分まで含む波形から求めた
漏れ電流値により絶縁状態を監視するようにした高電圧
機器の絶縁状態監視装置であり、また、請求項3に係わ
る本発明は、高電圧機器の第1種接地線に低周波から高
周波まで検出する広帯域の変流器を設け、前記変流器の
出力を2分波する分波手段と、分波された第1波から低
周波成分からなる漏れ電流の電流値に係わるデータを前
記高電圧機器の印加電圧の1周期間について抽出する漏
れ電流抽出手段と、分波された第2波から高周波成分か
らなるパルス電流のデータを前記1周期間について抽出
する部分放電検出手段と、前記漏れ電流データから漏れ
電流値を演算するとともに、前記パルス電流データから
部分放電の信号量として、前記ピーク値に対応する電荷
量から最大放電電荷量と総放電電荷量、前記パルス数か
ら放電パルス数、前記相対位相の範囲から放電位相範囲
をそれぞれ演算し、前記漏れ電流値および前記部分放電
量においてそれぞれに対応する所定値を越えるものがあ
るとき絶縁異常と判定する判定手段とを備え、漏れ電流
値と部分放電信号量とにより絶縁状態を監視するように
した高電圧機器の絶縁状態監視装置であり、また、請求
項4に係わる本発明は、複数の高電圧機器のそれぞれの
第1種接地線にそれぞれ低周波変流器と高周波変流器と
を設け、前記高電圧機器のうちの監視対象に設けられた
前記低周波変流器の出力と前記高周波変流器の出力とを
使用者の設定により選択してそれぞれ漏れ電流検出手段
と部分放電検出手段に出力する入力選択手段を備え、前
記入力手段により選択された高電圧機器の絶縁状態を監
視するようにした請求項1に係わる高電圧機器の絶縁状
態監視装置であり、また、請求項5に係わる本発明は、
複数の高電圧機器のそれぞれの第1種接地線にそれぞれ
低周波から高周波まで検出する広帯域の変流器を設け、
前記高電圧機器のうちの監視対象に設けられた変流器の
出力を使用者の設定により選択して漏れ電流検出手段に
出力する入力選択手段を備え、前記入力手段により選択
された高電圧機器の絶縁状態を監視するようにした請求
項2に係わる高電圧機器の絶縁状態監視装置であり、ま
た、請求項6に係わる本発明は、複数の高電圧機器のそ
れぞれの第1種接地線にそれぞれ低周波から高周波まで
検出する広帯域の変流器を設け、前記高電圧機器のうち
の監視対象の変流器の出力を使用者の設定により選択し
て分波手段に出力する入力選択手段を備え、前記入力手
段により選択された高電圧機器の絶縁状態を監視するよ
うにした請求項3に係わる高電圧機器の絶縁状態監視装
置であり、また、請求項7に係わる本発明は、高電圧機
器から検出した漏れ電流値と、部分放電信号量の最大放
電電荷量、総放電電荷量、放電パルス数、および機器印
加高電圧に対する放電位相範囲の1つ以上と、それらか
ら判定した絶縁状態と、前記高圧機器に設けられた変流
器を示すセンサ番号とを表示する表示器を備えた請求項
1、請求項3、請求項4、および請求項6のいずれかに
係わる高電圧機器の絶縁状態監視装置であり、また、請
求項8に係わる本発明は、高電圧機器から検出した漏れ
電流値と、それから判定した絶縁状態と、前記高電圧機
器に設けられた変流器を示すセンサ番号とを表示する表
示器を備えた請求項2または請求項5のいずれかに係わ
る高電圧機器の絶縁状態監視装置であり、また、請求項
9に係わる本発明は、高電圧機器から検出した漏れ電流
値と、分放電信号量の最大放電電荷量、放電パルス数、
総放電電荷量、および印加高電圧に対する放電位相範囲
の1つ以上と、それらから判定した絶縁状態と、センサ
番号とを外部に通信する通信手段を備えた請求項7に係
わる高電圧機器の絶縁状態監視装置であり、また、請求
項10に係わる本発明は、高電圧機器から検出した漏れ
電流値と、それから判定した絶縁状態と、センサ番号と
を通信する通信手段を備えた請求項8記載の高電圧機器
の絶縁状態監視装置である。
According to a first aspect of the present invention, a low-frequency current transformer and a high-frequency current transformer are provided by being inserted in a first-type grounding wire of a high-voltage equipment, and the low-frequency current transformer is provided. Leakage current detection means for extracting data relating to the current value of the leakage current consisting of low frequency components from the output of the transformer for one cycle of the applied voltage of the high voltage device, and high frequency components from the output of the high frequency current transformer Partial discharge detection means for extracting data relating to the peak value and generation timing of the pulse current for the one period, a leakage current value is calculated from the leakage current data, and a signal amount of the partial discharge is calculated from the pulsed current data. , The maximum discharge charge amount and the total discharge charge amount from the charge amount corresponding to the peak value, the number of discharge pulses from the number of pulses, the discharge phase range in which partial discharge occurs from the range of the relative phase The insulation state is determined by the leakage current value and the partial discharge signal amount, each of which is calculated and determines an insulation abnormality when there is a leakage current value or a partial discharge signal amount exceeding a corresponding predetermined value. The present invention according to claim 2 is a wideband current transformer for detecting from a low frequency to a high frequency in a first-class ground wire of a high-voltage device. And a leakage current detecting means for extracting data relating to the leakage current value of the leakage current including the high frequency component from the output of the current transformer, for one cycle of the applied voltage of the high-voltage equipment, and the leakage current from the leakage current data. The insulation state is monitored by a leakage current value calculated from a waveform including a high-frequency component, which is provided with a determination means for calculating a value and determining an insulation abnormality when the value exceeds a predetermined value. According to another aspect of the present invention, there is provided an insulation condition monitoring device for a high-voltage device, wherein the first-class grounding wire of the high-voltage device is provided with a wide-band current transformer for detecting from a low frequency to a high frequency. Demultiplexing means for demultiplexing the output of the current transformer and data relating to the current value of the leakage current consisting of low frequency components from the demultiplexed first wave are extracted for one cycle of the applied voltage of the high voltage device. Leakage current extraction means, partial discharge detection means for extracting pulse current data consisting of high frequency components from the demultiplexed second wave during the one cycle, and a leakage current value is calculated from the leakage current data. As the signal amount of partial discharge from the pulse current data, the maximum discharge charge amount and the total discharge charge amount from the charge amount corresponding to the peak value, the number of discharge pulses from the pulse number, the discharge phase range from the range of the relative phase The insulation state is determined based on the leakage current value and the partial discharge signal amount by calculating each and determining if there is an insulation abnormality when there is a leakage current value or a partial discharge amount that exceeds a corresponding predetermined value. The present invention according to claim 4 is an insulation state monitoring device for high-voltage equipment, wherein the first-type ground wire of each of the plurality of high-voltage equipment has a low-frequency transformer and a high-frequency transformer. A leakage current detecting means for selecting the output of the low-frequency current transformer and the output of the high-frequency current transformer, which are provided as a monitoring target of the high-voltage equipment, by a user setting. 2. An insulation condition monitoring device for high voltage equipment according to claim 1, further comprising input selection means for outputting to the partial discharge detection means, and monitoring the insulation status of the high voltage equipment selected by the input means. And, the invention is related to claim 5,
A wide band current transformer that detects from low frequency to high frequency is provided on each type 1 grounding wire of a plurality of high-voltage devices,
The high-voltage equipment selected by the input means includes an input selection means for selecting an output of a current transformer provided as a monitoring target of the high-voltage equipment according to a user setting and outputting the output to a leakage current detection means. The insulation state monitoring device for high voltage equipment according to claim 2 adapted to monitor the insulation state of the high voltage equipment, and the present invention according to claim 6 provides the first type ground wire for each of the plurality of high voltage equipment. A wide band current transformer that detects from low frequency to high frequency is provided, and an input selection unit that selects the output of the current transformer to be monitored among the high voltage devices according to the setting of the user and outputs it to the demultiplexing unit. An insulation state monitoring device for high voltage equipment according to claim 3, wherein the insulation state of the high voltage equipment selected by the input means is monitored, and the invention according to claim 7 is a high voltage equipment. Leakage detected from the device One or more of the current value, the maximum discharge charge amount of the partial discharge signal amount, the total discharge charge amount, the number of discharge pulses, and the discharge phase range with respect to the high voltage applied to the device, the insulation state determined from them, and the high-voltage device. An insulation condition monitoring device for high-voltage equipment according to any one of claims 1, 3, 4, and 6, further comprising a display for displaying a sensor number indicating a provided current transformer. The present invention according to claim 8 provides a display for displaying a leakage current value detected from a high-voltage device, an insulation state determined from the leakage current value, and a sensor number indicating a current transformer provided in the high-voltage device. And a leakage current value detected from the high-voltage device. The insulation-state monitoring device for a high-voltage device according to claim 2 or 5, further comprising: Maximum discharge charge of discharge signal amount , Discharge pulse number,
8. The insulation of the high-voltage equipment according to claim 7, further comprising communication means for communicating the total amount of discharged electric charges and one or more of the discharge phase ranges for the applied high voltage, the insulation state determined from them, and the sensor number to the outside. 9. A condition monitoring device, and the present invention according to claim 10 further comprises a communication means for communicating a leakage current value detected from a high voltage device, an insulation state determined from the leakage current value, and a sensor number. Is an insulation condition monitoring device for high voltage equipment.

