IN2014CN05013A - - Google Patents
Info
- Publication number
- IN2014CN05013A IN2014CN05013A IN5013CHN2014A IN2014CN05013A IN 2014CN05013 A IN2014CN05013 A IN 2014CN05013A IN 5013CHN2014 A IN5013CHN2014 A IN 5013CHN2014A IN 2014CN05013 A IN2014CN05013 A IN 2014CN05013A
- Authority
- IN
- India
- Prior art keywords
- gradient echo
- gradient
- magnetic field
- image
- echo signals
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/565—Correction of image distortions, e.g. due to magnetic field inhomogeneities
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/565—Correction of image distortions, e.g. due to magnetic field inhomogeneities
- G01R33/56563—Correction of image distortions, e.g. due to magnetic field inhomogeneities caused by a distortion of the main magnetic field B0, e.g. temporal variation of the magnitude or spatial inhomogeneity of B0
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/4828—Resolving the MR signals of different chemical species, e.g. water-fat imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
- G01R33/38—Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
- G01R33/385—Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using gradient magnetic field coils
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/565—Correction of image distortions, e.g. due to magnetic field inhomogeneities
- G01R33/56509—Correction of image distortions, e.g. due to magnetic field inhomogeneities due to motion, displacement or flow, e.g. gradient moment nulling
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/565—Correction of image distortions, e.g. due to magnetic field inhomogeneities
- G01R33/56527—Correction of image distortions, e.g. due to magnetic field inhomogeneities due to chemical shift effects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/561—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences
- G01R33/5615—Echo train techniques involving acquiring plural, differently encoded, echo signals after one RF excitation, e.g. using gradient refocusing in echo planar imaging [EPI], RF refocusing in rapid acquisition with relaxation enhancement [RARE] or using both RF and gradient refocusing in gradient and spin echo imaging [GRASE]
- G01R33/5616—Echo train techniques involving acquiring plural, differently encoded, echo signals after one RF excitation, e.g. using gradient refocusing in echo planar imaging [EPI], RF refocusing in rapid acquisition with relaxation enhancement [RARE] or using both RF and gradient refocusing in gradient and spin echo imaging [GRASE] using gradient refocusing, e.g. EPI
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161579725P | 2011-12-23 | 2011-12-23 | |
PCT/IB2012/056748 WO2013093674A1 (en) | 2011-12-23 | 2012-11-26 | Mr imaging with suppression of flow artefacts |
Publications (1)
Publication Number | Publication Date |
---|---|
IN2014CN05013A true IN2014CN05013A (ja) | 2015-09-18 |
Family
ID=47522749
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
IN5013CHN2014 IN2014CN05013A (ja) | 2011-12-23 | 2012-11-26 |
Country Status (8)
Country | Link |
---|---|
US (1) | US9746539B2 (ja) |
EP (1) | EP2798364B1 (ja) |
JP (1) | JP6046742B2 (ja) |
CN (1) | CN104067137B (ja) |
BR (1) | BR112014015398A8 (ja) |
IN (1) | IN2014CN05013A (ja) |
RU (1) | RU2605524C2 (ja) |
WO (1) | WO2013093674A1 (ja) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104459587B (zh) * | 2013-09-17 | 2018-02-09 | 北京万东医疗科技股份有限公司 | 一种用于核磁共振成像系统的流动补偿方法 |
CN107076819B (zh) * | 2014-09-26 | 2020-01-10 | 皇家飞利浦有限公司 | 具有对流伪影的抑制的Dixon MR成像 |
US10459059B2 (en) * | 2015-06-26 | 2019-10-29 | Koninklijke Philips N.V. | Phase corrected Dixon Magnetic Resonance Imaging |
US9727953B2 (en) * | 2015-06-30 | 2017-08-08 | General Electric Company | Method and apparatus for ring artifact repair of magnetic resonance images |
