IN2014CN05013A - - Google Patents

Info

Publication number
IN2014CN05013A
IN2014CN05013A IN5013CHN2014A IN2014CN05013A IN 2014CN05013 A IN2014CN05013 A IN 2014CN05013A IN 5013CHN2014 A IN5013CHN2014 A IN 5013CHN2014A IN 2014CN05013 A IN2014CN05013 A IN 2014CN05013A
Authority
IN
India
Prior art keywords
gradient echo
gradient
magnetic field
image
echo signals
Prior art date
Application number
Inventor
Holger Eggers
Peter Börnert
Original Assignee
Koninkl Philips Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninkl Philips Nv filed Critical Koninkl Philips Nv
Publication of IN2014CN05013A publication Critical patent/IN2014CN05013A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities
    • G01R33/56563Correction of image distortions, e.g. due to magnetic field inhomogeneities caused by a distortion of the main magnetic field B0, e.g. temporal variation of the magnitude or spatial inhomogeneity of B0
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/4828Resolving the MR signals of different chemical species, e.g. water-fat imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/385Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using gradient magnetic field coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities
    • G01R33/56509Correction of image distortions, e.g. due to magnetic field inhomogeneities due to motion, displacement or flow, e.g. gradient moment nulling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities
    • G01R33/56527Correction of image distortions, e.g. due to magnetic field inhomogeneities due to chemical shift effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/561Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences
    • G01R33/5615Echo train techniques involving acquiring plural, differently encoded, echo signals after one RF excitation, e.g. using gradient refocusing in echo planar imaging [EPI], RF refocusing in rapid acquisition with relaxation enhancement [RARE] or using both RF and gradient refocusing in gradient and spin echo imaging [GRASE]
    • G01R33/5616Echo train techniques involving acquiring plural, differently encoded, echo signals after one RF excitation, e.g. using gradient refocusing in echo planar imaging [EPI], RF refocusing in rapid acquisition with relaxation enhancement [RARE] or using both RF and gradient refocusing in gradient and spin echo imaging [GRASE] using gradient refocusing, e.g. EPI

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

The invention relates to a method of MR imaging of a body (10) placed in the examination volume of a MR device (1). It is an object of the invention to provide a method that enables efficient compensation of flow artefacts especially for contrast enhanced MR angiography in combination with Dixon water/fat separation. The method of the invention comprises the steps of: a) generating at least two gradient echo signals at two different echo times by subjecting the portion of the body (10) to an imaging sequence of RF pulses and switched magnetic field gradients wherein the 0th moment of the readout magnetic field gradient essentially vanishes at the time of the first gradient echo the 1st moment of the readout gradient being non zero at the time of the first gradient echo while both the 0th and 1st moments of the readout magnetic field gradient essentially vanish at the time of the second gradient echo; b) acquiring the gradient echo signals; c) repeating steps a) and b) for a plurality of phase encoding steps. Moreover the invention relates to a MR device for carrying out the method of the invention and to a computer program to be run on a MR device; d) reconstructing a first MR image from the gradient echo signals of the first gradient echo and a second MR image from the gradient echo signals of the second gradient echo; and e) identifying ghosting artefacts in the first and/or second MR image by comparing the first and second MR images.
IN5013CHN2014 2011-12-23 2012-11-26 IN2014CN05013A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161579725P 2011-12-23 2011-12-23
PCT/IB2012/056748 WO2013093674A1 (en) 2011-12-23 2012-11-26 Mr imaging with suppression of flow artefacts

Publications (1)

Publication Number Publication Date
IN2014CN05013A true IN2014CN05013A (en) 2015-09-18

Family

ID=47522749

Family Applications (1)

Application Number Title Priority Date Filing Date
IN5013CHN2014 IN2014CN05013A (en) 2011-12-23 2012-11-26

Country Status (8)