【0009】[0009]

【発明の実施の形態】請求項1に係わる本発明の高電圧
機器の絶縁状態監視装置において、低周波は可聴周波数
の範囲、高周波はそれ以上を意味する。なお、高電圧周
波を対象として漏れ電流、部分放電電流を検出するとき
には、低周波として1KHz 以下、高周波として100KH
z 以上で100MHz またはそれ以上の範囲におよぶ周波
数としても十分である。また、高周波変流器には、たと
えばパーマロイなどの磁芯を用いるとともに、巻線には
分布容量の小さい卷回構造を用いる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the insulation state monitoring apparatus for high voltage equipment according to the first aspect of the present invention, low frequency means an audible frequency range and high frequency means a higher range. When detecting leakage current and partial discharge current for high voltage frequency, low frequency is less than 1KHz and high frequency is 100KH.
It is sufficient for frequencies above z to reach frequencies of 100 MHz or higher. The high-frequency current transformer uses a magnetic core such as permalloy, and the winding has a winding structure with a small distributed capacitance.

【0010】漏れ電流検出手段は、高電圧機器の第1種
接地線に挿入した低周波変流器の出力から低周波成分よ
りなる漏れ電流の電流値を印加高電圧1周期について求
めるのに必要なデータを抽出する手段を意味する。この
低周波成分よりなる漏れ電流は、低周波変流器からロー
パスフィルタにより抽出する。この波形は不規則な変動
を含み、その実効値は前記1周期間内で一定でなく変化
する。したがって、電流値を求めるのに必要なデータ
は、電流波形を実効値検出回路を通して実効値の波形に
変換し、その波形のデジタルデータを前記1周期につい
て所定の時間間隔で抽出している。また、電流そのもの
を扱う代わりに電流電圧変換回路により電流を電圧に変
換して扱う。したがって、実施例の漏れ電流検出手段
は、低周波変流器の出力をI−V変換回路により電圧に
変換し、ローパスフィルタを通して低周波成分よりなる
電圧波形としたのち実効値検出回路を通し、その出力の
前記1周期間内における所定時間間隔のサンプリング値
をA/D変換器でデジタルデータに変換してメモリに記
憶させることで漏れ電流のデータを抽出している。
The leak current detecting means is necessary for obtaining the current value of the leak current consisting of the low frequency component from the output of the low frequency current transformer inserted in the type 1 grounding wire of the high voltage equipment for one cycle of the applied high voltage. Means a means for extracting various data. The leakage current composed of this low frequency component is extracted from the low frequency current transformer by a low pass filter. This waveform contains irregular fluctuations, and its effective value changes rather than being constant during the one period. Therefore, the data required to obtain the current value is obtained by converting the current waveform into a waveform having an effective value through an effective value detection circuit and extracting the digital data of the waveform at a predetermined time interval for one cycle. Also, instead of handling the current itself, the current-voltage conversion circuit converts the current into a voltage and handles it. Therefore, the leakage current detection means of the embodiment converts the output of the low frequency current transformer into a voltage by the IV conversion circuit, forms the voltage waveform of the low frequency component through the low pass filter, and then passes the effective value detection circuit, Leakage current data is extracted by converting a sampling value of the output at a predetermined time interval within the one cycle into digital data by an A / D converter and storing the digital data in a memory.

【0011】前記1周期間分のデータを採取するための
時間制御は、前記印加高電圧を分圧器で低電圧に変換
し、ゼロクロス検出回路で印加電圧のゼロクロス点を検
出して時間の基準点とし、その基準によりタイミング回
路でマイクロコンピュータ(以下、マイコンと称す)の
クロックを制御してA/D変換器、およびメモリを制御
する。したがって、上記の分圧回路、ゼロクロス検出回
路、タイミング回路、およびマイコン動作も漏れ電流検
出手段に含まれる。
The time control for collecting the data for one period is performed by converting the applied high voltage into a low voltage by a voltage divider and detecting a zero cross point of the applied voltage by a zero cross detection circuit to determine a time reference point. The timing circuit controls a clock of a microcomputer (hereinafter, referred to as a microcomputer) according to the reference to control an A / D converter and a memory. Therefore, the voltage dividing circuit, the zero-cross detecting circuit, the timing circuit, and the microcomputer operation described above are also included in the leak current detecting means.

【0012】また、部分放電検出手段は、前記第1種接
地線に挿入した高周波変流器の出力から、部分放電によ
り発生するパルス電流を抽出し、前記印加電圧の1周期
間におけるパルス電流のピーク値データおよびその発生
タイミングのデータを検出する手段を意味する。このパ
ルス電流は高周波成分からなり、ハイパスまたはバンド
パスフィルタにより抽出する。なお、本手段においても
電流は電圧に変換して扱う。したがって、下記実施例に
おいて部分放電検出手段は、高周波変流器の電流出力を
I−V変換回路で電圧に変換し、バンドパスフィルタま
たはハイパスフィルタを通してパルスを抽出し、各ピー
クをピークホールド回路で保持し、その電圧をA/D変
換器でデジタルデータに変換してメモリに記憶する。ま
た、1周期間分のデータ採取およびパルス発生タイミン
グの測定は前記と同様に高電圧機器の印加電圧ゼロクロ
ス点を基準に実行する。したがって、前記分圧器、ゼロ
クロス検出回路、タイミング回路、およびマイコン動作
も部分放電検出手段に含まれる。この場合、サンプリン
グ周期はパルス波形に対応して短く設定し、また、パル
ス発生タイミングは前記印加電圧波形に対する相対位相
角で測定する。
Further, the partial discharge detecting means extracts the pulse current generated by the partial discharge from the output of the high frequency current transformer inserted in the first type ground wire, and detects the pulse current in one cycle of the applied voltage. It means a means for detecting the peak value data and the data of the generation timing thereof. This pulse current consists of high frequency components and is extracted by a high pass or band pass filter. Also in this means, the current is converted into a voltage and handled. Therefore, in the following embodiments, the partial discharge detection means converts the current output of the high frequency current transformer into a voltage by the IV conversion circuit, extracts the pulse through the band pass filter or the high pass filter, and outputs each peak by the peak hold circuit. The voltage is held, the voltage is converted into digital data by the A / D converter and stored in the memory. Further, the data collection for one period and the measurement of the pulse generation timing are executed on the basis of the zero cross point of the applied voltage of the high-voltage equipment as described above. Therefore, the voltage divider, the zero-cross detection circuit, the timing circuit, and the microcomputer operation are also included in the partial discharge detection means. In this case, the sampling period is set short corresponding to the pulse waveform, and the pulse generation timing is measured by the relative phase angle with respect to the applied voltage waveform.

【0013】判定手段は上記漏れ電流データにおける実
効値波形データをもとに漏れ電流値を算出するととも
に、上記パルス電流データから、各パルスのピーク値に
変換係数を掛けて放電電荷量とし、最大ピーク値に対し
て最大放電電荷量、各パルスの放電電荷量の合計により
総放電電荷量、パルス数により放電パルス数、各パルス
の相対位相の範囲から放電位相範囲を算出し、漏れ電流
値および部分放電信号量において、判定用の所定値を越
えるものがあれば絶縁異常と判定する。なお、前記所定
値は監視する高電圧機器特有の値があらかじめ設定され
る。また、パルスの発生位相範囲が対象高電圧機器の放
電パターンに合致するか否かにより、その高電圧機器の
放電か、他の高電圧機器の放電かを推定する。この判定
手段はマイコン動作で実現し、したがって、マイコンは
判定手段でもある。
The determination means calculates the leakage current value based on the effective value waveform data in the leakage current data, and also multiplies the peak value of each pulse from the pulse current data by a conversion coefficient to obtain a discharge charge amount, The maximum discharge charge amount with respect to the peak value, the total discharge charge amount by the sum of the discharge charge amount of each pulse, the discharge pulse number by the pulse number, the discharge phase range is calculated from the relative phase range of each pulse, and the leakage current value and If there is a partial discharge signal amount that exceeds a predetermined value for determination, it is determined that the insulation is abnormal. The predetermined value is preset with a value peculiar to the high-voltage equipment to be monitored. In addition, it is estimated whether the high-voltage device is discharged or another high-voltage device is discharged depending on whether the pulse generation phase range matches the discharge pattern of the target high-voltage device. This judging means is realized by a microcomputer operation, and therefore the microcomputer is also a judging means.