US11041926B2 (en) | 2016-06-02 | 2021-06-22 | Koninklijke Philips N.V. | Dixon-type water/fat separation MR imaging |
DE102016212632A1 (de) | 2016-07-12 | 2018-01-18 | Siemens Healthcare Gmbh | Reduzierung von Artefakten in der Magnetresonanztechnik |
EP3413070A1 (en) | 2017-06-09 | 2018-12-12 | Koninklijke Philips N.V. | Dual-echo dixon-type water/fat separation mr imaging |
CN109222974A (zh) * | 2018-11-30 | 2019-01-18 | 济南市儿童医院(山东大学齐鲁儿童医院) | 一种具有对流动伪影的抑制的mr成像方法 |
CN112578325B (zh) * | 2019-09-27 | 2022-07-05 | 上海联影医疗科技股份有限公司 | 磁共振成像方法、装置、计算机设备和存储介质 |
EP3859366A1 (en) | 2020-01-30 | 2021-08-04 | Koninklijke Philips N.V. | Mr imaging using dixon-type water/fat separation with suppression of flow-induced leakage and/or swapping artifacts |
CN113805130B (zh) * | 2020-06-17 | 2024-01-30 | 西门子(深圳)磁共振有限公司 | 快速磁化率敏感性成像方法、装置及磁共振成像系统 |
DE102020212173A1 (de) * | 2020-09-28 | 2022-03-31 | Siemens Healthcare Gmbh | Verfahren zur Erfassung von Referenzdaten für eine Phasenkorrektur in der Magnetresonanztechnik |
EP4145165B1 (de) * | 2021-09-03 | 2024-07-17 | Siemens Healthineers AG | Ansteuerung eines magnetresonanzgerätes mit kompensierter maxwell-phase |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5070876A (en) | 1989-08-07 | 1991-12-10 | The Board Of Trustees Of The Leland Stanford Junior University | Flow-independent magnetic resonance projection angiography |
JPH0382446A (ja) * | 1989-08-25 | 1991-04-08 | Shimadzu Corp | Mr撮像法 |
US5170122A (en) | 1991-07-25 | 1992-12-08 | General Electric | NMR imaging using flow compensated SSFP pulse sequences |
US5206591A (en) | 1991-10-23 | 1993-04-27 | Siemens Aktiengesellschaft | Method for obtaining data in phase-contrast MR angiography |
DE4319539A1 (de) * | 1993-06-12 | 1994-12-15 | Philips Patentverwaltung | Verfahren zur Erzeugung einer MR-Bildfolge und Anordnung zur Durchführung des Verfahrens |
DE4329922A1 (de) * | 1993-09-04 | 1995-03-09 | Philips Patentverwaltung | MR-Abbildungsverfahren und Anordnung zur Durchführung des Verfahrens |
US5521502A (en) | 1994-04-25 | 1996-05-28 | Georgia Tech Research Corporation | Flow differentiation scheme for magnetic resonance angiography |
RU2103916C1 (ru) * | 1996-02-20 | 1998-02-10 | Акционерное общество закрытого типа Научно-производственной фирмы "Аз" | Кардиосинхронизатор магнитно-резонансного изображения |
DE19607023A1 (de) * | 1996-02-24 | 1997-08-28 | Philips Patentverwaltung | MR-Verfahren mit reduzierten Bewegungsartefakten |
US5891032A (en) | 1997-04-10 | 1999-04-06 | Elscint Ltd | Fat free TOF angiography |
BR9810032A (pt) * | 1998-04-17 | 2000-09-19 | Koninkl Philips Electronics Nv | Processo e aparelho de ressonância magnética para obter imagens por intermédio de ressonância magnética |
US6100689A (en) * | 1998-09-03 | 2000-08-08 | General Electric Company | Method for quantifying ghost artifacts in MR images |
US6114852A (en) * | 1999-01-23 | 2000-09-05 | General Electric Company | Method employing point source to determine motion induced errors in MR imaging |
JP3617458B2 (ja) * | 2000-02-18 | 2005-02-02 | セイコーエプソン株式会社 | 表示装置用基板、液晶装置及び電子機器 |
JP4251763B2 (ja) * | 2000-08-11 | 2009-04-08 | 株式会社日立メディコ | 磁気共鳴イメージング装置 |
DE10157540B4 (de) | 2001-11-23 | 2007-01-11 | Siemens Ag | Doppelechosequenz und Magnetresonanzgerät zum Ausführen der Doppelechosequenz und Verwendung desselben in der Orthopädie |
JP3785128B2 (ja) * | 2002-09-19 | 2006-06-14 | 株式会社東芝 | 画像診断装置、画像処理方法、画像処理装置及び記憶媒体 |
JP5619339B2 (ja) * | 2006-09-13 | 2014-11-05 | 株式会社東芝 | 磁気共鳴画像診断装置 |
US9201129B2 (en) * | 2006-09-13 | 2015-12-01 | Kabushiki Kaisha Toshiba | Magnetic-resonance image diagnostic apparatus and method of controlling the same |
JP4936864B2 (ja) * | 2006-11-22 | 2012-05-23 | 株式会社東芝 | 磁気共鳴イメージング装置 |