Country Link
US (1) US9746539B2 (en)
EP (1) EP2798364B1 (en)
JP (1) JP6046742B2 (en)
CN (1) CN104067137B (en)
BR (1) BR112014015398A8 (en)
IN (1) IN2014CN05013A (en)
RU (1) RU2605524C2 (en)
WO (1) WO2013093674A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104459587B (en) * 2013-09-17 2018-02-09 北京万东医疗科技股份有限公司 A kind of flowing compensation method for MRI system
WO2016046062A1 (en) * 2014-09-26 2016-03-31 Koninklijke Philips N.V. Dixon mr imaging with suppression of flow artifacts
CN107923958B (en) * 2015-06-26 2020-06-23 皇家飞利浦有限公司 Phase corrected dixon magnetic resonance imaging
US9727953B2 (en) * 2015-06-30 2017-08-08 General Electric Company Method and apparatus for ring artifact repair of magnetic resonance images
EP3465246A1 (en) 2016-06-02 2019-04-10 Koninklijke Philips N.V. Dixon-type water/fat separation mr imaging
DE102016212632A1 (en) * 2016-07-12 2018-01-18 Siemens Healthcare Gmbh Reduction of artifacts in magnetic resonance technology
EP3413070A1 (en) * 2017-06-09 2018-12-12 Koninklijke Philips N.V. Dual-echo dixon-type water/fat separation mr imaging
CN109222974A (en) * 2018-11-30 2019-01-18 济南市儿童医院(山东大学齐鲁儿童医院) MR imaging method with flow artifact suppression
CN112578325B (en) * 2019-09-27 2022-07-05 上海联影医疗科技股份有限公司 Magnetic resonance imaging method, magnetic resonance imaging apparatus, computer device, and storage medium
EP3859366A1 (en) 2020-01-30 2021-08-04 Koninklijke Philips N.V. Mr imaging using dixon-type water/fat separation with suppression of flow-induced leakage and/or swapping artifacts
CN113805130B (en) * 2020-06-17 2024-01-30 西门子(深圳)磁共振有限公司 Quick susceptibility sensitive imaging method, device and magnetic resonance imaging system
DE102020212173A1 (en) * 2020-09-28 2022-03-31 Siemens Healthcare Gmbh Method for acquiring reference data for phase correction in magnetic resonance technology
EP4145165A1 (en) * 2021-09-03 2023-03-08 Siemens Healthcare GmbH Control of a magnetic resonance device with compensated maxwell phase

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5070876A (en) 1989-08-07 1991-12-10 The Board Of Trustees Of The Leland Stanford Junior University Flow-independent magnetic resonance projection angiography
JPH0382446A (en) * 1989-08-25 1991-04-08 Shimadzu Corp Mr image pickup
US5170122A (en) 1991-07-25 1992-12-08 General Electric NMR imaging using flow compensated SSFP pulse sequences
US5206591A (en) 1991-10-23 1993-04-27 Siemens Aktiengesellschaft Method for obtaining data in phase-contrast MR angiography
DE4319539A1 (en) * 1993-06-12 1994-12-15 Philips Patentverwaltung Method for generating an MR image sequence and arrangement for carrying out the method
DE4329922A1 (en) * 1993-09-04 1995-03-09 Philips Patentverwaltung MR imaging method and arrangement for carrying out the method
US5521502A (en) 1994-04-25 1996-05-28 Georgia Tech Research Corporation Flow differentiation scheme for magnetic resonance angiography
RU2103916C1 (en) * 1996-02-20 1998-02-10 Акционерное общество закрытого типа Научно-производственной фирмы "Аз" Cardiosynchronizer device for building magnetic resonance images
DE19607023A1 (en) * 1996-02-24 1997-08-28 Philips Patentverwaltung MR procedure with reduced movement artifacts
US5891032A (en) 1997-04-10 1999-04-06 Elscint Ltd Fat free TOF angiography
EP2194392A1 (en) * 1998-04-17 2010-06-09 Koninklijke Philips Electronics N.V. SENSE: Sensitivity Encoding for fast MRI
US6100689A (en) * 1998-09-03 2000-08-08 General Electric Company Method for quantifying ghost artifacts in MR images
US6114852A (en) * 1999-01-23 2000-09-05 General Electric Company Method employing point source to determine motion induced errors in MR imaging
JP3617458B2 (en) * 2000-02-18 2005-02-02 セイコーエプソン株式会社 Substrate for display device, liquid crystal device and electronic device
JP4251763B2 (en) * 2000-08-11 2009-04-08 株式会社日立メディコ Magnetic resonance imaging system
DE10157540B4 (en) 2001-11-23 2007-01-11 Siemens Ag Double echo sequence and magnetic resonance apparatus for performing the dual echo sequence and using it in orthopedics
JP3785128B2 (en) * 2002-09-19 2006-06-14 株式会社東芝 Image diagnostic apparatus, image processing method, image processing apparatus, and storage medium
JP5619339B2 (en) * 2006-09-13 2014-11-05 株式会社東芝 Magnetic resonance imaging system
US9201129B2 (en) * 2006-09-13 2015-12-01 Kabushiki Kaisha Toshiba Magnetic-resonance image diagnostic apparatus and method of controlling the same
JP4936864B2 (en) * 2006-11-22 2012-05-23 株式会社東芝 Magnetic resonance imaging system
US7777486B2 (en) * 2007-09-13 2010-08-17 The Board Of Trustees Of The Leland Stanford Junior University Magnetic resonance imaging with bipolar multi-echo sequences
CN101896835B (en) * 2007-12-11 2016-09-14 皇家飞利浦电子股份有限公司 Reduce the motion artifacts in MRI
JP5221570B2 (en) * 2008-01-23 2013-06-26 株式会社日立メディコ Magnetic resonance imaging apparatus and multi-contrast image acquisition method