【0014】請求項2に係わる本発明において、漏れ電
流検出手段は、低周波成分から高周波成分まで検出する
変流器の出力から、高周波成分まで含む電流の電流値を
印加電圧1周期について求めるに必要なデータを抽出す
る手段を意味し、上記請求項1における漏れ電流検出手
段と異なる点は、変流器が出力する高周波成分まで含む
電流をすべて漏れ電流として扱うことにある。下記実施
例においては、前記請求項1における漏れ電流検出手段
のローパスフィルタをハイパスフィルタ、またはパンド
パスフィルタに代えた構成に基本的に同じとする。ただ
し、パルスの発生位相情報が不要であるため、印加電圧
1周期の時間制御にはゼロクロス検出などは不要とな
り、単にマイコンによる時間測定などで済ませることが
可能である。
In the present invention according to claim 2, the leakage current detecting means obtains the current value of the current including the high frequency component for one cycle of the applied voltage from the output of the current transformer which detects the low frequency component to the high frequency component. This means means for extracting necessary data, and is different from the leakage current detecting means in claim 1 in that all the currents including the high frequency components output from the current transformer are treated as leakage currents. The following embodiments are basically the same as the configuration in which the low-pass filter of the leakage current detecting means in claim 1 is replaced with a high-pass filter or a pan-pass filter. However, since pulse generation phase information is unnecessary, zero-cross detection or the like is not necessary for time control of one cycle of the applied voltage, and it is possible to simply perform time measurement by a microcomputer.

【0015】請求項3に係わる本発明において、分波手
段は変流器の出力を2分割する手段を意味し、下記実施
例においては、変流器の電流出力を2分割する代わりに
I−V変換回路により電流を電圧に変換したのち2分割
している。したがって、この場合には漏れ電流検出手段
および部分放電検出手段におけるI−V変換回路は省略
できる。
In the present invention according to claim 3, the demultiplexing means means for dividing the output of the current transformer into two, and in the following embodiment, instead of dividing the current output of the current transformer into two, I- The V conversion circuit converts the current into a voltage and then divides it into two. Therefore, in this case, the IV conversion circuit in the leak current detecting means and the partial discharge detecting means can be omitted.

【0016】請求項4に係わる入力選択手段は、変流器
の出力を切り換えて漏れ電流検出手段、部分放電検出手
段に入力する手段であって、機械的なスイッチ、または
集積回路により構成したアナログスイッチで構成でき
る。
The input selection means according to claim 4 is means for switching the output of the current transformer and inputting it to the leakage current detection means and the partial discharge detection means, and is an analog circuit constituted by a mechanical switch or an integrated circuit. It can be configured with a switch.

【0017】以下、本発明の高電圧機器の絶縁状態監視
装置の実施例について説明する。
An embodiment of the insulation state monitoring apparatus for high voltage equipment according to the present invention will be described below.

【0018】[0018]

【実施例】【Example】

(実施例1)以下、請求項1に係わる本発明の高電圧機
器の絶縁監視装置の一実施例について図面を参照しなが
ら説明する。図1は本実施例の構成を示すブロック図で
ある。図において、1は本実施例の絶縁状態監視装置、
2は監視対象の高電圧機器、3は高電圧機器2の第1種
接地線、4はCTL(低周波変流器)、5はCTH(高
周波変流器)であって、パーマロイなどの高透磁率磁芯
を使用し、無誘導で浮遊容量の小さい卷回方法を採用
し、全体を電磁シールドして実現している。6はCTL
4の出力電流信号を電圧信号に変換するI−V変換器L
(電流電圧変換器)、7は500HZ以下の信号を通過さ
せるLPF(ローパスフィルタ)、8は実効値検出回
路、9はA/D変換器(A/D変換器L)、10はメモ
リ(メモリL)、11はマイコンである。
(Embodiment 1) An embodiment of the insulation monitoring apparatus for high-voltage equipment according to the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing the configuration of this embodiment. In the figure, 1 is an insulation state monitoring device of the present embodiment,
2 is a high-voltage device to be monitored, 3 is a type 1 grounding wire of the high-voltage device 2, 4 is a CTL (low-frequency current transformer), 5 is a CTH (high-frequency current transformer), and is a high-voltage device such as permalloy. It uses a magnetic permeability core, adopts a winding method that is non-inductive and has a small stray capacitance, and realizes it by electromagnetically shielding the whole. 6 is CTL
IV converter L for converting the output current signal of No. 4 into a voltage signal
(Current-voltage converter), 7 is an LPF (low-pass filter) that passes signals of 500 Hz or less, 8 is an effective value detection circuit, 9 is an A / D converter (A / D converter L), and 10 is a memory (memory). L) and 11 are microcomputers.

【0019】また、12はCTH5の出力電流信号を電
圧信号に変換するI−V変換器H(電流電圧変換器)、
13は100KHZ 以上の信号を通過させるハイパスフィ
ルタまたは100KHZ〜100MHZの範囲の信号を通過さ
せるバンドパスフィルタで構成したフィルタ(フィルタ
H)、14はフィルタHの出力におけるピーク値をホー
ルドするP/H回路(ピークホールド回路)、15はA
/D変換器(A/D変換器H)、16はメモリ(メモリ
H)、17は高電圧機器2に印加される高電圧を所定の
低電圧に分圧する分圧器、18は分圧器17の出力にお
けるゼロクロス点を検出する電圧ゼロクロス検出回路、
19は前記ゼロクロス点を基準にマイコン11のクロッ
クを制御してP/H回路14、A/D変換器9および1
5、メモリ10および16に供給するタイミング回路で
ある。
Further, 12 is an IV converter H (current-voltage converter) for converting the output current signal of the CTH 5 into a voltage signal,
Reference numeral 13 is a high-pass filter that passes a signal of 100 KHZ or more or a band-pass filter that passes a signal in the range of 100 KHZ to 100 MHZ (filter H), and 14 is a P / H circuit that holds the peak value at the output of the filter H. (Peak hold circuit), 15 is A
/ D converter (A / D converter H), 16 is a memory (memory H), 17 is a voltage divider that divides a high voltage applied to the high voltage device 2 into a predetermined low voltage, and 18 is a voltage divider 17. Voltage zero-cross detection circuit that detects the zero-cross point at the output,
Reference numeral 19 controls the clock of the microcomputer 11 based on the zero-cross point to control the P / H circuit 14, A / D converters 9 and 1
5, a timing circuit for supplying the memories 10 and 16.

【0020】本実施例の絶縁状態監視装置は、高電圧機
器2の絶縁異常を、第1種接地線3に設けたCTL4と
CTH5とにより監視する。漏れ電流検出においては、
CTL4の出力をI−V変換器L6により電圧に変換
し、500HZ以下の信号を通過させるLPF7を通し、
実効値検出回路8で実効値波形に変換し、マイコン11
の信号で高電圧機器2に印加される商用周波の1周期の
間に18〜60回サンプリングし、A/D変換器L9に
よりデジタルデータに変換してメモリL10に記憶する
ことにより漏れ電流のデータを抽出する。なお、A/D
変換器L9の入力前に、LPF7や実効値検出回路8で
信号レベルを調整する。
The insulation state monitoring apparatus of this embodiment monitors the insulation abnormality of the high-voltage equipment 2 by means of the CTL4 and CTH5 provided on the first-type ground line 3. In leak current detection,
The output of the CTL4 is converted into a voltage by the IV converter L6, and passed through the LPF7 which passes a signal of 500 Hz or less,
The rms value detection circuit 8 converts the rms value waveform, and the microcomputer 11
The leak current data is sampled 18 to 60 times during one cycle of the commercial frequency applied to the high-voltage equipment 2 with the signal of No. 1, converted into digital data by the A / D converter L9, and stored in the memory L10. To extract. A / D
Before the input to the converter L9, the signal level is adjusted by the LPF 7 and the effective value detection circuit 8.

【0021】また、漏れ電流の値が異常であるか否かの
判定は、マイコン11が、メモリL10に記憶された漏
れ電流データを用いて漏れ電流値を算出して所定の設定
定数と比較し、前記定数より大きければ異常と判断す
る。このとき前記設定定数を複数個設定して、たとえば
3個設定して小さい順に要注意、異常、危険と3段階に
判断させることも容易である。
The microcomputer 11 determines whether or not the leakage current value is abnormal by calculating the leakage current value using the leakage current data stored in the memory L10 and comparing it with a predetermined set constant. If it is larger than the above constant, it is determined to be abnormal. At this time, it is also easy to set a plurality of the above-mentioned setting constants, for example, to set three, and to judge in three stages of caution, abnormality, and danger in ascending order.

【0022】部分放電検出も同様であり、CTH5の出
力をI−V変換器H12により電圧に変換し、100KH
Z 以上の信号を通過させるHPFまたは100KHZ〜1
00MHZの範囲の信号を通過させるBPFで構成された
フィルタH13を通してパルス波形を抽出し、P/H回
路14でパルスのピークを保持し、A/D変換器H15
によりデジタルデータに変換してメモリH16に記憶す
ることにより部分放電のデータを抽出している。なお、
A/D変換器H15の入力前に、フィルタH13などで
信号レベルを調整する。また、パルスデータの取り込み
は、マイコン11の信号で5〜200μS ごとに商用電
源1サイクル分の時間だけ測定するようにP/H回路1
4、A/D変換器H15、およびメモリH16を制御す
る。
The same applies to partial discharge detection. The output of CTH5 is converted into a voltage by the IV converter H12, and 100 KH
HPF or 100KHZ to pass signals above Z
A pulse waveform is extracted through a filter H13 composed of a BPF that passes a signal in the range of 00 MHZ, the P / H circuit 14 holds the peak of the pulse, and the A / D converter H15
The partial discharge data is extracted by converting the data into digital data and storing it in the memory H16. In addition,
Before inputting to the A / D converter H15, the signal level is adjusted by the filter H13 or the like. In addition, the P / H circuit 1 is used so that the pulse data is taken in by measuring the signal of the microcomputer 11 every 5 to 200 μS for one cycle of the commercial power supply.
4, controlling the A / D converter H15 and the memory H16.