US7777486B2 (en) * | 2007-09-13 | 2010-08-17 | The Board Of Trustees Of The Leland Stanford Junior University | Magnetic resonance imaging with bipolar multi-echo sequences |
CN101896835B (zh) * | 2007-12-11 | 2016-09-14 | 皇家飞利浦电子股份有限公司 | 减少mri中的运动伪影 |
JP5221570B2 (ja) * | 2008-01-23 | 2013-06-26 | 株式会社日立メディコ | 磁気共鳴イメージング装置及びマルチコントラスト画像取得方法 |
-
2012
- 2012-11-26 IN IN5013CHN2014 patent/IN2014CN05013A/en unknown
- 2012-11-26 BR BR112014015398A patent/BR112014015398A8/pt not_active IP Right Cessation
- 2012-11-26 EP EP12813116.6A patent/EP2798364B1/en active Active
- 2012-11-26 CN CN201280067829.2A patent/CN104067137B/zh active Active
- 2012-11-26 RU RU2014125528/28A patent/RU2605524C2/ru not_active IP Right Cessation
- 2012-11-26 JP JP2014548256A patent/JP6046742B2/ja not_active Expired - Fee Related
- 2012-11-26 US US14/367,464 patent/US9746539B2/en active Active
- 2012-11-26 WO PCT/IB2012/056748 patent/WO2013093674A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
RU2605524C2 (ru) | 2016-12-20 |
EP2798364B1 (en) | 2021-08-11 |
CN104067137A (zh) | 2014-09-24 |
EP2798364A1 (en) | 2014-11-05 |
US20140368195A1 (en) | 2014-12-18 |
JP2015504714A (ja) | 2015-02-16 |
BR112014015398A8 (pt) | 2017-07-04 |
US9746539B2 (en) | 2017-08-29 |
CN104067137B (zh) | 2017-12-12 |
BR112014015398A2 (pt) | 2017-06-13 |
RU2014125528A (ru) | 2016-02-20 |
WO2013093674A1 (en) | 2013-06-27 |
JP6046742B2 (ja) | 2016-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
IN2014CN05013A (ja) | ||
Chang et al. | Human brain diffusion tensor imaging at submillimeter isotropic resolution on a 3 Tesla clinical MRI scanner | |
US9476959B2 (en) | MRI ghosting correction using unequal magnitudes ratio | |
US9488711B2 (en) | Magnetic resonance imaging apparatus and magnetic resonance imaging method | |
IN2014CN02545A (ja) | ||
EP2457503A1 (en) | Magnetic resonance imaging device and magnetic resonance imaging method | |
WO2013001399A3 (en) | Bone mri using an ultrashort echo time pulse sequence with fid and multiple gradient echo acquisition and water - fat separation processing | |
WO2012073181A3 (en) | Mr imaging using a multi-point dixon technique and lower resolution calibration | |
WO2012073159A3 (en) | Mr imaging using a multi-point dixon technique | |
WO2012143847A3 (en) | Contrast enhanced magnetic resonance angiography with chemical shift encoding for fat suppression | |
JP2011062508A (ja) | 磁気共鳴イメージング装置および高周波コイルユニット | |
WO2009094304A2 (en) | Susceptibility weighted magnetic resonance imaging of venous vasculature | |
US9606210B2 (en) | Magnetic resonance imaging apparatus and magnetic resonance imaging method | |
US20150241538A1 (en) | Motion Correction for Magnetic Resonance Angiography (MRA) With 3D Radial Acquisitions | |
CN103976735B (zh) | 基于磁共振的黑血电影成像方法 | |
JP2017184935A5 (ja) | ||
JP2017528276A5 (ja) | ||
Liang et al. | A variable flip angle-based method for reducing blurring in 3D GRASE ASL | |
Mani et al. | Comprehensive reconstruction of multi-shot multi-channel diffusion data using mussels | |
WO2012151205A1 (en) | Catalytic multiecho phase unwrapping scheme | |
Wang et al. | Simultaneous pure T2 and varying T2′-weighted BOLD fMRI using Echo Planar Time-resolved Imaging for mapping cortical-depth dependent responses | |
WO2015011584A3 (en) | Differentiating tissues with mri using multi-echo ultra-short te (ute) with mdixon pulse sequence | |
JPWO2014038441A1 (ja) | 磁気共鳴イメージング装置および磁気共鳴イメージング方法 | |
Feizollah et al. | High-resolution diffusion-weighted imaging at 7 Tesla: Single-shot readout trajectories and their impact on signal-to-noise ratio, spatial resolution and accuracy | |
Ma et al. | Column-based cortical depth analysis of the diffusion anisotropy and radiality in submillimeter whole-brain diffusion tensor imaging of the human cortical gray matter in vivo |