Also Published As

Publication number Publication date
JP6046742B2 (en) 2016-12-21
CN104067137A (en) 2014-09-24
RU2605524C2 (en) 2016-12-20
WO2013093674A1 (en) 2013-06-27
BR112014015398A8 (en) 2017-07-04
EP2798364B1 (en) 2021-08-11
BR112014015398A2 (en) 2017-06-13
JP2015504714A (en) 2015-02-16
CN104067137B (en) 2017-12-12
US9746539B2 (en) 2017-08-29
EP2798364A1 (en) 2014-11-05
RU2014125528A (en) 2016-02-20
US20140368195A1 (en) 2014-12-18

Similar Documents

Publication Publication Date Title
IN2014CN05013A (en)
Chang et al. Human brain diffusion tensor imaging at submillimeter isotropic resolution on a 3 Tesla clinical MRI scanner
US9476959B2 (en) MRI ghosting correction using unequal magnitudes ratio
US9488711B2 (en) Magnetic resonance imaging apparatus and magnetic resonance imaging method
IN2014CN02545A (en)
EP2457503A1 (en) Magnetic resonance imaging device and magnetic resonance imaging method
WO2013001399A3 (en) Bone mri using an ultrashort echo time pulse sequence with fid and multiple gradient echo acquisition and water - fat separation processing
WO2012073181A3 (en) Mr imaging using a multi-point dixon technique and lower resolution calibration
WO2012073159A3 (en) Mr imaging using a multi-point dixon technique
WO2012143847A3 (en) Contrast enhanced magnetic resonance angiography with chemical shift encoding for fat suppression
JP2011062508A (en) Magnetic resonance imaging apparatus and high frequency coil unit
Viessmann et al. T2‐weighted intracranial vessel wall imaging at 7 Tesla using a DANTE‐prepared variable flip angle turbo spin echo readout (DANTE‐SPACE)
WO2009094304A2 (en) Susceptibility weighted magnetic resonance imaging of venous vasculature
US9606210B2 (en) Magnetic resonance imaging apparatus and magnetic resonance imaging method
JP6510273B2 (en) Magnetic resonance imaging apparatus, magnetic resonance imaging method and magnetic resonance imaging program
JP2017184935A5 (en)
JP2017528276A5 (en)
Liang et al. A variable flip angle-based method for reducing blurring in 3D GRASE ASL
Mani et al. Comprehensive reconstruction of multi-shot multi-channel diffusion data using mussels
WO2015011584A3 (en) Differentiating tissues with mri using multi-echo ultra-short te (ute) with mdixon pulse sequence
IN2014MN02265A (en)
Wang et al. Simultaneous pure T2 and varying T2′-weighted BOLD fMRI using Echo Planar Time-resolved Imaging for mapping cortical-depth dependent responses
JPWO2014038441A1 (en) Magnetic resonance imaging apparatus and magnetic resonance imaging method
Feizollah et al. High-resolution diffusion-weighted imaging at 7 Tesla: Single-shot readout trajectories and their impact on signal-to-noise ratio, spatial resolution and accuracy
EP2762863A3 (en) Magnetic resonance imaging methods to resolve short T2 components