【0023】また、高電圧機器2の印加高電圧に対する
放電タイミングの検出は、高電圧機器2から基準とする
位相の高電圧を分圧器17に接続し、所定の低電圧にし
て電圧ゼロクロス検出回路18により電圧が負から正に
変わるときのゼロクロス点を検出し、タイミング回路1
9に送り、前記ゼロクロス点が位相の原点となるように
してマイコン11のクロック信号とのタイミングを調整
して商用電源1サイクル分の測定を行う。本実施例にお
いては、タイミング回路19がA/D変換器L9、メモ
リL10、P/H回路14、A/D変換器H15、メモ
リH16のタイミングを調整するのが制御し易い。な
お、高電圧機器2が変圧器である場合は、機器印加高電
圧信号として変圧器の低圧側の電圧を使用し、高電圧と
の位相差を補正することにより分圧器17を不用にでき
る。
The discharge timing with respect to the high voltage applied to the high voltage device 2 is detected by connecting the high voltage of the reference phase from the high voltage device 2 to the voltage divider 17 to make it a predetermined low voltage and a voltage zero cross detection circuit. The timing circuit 1 detects the zero crossing point when the voltage changes from negative to positive by 18
9 and adjusts the timing with the clock signal of the microcomputer 11 so that the zero-cross point becomes the origin of the phase, and the measurement for one cycle of the commercial power supply is performed. In this embodiment, it is easy to control the timing circuit 19 to adjust the timing of the A / D converter L9, the memory L10, the P / H circuit 14, the A / D converter H15, and the memory H16. When the high-voltage equipment 2 is a transformer, the voltage divider 17 can be made unnecessary by using the voltage on the low voltage side of the transformer as the equipment-applied high-voltage signal and correcting the phase difference from the high voltage.

【0024】なお、図1において20は漏れ電流検出手
段、21は部分放電検出手段、22は判定手段である。
In FIG. 1, 20 is a leakage current detecting means, 21 is a partial discharge detecting means, and 22 is a judging means.

【0025】図2は部分放電によるパルス電流のオシロ
による観測例を示すパターン図である。図において、
p:オシロのレベル、k:変換定数 としたとき、 放電電電荷量: qi=k・pi 最大放電電荷量:qmax=k・pmax 総放電電荷量: Q=k(p1+p2+・・+pn) 放電パルス数: n=n1+n2 機器印加高電圧に対する放電位相範囲:φ で示される。図に示したような部分放電は、高電圧機器
の種類や絶縁劣化の場所によって特有のパターンをもっ
ている。
FIG. 2 is a pattern diagram showing an example of observation of pulse current by partial discharge by oscilloscope. In the figure,
When p is the oscilloscope level and k is the conversion constant, the amount of discharged electric charge: qi = k · pi Maximum amount of discharged electric charge: qmax = k · pmax Total amount of discharged electric charge: Q = k (p1 + p2 + ·· + pn) Discharge pulse Number: n = n1 + n2 Discharge phase range for high voltage applied to device: φ Partial discharge as shown in the figure has a unique pattern depending on the type of high-voltage equipment and the location of insulation deterioration.

【0026】部分放電により絶縁が異常か否かの判定
は、漏れ電流の場合と同様に、上記の各値について基準
となる定数をマイコン11に設定しておき、その設定定
数より大きいか否かで判定する。このとき、前記設定定
数を複数個設定して、絶縁状態の判定を複数段階にでき
ることも漏れ電流の場合と同様である。また、部分放電
による劣化が進行中であるか否かは上記複数の信号の変
化を追跡することで判断でき、ノイズか否かの判定がで
きる。
Whether or not the insulation is abnormal due to partial discharge is set in the microcomputer 11 by setting a reference constant for each of the above values, as in the case of the leakage current, and whether or not it is larger than the set constant. Determine with. At this time, a plurality of setting constants can be set to judge the insulation state in a plurality of steps, as in the case of the leakage current. Further, whether or not the deterioration due to the partial discharge is in progress can be determined by tracking the changes in the plurality of signals, and it can be determined whether or not it is noise.

【0027】漏れ電流値単独または部分放電信号単独で
絶縁状態を判定する場合は検出ミスも発生する可能性が
あるが、両者の信号が変化するなどの場合は機器の停止
がかなり近づいている場合が多く、検出ミスが少なくな
る。
When the insulation state is determined by the leakage current value alone or the partial discharge signal alone, a detection error may occur. However, if the signals of the two are changed, etc., the stoppage of the equipment is very close. There are many errors and the number of detection errors is reduced.

【0028】なお、高圧機器の種類や劣化場所によって
部分放電パターンが異なることを考慮して、上記各信号
に対する設定定数をそれらに対応してそれぞれ異なる値
に設定できることは言うまでもない。
It is needless to say that the setting constants for the above signals can be set to different values corresponding to them, considering that the partial discharge patterns differ depending on the type of high-voltage equipment and the location of deterioration.

【0029】(実施例2)以下、請求項2に係わる本発
明の高電圧機器の絶縁状態監視装置の一実施例について
説明する。図3は本実施例の構成を示すブロック図であ
る。高電圧機器2の第1種接地線3に低周波から高周波
まで検出するCTHL(広帯域の変流器)31を設け、
CTHL31の出力をI−V変換回路32により電圧波
形に変換し、100KHZ 〜100MHZ の範囲の信号を通
過させるバンドパスフィルタで構成されたフィルタH3
3を通し、実効値検出回路34を通して実効値波形と
し、所定の時間間隔における出力をA/D変換器35に
よりデジタルデータに変換してマイコン36の制御によ
りメモリ37に記憶する。なお、本実施例においては、
パルス電流の発生タイミングを高電圧機器の印加電圧に
対する相対位相で検出する必要がなく、したがって、位
相基準を発生するための分圧器、電圧ゼロクロス検出
器、タイミング回路などを設けず、印加電圧1周期間の
制御は、マイコン36のカウント動作により行う。39
は漏れ電流検出手段、40は判定手段を示す。
(Embodiment 2) An embodiment of an insulation state monitoring apparatus for high voltage equipment according to the present invention will be described below. FIG. 3 is a block diagram showing the configuration of the present embodiment. A CTHL (broadband current transformer) 31 for detecting from low frequency to high frequency is provided on the first type grounding wire 3 of the high voltage device 2,
A filter H3 composed of a bandpass filter that converts the output of CTHL31 into a voltage waveform by the IV conversion circuit 32 and passes a signal in the range of 100 KHZ to 100 MHZ.
3, an effective value detection circuit 34 forms an effective value waveform, and an output at a predetermined time interval is converted into digital data by the A / D converter 35 and stored in the memory 37 under the control of the microcomputer 36. In this embodiment,
It is not necessary to detect the timing of pulse current generation by the relative phase with respect to the applied voltage of the high-voltage equipment. Therefore, the voltage divider for generating the phase reference, the voltage zero cross detector, the timing circuit, etc. are not provided, and the applied voltage is rotated once The period control is performed by the count operation of the microcomputer 36. 39
Is a leakage current detecting means, and 40 is a judging means.

【0030】上記構成において、高周波成分で構成され
た波形を漏れ電流として検出することは、ある程度進行
した部分放電信号を捕らえることになり、漏れ電流値と
部分放電信号量とをそれぞれ検出する場合に比べて、異
常判定にミスが少なく、また、異常を検出してから機器
の停止までの期間のばらつきも少ないと言う結果を得て
いる。また、本実施例の絶縁状態監視装置38は実施例
1における絶縁状態監視装置1と比べて部分放電検出の
ための回路を備えていない分だけ簡単な構成になる。
In the above structure, the detection of the waveform composed of the high frequency component as the leakage current means that the partial discharge signal which has advanced to some extent is captured, and the leakage current value and the partial discharge signal amount are detected respectively. In comparison, the results show that there are few mistakes in the abnormality determination and there is little variation in the period from the detection of the abnormality to the stop of the device. Further, the insulation state monitoring device 38 of the present embodiment has a simpler configuration than the insulation state monitoring device 1 of the first embodiment because it does not include a circuit for detecting partial discharge.

