HUE033029T2 - Eljárás polimer részecskék méreteloszlásának szabályozására vizes polimer diszperzió készítése során; a vizes polimer diszperzió; és annak alkalmazása - Google Patents

Eljárás polimer részecskék méreteloszlásának szabályozására vizes polimer diszperzió készítése során; a vizes polimer diszperzió; és annak alkalmazása Download PDF

Info

Publication number
HUE033029T2
HUE033029T2 HUE13701675A HUE13701675A HUE033029T2 HU E033029 T2 HUE033029 T2 HU E033029T2 HU E13701675 A HUE13701675 A HU E13701675A HU E13701675 A HUE13701675 A HU E13701675A HU E033029 T2 HUE033029 T2 HU E033029T2
Authority
HU
Hungary
Prior art keywords
polysaccharide
polymer dispersion
solution
weight
viscosity
Prior art date
Application number
HUE13701675A
Other languages
English (en)
Inventor
Helena Peuranen
Perttu Heiska
Kimmo Huhtala
Nina Bruun
Original Assignee
Kemira Oyj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kemira Oyj filed Critical Kemira Oyj
Publication of HUE033029T2 publication Critical patent/HUE033029T2/hu

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F251/00Macromolecular compounds obtained by polymerising monomers on to polysaccharides or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/20Aqueous medium with the aid of macromolecular dispersing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1802C2-(meth)acrylate, e.g. ethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1804C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/40Redox systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/14Amylose derivatives; Amylopectin derivatives
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/21Macromolecular organic compounds of natural origin; Derivatives thereof
    • D21H17/24Polysaccharides
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/21Macromolecular organic compounds of natural origin; Derivatives thereof
    • D21H17/24Polysaccharides
    • D21H17/28Starch
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/35Polyalkenes, e.g. polystyrene
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/36Polyalkenyalcohols; Polyalkenylethers; Polyalkenylesters
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/37Polymers of unsaturated acids or derivatives thereof, e.g. polyacrylates
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/16Sizing or water-repelling agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Graft Or Block Polymers (AREA)
  • Paper (AREA)
  • Polymerisation Methods In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