【0031】フィルタH33をBPFとするか、HPF
(ハイパスフィルタ)とするかは漏れ電流の採取の仕方
に依存する部分がある。たとえば、図4に示すような炭
素入り砥粉水で強制的に沿面を劣化させたモールド変圧
器41の接地線42に設けた30MHZ まで測定できるC
TH(高周波CT)43とLRセンサ44の信号とモー
ルド変圧器41の印加高電圧を分圧器45を介してオシ
ロ46で観測した結果を図5に示す。これによると、印
加高電圧の270度近辺でLRセンサ44の信号52と
CTH43の信号53とでは信号に差異が見られ、周波
数特性のよいと思われるLRセンサの方が信号の幅が小
さかった。これは低い周波数成分が多いためと推定さ
れ、この場合はにフィルタH33をBPFよりもHPF
として、高周波成分を多く含めた漏れ電流の測定とする
ことにより異常検出が確実になる。
Either the filter H33 is a BPF or the HPF is
Whether to use a (high-pass filter) or not depends on how to collect the leakage current. For example, it is possible to measure up to 30 MHZ provided on the ground wire 42 of the mold transformer 41 whose creeping surface is forcibly deteriorated by carbon-containing abrasive water as shown in FIG.
The result of observing the signals of the TH (high frequency CT) 43 and the LR sensor 44 and the high voltage applied to the mold transformer 41 with the oscilloscope 46 via the voltage divider 45 is shown in FIG. According to this, the signal difference between the signal 52 of the LR sensor 44 and the signal 53 of the CTH 43 is seen near 270 degrees of the applied high voltage, and the width of the signal is smaller in the LR sensor which seems to have better frequency characteristics. . It is estimated that this is because there are many low frequency components, and in this case, the filter H33 is set to have a higher HPF than the BPF.
As described above, the abnormality detection is surely performed by measuring the leakage current including a large amount of high frequency components.

【0032】なお、本実施例では、高周波成分のみの波
形を漏れ電流として扱ったが、低周波成分から高周波成
分までについて漏れ電流として扱ってもよい。
In the present embodiment, the waveform of only the high frequency component is treated as the leakage current, but the low frequency component to the high frequency component may be treated as the leakage current.

【0033】(実施例3)以下、請求項3に係わる本発
明の高電圧機器の絶縁状態監視装置の一実施例について
説明する。図6は本実施例の構成を示すブロック図であ
る。図において、高電圧機器2の第1種接地線3に低周
波から高周波まで検出する広帯域の変流器CTHL61
を設け、CTHL61の出力信号をI−V変換回路62
により電圧信号に変換し、分波器63により2つの波に
分波し、第1波はLPF7に通し、第2波はフィルタH
13に通し、以降、実施例1と同様の処理を実行する絶
縁状態監視装置64は変流器が1個で済み、安価に構成
できるとともに、配線の引き回しも容易になる。
(Embodiment 3) An embodiment of an insulation state monitoring apparatus for high voltage equipment according to the present invention will be described below. FIG. 6 is a block diagram showing the configuration of the present embodiment. In the figure, a wide band current transformer CTHL61 for detecting from low frequency to high frequency in the first type grounding wire 3 of the high voltage device 2
And the output signal of the CTHL 61 is converted into an IV conversion circuit 62.
Is converted into a voltage signal by the demultiplexer 63 and demultiplexed into two waves by the demultiplexer 63, the first wave is passed through the LPF 7, and the second wave is filtered by the filter H.
After that, the insulation state monitoring device 64, which executes the same processing as that of the first embodiment, requires only one current transformer, can be constructed at low cost, and the wiring can be easily routed.

【0034】なお、図6において65は分波手段、66
は漏れ電流検出手段、67は部分放電検出手段、68は
判定手段を示す。
In FIG. 6, 65 is a demultiplexing means and 66.
Is a leakage current detection means, 67 is a partial discharge detection means, and 68 is a determination means.

【0035】(実施例4)以下、請求項4に係わる本発
明の高電圧機器の絶縁状態監視装置の一実施例について
説明する。図7は本実施例の構成を示すブロック図であ
る。図において、複数の高電圧機器71と高電圧機器7
2において、それぞれの第1種接地線73と第1種接地
線74に、それぞれCTAL(低周波変流器)75およ
びCTAH(高周波変流器)77と、CTBL(低周波
変流器)76およびCTBH(高周波変流器)78を設
け、また、高電圧機器71は変圧器としてその低圧側の
第2種接地線79にCTALL(低周波変流器)80を
設けている。CTAL75、CTBL76、およびCT
ALL80の各出力信号は入力切替回路L81に入力
し、CTAH77、CTBH78の各出力信号は入力切
替回路H82に入力し、それぞれマイコン11の制御に
より入力信号を順次に切り替えることにより、複数個の
高電圧機器の絶縁状態監視のために複数個の低周波変流
器と高周波変流器を1つの絶縁状態監視装置83で処理
できる。第2種接地線に設けた低周波CTについても他
の低周波変流器と同様の処理でよい。なお、異常判定用
の設定定数は監視対象に対応して合わせる必要がある。
(Embodiment 4) An embodiment of an insulation state monitoring apparatus for high voltage equipment according to the present invention will be described below. FIG. 7 is a block diagram showing the configuration of this embodiment. In the figure, a plurality of high voltage devices 71 and high voltage devices 7
2, CTAL (low-frequency current transformer) 75 and CTAH (high-frequency current transformer) 77 and CTBL (low-frequency current transformer) 76 are connected to the first-type ground line 73 and the first-type ground line 74, respectively. And CTBH (high-frequency current transformer) 78, and the high-voltage equipment 71 is provided with a CTALL (low-frequency current transformer) 80 as a transformer on the second-type ground wire 79 on the low-voltage side thereof. CTAL75, CTBL76, and CT
The output signals of ALL80 are input to the input switching circuit L81, the output signals of CTAH77 and CTBH78 are input to the input switching circuit H82, and the input signals are sequentially switched under the control of the microcomputer 11, respectively. A plurality of low-frequency current transformers and high-frequency current transformers can be processed by one insulation state monitoring device 83 to monitor the insulation state of the equipment. The low-frequency CT provided on the second-type ground line may be processed in the same manner as other low-frequency current transformers. Note that the setting constants for abnormality determination need to be adjusted according to the monitoring target.

【0036】なお、同様の切り替えにより、複数の高電
圧機器の監視のために、低周波から高周波まで検出する
広帯域の変流器を高電圧機器ごとに設け、それらを順次
に切り替えて高周波を含んだ漏れ電流を検出することも
可能であり、また、低周波から高周波まで検出する変流
器を高電圧機器ごとに設け、それらを順次に切り替えて
2分波し、漏れ電流と高周波信号量とを検出することも
可能である。図7において84は入力選択手段を示す。
By the same switching, a wide band current transformer for detecting a low frequency to a high frequency is provided for each high voltage device for monitoring a plurality of high voltage devices, and these are sequentially switched to include a high frequency. It is also possible to detect leakage current, and a current transformer that detects from low frequency to high frequency is provided for each high-voltage device, and they are sequentially switched to divide into two, and leakage current and high-frequency signal amount are detected. It is also possible to detect In FIG. 7, reference numeral 84 indicates an input selecting means.

【0037】(実施例5)以下、請求項7に係わる本発
明の高電圧機器の絶縁状態監視装置の一実施例について
説明する。図8は本実施例における表示器の構成を示す
パターン図である。図において、漏れ電流と部分放電信
号量とに用いたそれぞれのセンサ番号を表示する7セグ
メントのLEDなどの表示部85および86と、それぞ
れの判定結果を示すランプ88、および89を備え、部
分放電信号量については、7セグメントのLEDなどの
表示部を用い、最大放電電荷量には4桁の表示部91、
放電パルス数には3桁の表示部92、総放電電荷量には
4桁の表示部93、放電位相範囲には正極と負極交互に
6桁で表示する表示部94を備えている。また、上記の
各判定および信号量に応じて、マイコン11が所定の基
準により総合判定し、その結果をランプ90に表示す
る。なお、漏れ電流のみ検出する場合には部分放電に係
わる表示を省略できることは言うまでもない。また、こ
れらの表示内容はRS232CやRS485などのケー
ブルや無線を介して中監盤やパソコンなどと通信する通
信手段を設け、図8に示したと同様の内容を中監盤やパ
ソコンに遠隔表示することも、遠隔記憶することもでき
る。
(Embodiment 5) An embodiment of the insulation state monitoring apparatus for high voltage equipment according to the present invention will be described below. FIG. 8 is a pattern diagram showing the configuration of the display device in this embodiment. In the figure, display units 85 and 86 such as 7-segment LEDs for displaying the respective sensor numbers used for the leakage current and the partial discharge signal amount, and lamps 88 and 89 showing the respective judgment results are provided. A display unit such as a 7-segment LED is used for the signal amount, and a 4-digit display unit 91 is used for the maximum discharge charge amount.
The discharge pulse number is provided with a 3-digit display portion 92, the total discharge charge amount is provided with a 4-digit display portion 93, and the discharge phase range is provided with a display portion 94 for alternately displaying positive and negative electrodes in six digits. Further, the microcomputer 11 makes a comprehensive judgment according to a predetermined standard in accordance with each of the above judgments and the signal amount, and displays the result on the lamp 90. Needless to say, the display related to partial discharge can be omitted when only the leakage current is detected. Further, these display contents are provided with communication means for communicating with the central control panel or personal computer via a cable such as RS232C or RS485 or wirelessly, and the same content as shown in FIG. 8 is remotely displayed on the central control panel or personal computer. It can also be stored remotely.

【0038】[0038]

【発明の効果】以上の説明から明らかなように、 1.本発明の高電圧機器の絶縁状態監視装置は、高電圧
機器の第1種接地線に設けた低周波変流器と高周波変流
器、または低周波から高周波をカバーする広帯域の変流
器とにより漏れ電流と部分放電とを検出し、それらの値
を高電圧機器に対応した基準値と比較して絶縁状態を判
定し、また、部分放電については信号量として最大放電
電荷量、総放電電荷量、放電パルス数、および機器印加
電圧に対する放電位相範囲を検出するようにしたことに
より、高電圧側または低電圧側などに制限されず、した
がって、変圧器だけでなく、キュービクルなどの受変電
機器の負荷開閉器、変圧器、高圧コンデンサ、計器用変
成器、計器用変流器などの種々の高電圧機器と種々の部
分放電劣化パターンとに適用できる。
As is apparent from the above description, 1. The insulation state monitoring device for high-voltage equipment according to the present invention comprises a low-frequency current transformer and a high-frequency current transformer provided in the first-type grounding wire of the high-voltage equipment, or a wide-band current transformer that covers low to high frequencies. The leak current and partial discharge are detected by the above, and the insulation state is judged by comparing those values with the reference value corresponding to the high voltage equipment.For partial discharge, the maximum discharge charge amount and the total discharge charge are calculated as the signal amount. By detecting the amount, the number of discharge pulses, and the discharge phase range with respect to the device applied voltage, it is not limited to the high voltage side or the low voltage side. Therefore, not only the transformer but also the substation equipment such as cubicle. Can be applied to various high-voltage devices such as load switches, transformers, high-voltage capacitors, instrument transformers, instrument current transformers, and various partial discharge deterioration patterns.

【0039】また、高周波成分まで漏れ電流を検出する
ことにより、劣化が進行している場合には漏れ電流検出
のみで判定することもできる。
Further, by detecting the leakage current up to the high frequency component, it is possible to make a determination only by detecting the leakage current when the deterioration is progressing.

【0040】2.本発明の高電圧機器の絶縁状態監視装
置は、高電圧機器ごとに設けた変流器から信号を入力す
るようにしたことにより、1台の絶縁監視装置で多くの
高電圧機器の絶縁状態を監視できる。また、複数の高電
圧機器の各変流器の出力を切り換えて入力するようにし
たことにより、多数の高電圧機器を一斉に監視すること
ができる。
2. INDUSTRIAL APPLICABILITY The insulation state monitoring device for high-voltage equipment according to the present invention is configured so that a signal is input from a current transformer provided for each high-voltage equipment. Can be monitored. Moreover, by switching and inputting the output of each current transformer of a plurality of high-voltage devices, a large number of high-voltage devices can be simultaneously monitored.

【0041】3.本発明の高電圧機器の絶縁状態監視装
置は、高電圧機器の第1種接地線に設けた変流器から信
号を入力するので、変流器を既設の設備に活線状態で後
付けして適用できる。
3. Since the insulation state monitoring apparatus for high-voltage equipment of the present invention inputs a signal from the current transformer provided in the first-type grounding wire of the high-voltage equipment, the current transformer may be retrofitted to the existing equipment in a live line state. Applicable.

【0042】4.本発明の高電圧機器の絶縁状態監視装
置は、検出項目、用いたセンサ番号、および判定結果な
どを表示器に表示することにより、検出結果を容易に知
ることができ、また通信手段を備えたことにより、それ
らを中監盤など他の装置に遠隔表示したり、遠隔記憶で
きて、使い勝手がよい。
4. The insulation state monitoring device for high-voltage equipment of the present invention can easily know the detection result by displaying the detection item, the sensor number used, the determination result, and the like on the display, and is also provided with the communication means. As a result, they can be remotely displayed on other devices such as the central control panel and can be stored remotely, which is convenient.

【0043】5.本発明の高電圧機器の絶縁状態監視装
置は、変流器、電流電圧変換回路、フィルタ、P/H回
路、A/D変換器、メモリ、マイコンなどで構成するの
で一般市販の電気部品が使用でき、安価に実現できる。
5. Since the insulation state monitoring device for high-voltage equipment of the present invention comprises a current transformer, a current-voltage conversion circuit, a filter, a P / H circuit, an A / D converter, a memory, a microcomputer, etc., a general commercial electric component is used. It can be realized at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1に係わる本発明の高電圧機器の絶縁状
態監視装置の一実施例の構成を示すブロック図
FIG. 1 is a block diagram showing the configuration of an embodiment of an insulation state monitoring apparatus for high-voltage equipment according to the present invention according to claim 1;

【図2】同実施例においてオシロで観測測定した高電圧
波形および部分放電波形の一例を示すパターン図
FIG. 2 is a pattern diagram showing an example of a high voltage waveform and a partial discharge waveform observed and measured by an oscilloscope in the same example.

【図3】請求項2に係わる本発明の高電圧機器の絶縁状
態監視装置の一実施例の構成を示すブロック図
FIG. 3 is a block diagram showing the configuration of an embodiment of an insulation state monitoring apparatus for high-voltage equipment according to the present invention according to claim 2;

【図4】部分放電の測定回路例を示すブロック図FIG. 4 is a block diagram showing an example of a partial discharge measurement circuit.

【図5】部分放電のオシロによる観測測定波形の一例を
示すパターン図
FIG. 5 is a pattern diagram showing an example of an observed and measured waveform of a partial discharge by an oscilloscope.

【図6】請求項3に係わる本発明の高電圧機器の絶縁状
態監視装置の一実施例の構成を示すブロック図
FIG. 6 is a block diagram showing the configuration of an embodiment of an insulation state monitoring device for high-voltage equipment according to the present invention according to claim 3;

【図7】請求項4に係わる本発明の高電圧機器の絶縁状
態監視装置の一実施例の構成を示すブロック図
FIG. 7 is a block diagram showing the configuration of an embodiment of an insulation state monitoring device for high-voltage equipment according to the present invention according to claim 4;

【図8】請求項7に係わる本発明の高電圧機器の絶縁状
態監視装置の一実施例の構成を示すブロック図
FIG. 8 is a block diagram showing the configuration of an embodiment of an insulation state monitoring apparatus for high-voltage equipment according to the present invention according to claim 7;

【図9】従来の絶縁状態監視装置の構成を示すブロック
FIG. 9 is a block diagram showing a configuration of a conventional insulation state monitoring device.

【符号の説明】[Explanation of symbols]

1,38,83 絶縁状態監視装置 2,71,72 高電圧機器 3 第1種接地線 4 CTL(低周波変流器) 5 CTH(高周波変流器) 6 I−V変換器L(電流電圧変換器) 7 LPF 8 実効値検出回路 9 A/D変換器L 10 メモリL 11,36 マイコン 12 I−V変換器H 13,33 フィルタH 14 P/H回路 15 A/D変換器H 16 メモリH 17 分圧器 18 電圧ゼロクロス検出回路 19 タイミング回路 20,39,66 漏れ電流検出手段 21,67 部分放電検出手段 22,40,68 判定手段 31,61 CTHL(広帯域の変流器) 32,62 I−V変換回路 34 実効値検出回路 35 A/D変換器 37 メモリ 63 分波器 65 分波手段 73,74 第1種接地線 75 CTAL(低周波変流器) 76 CTBL(低周波変流器) 77 CTAH(高周波変流器) 78 CTBH(高周波変流器) 79 第2種接地線 80 CTALL(低周波変流器) 81 入力切替回路L 82 入力切替回路H 84 入力選択手段 1,38,83 Insulation state monitoring device 2,71,72 High voltage equipment 3 First-class ground wire 4 CTL (low frequency current transformer) 5 CTH (high frequency current transformer) 6 I-V converter L (current voltage) Converter) 7 LPF 8 effective value detection circuit 9 A / D converter L 10 memory L 11,36 microcomputer 12 IV converter H 13,33 filter H 14 P / H circuit 15 A / D converter H 16 memory H 17 voltage divider 18 voltage zero cross detection circuit 19 timing circuit 20, 39, 66 leakage current detection means 21, 67 partial discharge detection means 22, 40, 68 determination means 31, 61 CTHL (broadband current transformer) 32, 62 I -V conversion circuit 34 effective value detection circuit 35 A / D converter 37 memory 63 demultiplexer 65 demultiplexing means 73, 74 first type ground line 75 CTAL (low frequency current transformer) 76 CTB (Low-frequency current transformer) 77 CTAH (high-frequency current transformer) 78 CTBH (high-frequency current transformer) 79 Second type ground wire 80 CTALL (low-frequency current transformer) 81 Input switching circuit L 82 Input switching circuit H 84 input Means of selection