(12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C08F 251100 <200e 01> C08F 220118 <2006 01> 12.10.2016 Bulletin 2016/41 C08F 212I08<2006 01> D21H 21l16<200e 01> D21H 17/37 <2006.01) D21H 17/36(2oo6.oi) (21) Application number: 13701675.4 D21H 17Ι24<2°°°·”> C08K 3120^) v ' C08F 2120 <2006·01) (22) Date of filing: 11.01.2013 (86) International application number: PCT/FI2013/050031 (87) International publication number: WO 2013/104832 (18.07.2013 Gazette 2013/29)
(54) METHOD FOR CONTROLLING SIZE DISTRIBUTION OF POLYMER PARTICLES DURING PREPARATION OF AQUEOUS POLYMER DISPERSION, AQUEOUS POLYMER DISPERSION AND ITS USE
VERFAHREN ZUR STEUERUNG DER GROSSENVERTEILUNG VON POLYMERPARTIKELN WAHREND DER HERSTELLUNG EINER WASSRIGEN POLYMERDISPERSION, WASSRIGE POLYMERDISPERSION UND IHRE VERWENDUNG
PROCEDE PERMETTANT DE REGLER LA DISTRIBUTION DE TAILLE DE PARTICULES DE POLYMERE PENDANT LA PREPARATION D’UNE DISPERSION AQUEUSE DE POLYMERE, DISPERSION AQUEUSE DE POLYMERE ET SON UTILISATION (84) Designated Contracting States: · HUHTALA, Kimmo AL AT BE BG CH CY CZ DE DK EE ES FI FR GB FI-20900 Turku (FI) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO ♦ BRUUN, Nina PL PT RO RS SE SI SK SM TR FI-20100 Turku (FI) (30) Priority: 12.01.2012 FI 20125036 (74) Representative: Turun Patenttitoimisto Oy 12.01.2012 US 201261585677 P P.O. Box 99
Tykistokatu 2-4 B (43) Date of publication of application: 20521 Turku (FI) 19.11.2014 Bulletin 2014/47 (56) References cited: (73) Proprietor: Kemira OYJ EP-A1-1 321 574 WO-A1-00/23479 00180 Helsinki (FI) WO-A1-01/57173 WO-A2-2009/141109 US-B1- 6 426 381 (72) Inventors: • PEURANEN, Helena Remarks: FI-02730 Espoo (FI) Thefilecontainstechnicalinformationsubmittedafter • HEISKA, Perttu the application was filed and not included in this FI-02280 Espoo (FI) specification
Description [0001] The present invention relates to method for controlling size distribution of polymer particles during preparation of aqueous polymer dispersion according to the preamble of the enclosed claim.
[0002] Starch graft copolymer dispersions are used in pulp and papermaking. They can be used for various purposes, for example for surface sizing compositions or for increasing the dry strength of paper. For example, US 6,426,381 discloses styrene/(meth)acrylate copolymers that can be used for surface sizing. US 6,426,381 further discloses that the obtained dispersions have a particle size of less than 100 nm, even 50 to 90 nm. In practice, however, it has been observed that even if most of the formed polymer particles in the aqueous dispersion are relatively small, there exist also an amount of large polymer particles or polymer agglomerates. This fact is demonstrated by observing a typical particle size distribution for these polymer dispersions. For a dispersion having D50 value <100 nm, D90 value may already be around 130 nm, and D99 value around 400 nm. This indicates clearly the presence of large polymer particles or polymer agglomerates.
[0003] Uneven particle size distribution in the aqueous dispersion may have negative effects in the end use of the polymer dispersions in papermaking applications. Furthermore, it has been observed that small particle size offers advantages in many applications. Therefore there exists an interest to prepare polymer dispersions comprising small and even sized particles.
[0004] EP 1321574 discloses a surface size composition comprising a polymer and a reactive aluminium compound. The polymer is obtained by polymerisation of degraded starch, styrene and alkyl (meth)acrylate.
[0005] WO 00/23479 discloses sizing agents comprising dispersed synthetic polymers in an aqueous solutions. The polymers are prepared by copolymerising styrene which may optionally be substituted and certain acrylates in the presence of a stabilizing agent, which may be a polysaccharide.
[0006] An object of this invention is to minimise or even eliminate the disadvantages existing in the prior art.
[0007] An object is also to provide a method, with which the occurrence or formation of large polymer particles or polymer agglomerates may be eliminated or reduced in the dispersion.
[0008] A further object of this invention is to provide a method, with which the particle size of the polymer particles may be adjusted.
[0009] A still further object is to provide an aqueous polymer dispersion having a small particle size and a negligible amount of large particles or agglomerates.
[0010] These objects are attained with a method having the characteristics presented below in the characterising parts of the independent claims.
[0011] The method according to the present invention for controlling size distribution of formed polymer particles during preparation of aqueous polymer dispersion is defined in claim 1, and the method comprises, obtaining an aqueous polysaccharide solution, which comprises (a) 10 to 40 weight-% of polysaccharide containing a free hydroxyl group, such as starch, polymerising in the polysaccharide solution and in the presence of a graft-linking, water-soluble redox system (b) 30 to 60 weight-% of at least one optionally substituted styrene, (c) 60 to 30 weight-% of at least one C1-C4-alkyl (meth)acrylate, (d) 0 to 10 weight-% of other ethylenically unsaturated copolymerizable monomers, wherein the sum of (a)+(b)+(c)+(d) is 100 %, and whereby the size distribution of the formed polymer particles is controlled by adjusting viscosity of the polysaccharide solution before the polymerisation to a level < 20 mPas, measured at 23 °C with Brookfield LVDV viscometer with spindle 18, 60 rpm.
[0012] Typical aqueous polymer dispersion is obtained by free radical emulsion copolymerization of ethylenically unsaturated monomers in the presence of (a) 10 to 40 weight-% polysaccharide containing a free hydroxyl group, such as starch, the monomers comprising (b) 30 to 60 weight-% of at least one optionally substituted styrene, (c) 60 to 30 weight-% of at least one C1-C4-alkyl (meth)acrylate, and (d) 0 to 10 weight-% of other ethylenically unsaturated copolymerizable monomers, and using (e) a graft-linking, water-soluble redox system as free radical initiator for the free radical emulsion copolym erization, wherein the sum (a)+(b)+(c)+(d) is 100 %, whereby the particle size D99 value is < 160 nm for polymer particles of the polymer dispersion.
[0013] Typical use of the aqueous polymer dispersion is for preparation of compositions used in making of paper, board or the like.
[0014] Now it has been surprisingly found out that adjusting the viscosity of the polysaccharide solution before the polymerisation to a level < 20 mPas, the formed polymer particles are small in size and their particle size distribution is narrow. It has been observed that the large particles or agglomerates are in practice missing from the obtained dispersion. Small polymer particles with narrow size distribution offer unexpected advantages. For example, it is possible to obtain polymerdispersion with high solids content which still has good, or at least acceptable, viscosity properties. Furthermore, it has been observed that the narrow particle size distribution enhances the function of the polymer dispersion in many papermaking applications, for example as a strength agent.
[0015] The viscosity of the polysaccharide solution, such as starch solution, before the polymerisation, i.e. before the addition of the monomers to the starch solution, is adjusted to a level < 15 mPas, preferably < 10 mPas, measured at 23 °C with Brookfield LVDV viscometer with spindle 18, 60 rpm. The viscosity of the polysaccharide solution, such as starch solution, before the polymerisation may be adjusted more preferably to the range of 6 -10 mPas, measured at 23 °C with Brookfield LVDV viscometer with spindle 18, 60 rpm.
[0016] According to one embodiment of the invention, the viscosity of the polysaccharide solution, such as starch solution, may be adjusted before the polymerisation at 15 % solids content, measured at 23 °C with Brookfield LVDV viscometer with spindle 18, 60 rpm.
[0017] According to one embodiment of the invention the viscosity adjustment of the polysaccharide solution, such as starch solution, is performed by adjusting the pH of the polysaccharide solution < 2.5, preferably < 2.3 before the polymerisation. This means that the polymerisation is carried out at pH values less than 2.5, by adjusting the pH of the polysaccharide solution typically to the acidic range of 1.3 - 2.4, preferably 1.5- 2.3, more preferably 1.7 - 2.1. The pH value may be adjusted to the desired value before the beginning of the polymerisation by using conventional mineral acids or organic acids, such as hydrochloric acid, sulphuric acid, phosphoric acid, formic acid or acetic acid, preferably sulphuric acid.
[0018] According to another embodiment of the present invention the viscosity adjustment of the polysaccharide solution, such as starch solution, is performed by adjusting the dry solids content of the polysaccharide solution to < 35 weight-%, preferably < 30 weight-%, more preferably < 25 weight-%, before the polymerisation. The dry solids content of the polysaccharide solution is typically adjusted to the range of 15 - 35 weight-%, more typically 15-30 weight %, preferably 20 - 25 weight- %, before the polymerisation.
[0019] In the present invention it is possible to use a polysaccharide, which contains a free hydroxyl group, such as starch. According to one embodiment of the invention the polysaccharide containing a free hydroxyl group may be selected from a group consisting amylose, amylopectine, carrageen, cellulose, chitosan, chitin, dextrines, guar gum (guarane) and other galactomannans, arabic gum, hemicellulose components, and pullulan, preferably from a group consisting amylose, amylopectine, dextrin and galactomannas. Amylose and amylopectine are being most preferred.
[0020] According to another embodiment of the invention polysaccharide, which is used, may preferably be modified or unmodified starch. Starch, which may be used in the present invention, may be any suitable natural starch, such as potato, rice, corn, waxy corn, wheat, barley or tapioca starch, potato starch being preferred. Starches having an amy-lopectin content > 80 %, preferably >95 % are advantageous. Starch may be also modified, for example, anionised, cationised and/or degraded. Anionised starch comprises anionic groups, such as carboxylate or phosphate groups, whereas cationised starch comprises cationic groups, such as quaternized ammonium groups. Degree of substitution (DS), indicating the number of anionic/cationic groups in the starch on average per glucose unit, is typically 0.01 - 0.20. Amphoteric starches, comprising both anionic and cationic groups, may also be used. It is also possible to use chemically modified starches, such as hydroxyethyl- or hydroxypropyl-starches.
[0021] Polysaccharide, such as starch, may be degraded by using suitable oxidising agents, such as hypochlorite and/or hydrogen peroxide, before the polymerisation. According to one advantageous embodiment starch is degraded with hypochlorite for improving the dissolution properties of the starch, and after that a further degradation, for example with hydrogen peroxide, is carried out, e.g. shortly before the subsequent graft copolymerisation. In this case, hydrogen peroxide (calculated as 100 %) is used in concentrations of 0.3 to 5.0 weight-%, based on starch employed. The exact amount of hydrogen peroxide depends on the molecular weight to which the starch is to be degraded.
[0022] According to one embodiment of the invention the polysaccharide is degraded starch, which is used in the polymerisation process. Degraded starch is obtained by subjecting the starch to oxidative, thermal, acidic, hydrolytic or enzymatic degradation, oxidative degradation being preferred. Hypochlorite, peroxodisulphate, hydrogen peroxide or their mixtures may be used as oxidising agents. Degraded starch has typically an average molecular weight (Mn) 500 - 10 000, which can be determined by known gel chromatography methods. The intrinsic viscosity is typically 0.05 to 0.12 dl/g, determined, for example, by known viscosimetric methods, described for example in "Methods in Carbohydrate
Chemistry"; Volume IV, Academic Press New York and Frankfurt, 1964, page 127.
[0023] Furthermore, starches for which both modification steps have been combined, i.e. which have been degraded and additionally modified, are suitable.
[0024] The viscosity adjustment may be performed by selecting a polysaccharide, which is starch or dextrin. According to one preferred embodiment of the invention the viscosity adjustment of the polysaccharide solution is performed by selecting a polysaccharide, which is an anionic starch derivative, preferably anionic potato starch derivative, having a viscosity of < 10 mPas, preferably < 8 mPas, at 15 % solids content, measured at 80 °C with Brookfield LVDV viscometer with spindle 18, 60 rpm.
[0025] According to one preferred embodiment of the present invention it is thus possible to control the particle size distribution during preparation of aqueous polymer distribution by adjusting the viscosity of the polysaccharide solution, such as starch solution, before the polymerisation, i.e. before the addition of the monomers to the polysaccharide solution. The viscosity adjustment may be performed by optimising and adjusting, as described above, at least one or several or all of the following parameters: pH of the polysaccharide solution, dry solids content of the polysaccharide solution and/or polysaccharide type. By combination of these three parameters it is possible not only to obtain a polymer dispersion with very narrow particle size distribution, but also a polymer dispersion with very small particles. Typical polymer dispersion obtained by the present method has D50 value < 70 nm, preferably < 65 nm, more preferably < 60 nm, and/or D99 value <160 nm, preferably <150 nm, more preferably <130 nm, sometimes even < 120 nm.
[0026] Typical polymer dispersion obtained by the method has D50 value in the range of 45 - 70 nm, preferably 45 -60 nm, more preferably 45 - 55 nm, sometimes even 45 - 50 nm. Typical polymer dispersion obtained by the method has D99 value in the range of 110 -140 nm, more preferably 115-135 nm. All the particle sizes are measured by using Zetasizer Nano ZS, Malvern. D50 and D99 values refer to the respective values for 50th and 99th percentile of a volume based distribution.
[0027] The polymerisation is carried out by addition of the monomers, which are more closely described below, either individually or as a mixture, and the free radical initiators suitable for initiating the polymerisation in the aqueous starch solution. The polymerisation process is typically carried in the absence of oxygen, preferably in an inert gas atmosphere, for example under nitrogen.
[0028] In case a starch solution is used, it may be heated to a value above its glutenization temperature before the start of the polymerisation. Typically the polymerisation steps of the polymerisation process are performed at temperature range 30 - 100 °C, preferably between 70 - 95 °C. The temperature may be > 100 °C in case a pressure reactor under superatmospheri c pressure is employed. The polymerisation may be carried out by a feed process or by a batch process. A continuous polymerisation process in a stirred kettle cascade or a flow tube is also possible. In a feed process, which is preferred, the monomers and the free radical initiator are metered uniformly into the starch solution in a stirred reactor. During the entire preparation and polymerisation process, thorough mixing with the aid of any suitable stirring or mixing units so that the added components are homogeneously distributed as rapidly as possible.
[0029] Initiators used for the polymerisation are in conventional free radical initiators, preferably peroxo or azo compounds. Examples of these are hydrogen peroxide, sodium, potassium and ammonium peroxodisulphate, di-tert-butyl peroxide, dibenzoyl peroxide, azobisisobutyronitrile, 2,2’-azobis(2-methylbutyronitrile), 2,2’-azobis(2,4-dimethylvaleroni-trile) and 2,2’-azobis(2-amidinopropane) dihydrochloride. Preferably the initiators are water-soluble, i.e. have a water solubility of > 1 weight-% at 23 °C. Hydrogen peroxide, potassium p eroxodisulphate and ammonium peroxodisulphate are advantageous.
[0030] Above described free radical initiators may also be used in the presence of conventional reducing agents, thus forming a so-called redox initiator system, which is suitable to be used as initiator. Examples of conventional reducing agents are e.g. sodium sulphite, sodium bisulphite, sodium pyrosulphite, sodium hydrogen sulphite, sodium dithionite, sodium formaldehyde sulphoxylate, ascorbic acid and the sodium salt of hydroxymethanesulphinic acid.
[0031] The free radical initiators, especially hydrogen peroxide, may also be combined with heavy metal salts, such as cerium (IV), manganese or iron (II) salts to give a redox system suitable to be used as a water-soluble initiator system providing high grafting yield. According to one embodiment of the invention the use of a combination of hydrogen peroxide and iron(ll) salt as the graft-linking, water-soluble redox system is particularly preferred. The grafting yield is here understood the proportion of the polymer which is chemically coupled to the polysaccharide, such as starch, after the end of polymerisation.
[0032] The polymerisation may be carried out so that the heavy metal salt of the redox system, e.g. the iron(ll) salt, is added to the polysaccharide solution, such as starch solution, before the polymerisation, while hydrogen peroxide is added in simultaneously but separately with the monomers. According to one embodiment of the invention iron(ll) salt is usually used in concentration of 3 - 200 mg/l Fe(ll) ion, preferably 5-45 mg/l Fe(ll) ion, more preferably 8-18 mg/l Fe(ll) ion, based on the total dispersion. Preferably the amount of iron(ll) is as small as possible in order to avoid colour problems in final dispersion and prepared paper. Hydrogen peroxide, calculated as 100 %, is added in concentrations of 0.2 to 2.0 weight-%, based on monomers. This amount is additional to the amount of hydrogen peroxide which is optionally used for the polysaccharide, such as starch, degradation.
[0033] T ernary initiator systems consisting of free radical initiator, reducing agent and heavy metal salt are also suitable for polymerisation. Reducing agent is preferably initially introduced together with iron(ll) salt before the polymerisation.
[0034] After the end of the addition of the monomers and the initiator, the reaction mixture is usually allowed to continue reacting for some time in order to complete the polymerization. The reaction times typically are between 0.5 and 10 hours, preferably between 0.75 and 4 hours. After this subsequent reaction time, a certain amount of initiator may added again in order to polymerise as substantially as possible the residual monomers still present in the reaction mixture.
[0035] The pH of the resulting polymer dispersion may be adjusted after the polymerisation by adding suitable bases, such as alkali metal hydroxides and alkali metal acetates, preferably sodium hydroxide solution, potassium hydroxide solution or ammonia. A pH value in the range of 4 - 7 is preferably established thereby. Furthermore, buffer substances may also be added in order to stabilize the pH over the storage time.
[0036] Anionic or non-ionic low molecular weight emulsifiers, such as sodium alkanesulphonate, sodium dodecylsul-phate, sodium dodecylbenzenesulphonate, sulphosuccinic esters, fatty alcohol polyglycol ethers, alkylaryl polyglycol ethers, etc., maybe used in the polymerisation in order to improve the dispersing effect, but the polymerisation is therefore carried out in the absence of emulsifiers. Thus the polymerisation is advantageously free from emulsifiers.
[0037] The molecularweightof obtained grafted-on polymer may further be adjusted by the concomitant use of chain-transfer agents or regulators, such as n-dodecyl mercaptan, tert-dodecyl mercaptan, n-butyl mercaptan, tert-butyl mercaptan, etc.
[0038] Suitable styrene monomers of group (b) are styrene and substituted styrenes, such as α-methylstyrene or vinyltoluene or their mixtures.
[0039] Suitable C1-C4-alkyl (meth)acrylate monomers of group (c) are C1-C4-alkyl acrylates, C1-C4-alkyl methacrylates or their mixtures, e.g. n-butyl, iso-butyl, tert-butyl or 2-butyl acrylate and the corresponding butyl methacrylates; methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate or propyl methacrylate. According to one preferred embodiment of the invention the monomer component (c) is a mixture of at least two isomeric butyl acrylates. More preferably, the monomer component (c) is a mixture of n-butyl acrylate and methyl methacrylate or a mixture of n-butyl acrylate and tert-butyl acrylate. For mixtures of two monomers the mixing ratio may be 10:90 to 90:10.
[0040] Suitable other ethylenically unsaturated copolymerizable monomers of group (d) are ethylhexyl acrylate, stearyl acrylate, stearyl methacrylate, esters of acrylic and methacrylic acid with alcohols which have more than four C atoms, and further acrylonitrile, methacrylonitrile, acrylamide, vinyl acetate or anionic comonomers, such as acrylic acid, methacrylic acid, styrene sulphonic acid. Acrylic acid and styrene sulphonic acid are preferred.
[0041] The weight-% of all components (a) to (d) relate to the total solids content of the dispersion, i.e. the sum of the weight amounts of components (a) to (d).
[0042] The concentration, i.e. dry solids content, of the obtained polymer dispersion is typically > 30 weight-%, more typically > 35 %, preferably 35 - 50 weight-%, more preferably 35 - 45 weight-%, based on the weight of the total dispersion. In one embodiment the concentration of the polymer dispersion may be even > 50 weight-%.
[0043] According to one embodiment of the invention the viscosity of the polymer dispersion at 37 % solids content is typically < 50 mPas, more typically < 25 mPas, measured at 23 °C with Brookfield LVDV viscometer with spindle 18, 60 rpm. Preferably, the viscosity of the polymer dispersion at 37 % solids content is 10-45 mPas, more preferably 15 - 25 mPas, measured at 23 °C with Brookfield LVDV viscometer with spindle 18, 60 rpm.
[0044] In order to increase the shelf-life of the resulting polymer solutions, a biocide may be added, for example, at the end of the preparation process in order to achieve effective protection from fungal and bacterial attack. Biocides based on isothiazolinones or benzoisothiazolinones, or formaldehyde-donating biocides, are preferably added for this purpose. It is also possible to bind the heavy metal ions used in the redox system after the polymerisation by suitable complexing agents, such as ethylenediaminetetraacetic acid, nitrilotriacetic acid, diethylenetriaminepentaacetic acid, polyaspartic acid, iminodisuccinic acid, citric acid or their salts. Complexing agents may be used in concentrations of 1 - 10 mol, preferably 1.1-5 mol, per mol of heavy metal ion.
[0045] According to one embodiment the aqueous polymer dispersion may be used in surface sizing compositions, optionally together with 5-20 weight-% of starch and optional pigments and/or optical brighteners.
[0046] According to another embodiment the aqueous polymer dispersion may be used as dry strength agent. It may be applied to the pulp prior the sheet formation or it may be applied on the surface of the formed paper web. According to still another embodiment the aqueous polymer dispersion may be used as wet end strength additive.
[0047] Some embodiments are described in the following numbered paragraphs: 1. An aqueous polymer dispersion obtained by free radical emulsion copolymerization of ethylenically unsaturated monomers in the presence of (a) 10 to 40 weight-% polysaccharide containing a free hydroxyl group, such as starch, the monomers comprising (b) 30 to 60 weight-% of at least one optionally substituted styrene, (c) 60 to 30 weight-% of at least one C1-C4-alkyl (meth)acrylate, and (d) 0 to 10 weight-% of other ethylenically unsaturated copolymerizable monomers, and using (e) a graft-linking, water-soluble redox system as free radical initiator for the free radical emulsion copolymerization, wherein the sum (a)+(b)+(c)+(d) is 100 %, and wherein the D99 value is < 160 nm for polymer particles in the polymer dispersion. 2. Aqueous polymer dispersion according to paragraph 1, wherein the dry solids content of the dispersion is > 30 weight-%, more typically > 35 %, based on the weight of the total dispersion. 3. Aqueous polymer dispersion according to paragraph 1 or 2, wherein the polymer dispersion has D50 value < 70 nm, preferably < 65 nm, more preferably < 60 nm, and D99 value < 160 nm, preferably < 150 nm, more preferably <130 nm. 4. Aqueous polymer dispersion according to paragraph 3, wherein the D50 value is in the range of 45 - 70 nm, preferably 45 - 60 nm, more preferably 45 - 55 nm. 5. Aqueous polymer dispersion according to paragraph 3 or 4, wherein the D99 value is in the range of 100 -160 nm, preferably 110 -140 nm, more preferably 115 -135 nm. 6. Aqueous polymer dispersion according to any of preceding paragraphs 1 - 5, wherein the polysaccharide is natural modified or unmodified starch, preferably potato starch. 7. Aqueous polymer dispersion according to paragraph 6, wherein the starch has an amylopectin content of > 80 %, preferably >95 % 8. Aqueous polymer dispersion according to any of preceding paragraphs 1-7, wherein the polysaccharide is an anionic starch derivative, preferably anionic potato starch derivative, having a viscosity of < 10 mPas, preferably < 8 mPas, at 15 % solids content, measured at 80 °C with Brookfi eld LVDV viscometer with spindle 18, 60 rpm. 9. Aqueous polymer dispersion according to any of preceding paragraphs 1-8, wherein the graft-linking, water-soluble redox system is a combination of hydrogen peroxide and iron(ll) salt. 10. Aqueous polymer dispersion according to paragraph 9, wherein iron(ll) salt concentration is 3 - 200 mg/l Fe(ll) ion, preferably 5 - 45 mg/l Fe(ll) ion, more preferably 8-18 mg/l Fe(ll) ion, based on the total dispersion 11. Aqueous polymer dispersion according to paragraph 10, wherein the polysaccharide containing a free hydroxyl group is selected from a group consisting amylose, amylopectine, carrageen, cellulose, chitosan, chitin, dextrines, guar gum and other galactomannans, arabicgum, hemicellulose components, and pullulan, preferably from a group consisting amylose, amylopectine and galactomannas. 12. Use of the aqueous polymer dispersion according to any of paragraphs 1 -11 for preparation of compositions used in making of paper, board or the like.
EXPERIMENTAL
[0048] The following non-limiting examples illustrate some embodiments of the present invention.
Reference Example 1 [0049] 84.2 g of an oxidatively degraded potato starch (Perfectamyl® A4692) is dispersed with stirring in 463 g of demineralised water in a 2 I three-necked flask having a reflux condenser. The starch is dissolved by heating to 95°C, and 5.1 g of a 1 % strength aqueous solution of FeS04-7H20 and 3.5 g of 35% strength hydrogen peroxide are added in succession. After 15 min, the starch degradation is complete. The pH is at this point 4.1, adjusted with sulfuric acid, and the viscosity 24.1 mPas. The separate feed of the monomers and the initiator in the course of 90 min is then started at 95°C.
Solution 1: 124.6 g of styrene, 62.3 g of n-butyl acrylate, 62.3 g of tert-butyl acrylate.
Solution 2: 6.3 g of hydrogen peroxide (35 % strength) and 42.2 g of water [0050] 15 min after the end of the metering, after cooling the reactor to 60°C, afurther0.7 g of tert-butyl hydroperoxide is added for subsequent activation and stirring is carried out for a further 60 min.
[0051] Thereafter, cooling is affected to room temperature, filtration is performed with a 1.2 μηι syringe filter and the pH is adjusted to 6.5 with a sodium hydroxide solution (10 % strength).
[0052] A fine-particle polymer dispersion having a solids content of 36.6 % is obtained, with a particle size and viscosity as listed in Table 1.
Example 2 [0053] 56.9 g of an oxidatively degraded potato starch (Perfectamyl® A4692) is dispersed with stirring in 593 g of demineralized water in a 1-1 three-necked flask having a reflux condenser. The starch is dissolved by heating to 95°C, and 3.5 g of a 1 % strength aqueous solution of FeS04'7H20 and 2.4 g of 35.% strength hydrogen peroxide are added in succession. After 15 min, the starch degradation is complete. The pH is at this point 2.5, adjusted with sulfuric acid, and the viscosity 5.1 mPas. The separate feed of the monomers and the initiator in the course of 180 min is then started at 95°C.
Solution 1: 84.3 g of styrene, 42.1 g of n-butyl acrylate, 42.1 g of tert-butyl acrylate Solution 2: 4.2 g of hydrogen peroxide (35.% strength) and 28.5 g of water [0054] 15 min after the end of the metering, after cooling the reactor to 60°C, a further 0.5 g of tert-butyl hydroperoxide is added for subsequent activation and stirring is carried out for a further 60 min.
[0055] Thereafter, cooling is affected to room temperature, filtration is performed with a 1.2 μσι syringe filter and the pH is adjusted to 6.5 with a sodium hydroxide solution (10 % strength).
[0056] A fine-particled polymer dispersion having a solids content of 24.6 % is obtained, with a particle size and viscosity as listed in Table 1.
Example 3 [0057] 84.2 g of an oxidatively degraded potato starch (Perfectamyl® A4692) is dispersed with stirring in 463 g of demineralized water in a 1-1 three-necked flask having a reflux condenser. The starch is dissolved by heating to 95°C, and 5.1 g of a 1 % strength aqueous solution of FeS04-7H20 and 3.5 g of 35 % strength hydrogen peroxide are added in succession. After 15 min, the starch degradation is complete. The pH is at this point 2.2, adjusted with sulfuric acid, and the viscosity 8.1 mPas. The separate feed of the monomers and the initiator in the course of 180 min is then started at 95°C.
Solution 1: 124.6 g of styrene, 62.3 g of n-butyl acrylate, 62.3 g of tert-butyl acrylate Solution 2: 6.3 g of hydrogen peroxide (35% strength) and 42.2 g of water [0058] 15 min after the end of the metering, after cooling the reactor to 60°C, a further 0.7 g of tert-butyl hydroperoxide is added for subsequent activation and stirring is carried out for a further 60 min.
[0059] Thereafter, cooling is affected to room temperature, filtration is performed with a 1.2 μηι syringe filter and the pH is adjusted to 6.5 with a sodium hydroxide solution (10 % strength).
[0060] Afine-particled polymer dispersion having a solids content of 36.3% is obtained, with a particle size and viscosity as listed in Table 1.
Example 4 [0061] 84.2 g of an oxidatively degraded potato starch (Perfectamyl® A4692) is dispersed with stirring in 463 g of demineralized water in a 1-1 three-necked flask having a reflux condenser. The starch is dissolved by heating to 95°C, and 5.1 g of a 1 % strength aqueous solution of FeS04-7H20 and 3.5 g of 35 % strength hydrogen peroxide are added in succession. After 15 min, the starch degradation is complete. The pH is at this point 1.9, adjusted with sulfuric acid, and the viscosity 6.6 mPas. The separate feed of the monomers and the initiator in the course of 180 min is then started at 95°C.
Solution 1: 124.6 g of styrene, 62.3 g of n-butyl acrylate, 62.3 g of tert-butyl acrylate
Solution 2: 6.3 g of hydrogen peroxide (35 % strength) and 42.2 g of water [0062] 15 min after the end of the metering, after cooling the reactor to 60°C, afurther0.7 g oftert-butyl hydroperoxide is added for subsequent activation and stirring is carried out for a further 60 min.
[0063] Thereafter, cooling is affected to room temperature, filtration is performed with a 1.2 μηι syringe filter and the pH is adjusted to 6.5 with a sodium hydroxide solution (10 % strength).
[0064] A fine-particled polymer dispersion having a solids content of 35.6 % is obtained, with a particle size and viscosity as listed in Table 1.
Example 5 [0065] 84.2 g of an oxidatively degraded potato starch (Perfectamyl® LV) is dispersed with stirring in 463 g of demineralized water in a 1-1 three-necked flask having a reflux condenser. The starch is dissolved by heating to 95°C, and 5.1 g of a 1 % strength aqueous solution of FeS047H20 and 3.5 g of 35 % strength hydrogen peroxide are added in succession. After 15 min, the starch degradation is complete. The pH is at this point 2.5, adjusted with sulfuric acid, and the viscosity 7.8 mPas. The separate feed of the monomers and the initiator in the course of 180 min is then started at 95°C.
Solution 1: 124.6 g of styrene, 62.3 g of n-butyl acrylate, 62.3 g oftert-butyl acrylate Solution 2: 6.3 g of hydrogen peroxide (35 % strength) and 42.2 g of water [0066] 15 min after the end of the metering, after cooling the reactor to 60°C, a further 0.7 g oftert-butyl hydroperoxide is added for subsequent activation and stirring is carried out for a further 60 min.
[0067] Thereafter, cooling is affected to room temperature, filtration is performed with a 1.2 μηι syringe filter and the pH is adjusted to 6.5 with a sodium hydroxide solution (10 % strength).
[0068] Afine-particled polymer dispersion having a solids content of 36.4% is obtained, with a particle size and viscosity as listed in Table 1.
Example 6 [0069] 84.2 g of an oxidatively degraded potato starch (Perfectamyl® LV) is dispersed with stirring in 463 g of demineralized water in a 1-1 three-necked flask having a reflux condenser. The starch is dissolved by heating to 95°C, and 5.1 g of a 1 % strength aqueous solution of FeS04-7H20 and 3.5 g of 35 % strength hydrogen peroxide are added in succession. After 15 min, the starch degradation is complete. The pH is at this point 2.0, adjusted with sulfuric acid, and the viscosity 6.8 mPas. The separate feed of the monomers and the initiator in the course of 180 min is then started at 95°C.
Solution 1: 124.6 g of styrene, 62.3 g of n-butyl acrylate, 62.3 g of tert-butyl acrylate Solution 2: 6.3 g of hydrogen peroxide (35 % strength) and 42.2 g of water [0070] 15 min after the end of the metering, after cooling the reactor to 60°C, a further 0.7 g oftert-butyl hydroperoxide is added for subsequent activation and stirring is carried out for a further 60 min.
[0071] Thereafter, cooling is affected to room temperature, filtration is performed with a 1.2 μ(η syringe filter and the pH is adjusted to 6.5 with a sodium hydroxide solution (10 % strength).
[0072] Afine-particled polymer dispersion having a solids content of 36.1 % is obtained, with a particle size and viscosity as listed in Table 1.
Example 7 [0073] 84.2 g of a dextrin (Avedex W80) is dispersed with stirring in 463 g of demineralized water in a 2-I three-necked flask having a reflux condenser. The starch is dissolved by heating to 95°C, and 5.1 g of a 1% strength aqueous solution of FeS04'7H20 and 3.5 g of 35% strength hydrogen peroxide are added in succession. After 15 min, the starch degradation is complete. The pH is at this point is 2.2 and viscosity 5.0 mPas. The separate feed of the monomers and the initiator in the course of 90 min is the started at 95°C.
Solution 1: 124.6 g of styrene, 62.3 g of n-butyl acrylate, 62.3 g of tert-butyl acrylate Solution 2: 6.3 g of hydrogen peroxide (35% strength) and 42.2 g of water [0074] 15 min after the end of the metering, after cooling the reactor to 60°C, afurther0.7 g oftert-butyl hydroperoxide is added for subsequent activation and stirring is carried out for a further 60min.
[0075] Thereafter, cooling is affected to room temperature, filtration is performed with a 1.2 μηι syringe filter and the pH is adjusted to 6.5 with a sodium hydroxide solution (10 % strength).
[0076] A fine-particled polymer dispersion having a solids content of 36.7 % is obtained, with a particle size and viscosity as listed in Table 1.
Table 1. Results for Examples 1 to 6.
[0077] In all foregoing Examples particle sizes are measured with Zetasizer Nano ZS, Malvern. D50, D90, D99 values refer to the respective values for 50th, 90th, 99th percentile of a volume based distribution.
[0078] In all foregoing Examples viscosity values are measured with Brookfield LVDV viscometer with spindle 18, 60 rpm.
[0079] It can be seen from Table 1 that the particle size distribution is clearly narrower when the polymer dispersion is prepared according to the present invention.
[0080] Even if the invention was described with reference to what at present seems to be the most practical and preferred embodiments, it is appreciated that the invention shall not be limited to the embodiments described above, but the invention is intended to cover also different modifications and equivalent technical solutions within the scope of the enclosed claims.
Claims 1. A method for controlling size distribution of formed polymer particles during preparation of aqueous polymer dispersion, comprising - obtaining an aqueous polysaccharide solution, which comprises - (a)10 to 40 weight-% of polysaccharide containing a free hydroxyl group, such as starch, - polymerising in the polysaccharide solution in the presence of a graft-linking, water-soluble redox system - (b) 30 to 60 weight-% of at least one optionally substituted styrene, - (c) 60 to 30 weight-% of at least one C1-C4-alkyl (meth)acrylate, - (d) 0 to 10 weight-% of other ethylenically unsaturated copolymerizable monomers, wherein the sum of (a)+(b)+(c)+(d) is 100 %, characterised in controlling the size distribution of the formed polymer particles by adjusting viscosity of the polysaccharide solution before the polymerisation to a level < 15 mPas, measured at 23 °C with Brookfield LVDV viscom eter with spindle 18, 60 rpm, so that the polymer dispersion obtained has D50 value < 70 nm and D99 value < 160 nm for polymer particles in the polymer dispersion, the particle sizes being measured by using Zetasizer Nano ZS, Malvern and D50 and D99 values referring to the respective values for 50th and 99th percentile of a volume based distribution. 2. Method according to claim 1, characterised in adjusting viscosity of the polysaccharide solution before the polymerisation to a level < 10 mPas, measured at 23 °C with Brookfield LVDV viscometer with spind le 18, 60 rpm. 3. Method according to claim 2, characterised in adjusting viscosity of the polysaccharide solution before the polymerisation to a range of 6 -10 mPas, measured at 23 °C with Brookfield LVDV viscometer with spindle 18, 60 rpm. 4. Method according to claim 1,2 or 3, characterised in performing the viscosity adjustment of the polysaccharide solution by adjusting, before the polymerisation, at least one of the following parameters of the polysaccharide solution: pH of the polysaccharide solution, dry solids content of the polysaccharide solution and/or polysaccharide type. 5. Method according to claim 4, characterised in performing the viscosity adjustment of the polysaccharide solution by adjusting the pH of the polysaccharide solution to a value < 2.5 before the polymerisation. 6. Method according to claim 5, characterised in adjusting the pH of the polysaccharide solution to a range of 1.3-2.4. 7. Method according to any of claims 4 - 6, characterised in performing the viscosity adjustment of the polysaccharide solution by adjusting the dry solids content of the polysaccharide solution to< 35 weight-% before the polymerisation. 8. Method according to claim 7, characterised in adjusting the dry solids content of the polysaccharide solution to a range of 15 - 30 weight %. 9. Method according to any of claims 4- 8, characterised in performing the viscosity adjustment of the polysaccharide solution by selecting a polysaccharide, which is starch or dextrin. 10. Method according to claim 9, characterised in in performing the viscosity adjustment of the polysaccharide solution by selecting a polysaccharide, which is an anionic starch derivative, preferably anionic potato starch derivative, having a viscosity of < 10 mPas, at 15 % solids content, measured at 80 °C with Brookfield LVDV viscometer with spindle 18, 60 rpm. 11. Method according to any preceding claims 1 to 10, characterised in using a combination of hydrogen peroxide and iron(ll) salt as the graft-linking, water-soluble redox system. 12. Method according to claim 11, characterised in using iron(ll) salt in concentration of 5 - 45 mg/l Fe(ll) ion, based on the total dispersion. 13. Method according to claim 1, characterised in that the polymer dispersion has D50 value < 65 nm, and D99 value <150 nm. 14. Method according to claim 13, characterised in that the D50 value is in the range 45 - 60 nm. 15. Method according to claim 13 or 14, characterised in that the D99 value is in the range of 110 -140 nm.
Patentansprüche 1. Verfahren zur Regulierung der Größenverteilung von gebildeten Polymerpartikeln während der Herstellung einer wässrigen Polymerdispersion, umfassend: - den Erhalt einer wässrigen Polysaccharidlösung, die umfasst: (a) 10 bis 40 Gewichts-% an Polysaccharid, das eine freie Hydroxylgruppe enthält, wie z. B. Stärke, - das Polymerisieren in der Polysaccharidlösung in der Gegenwart eines pfropfvernetzenden, wasserlöslichen
Redoxsystems, (b) 30 bis 60 Gewichts-% an mindestens einem gegebenenfalls substituierten Styrol, (c) 60 bis 30 Gewichts-% an mindestens einem C1-C4-Alkyl(meth)acrylat, (d) 0 bis 10 Gewichts-% an weiteren ethylenisch ungesättigten copolymerisierbaren Monomeren, wobei die Summe aus (a) + (b) + (c) + (d) gleich 100% ist, gekennzeichnet durch die Regulierung der Größenverteilung der gebildeten Polymerpartikel durch das Einstellen der Viskosität der Polysaccharidlösung vor der Polymerisation auf ein Niveau von < 15 mPas, gemessen mit einem Brookfield LVDV Viskosimeter mit einer Spindel Nr. 18 bei 23°C und 60 rpm, so dass die erhaltene Polymerdispersion einen D50-Wertvon < 70 nm und einen D99-Wert von < 160 nm für die in der Polymerdispersion vorliegenden Polymerpartikel aufweist, wobei die Messung der Partikelgröße unter Verwendung eines Zetasizer Nano ZS von Malvern erfolgt und die D50- und D99-Werte sich auf die jeweiligen Werte für das 50. und 99. Perzentil einer volumenbasierten Verteilung beziehen. 2. Verfahren nach Anspruch 1, gekennzeichnet durch das Einstellen der Viskosität der Polysaccharidlösung vor der Polymerisation auf ein Niveau von <10 mPas, gemessen mit einem Brookfield LVDV Viskosimeter mit einer Spindel Nr. 18 bei 23°C und 60 rpm. 3. Verfahren nach Anspruch 2, gekennzeichnet durch das Einstellen der Viskosität der Polysaccharidlösung vor der Polymerisation auf einen Bereich von 6 bis 10 mPas, gemessen mit einem Brookfield LVDV Viskosimeter mit einer Spindel Nr. 18 bei 23°C und 60 rpm. 4. Verfahren nach Anspruch 1,2 oder 3, gekennzeichnet durch das Durchführen der Einstellung der Viskosität der Polysaccharidlösung durch das vor der Polymerisation erfolgende Einstellen mindestens eines der folgenden Parameter der Polysaccharidlösung: pH-Wert der Polysaccharidlösung, Trockensubstanzgehalt der Polysaccharidlösung und/oder Art des Polysaccharids. 5. Verfahren nach Anspruch 4, gekennzeichnet durch das Durchführen der Einstellung der Viskosität der Polysaccharidlösung durch das Einstellen des pH-Werts der Polysaccharidlösung auf einen Wert von < 2,5 vor der Polymerisation. 6. Verfahren nach Anspruch 5, gekennzeichnet durch das Einstellen des pH-Werts der Polysaccharidlösung auf einen Bereich von 1,3 bis 2,4. 7. Verfahren nach einem der Ansprüche 4 bis 6, gekennzeichnet durch das Durchführen der Einstellung der Viskosität der Polysaccharidlösung durch das vor der Polymerisation erfolgende Einstellen des Trockensubstanzgehalts der Polysaccharidlösung auf < 35 Gewichts-%. 8. Verfahren nach Anspruch 7, gekennzeichnet durch das Einstellen des Trockensubstanzgehalts der Polysaccharidlösung auf einen Bereich von 15 bis 30 Gewichts-%. 9. Verfahren nach einem der Ansprüche 4 bis 8, gekennzeichnet durch das Durchführen der Einstellung der Viskosität der Polysaccharidlösung durch das Auswählen eines Polysaccharids, bei dem es sich um Stärke oder Dextrin handelt. 10. Verfahren nach Anspruch 9, gekennzeichnet durch das Durchführen der Einstellung der Viskosität der Polysaccharidlösung durch das Auswählen eines Polysaccharids, bei dem es sich um ein anionisches Stärkederivat handelt, bevorzugt um ein anionisches Kartoffelstärkederivat, mit einer Viskosität von <10 mPas bei einem Feststoffgehalt von 15%, gemessen mit einem Brookfield LVDV Viskosimeter mit einer Spindel Nr. 18 bei 80°C und 60 rpm. 11. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 10, gekennzeichnet durch die Verwendung einer Kombination aus Wasserstoffperoxid und Eisen(ll)-Salz als propfvernetzendes, wasserlösliches Redoxsystem. 12. Verfahren nach Anspruch 11, gekennzeichnet durch die Verwendung von Eisen(ll)-Salz in einer Konzentration von 5 bis 45 mg/l Fe(ll)-lonen, bezogen auf die gesamte Dispersion. 13. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Polymerdispersion einen D50-Wert von < 65 nm und einen D99-Wertvon < 150 nm aufweist. 14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass der D50-Wert in einem Bereich von 45 bis 60 nm liegt. 15. Verfahren nach Anspruch 13 oder 14, dadurch gekennzeichnet, dass der D99-Wert in einem Bereich von 110 bis 140 nm liegt.
Revendications 1. Procédé de régulation de la distribution de taille de particules de polymère formées pendant la préparation d’une dispersion aqueuse de polymère, comprenant - l’obtention d’une solution aqueuse de polysaccharide, qui comprend - (a) 10 à 40 % en poids d’un polysaccharide contenant un groupe hydroxyle libre, tel que de l’amidon, - la polymérisation dans la solution de polysaccharide en présence d’un système redox soluble dans l’eau ayant des liaisons par greffage, - (b) 30 à 60 % en poids d’au moins un styrène facultativement substitué, - (c) 60 à 30 % en poids d’au moins un (méth)acrylate d’alkyle en C1 à C4, - (d) 0 à 10 % en poids d’autres monomères copolymérisables éthyléniquement insaturés, dans lequel la somme de (a) + (b) + (c) + (d) est de 100 %, caractérisé par la régulation de la distribution de taille de particules de polymère formées par ajustement de la viscosité de la solution de polysaccharide avant la polymérisation à un niveau < 15 mPas, mesurée à 23 °C avec un viscosimètre Brookfield LVDV avec fuseau 18, 60 tr/min, pour que la dispersion de polymère obtenue ait une valeur D50 < 70 nm et une valeur Dgg < 160 nm pour des particules de polymère dans la dispersion de polymère, les tailles de particules étant mesurées à l’aide d’un Zetasizer Nano ZS, Malvern et les valeurs D50 et Dgg se référant aux valeurs respectives pour le 50e et le 99e percentile d’une distribution basée sur le volume. 2. Procédé selon la revendication 1, caractérisé par l’ajustement de la viscosité de la solution de polysaccharide avant la polymérisation à un niveau <10 mPas, mesurée à 23 °C avec un viscosimètre Brookfield LVDV avec fuseau 18, 60 tr/min. 3. Procédé selon la revendication 2, caractérisé par l’ajustement de la viscosité de la solution de polysaccharide avant la polymérisation dans une plage de 6 à 10 mPas, mesurée à 23 °C avec un viscosimètre Brookfield LVDV avec fuseau 18, 60 tr/min. 4. Procédé selon la revendication 1,2 ou 3, caractérisé par la réalisation de l’ajustement de la viscosité de la solution de polysaccharide par ajustement, avant la polymérisation, d’au moins l’un des paramètres suivants de la solution de polysaccharide : le pH de la solution de polysaccharide, la teneur en matière sèche de la solution de polysaccharide et/ou le type de polysaccharide. 5. Procédé selon la revendication 4, caractérisé par la réalisation de l’ajustement de la viscosité de la solution de polysaccharide par ajustement du pH de la solution de polysaccharide à une valeur < 2,5 avant la polymérisation. 6. Procédé selon la revendication 5, caractérisé par l’ajustement du pH de la solution de polysaccharide dans une plage de 1,3 à 2,4. 7. Procédé selon l’une quelconque des revendications 4 à 6, caractérisé par la réalisation de l’ajustement de la viscosité de la solution de polysaccharide par ajustement de la teneur en matière sèche de la solution de polysaccharide à < 35 % en poids avant la polymérisation. 8. Procédé selon la revendication 7, caractérisé par l’ajustement de la teneur en matière sèche de la solution de polysaccharide dans une plage de 15 à 30 % en poids. 9. Procédé selon l’une quelconque des revendications 4 à 8, caractérisé par la réalisation de l’ajustement de la viscosité de la solution de polysaccharide par sélection d’un polysaccharide, qui est l’amidon ou la dextrine. 10. Procédé selon la revendication 9, caractérisé par la réalisation de l’ajustement de viscosité de la solution de polysaccharide par sélection d’un polysaccharide, qui est un dérivé d’amidon anionique, de préférence un dérivé d’amidon de pomme de terre anionique, ayant une viscosité de < 10 mPas, à 15 % de teneur en matière sèche, mesurée à 80 °C avec un viscosimètre Brookfield LVDV avec fuseau 18, 60 tr/min. 11. Procédé selon l’une quelconque des revendications 1 à 10, caractérisé par l’utilisation d’une combinaison de peroxyde d’hydrogène et d’un sel de fer (II) en tant que système redox soluble dans l’eau ayant des liaisons par grefFage. 12. Procédé selon la revendication 11, caractérisé par l’utilisation d’un sel de fer (II) à une concentration de 5 à 45 mg/L d’ion Fe (II), rapportée à la dispersion totale. 13. Procédé selon la revendication 1, caractérisé en ce que la dispersion de polymère a une valeur D50 < 65 nm, et une valeur D99 <150 nm. 14. Procédé selon la revendication 13, caractérisé en ce que la valeur D50 est dans la plage de 45 à 60 nm. 15. Procédé selon la revendication 13 ou 14, caractérisé en ce que la valeur D99 est dans la plage de 110 à 140 nm.
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.
Patent documents cited in the description • US 6426381 B [0002] · WO 0023479 A [0005] • EP 1321574 A [0004]
Non-patent literature cited in the description • Methods in Carbohydrate Chemistry. Academic Press, 1964, vol. IV, 127 [0022]

Claims (5)

  1. ELJÁRÁS POLIMER RÉSZECSKÉK MÉRETELOSZLÁSÁNAK SZABÁLYOZÁSÁRA VIZES POLIMER DISZPERZIÓ KÉSZÍTÉSE SORÁN, A VIZES POLIMER DISZPERZIÓ; ÉS ANNAK ALKALMAZÁSA SZABADALMI ÍGÉNYPONTOK i;;:Epf|S :feí:máií::i(íörf86d} pMimsr fAszeí5gkéH:#ér8ts!DS2lllstosks2Sbályö2á8áfá során, ahol M eljárásit következő; lépéseket iaÉsföteat - vizes poliszacharid oldatot szerzünk be, amely a Kővetkezőt tartalmazza: - (g) lö-4ö: tömeg % olyan poiiszacharidi amely tartalmaz szabad - polimerizálunk a poliszachand oldatban oltással kapcsold (graft-imking), vizoídhsiö redox rendszer jelenlétében «(b> 3ö<60 tömeg % legalább egy, kiyibtesglbeasKUbsztituált sztiröi. - (c) 80*30 töfrteQ % legalább agy CvíalkíHmeQátólát, - (d) 0-10 tömeg % más; atiénesen Mitoíifó ^ monomar, ahol (a;m(b)+(c} *(d; összege 100%, aszal jeííemape* hogy szabályozzuk a formált .polimer részeuskék méreteioszJását a poiiszacharíd oldat viszkozitásának böéSiiiása (adplrig):^ viszkoziméterre! méivt 18* 60 rpm :(fcrcluiat/paí'c}: cirsbyaí ispindie) ágy, hogy a kapott diszperzió <70 nrn D50 értékké! bírjon és <160 nm 099 Ollókkal bit jen a polimer jrPszaeskékhez a polimer diszperzióban, ahol a részeeskömárejék: Zetasizer Nana ZS, iailiílpia^ti.liitétt' vannak aiérvé, és g:DSö és DSD énekek egy tértogah4Íápü:: eloszlás S0, és II; százalékára vonatkozó magÉísi iridkakre utalnak,,:
  2. 2, Az 1 igénypont szerinti eljárás, azzal jellemezve* hogy &amp; pöiiszachahd oidai yíszközításgfiskbeáltása a píimtóiés etott ^lO mPas szmim történik 23«C hőmérsékleten Irookfioíd tVDV viszkezimátarrai merve 18; 3, A 2, igénypont szerinti eljárás, azzal jellemem, hogy a poiiszacharíd óidét vlszkostlsá a poiímerizátós elölt é 6 mFss ös TÖ mPas közötti tartományba átütjük be, 23®C hőmérsékleten Srösakfieid LVOV viszkoztmétarr^ merve 1§> 80 rpm {fordulas'pemVűtoöyal,
  3. 4, Az l-3v. igényppKi bármelyike szerinti eljárás, s^aí jéíiemezy% hogy a paííszaeharid óidat viszkozitás: beállításának végrehajtásában a poiimerizalás előtt beáiilíjuk a poiiszacharíd öldat kővetkező paramétoretoek légaláPb SgyMt: a poiíszaGharíd óidét phi^ja, a poiiszacharíd oldat szilárd: anyag tartalma, és/vagy a paiiszschand típusa, §. A 4. igénypeht szedni eprás, azzal pitemezYé, hogy a goiiszaohaiid óidét yíssfessStás béáílitásanáN végrohájtásSbao ^ pcíiszacharid oldat pH-jat <2,5 értékre áíiítjuk be a poiimefizálás előtt. 8, a poííszachatiiöídat pH-ját az Ι^Αδ |4 kőzai tartományba állítjuk; b&amp; 7. A 4-6 igénypontok bármelyike szenti eljárás, azzal jellemezve, hogy a psiszsehsrid oiát viszkozitás öéilitásáriak végrehajtásiamé poiiszacharíd oidst szilárd anyag tartalmát <35 tömeg %-ra átütjük be a pohmsdzáiás elölt. 3, A 7< igénypsrit szerinti e|árás. azzal jéííemezve, hogy a tartalmat lő ÉÉi§/% és 30 tömef % közötti tartományba állítjuk bs. 9. A 4-8. igénypontok bármelyike szerinti eljárás, ázzál jellemezve* hogy a pöÉzsehand sidat viszkozitás beállításának m &amp; igénypont szerinti «tfÉsás, jóíísmésEVéj hogy a pöíiszacbafis éiösl sisakostás bsáflíllssnak végrehsjléslijan kiválasztunk egy poíi^achartdot. amely egy eniönöS keményítő származék, előnyösen amonos burgonyakeményifó származék, amely <10 mPas viszkozitással fel; 15 tömeg % szilárd anyag tartalomnál., 8QaC hőmérsékleten Brookibid LVOV viszkoziméter rei mérve 18,60 rpm (fcsrduiat/pero; orsóval.
  4. 11. Μ M0. igénypontok Mrmeíyíke szrbntk bP0 kombinációban aíkaimazonk oltással kapcsoló (grafl· linking), viZGÍdhatórá^ m A11. igénpiötszadnii apás, sxkarpiémezvs. ihoeíya HS fe(ii) koncon irsciéban alkalmaktyasílisóla topé Észparziéra vonatkoztatva.
  5. 18. Az1, igénypont otiMI tajáfás, ««saljöllósi^fe hogy apiimér CiskperMó «8§ nm D§0 értékkel és AISÖ rsm D98 értékkel bír 14 A13. igénypofii szerinti sipré483öp:)éfe^ 45 nm és 60 nm közötti tartományban van. 18, A13, vagy 14. igénypont szer mii apás, azza! jelíemexvSi hogy s 089 érték a 110 anyás 140 nm közötti tartományban vsá.
HUE13701675A 2012-01-12 2013-01-11 Eljárás polimer részecskék méreteloszlásának szabályozására vizes polimer diszperzió készítése során; a vizes polimer diszperzió; és annak alkalmazása HUE033029T2 (hu)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261585677P 2012-01-12 2012-01-12
FI20125036A FI123696B (en) 2012-01-12 2012-01-12 A method for controlling the size distribution of polymer particles in the preparation of an aqueous polymer dispersion, an aqueous polymer dispersion and its use

Publications (1)

Publication Number Publication Date
HUE033029T2 true HUE033029T2 (hu) 2017-11-28

Family

ID=48780409

Family Applications (1)

Application Number Title Priority Date Filing Date
HUE13701675A HUE033029T2 (hu) 2012-01-12 2013-01-11 Eljárás polimer részecskék méreteloszlásának szabályozására vizes polimer diszperzió készítése során; a vizes polimer diszperzió; és annak alkalmazása

Country Status (13)

Country Link
US (2) US9079995B2 (hu)
EP (1) EP2802611B1 (hu)
KR (2) KR101970348B1 (hu)
CN (1) CN104053688B (hu)
BR (1) BR112014016924B1 (hu)
CA (1) CA2861073C (hu)
ES (1) ES2610569T3 (hu)
FI (1) FI123696B (hu)
HU (1) HUE033029T2 (hu)
PL (1) PL2802611T3 (hu)
PT (1) PT2802611T (hu)
RU (1) RU2627365C2 (hu)
WO (1) WO2013104832A1 (hu)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103866626B (zh) * 2014-02-28 2016-06-29 新昌县澄潭镇博纳机械厂 一种阿拉伯胶施胶剂及其制备方法
US10221089B2 (en) * 2015-09-10 2019-03-05 Corning Incorporated Optical fiber with low fictive temperature
FI128576B (en) 2015-12-21 2020-08-14 Kemira Oyj Process for preparing an adhesive composition, adhesive composition and use thereof
FI126948B (en) * 2016-03-22 2017-08-31 Kemira Oyj Aqueous polymer dispersion, its use and a process for preparing an aqueous polymer dispersion
FI20165235A (fi) * 2016-03-22 2017-09-23 Kemira Oyj Koostumus päällystyspastan reologian modifioimiseksi, sen käyttö ja päällystyspasta
CA3057775A1 (en) 2017-03-30 2018-10-04 Kemira Oyj A surface sizing composition, method of production, and use thereof
CN108690213A (zh) * 2018-05-29 2018-10-23 芜湖市元奎新材料科技有限公司 硅溶胶改性的丙烯酸乳液
JP6760344B2 (ja) 2018-09-18 2020-09-23 栗田工業株式会社 製紙用表面サイズ剤
CN110093811B (zh) * 2019-06-17 2022-03-29 南昌市龙然实业有限公司 一种储存稳定、强附着性的表面施胶剂及其制备方法
KR20210117418A (ko) 2020-03-19 2021-09-29 삼성전자주식회사 전자 장치의 화면을 홀로그램으로 표시하는 거치 장치
CN112961293A (zh) * 2021-04-21 2021-06-15 安徽工程大学 一种两步制备高表面活性两亲性接枝淀粉浆料的制备方法及其产品和应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5705563A (en) * 1991-10-07 1998-01-06 Basf Aktiengesellschaft Aqueous polymer dispersions
DE19806745A1 (de) * 1998-02-18 1999-08-19 Bayer Ag Feinteilige Polymerdispersionen zur Papierleimung
US6114417A (en) 1998-10-16 2000-09-05 Cytec Technology Corp. Paper sizing agents and methods
DE10004893A1 (de) * 2000-02-04 2001-08-16 Bayer Ag 2-Komponentensystem zur Herstellung eines Stone-wash-Effektes auf gefärbtem Baumwoll- oder baumwollhaltigen Geweben
EP1321574A1 (de) 2001-12-18 2003-06-25 Chemische Fabrik Brühl Mare GmbH Oberflächenleimungsmittel
DE102005030787A1 (de) * 2005-06-29 2007-01-11 Basf Ag Feinteilige, stärkehaltige Polymerdispersionen
EP2121780A2 (de) * 2006-11-10 2009-11-25 Basf Se Feinteilige, stärkehaltige polymerdispersionen
CA2724808C (en) 2008-05-21 2016-07-19 Bayer Cropscience Ag Insecticidal formulations with improved long-term effect on surfaces
CN102656192B (zh) * 2009-10-02 2016-06-01 巴斯夫欧洲公司 含淀粉的细碎聚合物分散体、其生产方法及其在造纸中作为施胶剂的用途

Also Published As

Publication number Publication date
ES2610569T3 (es) 2017-04-28
US20150025194A1 (en) 2015-01-22
KR20190043176A (ko) 2019-04-25
CA2861073A1 (en) 2013-07-18
BR112014016924A8 (pt) 2017-07-04
CA2861073C (en) 2018-10-16
EP2802611B1 (en) 2016-10-12
BR112014016924B1 (pt) 2021-03-09
FI123696B (en) 2013-09-30
PL2802611T3 (pl) 2017-05-31
US9212247B2 (en) 2015-12-15
CN104053688B (zh) 2016-06-01
RU2014133043A (ru) 2016-02-27
US9079995B2 (en) 2015-07-14
RU2627365C2 (ru) 2017-08-07
FI20125036A (fi) 2013-07-13
WO2013104832A1 (en) 2013-07-18
BR112014016924A2 (pt) 2017-06-13
US20130184407A1 (en) 2013-07-18
CN104053688A (zh) 2014-09-17
EP2802611A1 (en) 2014-11-19
PT2802611T (pt) 2017-01-13
KR102046572B1 (ko) 2019-11-20
KR101970348B1 (ko) 2019-04-18
KR20140123478A (ko) 2014-10-22

Similar Documents

Publication Publication Date Title
HUE033029T2 (hu) Eljárás polimer részecskék méreteloszlásának szabályozására vizes polimer diszperzió készítése során; a vizes polimer diszperzió; és annak alkalmazása
US9023943B2 (en) Styrenated phenol ethoxylates in emulsion polymerization
EP2580257B2 (de) Polymerdispersionen aus vinylaromatischen verbindungen und acrylatmonomeren, hergestellt in gegenwart von saatlatex und kohlenhydratverbindungen
EP1232189B1 (de) Emulsionspolymerisationsverfahren
DE3116797A1 (de) Stabile fluessige staerke-pfropfcopolymer-zusammensetzung und verfahren zu deren herstellung
CN108699775B (zh) 用于改性有色涂料的流变性的组合物、其用途和有色涂料
JP2003518174A (ja) ポリビニルアルコールコポリマー組成物
WO1998024821A2 (de) Verfahren zur herstellung von polymerisaten durch emulsionspolymerisation
CA2952851A1 (en) Finely divided, starch-containing polymer dispersions, processes for their preparation and use as sizes in papermaking
CN108779607B (zh) 水性聚合物分散体、其用途和制备水性聚合物分散体的方法
SK286891B6 (sk) Spôsob prípravy stabilných vodných disperzií zo syntetických monomérov a natívneho škrobu