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年4月10日[Submission date] April 10, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0006】一方、高圧側については、アンテナ法によ
り部分放電を検出する手段は、電磁波ノイズの影響で検
出が難しく、さらに高価で複雑な装置が必要となる。ま
た、第1種接地線にCTを設けて部分放電を検出する手
段は、ノイズ対策のために低周波狭帯域(数100KHZ
)の信号をアナログ的に取り出し、パルス信号の最大
値を校正パルスと比較することによって部分放電の最大
電荷量を決めていた。この手段では1MHZ 以上の高周波
成分を含む部分放電パルスを検出できないことや、レベ
ルは小さいが数が多い放電パルスが無視され、単に
放電発生があったか否かの有無判定程度に終わり、絶縁
異常の程度が的確に判定されていなかった。また、CT
や信号処理回路の周波数特性にメガヘルツ以上の信号処
理を考慮していないなどのためにノイズの影響を大きく
受け、信号とノイズの比すなわちSNの大きな信号を得
られず、実用化が難しかった。また、部分放電信号は故
障の初期の段階で検出されることが多いので、部分放電
信号が検出されてから5年以上故障しない場合もあり、
また、水を被ったような機器のように沿面の抵抗値低下
が全面的に発生した場合は部分放電よりも漏れ電流の方
が的確に絶縁異常を検出できる場合もあって、1つの手
段だけでは的確な判断が困難な場合もある。
On the other hand, on the high voltage side, the means for detecting partial discharge by the antenna method is difficult to detect due to the influence of electromagnetic wave noise, and requires an expensive and complicated device. Further, a means for detecting partial discharge by providing a CT on the first-class grounding line is a low frequency narrow band (several 100 KHZ) as a noise countermeasure.
) Was taken out in an analog manner, and the maximum value of the pulse signal was compared with the calibration pulse to determine the maximum charge amount of partial discharge. And inability to detect the partial discharge pulses including the above high-frequency components 1MHZ This means, the level is small is ignored discharge pulse number is large, simply end the partial discharge occurred there was whether existence determination about insulation abnormalities The degree of was not determined accurately. Also, CT
Since the frequency characteristics of the signal processing circuit do not consider signal processing of megahertz or higher, it is greatly affected by noise, and a signal having a large signal-to-noise ratio, that is, SN, cannot be obtained, which makes practical application difficult. Moreover, since the partial discharge signal is often detected in the early stage of the failure, there are cases where the partial discharge signal does not fail for five years or more after the detection.
In addition, if a decrease in the resistance value on the surface of the entire surface occurs, such as in a device that has been exposed to water, the leakage current may detect the insulation abnormality more accurately than the partial discharge. In that case, it may be difficult to make an accurate judgment.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 高電圧機器の第1種接地線に低周波変流
器と高周波変流器とを挿入して設け、前記低周波変流器
の出力から低周波成分からなる漏れ電流の電流値に係わ
るデータを前記高電圧機器の印加電圧の1周期間につい
て抽出する漏れ電流検出手段と、前記高周波変流器の出
力から高周波成分からなるパルス電流のピーク値および
発生タイミングに係わるデータを前記1周期間について
抽出する部分放電検出手段と、前記漏れ電流データから
漏れ電流値を演算するとともに、前記パルス性電流デー
タから部分放電の信号量として、前記ピーク値に対応す
る電荷量から最大放電電荷量と総放電電荷量、前記パル
スの数から放電パルス数、前記相対位相の範囲から部分
放電が発生した放電位相範囲をそれぞれ演算し、前記漏
れ電流値および前記部分放電信号量においてそれぞれに
対応する所定値を越えるものがあるとき絶縁異常と判定
する判定手段とを備え、漏れ電流値と部分放電信号量と
により絶縁状態を監視するようにした高電圧機器の絶縁
状態監視装置。
1. A low-frequency current transformer and a high-frequency current transformer are provided by being inserted in a first-type grounding wire of a high-voltage equipment, and a current of a leakage current consisting of a low-frequency component from the output of the low-frequency current transformer. Leakage current detection means for extracting data related to the value for one cycle of the applied voltage of the high-voltage equipment, and data related to the peak value and generation timing of the pulse current composed of high-frequency components from the output of the high-frequency current transformer. The partial discharge detection means for extracting for one cycle and the leakage current value are calculated from the leakage current data, and the partial discharge signal amount is calculated from the pulse current data, and the maximum discharge charge is calculated from the charge amount corresponding to the peak value. Amount and total discharge charge amount, the number of discharge pulses from the number of the pulses, the discharge phase range in which partial discharge has occurred from the range of the relative phase, respectively, the leakage current value and the A high-voltage device equipped with a determination means for determining an insulation abnormality when there is a partial discharge signal amount exceeding a corresponding predetermined value, and monitoring the insulation state by the leakage current value and the partial discharge signal amount. Insulation condition monitoring device.
【請求項2】 高電圧機器の第1種接地線に低周波から
高周波まで検出する広帯域の変流器を設け、前記変流器
の出力から高周波成分まで含む漏れ電流の漏れ電流値に
係わるデータを前記高圧機器の印加電圧の1周期間につ
いて抽出する漏れ電流検出手段と、前記漏れ電流データ
から漏れ電流値を演算し、その値が所定値を越えたとき
に絶縁異常と判定する判定手段とを備え、高周波成分ま
で含む波形から求めた漏れ電流値により絶縁状態を監視
するようにした高電圧機器の絶縁状態監視装置。
2. A data relating to a leakage current value of a leakage current including a high frequency component from the output of the current transformer, wherein a wide band current transformer for detecting from low frequency to high frequency is provided on the first type grounding wire of high voltage equipment. A leakage current detecting means for extracting for each cycle of the voltage applied to the high-voltage equipment, and a determining means for calculating a leakage current value from the leakage current data and determining an insulation abnormality when the value exceeds a predetermined value. An insulation condition monitoring device for a high-voltage device, comprising: a leakage current value obtained from a waveform including a high-frequency component.
【請求項3】 高電圧機器の第1種接地線に低周波から
高周波まで検出する広帯域の変流器を設け、前記変流器
の出力を2分波する分波手段と、分波された第1波から
低周波成分からなる漏れ電流の電流値に係わるデータを
前記高電圧機器の印加電圧の1周期間について抽出する
漏れ電流抽出手段と、分波された第2波から高周波成分
からなるパルス電流のデータを前記1周期間について抽
出する部分放電検出手段と、前記漏れ電流データから漏
れ電流値を演算するとともに、前記パルス電流データか
ら部分放電の信号量として、前記ピーク値に対応する電
荷量から最大放電電荷量と総放電電荷量、前記パルス数
から放電パルス数、前記相対位相の範囲から放電位相範
囲をそれぞれ演算し、前記漏れ電流値および前記部分放
電量においてそれぞれに対応する所定値を越えるものが
あるとき絶縁異常と判定する判定手段とを備え、漏れ電
流値と部分放電信号量とにより絶縁状態を監視するよう
にした高電圧機器の絶縁状態監視装置。
3. A first-class grounding wire of a high-voltage device is provided with a wide-band current transformer for detecting from low frequency to high frequency, and a demultiplexing means for demultiplexing the output of the current transformer into two is provided. Leakage current extracting means for extracting data relating to the current value of the leakage current consisting of the low frequency component from the first wave for one cycle of the applied voltage of the high voltage device, and the high frequency component from the branched second wave. Partial discharge detection means for extracting pulse current data for the one period, a leakage current value is calculated from the leakage current data, and a charge corresponding to the peak value is calculated as a partial discharge signal amount from the pulse current data. Amount to the maximum discharge charge amount and the total discharge charge amount, the pulse number to the discharge pulse number, the relative phase range to the discharge phase range are calculated respectively, and the leak current value and the partial discharge amount are calculated respectively. An insulation condition monitoring device for high-voltage equipment, comprising: a judgment means for judging an insulation abnormality when there is a value exceeding a predetermined value corresponding thereto, and monitoring the insulation condition by a leakage current value and a partial discharge signal amount.
【請求項4】 複数の高電圧機器のそれぞれの第1種接
地線にそれぞれ低周波変流器と高周波変流器とを設け、
前記高電圧機器のうちの監視対象に設けられた前記低周
波変流器の出力と前記高周波変流器の出力とを使用者の
設定により選択してそれぞれ漏れ電流検出手段と部分放
電検出手段に出力する入力選択手段を備え、前記入力手
段により選択された高電圧機器の絶縁状態を監視するよ
うにした請求項1記載の高電圧機器の絶縁状態監視装
置。
4. A low-frequency current transformer and a high-frequency current transformer are provided on each of the first-class ground wires of a plurality of high-voltage devices,
The output of the low-frequency current transformer and the output of the high-frequency current transformer, which are provided as a monitoring target of the high-voltage equipment, are selected by the user's settings to be the leakage current detection means and the partial discharge detection means, respectively. 2. An insulation state monitoring device for high voltage equipment according to claim 1, further comprising input selecting means for outputting, wherein the insulation state of the high voltage equipment selected by said input means is monitored.
【請求項5】 複数の高電圧機器のそれぞれの第1種接
地線にそれぞれ低周波から高周波まで検出する広帯域の
変流器を設け、前記高電圧機器のうちの監視対象に設け
られた変流器の出力を使用者の設定により選択して漏れ
電流検出手段に出力する入力選択手段を備え、前記入力
手段により選択された高電圧機器の絶縁状態を監視する
ようにした請求項2記載の高電圧機器の絶縁状態監視装
置。
5. A current transformer of a wide band for detecting from a low frequency to a high frequency is provided on each of the first type ground wires of a plurality of high-voltage devices, and a current transformer provided as a monitoring target of the high-voltage devices. 3. The high-level equipment according to claim 2, further comprising input selection means for selecting the output of the power supply device according to a user's setting and outputting it to the leakage current detection means, and monitoring the insulation state of the high-voltage equipment selected by said input means. Insulation monitoring device for voltage equipment.
【請求項6】 複数の高電圧機器のそれぞれの第1種接
地線にそれぞれ低周波から高周波まで検出する広帯域の
変流器を設け、前記高電圧機器のうちの監視対象の変流
器の出力を使用者の設定により選択して分波手段に出力
する入力選択手段を備え、前記入力手段により選択され
た高電圧機器の絶縁状態を監視するようにした請求項3
記載の高電圧機器の絶縁状態監視装置。
6. An output of a current transformer to be monitored in the high voltage equipment, wherein a wide band current transformer for detecting from low frequency to high frequency is provided on each of the first type grounding wires of the plurality of high voltage equipment. 4. An input selection means for selecting the output signal according to the user's setting and outputting it to the demultiplexing means is provided, and the insulation state of the high-voltage equipment selected by the input means is monitored.
Insulation state monitoring device for high voltage equipment as described.
【請求項7】 高電圧機器から検出した漏れ電流値と、
部分放電信号量の最大放電電荷量、総放電電荷量、放電
パルス数、および機器印加高電圧に対する放電位相範囲
の1つ以上と、それらから判定した絶縁状態と、前記高
圧機器に設けられた変流器を示すセンサ番号とを表示す
る表示器を備えた請求項1、請求項3、請求項4、およ
び請求項6のいずれかに記載の高電圧機器の絶縁状態監
視装置。
7. A leakage current value detected from a high voltage device,
One or more of the maximum discharge charge amount of the partial discharge signal amount, the total discharge charge amount, the number of discharge pulses, and the discharge phase range for the high voltage applied to the device, the insulation state determined from them, and the variation provided in the high-voltage device. The insulation state monitoring device for high-voltage equipment according to any one of claims 1, 3, 4, and 6, further comprising a display for displaying a sensor number indicating a sink.
【請求項8】 高電圧機器から検出した漏れ電流値と、
それから判定した絶縁状態と、前記高電圧機器に設けら
れた変流器を示すセンサ番号とを表示する表示器を備え
た請求項2または請求項5のいずれかに記載の高電圧機
器の絶縁状態監視装置。
8. A leakage current value detected from a high voltage device,
The insulation state of the high-voltage equipment according to claim 2 or 5, further comprising an indicator for displaying an insulation state determined from that and a sensor number indicating a current transformer provided in the high-voltage equipment. Monitoring equipment.
【請求項9】 高電圧機器から検出した漏れ電流値と、
分放電信号量の最大放電電荷量、放電パルス数、総放電
電荷量、および印加高電圧に対する放電位相範囲の1つ
以上と、それらから判定した絶縁状態と、センサ番号と
を外部に通信する通信手段を備えた請求項7記載の高電
圧機器の絶縁状態監視装置。
9. A leakage current value detected from a high voltage device,
Communication for communicating externally one or more of the maximum discharge charge amount of the minute discharge signal amount, the number of discharge pulses, the total discharge charge amount, and the discharge phase range for the applied high voltage, the insulation state determined from them, and the sensor number. An insulation condition monitoring device for high-voltage equipment according to claim 7, further comprising means.
【請求項10】 高電圧機器から検出した漏れ電流値
と、それから判定した絶縁状態と、センサ番号とを通信
する通信手段を備えた請求項8記載の高電圧機器の絶縁
状態監視装置。
10. The insulation state monitoring device for high voltage equipment according to claim 8, further comprising communication means for communicating the leakage current value detected from the high voltage equipment, the insulation state determined from the leakage current value, and the sensor number.
JP07215319A 1995-07-31 1995-07-31 High voltage equipment insulation status monitor Expired - Fee Related JP3082132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07215319A JP3082132B2 (en) 1995-07-31 1995-07-31 High voltage equipment insulation status monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07215319A JP3082132B2 (en) 1995-07-31 1995-07-31 High voltage equipment insulation status monitor

Publications (2)

Publication Number Publication Date
JPH0945537A true JPH0945537A (en) 1997-02-14
JP3082132B2 JP3082132B2 (en) 2000-08-28

Family

ID=16670346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07215319A Expired - Fee Related JP3082132B2 (en) 1995-07-31 1995-07-31 High voltage equipment insulation status monitor

Country Status (1)

Country Link
JP (1) JP3082132B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006087828A (en) * 2004-09-27 2006-04-06 Toshiba Corp Magnetic resonance imaging apparatus
KR101018702B1 (en) * 2008-08-13 2011-03-04 한국전기연구원 Partial Discharge Corrector With Self Correction And Tracing Management
CN104730486A (en) * 2015-02-11 2015-06-24 西安交通大学 High-temperature and low-voltage aging test device
JP2018124108A (en) * 2017-01-31 2018-08-09 東京電力ホールディングス株式会社 Device, system and method for detecting partial discharge
JP2019184322A (en) * 2018-04-04 2019-10-24 株式会社東芝 Partial discharge detector and partial discharge detection method
CN112394297A (en) * 2020-11-10 2021-02-23 国网江苏省电力有限公司盐城供电分公司 Electrical cabinet insulation detection device and method based on bus bar induction power supply
CN112977542A (en) * 2021-03-22 2021-06-18 北京中车赛德铁道电气科技有限公司 High-voltage equipment on-line monitoring method for high-speed rail train
CN113075442A (en) * 2021-03-30 2021-07-06 国网宁夏电力有限公司电力科学研究院 Current mutual inductance circuit and current transformer
CN116298741A (en) * 2023-03-14 2023-06-23 青岛艾诺仪器有限公司 Insulator partial discharge detection method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3577475A1 (en) 2017-03-02 2019-12-11 Rosemount Inc. Trending functions for partial discharge
US11181570B2 (en) 2018-06-15 2021-11-23 Rosemount Inc. Partial discharge synthesizer

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006087828A (en) * 2004-09-27 2006-04-06 Toshiba Corp Magnetic resonance imaging apparatus
KR101018702B1 (en) * 2008-08-13 2011-03-04 한국전기연구원 Partial Discharge Corrector With Self Correction And Tracing Management
CN104730486A (en) * 2015-02-11 2015-06-24 西安交通大学 High-temperature and low-voltage aging test device
JP2018124108A (en) * 2017-01-31 2018-08-09 東京電力ホールディングス株式会社 Device, system and method for detecting partial discharge
JP2019184322A (en) * 2018-04-04 2019-10-24 株式会社東芝 Partial discharge detector and partial discharge detection method
CN112394297A (en) * 2020-11-10 2021-02-23 国网江苏省电力有限公司盐城供电分公司 Electrical cabinet insulation detection device and method based on bus bar induction power supply
CN112977542A (en) * 2021-03-22 2021-06-18 北京中车赛德铁道电气科技有限公司 High-voltage equipment on-line monitoring method for high-speed rail train
CN113075442A (en) * 2021-03-30 2021-07-06 国网宁夏电力有限公司电力科学研究院 Current mutual inductance circuit and current transformer
CN113075442B (en) * 2021-03-30 2023-03-14 国网宁夏电力有限公司电力科学研究院 Current mutual inductance circuit and current transformer
CN116298741A (en) * 2023-03-14 2023-06-23 青岛艾诺仪器有限公司 Insulator partial discharge detection method
CN116298741B (en) * 2023-03-14 2023-10-31 青岛艾诺仪器有限公司 Insulator partial discharge detection method

Also Published As

Publication number Publication date
JP3082132B2 (en) 2000-08-28

Similar Documents

Publication Publication Date Title
CN105223530B (en) High-frequency partial discharge detector calibration system and calibration method thereof
US9046563B2 (en) Arcing event detection
CN101208845B (en) Fault current analyser for detecting a fault current and a fault current detection device
KR20130004477A (en) Evaluating noise and excess current on a power line
AU2007283998B2 (en) Method and apparatus for detecting a fault in a supply line
JPH0945537A (en) Monitoring device for insulating state of high-voltage apparatus
KR200401675Y1 (en) Low Voltage On-Line Insulation Monitoring System
EP2545388A1 (en) Instrument and method for detecting partial electrical discharges
KR100978459B1 (en) Partial discharge counter for ultra high voltage power cable
KR101641515B1 (en) The distribution panel including a diagnosis apparatus using HFCT
KR102231150B1 (en) Bushing diagnostic system
KR20190030831A (en) The method and apparatus for detecting DC insulation resistance
JPH10104304A (en) Device and method for detecting defective insulation of device connected to power transmission or distribution network
EP2545389A1 (en) Instrument and method for detecting partial electrical discharges
JP4398198B2 (en) Insulation degradation region diagnosis system and method for electric wire or cable
JP2010230497A (en) Insulation deterioration diagnostic device of high voltage power receiving facility
CN107367677B (en) Method and device for identifying arc faults in an ungrounded power supply system
KR100937363B1 (en) Power distributing board having function of real-time insulation sensing and error point detecting for power equipment
KR20080071259A (en) Measurement device of leakage current ohmic value on power line and method thereof
US6130540A (en) Measurement system for electric disturbances in a high-voltage switchboard plant
KR100795917B1 (en) Insulation Monitoring System
KR100888902B1 (en) Low Voltage On-Line Insulation Monitoring System
JP6788259B2 (en) Loop impedance acquisition method and loop impedance tester
JP3172626B2 (en) Partial discharge detection method for high voltage equipment
CN112763858A (en) Fault arc detection method and device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees