HU207964B - Method for producing hydrogel shaped bodies of determined form - Google Patents

Method for producing hydrogel shaped bodies of determined form Download PDF

Info

Publication number
HU207964B
HU207964B HU908277A HU827790A HU207964B HU 207964 B HU207964 B HU 207964B HU 908277 A HU908277 A HU 908277A HU 827790 A HU827790 A HU 827790A HU 207964 B HU207964 B HU 207964B
Authority
HU
Hungary
Prior art keywords
acrylate
meth
monomer
methacrylate
process according
Prior art date
Application number
HU908277A
Other languages
English (en)
Other versions
HUT56510A (en
HU908277D0 (en
Inventor
Ture Kindt-Larsen
John C Heaton
Edmund C Rastrelli
Gregory A Hill
Original Assignee
Vistakon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vistakon Inc filed Critical Vistakon Inc
Publication of HU908277D0 publication Critical patent/HU908277D0/hu
Publication of HUT56510A publication Critical patent/HUT56510A/hu
Publication of HU207964B publication Critical patent/HU207964B/hu

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • G02B1/043Contact lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00038Production of contact lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/04Polymers of esters
    • B29K2033/08Polymers of acrylic acid esters, e.g. PMA, i.e. polymethylacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/04Polymers of esters
    • B29K2033/12Polymers of methacrylic acid esters, e.g. PMMA, i.e. polymethylmethacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0002Condition, form or state of moulded material or of the material to be shaped monomers or prepolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2707/00Use of elements other than metals for preformed parts, e.g. for inserts
    • B29K2707/02Boron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0092Other properties hydrophilic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S524/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S524/916Hydrogel compositions

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Eyeglasses (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)
  • Colloid Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Description

A találmány tárgya eljárás meghatározott formájú hidrogél szemcsék előállítására, például lágy kontakt lencsék előállítására. A találmány tárgya közelebbről eljárás a fenti szemcsék közvetlen megolvasztására vízzel helyettesíthető oldószerként bizonyos bórsav-észterek felhasználásával.
Az utóbbi ideig a hidrogél típusú lágy kontaktlencséket esztergál ássál vagy centrifugális öntéssel állították elő. Az esztergálás során a lényegében vízmentes hidrofil polimerből (xerogélből) álló lencse alapanyagot mechanikusan vágják és egy finom esztergával lencse alakúra polírozzák. Ezután vízzel vagy sóoldattal hidratálják a polimert és így kialakítják a kívánt hidrogél lencsét. Az esztergálás során alkalmazott mechanikai lépés hasonló a kemény kontaklencsék előállítása során alkalmazott lépéshez, azzal az eltéréssel, hogy figyelembe kell venni a lencsének a polimer hidratálása közben jelentkező megduzzadását.
A centrifugális öntés során kis mennyiségű hidrofil monomer elegyet helyeznek egy konkáv, optikailag polírozott öntőformába, és a formát addig forgatják, míg a monomer polimerizálással xerogél lencsét képez. A lencse két optikai felületét a polimerizálás során egyidejűleg alakítják ki, amelynek során a külső felületet a konkáv öntőforma felülete határozza meg, míg a belső felületet a forgó öntőforma által gerjesztett centrifugális erő és a polimerizációs elegy felületi feszültsége között kialakuló kölcsönhatás alakítja ki. A kapott lencsét az esztergálással kialakított lencsével hasonló módon vízzel vagy sóoldattal kezelve hidratálják a polimert és kialakítják a hidrogél lencsét.
A legutóbbi időben egy javított eljárást dolgoztak ki hidrogél kontakt lencsék előállítására, amely nemcsak gazdaságilag előnyösebb, mint az esztergálás vagy a centrifugális öntés, de további előnyként lehetővé teszi a hidratált lencse végső alakjának pontosabb kialakítását. Az új eljárás a monomer elegy közvetlen öntésén alapszik, amelynek során az elegyet egy nem-vizes, vízzel helyettesíthető oldószerben oldják, a hidrogél (vagyis vízzel duzzasztott) lencse kívánt alakjának megfelelő öntőformába helyezik, és a monomer/oldószerelegyet olyan körülményeknek teszik ki, amelynek hatására a monomer polirnerizálódik. így a hidrogél lencse kívánt alakjának megfelelő polimer/oldószerelegyet kapnak. A polimerizálást vízmentes közegben kell végezni, mivel a víz gátolja a polimerizációs reakciót. A polimerizálás befejeződése után az oldószert vízzel helyettesítve kialakítják a hidratált lencsét, amelynek végső mérete és alakja közel azonos az eredetileg öntött polimer/oldószerelegy méretével és alakjával. A hidrogél kontaktlencsék fent ismertetett közvetlen öntését a 4495 313 és 4680336 számú USA-beli szabadalmi leírások ismertetik.
A 4495 313 számú USA-beli szabadalmi leírásban vízzel helyettesíthető oldószerként polihidroxi-alkoholok bórsav-észterét alkalmazzák, ahol a polihidroxi-alkohol legalább három hidroxilcsoportot tartalmaz. Polihidroxi-alkoholként alkalmazható továbbá legalább három hidroxilcsoportot tartalmazó polihidroxialkohol és egy dihidroxi-alkohol elegye. Lásd a 3.
oszlop 60. sorában kezdődő szakaszt és a 4. oszlop 18-22. sorát.
A 4495 313 számú USA-beli szabadalmi leírás egyértelműen rögzíti, hogy a hidrogél kontaktlencse közvetlen öntéssel történő előállítása során alkamazott borát-észterhez polihidroxi-alkoholként legalább három hidroxilcsoportot tartalmazó polihidroxi-alkohol alkalmazható. A tri- és magasabb poliolok még akkor is az oldószer-rendszer lényeges komponensét képezik, amikor dihidroxi-alkoholból és tri- vagy magasabb poliolból álló elegyet alkalmaznak.
Felismertük, hogy bórsav és bizonyos dihidroxi-alkoholok észterei vízzel helyettesíthető oldószerként alkalmazhatók meghatározott méretű hidrogél szemcsék, így lágy kontaktlencsék alapvető monomerként egy vagy több hidrofil (met)akrilátot, így 2-hidroxi-etilmetakrilátot (HEMA) tartalmazó polimerelegyekből közvetlen öntéssel történő előállításához. A találmány szerinti megoldás előnye, hogy megkönnyíti az öntőforma eltávolítását, lehetővé teszi a munkaköltségek csökkentését és az öntés során jelentkező felületi hiányosságok lecsökkentésével növeli a kitermelést. Feltételezzük, hogy a fenti előnyök abból származnak, hogy a találmány értelmében alkalmazott diol-bórsavészterek kisebb felületi feszültséggel rendelkeznek, mint a 4495 313 számú USA-beli szabadalmi leírásban említett észterek, ami lecsökkenti a polimer/oldószerelegy és az öntőforma közötti adhéziót.
A találmány szerinti megoldás további előnye, hogy elősegíti hidrofób monomereknek, így UV-abszorbeáló monomereknek a polimerelegyben történő felhasználását. Abban az esetben, ha a monomer/oldószerelegyben oldószerként a 4495 313 számú USA-beli szabadalmi leírásban említett észtereket alkalmazzuk, akkor előfordul, hogy a hidrofób monomer, így UV-abszorbeáló monomer az elegyben nem oldódik.
Az UV-sugárzásnak a szemre gyakorolt káros hatásának felismerése az UV-sugárzás elnyelésére alkalmas eszközöket tartalmazó szemüvegek, védőszemüvegek, kontaktlencsék és szembe beültetett lencsék kidolgozására vezetett. A polimer, elsősorban akrilpolimer alapú kontaktlencsék és szembe beültetett lencsék vonatkozásában az UV-fény megkötésének legegyszerűbb módja, ha a lencsét UV-abszorbeáló monomert tartalmazó elegy kopolimerizálásával állítják elő. Ilyen monomereket ismertet a 4528311 és 4716234 számú USA-beli szabadalmi leírás. Felmerült az igény, hogy közvetlen öntéssel előállított kontaktlencséknél is UVabszorbeáló képességet alakítsanak ki UV-abszorbeáló monomereknek a monomer/oldószerelegybe történő bekeverésével. A találmány szerinti megoldás ezt az igényt kielégíti.
A hidroxi-alkil(met)akrilát polimerből, így HEMA alapú polimerből előállított lágy kontaktlencsék alkalmazása egyre jobban terjed. Az említett polimerek felhasználhatók nappal hordható és hosszú időn keresztül hordható kontaktlencsék előállítására. A kontaktlencse hosszú időn keresztül történő hordásának feltétele, hogy a lencse áteressze az oxigént,
HU 207 964 Β mivel a szaruhártya az oxigént elsősorban közvetlenül a levegőből veszi fel, és nem az oxigéntartalmú vérből. A lencse oxigénáteresztő képessége alapvető szempont a hosszan hordható lencséknél, és előnyös követelmény a nappal hordható lencséknél. Általános szabályként megállapítható, hogy minél több oxigént ereszt át a lencse, annál előnyösebben alkalmazható. A lencse oxigénáteresztő képességét befolyásoló egyik faktor a lencse vastagsága. A kontaktlencse oxigénáteresztő képessége fordított arányban áll a lencse vastagságával. Szintén fordított arányosságot mutat a lencse vastagságával a kontaktlencse hordhatósága. Ebből a két okból, vagyis az oxigén áteresztő képesség és a hordhatóság növelése érdekében, ha az optikai követelmények megengedik, előnyös, ha a HEMA alapú kontaktlencse olyan vékony, amilyen vékony csak lehet.
A jelenleg forgalomban lévő HEMA alapú kontaktlencsék vastagsága hidrogél állapotban, vagyis vizesduzzadt állapotban általában 0,03-0,6 mm. A lencse vastagságának alsó határát a lencsével szemben támasztott szilárdsági követelmények határozzák meg. A lencse szilárdsága növelhető, és így vastagsága csökkenthető, ha növeljük a polimerben lévő polifunkciós kersztkötések arányát. A keresztkötést kialakító monomerek arányának bizonyos határon túl történő növelése azonban törékennyé teszi a polimert.
A találmány szerinti megoldás fő újdonsága, hogy a hidroxi-alkil(met)akrilát, így 2-hidroxi-etil-metakrilát kopolimerben lehetővé teszi egy vagy több, legalább 6 szénatomos alkil(met)akrilát komonomer felhasználását. Azt találtuk, hogy ezek a kopolimerek alacsony nyomáson (vagyis normál felhasználási körülmények között) fokozott szilárdságot mutatnak anélkül, hogy ez a törékenység növekedését is jelentené, és így ezekből a kopolimerekből vékonyabb hidrogél kontaktlencsék állíthatók elő.
A technika állása szerint a lágy kontaktlencsék előállítására alkalmazott hidrofil polimerben hidrofób monomereket alkalmaznak. Ilyen polimereket ismertet például a 4620954 és 4625009 számú USA-beli szabadalmi leírás. Ezekben az iratokban a hidrofil monomer N-vinil-pirrolidon vagy Ν,Ν-dimetil-akrilamid. A 3926892 és a 3965063 számú USA-beli szabadalmi leírás szerint a HEMA kopolimerben monomerként lauril-akrilát vagy -metakrilát alkalmazható, ahol a kopolimer további komponensei izobutil-metakrilát, ciklohexil-metakrilát vagy N-(l,l-dimetil-3-oxo-butil)akrilamid. Az idézett irat szerint a fenti elegyet ömlesztett polimerizálással polimeresítik. A leírásban említett lauril-metakrilát felhasználására konkrét példát nem ad meg.
Ν,Ν-Dimetil-akrilamidból vagy N-vinil-pirrolidonból és hidrofób monomerből képzett kopolimerből kialakított kontaktlencsét ismertet továbbá a 4620954 és 4625009 számú USA-beli szabadalmi leírás, valamint a 61-166516 és 61-205 901 számú japán szabadalmi leírás.
A 4716234 számú USA-beli szabadalmi leírás szerint UV-abszorberként különböző polimerekben bizonyos benzotriazol (met)akrilát-észterek alkalmazhatók. A felsorolt nagyszámú polimerek közé tartozik a HEMA polimer is. Az alkalmazott benzotriazol (met)akrilát-észter hidrofób tulajdonságokat mutat.
A 3 503 942 számú USA-beli szabadalmi leírás hidrofil műanyag kontaktlencse előállítását ismerteti hidroxi-alkil-akrilát vagy metakrilát és legfeljebb 35 tömegé, alkil-akrilát vagy -metakrilát, előnyösen 5-20 szénatomos alkilakrilát vagy -metakrilát elegyéből ömlesztett polimerizálással előállított kopolimer felhasználásával.
A találmány tárgya tehát eljárás meghatározott formájú hidrogél alakos testek, így lágy kontaktlencsék előállítására, amelynek során
1. egy polimerizációs elegyből, amelynek összetétele
a) fő tömegében egy 2-hidroxi-etiI-metakrilátból, valamint alkilrészében legalább 4 szénatomos alkil-(met)akrilátból és egy vagy több keresztkötéses monomerből álló monomer elegy; és
b) vízzel helyettesíthető oldószer, öntéssel az adott monomer/oldószerelegy kopolimerjéből álló meghatározott formájú gélt képzünk; és
2. az adott oldószert vízzel helyettesítjük.
A találmány szerinti eljárás jellemző vonása, hogy olyan, vízzel helyettesíthető oldószert alkalmazunk, amelynek viszkozitása 30 °C hőmérsékleten legalább 100 mPaxsec, és amely olyan dihidroxi-alkoholok bórsav-észteréből áll, amelyben a dihidroxi-alkohol Hansen-féle poláros (wp) és Hansen-féle hidrogénmegkötő (wh) kohéziós paramétere egy wh=20,5 és wp=13 középpontú, és 8,5 sugarú körbe esik.
A találmány szerinti eljárás előnyösen alkalmazható lágy kontaktlencsék előállítására.
A találmány tárgyához legközelebb álló technika állása a 4495313 számú USA-beli szabadalmi leírás, amelyben vízzel helyettesíthető oldószerként borátésztereket alkalmaznak hidrogél alakos testek öntéssel történő előállítása során. Hidroxi-alkil-(met)akrilát és alkil-(met)akrilát kopolimer kontaktlencse előállításához történő alkalmazása vonatkozásában a legközelebbi technika állása a 3 503 942 számú USA-beli szabadalmi leírás.
A 4680336 számú USA-beli szabadalmi leírás hidrogél alakos testek közvetlen öntéssel történő előállítását ismerteti a viszkozitás, valamint a Hansenféle poláros és a Hansen-féle hidrogénmegkötő kohéziós paraméterek alapján kiválasztott oldószer felhasználásával.
Hidrogél alakos testek, így lágy kontaktlencsék közvetlen öntéssel történő előállítását ismerteti továbbá a 4565348, 4640489, 4347198, 4208364 és 3220960 számú USA-beli szabadalmi leírás.
Kontaktlencse hidroxi-alkil-(met)akrilátból és alkil-(met)akrilátból történő előállítását ismerteti továbbá a 3 988 274, 4 1 43 017 és 4529747 számú USA-beli szabadalmi leírás.
Az 1. ábra a Hansen-féle (wh és wp) kohéziós paramétereket ismerteti néhány dihidroxi-alkohol vonatkozásában.
HU 207 964 Β
A 2. ábra a lágy kontaktlencsék Young-modulusának meghatározásához alkalmazott kalibrációs görbe.
A 3. ábra oldalnézetben és részben vázlatosan ábrázolja a polimer/oldószerelegyből álló kontaktlencse előállítására alkalmazott öntőforma kinyitásához szükséges erő meghatározásához alkalmazott kísérleti eszközt.
A találmány szerinti megoldás fő újdonsága a 4 szénatomos és ennél magasabb szénatomszámú alkil(met)akrilátok alkamazása a lágy kontaktlencse előállítására szolgáló hidroxi-alkil-(met)akrilát kopolimerben. A ,,(met)-akrilát” kifejezés jelentése metakrilát és/vagy akrilát.
Az előnyösen alkalmazható 4 szénatomos és ennél magasabb szénatomszámú (met)-akrilát-észterekre példaként említhető:
n-butil-akrilát és -metakrilát, n-hexil-akrilát és -metakrilát,
2-etil-hexil-metakrilát és más oktil-akrilátok és -metakrilátok, n-decil-akrilát és -metakrilát, izodecil-akrilát és -metakrilát, dodecil-akrilát és -metakrilát, sztearil-metakrilát, és más, legalább 4 szénatomos alkilcsoportokat tartalmazó alkil-akrilátok és -metakrilátok.
Előnyösen alkalmazhatók az alkilrészükben legalább 6 szénatomos és előnyösen legfeljebb 20 szénatomos egyenes szénláncú alkil-(met)akrilátok.
A találmány szerinti eljárásban alkalmazott monomer elegy összetétele fő tömegében valamely hidroxialkil-(met)akrilát, így HEMA, 2-hidroxi-etiI-akrilát, glicerol-monoakrilát, glicerol-mono-metakrilát vagy valamely más hasonló hidroxi-alkil-(met)akrilát, valamint egy vagy több polifunkciós, keresztkötéses monomer és adott esetben kevés más monomer, így metakrilsav, továbbá a legalább 6 szénatomos alkil(met)akrilát. A monomer elegyben további komponensként hidrofil monomerek alkalmazhatók, ilyenekre példaként említhető a 2-hidroxi-propil-metakrilát, 2-hidroxi-propil-akrilát, 3-hidroxi-propil-metakrilát és N-vinil-pirrolidon. Az önmagában vagy kombinációban alkalmazott polifunkciós, keresztkötéses monomerekre példaként említhető az etilénglikoldimetakrilát, trimetilol-propán-trimetakrilát, polietilénglikol-dimetakrilát (ahol a polietilén-glikol móltömege előnyösen 400), valamint más, legalább két (met)akrilát csoportot tartalmazó poliakrilátok és polimetakrilátok. A polifunkciós, keresztkötéses monomert általában 0,1-1,25 tömegrész mennyiségben alkalmazzuk 100 tömegrész hidroxi-alkil-(met)akrilátra vonatkoztatva. További monomerként alkalmazható például metakrilsav, amely befolyásolja a hidrogél által az egyensúlyi állapot eléréséig felvett víz mennyiségét. A meíakrilsavat általában 0,25-7 tömegrész mennyiségben alkalmazzuk 100 tömegrész hidroxi-alkil(met)akrilátra vonatkoztatva, ahol a metakrilsav mennyisége különböző faktoroktól, így a legalább 6 szénatomos alkil-(met)akrilát mennyiségétől függ. Általában több metakrilsavat alkalmazunk akkor, ha növeljük az alkil-(met)akrilát monomer arányát. A legalább 6 szénatomos alkil-(met)akrilátot a vízzel duzzasztott kopolimerből álló hidrogél rugalmas szilárdságának javítására szükséges mennyiségben alkalmazzuk. Ez a mennyiség általában 10-50 tömegrész, előnyösen 10-30 tömegrész 100 tömegrész hidroxi-alkil(met)akrilátra, így a HEMA-ra vonatkoztatva.
A monomerelegy adott esetben egy vagy több ultraibolya abszorbeáló monomert tartalmaz. Az UV-abszorbeáló monomerekre példaként említhető a benzol-triazol-(met)akrilát-észter, így 2-[2’-hidroxi5’-akriloil-oxialkil-fenil]-2H-benzotriazol (4528311 számú USA-beli szabadalmi leírás), 2-[2’-hidroxi-5’-akriloiI-oxi-alkoxifenilJ-2H-benzotriazol (4716234 számú USA-beli szabadalmi leírás) és 2-(2’-hidroxi-fenil)-5(6)-(akriloil-alkoxi)-benzotriazol (21096 számú USA-beli szabadalmi bejelentés, benyújtás napja: 1987. március 3.). Az előnyösen alkalmazható benzotriazol UV-abszorbeáló (met)akrilát-észterekre példaként említhető: 2-(2’-hidroxi-5’-metakril-oxi-etiI-fenil)-2H-benzotriazol,
2-(2’hidroxi-5’-metakril-oxi-etil-fenil)-5-klór-2Hbenzotriazol,
2-(2’hidroxi-5’-metakrÍl-oxi-propil-feniI)-5-klór-2Hbenzotriazol,
2-(2’-hidroxi-5’-metakril-oxi-propil-3’-terc-butil-fenil)-2H-benzotriazol,
2-(2’-hidroxi-5’-metakril-oxi-propil-3’-butil-fenil)-5klór-2H-benzotriazol,
2-[2’hidroxi-5’-(2-metakriloil-oxi-etoxi)-3’-terc-butilfenil]-5-metoxi-2H-benzotriazol,
2-[2’-hidroxi-5’-(gamma-metakriloil-oxÍ-propoxi)-3’terc-butil-fenil]-5-metoxi-2H-benzotriazol, és
2-(3’-terc-butil-2’-hidroxi-5’-metoxi-fenil)-5-(3’-metakriloil-oxi-propoxi)-benzotriazol.
UV-abszorbeáló monomerként alkalmazhatók továbbá benzofenon-származékok is.
Az UV-abszorbeáló benzotriazol-(met)akrilát-észtert a monomer elegyben olyan mennyiségben alkalmazzuk, amely elegendő ahhoz, hogy a kész kontakt lencse hatékonyan elnyelje az UV-sugárzást. Az UVabszorbeáló monomer mennyisége általában 1-10 tömegrész 100 tömegrész fő hidrofil monomerre, így a HEMA-ra vonatkoztatva.
A monomer elegy további komponensként polimerizáló katalizátort tartalmazhat. Polimerizáló katalizátorként alkalmazhatók szabad gyököket produkáló vegyületek, így lauroil-peroxid, benzoil-peroxid, izopropil-perkarbonát, azobiszizobutironitril és hasonló vegyületek, amelyek enyhén megemelt hőmérsékleten szabad gyököket adnak le. Polimerizáló katalizátorként alkalmazható továbbá fotoiniciátor rendszer, így tercieramin és diketon elegye. A fotoiniciátor rendszere példaként említhető a kámfor-kinon és etil-4-(N,N-dimetil-amino)-benzoát elegye. Fotoiniciátorként előnyösen alkalmazható továbbá a 4-(2-hidroxi-etoxi)-fenil-2-hidroxi-2-proil-keton. A katalizátort a katalitikus hatás kifejtéséhez szükséges mennyiségben alkalmazzuk a polimerizálandó reakcióelegyben. Ez a mennyiség általában 0,25-1,5 tömegrész 100 tomegrész hidroxi-alkil-(met)akrilátra vonatkoztatva.
HU 207 964 Β
A találmány értelmében a hidrogél alakos testek közvetlen öntése során vízzel helyettesíthető oldószerként alkalmazott bórsav-észter valamely dihidroxi-alkohol borát-észtere lehet, ahol a dihidroxi-alkohol Hansen-féle poláros (wp) és Hansen-féle hidrogénmegkötő (wh) kohéziós paramétere egy wh=20,5 és wp=13 középpontú és 8,5 sugarú körbe esik. További feltétel, hogy a bórsav és a dihidroxi-alkohol észtere 30 °C hőmérsékleten legalább 100 mPaxsec, előnyösen legalább 500 mPaxsec viszkozitást mutasson.
A bórsav-észtereket a szokásos módon állítjuk elő, amelynek során például a bórsavat a dihidroxi-alkohollal (az egyszerűség kedvéért a dihidroxi-alkoholt a továbbiakban dióinak nevezzük) reagáltatjuk, és a reakció során keletkező vizet a szokásos módon, például vákuumdesztillálással eltávolítjuk. A bórsavat az észter képzéséhez szükséges hőmérsékleten és reakcióidéig reagáltatjuk a diollal. A reakció-hőmérséklet általában 50-120 °C, ahol a reakcióidő általában 2-12 óra. A fenti paraméterek mellett a reakciót addig folytatjuk, míg az észter víztartalma 2 tömeg% alá csökken. A bórsav és a diói tömegarányát úgy választjuk meg, hogy az észter viszkozitása 30 °C hőmérsékleten legalább 100 mPaxsec legyen. A megadott példákban bemutatjuk, hogy az elérni kívánt viszkozitás függvényében hogyan kell megválasztani a bórsav és a diói tömegarányát. Bizonyos esetekben előnyös lehet, ha az észterezési reakció során kis mennyiségű monohidroxialkoholt is alkalmazunk, amellyel beállíthatjuk az előállított észter móltömegét.
A vízzel helyettesíthető borát-észter oldószerek előállításához alkalmazott diolok Hansen-féle poláros (wp) és Hansen-féle hidrogénmegkötő (wh) kohéziós paramétere egy wh=20,5 és és wp=13 középpontú és 8,5 sugarú körbe esik. A Hansen-féle (w) kohéziós paraméternek általában három összetevője (wh, wp és wd) van, ahol wh a hidrogénmegkötő kohéziós paraméter, wp a poláros kohéziós paraméter és wd a diszperziós kohéziós paraméter. A találmány értelmében alkalmazott diolok diszperziós kohéziós paramétere lényegében változatlan (a meghatározott értékek 15,7 és 17,0 között szórnak,) és ezért csak kismértékben befolyásolják az adott diói felhasználhatóságát. A borátészter oldószer előállítására alkalmas diói kiválasztásánál ezért a Hansen-féle kohéziós paramétert csak a poláros és a hidrogénmegkötő kohéziós paraméter vonatkozásában egy kétdimenziós függvényként kell figyelembe venni.
A Hansen-féle kohéziós paraméter ismert például az alábbi irodalmakból:
CRC Handbook of Solubility Parameters and Other Cohesion Parameters [Allan F. M. Barton, CRC Press, Inc., Boca Raton, Florida (1983), 85-97, 141 és 153— 164 oldalak];
Hansen: THE UNIVERSALITY OF THE SOLUBILITY PARAMÉTER [I and EC Product Research and Development, 8. kötet, 1, (1969), 2-11. oldal]; Wernick: Stereographic Display of Three-Dimensional Solubility Paraméter Correlations [Ind. Eng. Chem. Prod. Rés. Dev., 23. kötet, 2, (1984), 240-245. oldal];
Kirk-Othmer Encyclopedia of Chemical Technology (2. kiadás, Suppl. Vol. Interscience, NY 1971, 891 és 892 oldal).
Néhány diói Hansen-féle (wh és wp) kohézis paraméterét az I. táblázatban adjuk meg. Az adatokat a fent idézett CRC Handbook alapján adjuk meg, amennyiben ott megtalálhatók. Azoknál a diótoknál, amelyekre vonatkozóan adatot nem találtunk, a megadott értékeket az idézett CRC Handbook 85-87. oldal és az idézett Kirk-Othmer irodalom 891-892. oldalán megadott módon számoltuk. A wp értékeket az idézett Kirk-Othmer irodalomban megadott egyszerű additív módszerrel számoltuk.
Z. táblázat
Diolok Hansen-féle kohéziós paramétere
Diói Rövidítés wp wh
etilénglikol EG 11,0 26,0
1,2-propándiol 1,2-PD 9,4 23,3
1,3-propándiol 1,3-PD 14,0 23,2
1,2-butándiol 1,2-BD 7,7 20,8
1,3-butándiol 1,3-BD 10,0 21,5
1,4-butándiol 1,4-BD 10,0 21,5
2,3-butándiol 2,3-BD 7,7 20,8
1,6-hexándiol 1,6-HD 8,4 17,8
2,5-hexándiol 2,5-HD 8,4 17,8
1,8-oktándiol 1,8-OD 6,3 15,5
1,10-dekándiol 1,11-DD 5,0 13,8
dietilénglikol DEG 14,7 20,5
polietilénglikol (móltömeg 400) PEG 400 11,6 14,5
polietilénglikol (móltömeg 1000) PEG 1000 10,9 12,6
dipropilénglikol DPG 20,3 18,4
tripropilénglikol TPG 9,8 16,1
polipropilénglikol (móltömeg 400) PPG 400 8,3 12,9
Az I. táblázatban megadott adatokat az 1. ábrán
W|,/wp függvényként ábrázoltuk.
A találmány szerinti eljárást közelebbről az alábbi példákkal világítjuk meg anélkül, hogy az oltalmi kör a példákra korlátozódna.
7. példa
Az öntési folyamat bemutatása
Kontaktlencsét öntünk az alábbi összetételű polimerizációs elegyből:
HEMA 100,0 tömegrész metakrilsav 2,00 tömegrész etilénglikol-dimetakrilát 0,4 tömegrész
Daracure 1173(l) 0,35 tömegrész l,4-butándiol-bórsav-észteri2) 102,75 tömegrész (1 )= 4-(2-hidroxi-etoxi)-fenil-2-hidroxi-2-propil-keton (2)= Előállítás: 797 tömegrész 1,4-butándiolt 203 tömegrész bórsavval reagáltatunk 90 °C hőmérsékleten 4 órán keresztül 105 Pa nyomáson.
HU 207 964 Β
A polimerizációs elegyet átlátszó polisztirol öntőformába helyezzük (4640 489 számú USA-beli szabadalmi leírás, előnyösen lásd a 2. ábrát), és a polisztirol öntőforma egyik oldalán keresztül 6-12 percen keresztül l,7joule/cm2 ultraibolya sugárzásnak teszszük ki (a besugárzási idő pontos időtartama nem kritikus).
2. példa
UV abszorbeáló lencse előállítására alkalmas monomer/oldószerelegy
Az 1. példában leírt módon kontakt lencsét öntünk az alábbi összetételű polimerizációs elegyből:
HEMA metakrilsav etilénglikol-dimetakrilát
2-(2’-hidroxi-5’-metakriloxipropil-3’-terc-butil-fenil)-5klór-2H-benzotriazol kámforkinon etil-4-(N,N-dimetil-amino)benzoát
1,4-butándioI-bórsav-észter butándiolt 203 tömegrész bórsavval reagáltatunk 90 °C hőmérsékleten 4 órán keresztül 105 Pa nyomáson.
3. példa
Diol-bórsav-észter előállítása
Egyliteres forgó bepárlóba bórsavat és dióit töltünk, és fokozatosan 90 °C hőmérsékletre melegítjük (mintegy 1 óra), miközben enyhe vákuumot (13,3 kPa) alkalmazunk. A 90 °C hőmérséklet elérése után erős vá10 kuumot (1,33 kPa) állítunk be, és az elegyet 3 órán keresztül 90 °C hőmérsékleten reagáltatjuk. Lehűlés után a víztartalmat Kari Fischer-titrálással meghatározzuk, és a borát-észter viszkozitását 30 °C hőmérsékleten Brookfield LVF viszkoziméterrel 6, 12 és 30 fordu15 lat/perc fordulatszámnál mérjük.
A fenti általános eljárással előállított borát-észtereket a II. táblázatban soroljuk fel. A táblázatban megadjuk az alkalmazott dióit, az I. táblázatban használt rövidítéssel, valamint az egy esetben trióiként alkalmazott glicerolt (rövidítve GLY), amely kontrollként szolgál, továbbá az egyes komponensek (alkohol és bórsav) felhasznált mennyiségét mólban kifejezve és ezek mólarányát, az előállított észtert, 30 °C hőmérsékleten mért viszkozitását (mPaxsec) és az észter víztartalmát (tömeg%).
100,00 tömegrész 2,04 tömegrész 0,4 tömegrész
3,00 tömegrész 0,40 tömegrész
0,60 tömegrész 77,45 tömegrész.
A bórsav-észter előállításához 797 tömegrész 1,411. táblázat
Sorszá m Diói Mennyiség (mól) Sav/diol mólarány Víztartalom (tömeg%) Viszkozitás (mPaxsec) Megjegyzés
sav diói
1 EG 3,75 12,38 3,30 0,5 paszta
2 EG 4,36 11,77 2,70 1,7 szilárd (1)
3 1,2-PD 3,91 9,97 2,55 0,3 85
4 1,2-PD 5,03 9,05 1,80 0,7 200
5 1,2-PD 5,68 8,52 1,50 1,4 632 (2)
6 1,3-PD 3,45 10,34 3,00 0,7 38
7 1,3-PD 5,68 8,52 1,50 1,4 40
8 1,2-BD 3,28 8,85 2,70 0,2 50
9 1,2-BD 5,08 7,61 1,5 1,1 100 (2)
10 1,3-BD 5,08 7,61 1,50 L0 100
11 1,4-BD 3,01 9,03 3,00 1,8 1 200
12 1,4-BD 3,28 8,85 2,70 1,4 14000
13 2,3-BD 3,28 8,85 2,70 0 48
14 2,3-BD 5,08 7,61 1,50 1,1 50 (2)
15 1,6-HD 2,63 7,09 2,70 0,3 27 250 (3)
16 2,5-HD 2,40 7,21 3,00 0,4 15 200 (3)
17 2,5-HD 2,63 7,09 2,70 0,4 100000+ (2), (3)
18 1,8-OD 2,09 5,96 2,85 0,3 szilárd (1),(3)
19 1,10-DD 1,88 5,07 2,70 0,3 szilárd (4)
20 GLY 4,06 8,13 2,00 0,6-1 18-22000
21 DEG 2,87 7,75 2,7 1,3 870
22 PEG 400 0,88 2,36 2,70 0,7 590
23 PEG 1000 0,362 0,978 2,70 0,7 szilárd (1)
24 DPG 2,36 6,37 2,70 1,3 2360
25 DPG 2,75 6,19 2,25 1,5 100000+
26 TPG 1,72; 4,65 2,70 . 0,9 1000
27 PPG 400 1,04 2,34 2,25 - 0,9 900 (4)
HU 207 964 Β (1) = Az oldószer szilárd, de monomerrel keverve alkalmazható.
(2) = Vízzel keverve bórsav kristályok képződnek.
(3) = Vízzel nem teljesen kompatíbilis (1 tömegrész észter és 10 tömegrész víz elegye), de használható, mert etanollal vagy etanol/víz eleggyel mosva helyettesíthető.
(4) = Sem a vízzel, sem a monomer eleggyel nem kompatíbilis (monomer/oldószerelegy 1:1), nem használható.
A legtöbb, II. táblázatban megadott borát-észtert vízzel helyettesíthető oldószerként alkalmazzuk a következő monomer elegyben:
HEMA 100,0 tömegrész metakrilsav 2,0 tömegrész etilénglikol-dimetakrilát 0,4 tömegrész
Darocure 1173 0,35 tömegrész
Oldószer 102,75 tömegrész.
A fenti, 0,4 tömegrész keresztkötéses monomert tartalmazó monomer elegy előnyösen alkalmazható hidrogél előállítására, mivel a kapott hidrogél Young-féle modulusa összhangban van a kontaktlencséhez történő alkalmazáshoz szükséges értékekkel. Azt találtuk, hogyha a fenti elegyből kapott hidrogél Young-féle modulusa legalább 0,10-0,12 MPa, akkor a hasonló összetételű, de valamivel több keresztkötéses monomert tartalmazó monomerelegyből előállított hidrogél elég erős ahhoz, hogy lágy kontaktlencseként alkalmazható legyen. A technika állása szerint a polifunkciós, keresztkötéses monomer, így az etilénglikol-dimetakrilát vagy trimetilol-propán-trimetakrilát mennyisége általában 0,2-1,0 tömegrész a fentiekhez hasonló összetételű monomer elegyben.
A fenti összetételű monomer/oldószerelegyből lágy kontaktlencsét állítunk elő az 1. példában leírt módon átlátszó polisztirol öntőformában. Az öntőformában lévő monomer/oldószerelegyet az egyik oldalról 1Ö percen keresztül 55 °C hőmérsékleten 1,7 joule/cm2 intenzitású ultraibolya sugárzásnak tesszük ki (TL09 lámpa, 350 nm).
A fenti monomer/oldószerelegyből kapott lencsén a következő vizsgálatokat végezzük:
(1) a lencse külső megjelenése az öntőformában és az öntőforma eltávolítása után, (2) a hidratált lencse Young-féle modulusa, (3) az öntőforma eltávolításához szükséges erő.
A vizsgálatok eredményeit a III. és IV. táblázatban adjuk meg. AIII. táblázat a kísérlet sorszámát, a borátészter oldószer előállításához alkalmazott dióit, a lencse megjelenését (C=tiszta, W=fehér, OS=opálos felület, SO=enyhén opálos) és az E Young-féle modulust tartalmazza MPa mértékegységben. A IV. táblázat az öntőforma eltávolításához szükséges erőt tartalmazza három különböző hőmérsékleten mérve.
///. táblázat
Az észter sorszá- ma Diói Megjelenés E Meg- jegy- zés
öntőformában végső
1 EG C C 0,20
2 EG C c 0,23
Az észter sorszá- ma Diói Megjelenés E Meg- jegy- zés
öntőformában végső
3 1,2-PD C c 0,11
4 1,2-PD c c 0,18
5 1,2-PD c c/os 0,17 (1)
7 1,3-PD - c/os - (2)
8 1,2-BD c c 0,25
9 1,2-BD OS - - (2)
10 1,3-BD OS - - (2)
11 1,4-BD c c 0,24
13 2,3-BD c c 0,08
14 2,3-BD OS - - (2)
15 1,6-HD c c 0,19
16 2,5-HD c c 0,19
18 1,8-OD c so 0,21
20 GLY c c 0,25 (kont- roll)
21 DEG c c 0,29
22 PEG 400 c c 0,34
23 PEG1000 c c 0,30
24 DPG c c 0,28
25 DPG c c 0,27
26 TPG c c 0,27
27 PPG 400 w w -
(1) = Kismértékben a polisztirol öntőforma is oldódik, ami enyhén opálos felületet eredményez.
(2) =A polisztirol öntőforma is oldódik, az öntőforma nem távolítható el.
AIII. táblázatban megadott Young-féle modulust az alábbi eljárással mérjük:
Az alkalmazott eljárás közel azonos fizikai méretekkel rendelkező lencsék roncsolásmentes összehasonlító vizsgálatára alkalmas. A kalibrálást a 4680336 számú USA-beli szabadalmi leírásban ismertetett hasonló lencse alapján végezzük.
A vizsgálathoz -1,0 dioptriás, 8,9+0,3 mm alapgörbületű, 0,15+0,01 mm központú vastagságú, és 14,0+0,5 mm átmérőjű lencsét alkalmazunk.
A vizsgálat elején ellenőrizzük a lencse méreteit, és ha azonos a fent megadott értékekkel, akkor egy átlátszó akril henger (15 mm külső átmérő, 9,8 mm belső átmérő, 7,2 mm magasság) tetejére helyezzük úgy, hogy a lencse külső görbülete az akrilhenger belső (9,8 mm átmérőjű) felületén nyugodjon. Ezt az elrendezést egy Optimec JCF/R/SI kontaktlencse analizátor központi vastagságmérő kamrájában lévő 0,9 tömeg%-os sóoldatba merítjük. A hengert és a lencsét a kamra középpontjában helyezzük el úgy, hogy a lencse vízszintes helyzetben álljon, és a központi vastagságot mérő skálát úgy állítjuk be, hogy az alkalmas legyen a külső felületi görbület mérésére.
Egy 3 mm-es rozsdamentes acélgolyót (0,2584 g) helyezünk óvatosan a lencse konkáv oldalára. A lencse központi része a lencse modulusával arányos módon fog meggörbülni. A görbületet mm-ben leolvassuk a
HU 207 964 Β központi vastagságot mérő skálán, és a modulust a 2. ábrán megadott kalibrációs görbe segítségével határozzuk meg.
A vizsgálat során legalább három lencsét vizsgálunk, és mindegyik lencsén legalább három mérést végzünk. A megadott modulus a kilenc mérés átlagértéke.
IV. táblázat
Észter sorszáma Öntőforma eltávolításához szükséges erő (kg)
Diói 30 ’C 55 ’C 80 ’C
1. EG 2,92 (0,50) 2,32 2,14(0,49)
2. EG (1) N/A (2) 2,77 (0,24)
3. 1,2-PD 1,77 (0,19) 1,29 (0,23) 1,23 (0,23)
4. 1,2-PD 2,04 (0,14) 1,44(0,19) 1,47 (0,34)
5. 1,2-PD 0,66 (0,35) 0,90 (0,39) 1,08 (0,46)
6. 1,3-PD 1,77 (0,17) 1,40 (0.28) 1,21 (0,11)
7. 1,3-PD (3) (3) (3)
10. 1,3-BD (3) (3) (3)
11. 1,4-BD 2,25 (0,28) 2,03 (0,21) 1,55 (0,23)
12. 1,4-BD 2,57 (0,14) 1,76 (0,41) 1,58 (0,14)
20. GLY (1) (1) (1)
21. DEG 1,26 (0,30) 1,09 (0,32) 0,70 (0,29)
22. PEG 400 1,53 (0,16) 1,24 (0,23) 0,61 (0,19)
23. PEG 1000 1,56 (0,45) 1.59 (0,26) 1,36 (0,32)
24. DPG 0,39 (0,22) 0,49(0,18) 0,53 (0,08)
25. DPG 0,41 (0,09) 0,34(0,14) 0,50 (0,23)
26. TPG 0,79 (0,26) 0,79 (0,27) 0,98 (0,16)
27. TPG (4) (4) (4)
A zárójelben megadott számok a standard deviáció értékét adják meg.
(1) = Az öntőforma tetején lévő perem a mérés során eltörött.
(2) = Mérési adat nélkül.
(3) = Az öntőfonna nem távolítható el. A polimer/oldószerelegy oldja az öntőformát, és az öntőforma két felét összeragasztja.
(4) = Az öntőforma eltávolításához szükséges erő a mérési határ alatt marad.
Az öntőforma eltávolításához szükséges erőt az alábbi vizsgálattal határozzuk meg:
Az alkalmazott vizsgálat azt a minimális erőt határozza meg, amely szükséges az öntőforma előlapjának és hátsó felének szétválasztásához (4640489 számú USA-beli szabadalmi leírás), amelyeket az ismert mennyiségű oldószert tartalmazó polimer mátrix köt össze. Az öntőforma méretei minden vizsgált mintánál azonosak.
Az öntőforma szétválasztásához szükséges erő meghatározására alkalmas elrendezést és'eszközt a 3.
ábra mutatja. Az erő mérésére a nyúlási szilárdság laboratóriumi meghatározására alkalmas (10) mérőműszert, például Instron 1122 mérőműszert alkalmazunk. Egy 22,5 kg-os töltött elemet (az ábrán nem szerepel) alkalmazunk egy (12) grafikonos rekorderrel, amely 9 kg-ig terjedő skálát tartalmaz.
A hőmérsékletet egy fűtőeszközzel (az ábrán nem szerepel) szabályozzuk, amelyhez például Varitemp VT750A típusú fűtőeszköz alkalmazható, amelyhez egy Staco 3PN2210 reosztát kapcsolódik. A polimer/oldószerelegybe egy T típusú hőelemet (az ábrán nem szerepel) helyezünk el a hőmérséklet ellenőrzésére.
A 16 mintadarabot egy (14) eszköz tartja a megfelelő helyzetben, és egy (18) emelőkar eltávolítja egymástól az öntőforma (20) felső részét és (22) alsó részét.
A (16) mintadarabban az öntőforma (20) felső részét és (22) alsó részét a (24) polimer/oldószer mátrix köti össze. A vizsgált mintadarab előállításához az azonos méretű öntőformákat frissen előállított eleggyel töltjük meg. Az öntőformákat közvetlenül a polimerizálás után deszikkátorba helyezzük a nedvességfelvétel mekagadályozása érdekében.
A vizsgálandó mintát a 3. ábrán mutatott eszközben helyezzük el. A mintát a mérőműszer alsó befogója tartja a megfelelő helyzetben 2,5xl05 Pa nyomással. A mintatartó eszközt a vízszinteshez képest 20 fokos dőléssel helyezzük el a mérőműszerben. Az öntőforma (22) alsó részét négy csapszeggel (az ábrán csak kettő szerepel, 26, és 28) állandó helyzetben tartjuk. A csapszegek az öntőforma (22) alsó része körül helyezkednek el 90 fokos közökben.
A (20) felső rész eltávolítására alkalmazott (18) emelőkart az öntőforma (20) felső része és (22) alsó része közé helyezzük, és a mérőműszer (30) felső befogó eszközében rögzítjük. A felső rész eltávolításának mértékét a (33) mozgó rész elmozdulása alapján mérjük.
A fűtőeszköz levegőáramát közvetlenül az öntőforma felső részére irányítjuk az állandó hőmérséklet fenntartása érdekében. A levegőáram hőmérsékletét a reosztáttal szabályozzuk.
A minta hőmérsékletét hőelem segítségével ellenőrizzük a (24) polimer/oldószer mátrix hőmérséklet változásának mérésével. Amikor a hőelem a kívánt hőmérsékletet mutatja, a (33) mozgó részt 2,54 cm/perc sebességgel emeljük. Az öntőforma eltávolításához szükséges erőt 30 °C, 55 °C és 80 °C hőmérsékleten mérjük.
A polimer/oldószer mátrix és a (20) felső rész közötti adhézió megszakítására szükséges erőt az idő függvényében a (12) grafikonos rekorderrel mérjük. Az ábrázolt görbe alapján meghatározzuk az öntőforma eltávolításához szükséges minimális erőt.
A megadott adatokból látható, hogy csak a meghatározott Hansen-féle paraméterekkel rendelkező diótokból előállított észterek felhasználásával kapunk átlátszó lencsét (amely a kontaktlencseként történő alkalmazás elengedhetetlen feltétele), és csak a 100 mPaxsec-nál nagyobb viszkozitású észter alkalmazásával kapunk elegendő mechanikai szilárdsággal rendelkező terméket, amely kontaktlencseként alkalmazható.
HU 207 964 Β
Az öntőforma eltávolításához szükséges erő adataiból látható, hogy a találmány értelmében alkalmazott diói észterek felhasználása esetén az öntőforma könynyebben eltávolítható, mint 4495 313 számú USA-beli szabadalmi leírásban ismertetett észterek felhasználása esetén.
A találmány szerinti diol-borát-észterrel az ismert glicerol-borát-észterhez képest elérhető kitermelés növekedés meghatározásához minden monomer/észter elegyből az 1. példában leírt módon előállított (80) lencséből származó három tételen vizsgáljuk a felületi hibák számát. Dietilénglikol/bórsav-észter (a II. táblázat 21. számú észtere) alkalmazása esetén a felületi hibák száma 10,4%, 1,4-butándiol/bórsav-észter (a II. táblázat 12. számú észtere) alkalmazása esetén a felületi hibák mennyisége 13,0%, és glicerol/brósav-észter (a II. táblázat 20. számú észtere) alkalmazása esetén a felületi hibák mennyisége 30,4%. Ez jelentős javulást jelent a 4495313 számú USA-beli szabadalmi leíráshoz képest.
4. példa
Alkil-(met)akriláttal módosított HEMA előállítása vízzel helyettesíthető oldószerként borái-észter felhasználásával
Az alábbi összetételű elegyhez:
102,11 g hidroxi-etil-metakrilát (HEMA)
3,82 g metakrilsav (MAA)
0,85 g etilénglikol-dimekrilát (EGDMA)
0,10 g trimetilol-propán-trimetakrilát (TMPTA)
0,36 g DAROCURE(1>
136,75 g vízzel helyettesíthető oldószeri25 (1) = 4-(2-hidroxi-etoxi)-fenil-2-hidroxi-2-propil-keton.
(2) = Előállítható: 1094,84 tömegrész 1,4-butándiol és
278,64 tömegrész bórsav reakciójával 90 °C hőmérsékleten 2 óra alatt 1,33 kPa nyomású forgó bepárlóban.
20,0 g alkil-(met)akrilátot vagy más hidrofób metakrilsav-észtert adunk. A monomer elegyet 3 órán keresztül 5320 Pa nyomású vákuumszekrénybe helyezzük az oxigén eltávolítása érdekében. A vákuumszekrényt ezután nitrogéngázzal töltjük fel. A 4640489 számú USA-beli szabadalmi leírás 2. ábrája szerinti tiszta polisztirol kontaktlencse öntőformát nitrogén atmoszférában a fenti eleggyel töltjük meg. Az elegy polimerizálásához az öntőforma egyik oldalát 1,7 joule/cm2 intenzitású UV-fénnyel sugározzuk be Philips TL40W/09n típusú fluoreszcens lámpával, amelynek maximális sugárzása 365 nm-nél jelentkezik. Az UV-besugárzást mintegy 10 percen keresztül végezzük (a besugárzási idő pontos betartása nem kritikus). A polimerizálás után a polimer/oldószerelegyet etanol/víz 50:50 térfogatarányú eleggyel mossiik, majd tiszta vízzel mosva az oldószert vízzel helyettesítjük. A lencséket a lágy kontaktlencse csomagolására és tárolására általánosan alkalmazott pufferolt sóoldatban tároljuk.
Az V. táblázat a metakril-észter hidrofób csoportját, a hidrogél külső megjelenését (vagyis a vízzel duzzasztott polimer külső megjelenését), a hidrogél víztartalmát, a kompressziós modulust (keménység) és a hidrogél oxigénáteresztő képességét adja meg.
A hidrogél keménységét az alábbi eljárással határozzuk meg:
A kompressziós mudulust keresztirányban állandó sebességgel mozgó vizsgálóberendezésen határozzuk meg kompressziós üzemmódban. A vizsgált kontaktlencse mintát először két, egymással derékszöget bezáró vágással bemetszük, ahol mindkét vágás keresztülmegy a lencse középpontján. Ezzel elérjük, hogy a minta a vizsgálat során simán kiteríthető legyen. A vizsgálati mintát két lemez között 0,001 cm/perc sebességgel préseljük. A nyomóerőt szalagos grafikonos rekorderen jelezzük ki, amelynek haladási sebessége 1 cm/perc. A töltött elem teljes skálája 0,05 kg. Zéró kompresszió akkor mérhető, amikor a töltési érték 0,002 kg. A kompressziós modulus mért értékeit kg/m2 mértékegységben adjuk meg.
Az oxigénáteresztő képességet Fatt és munkatársai: Measurement of Oxygen Transmissibility and Permeability of Hydrogel Lenses and Materials, International Contact Lens Clinic, 9, 2, 1982, 76-88. oldalak szerint határozzuk meg. Az oxigénáteresztő képességet Dk értékben fejezzük ki, ahol a D az oxigén diffúziós koefficiensét jelöli a vizsgált anyagban és k az oxigén oldékonyságát jelöli a vizsgált anyagban. A mértékegység (cm2/sec) (ml 02/mlxHgmm). A táblázatban megadott adatokat 10_ll-nel szorozni kell az aktuális érték eléréséhez.
V. táblázat
Hidrofób csoport Megjele- nés Víztartalom (tömegbe) Kemény- ség Dk
kontroll (1) tiszta 60,4 20,2 30
benzilcsoport tiszta 58,3 32,1 23
2-butil-csoport tiszta 64,9 26,8 26
n-butil-csoport tiszta 65,0 41,2 42
terc-butil-csoport tiszta 63,0 27,0 31
n-nexil-csoport tiszta 61,3 43,2 30
2-etil-hexil- csoport tiszta 59,0 38,1 30
n-oktil-csoport tiszta 64,4 25,7 (2) 40
n-dodecil- csoport tiszta 66,5 43,6 39
(1) =A kontroll minta összetétele:
HEMA 488,2 tömegrész metakrilsav 8,2 tömegrész etilénglikol-dimetakrilát 3,1 tömegrész trimetil-propán-trimetakrilát 0,49 tömegrész
DAROCURE 1173 1,74 tömegrész
A fenti monomerelegyből 48 tömegrészt 52 tömegrész fenti oldószerrel keverünk.
(2) =A mért alacsony keménység feltehetően valamely rendellenességnek köszönhető.
HU 207 964 Β
Annak bemutatására hogy az oxigénáteresztő képesség a hídrogél kontaktlencse vastagságának csökkenésével nő, meghatározzuk az azonos anyagból készült különböző vastagságú kontaktlencsék oxigénáteresztő képességét (Dk/1). A lencséket a fent ismertetett anyagból állítjuk elő hidrofób csoportként 2-etil-hexilcsoportot és n-dodecil-csoportot alkalmazva. A mért vastagság és oxigénáteresztő adatokat az alábbi táblázatban adjuk meg:
Hidrofób csoport (20% a polimerben) Vastagság (pm) Dk/1
2-etil-hexil-csoport 110 18,9x10-9
2-etil-hex il-csoport 60 29,3x10~9
2-etil-hexil-csoport 30 37,8x1 (T9
n-dodecil-csopon 110 20,2x109
n-dodccil-csoport 60 29,9x10-9
n-dodecil-csoport 30 43,0x1 Cr9
Kontrolpélda
Hidrofób adalékanyaggal módosított HEMA előállítása ömlesztett polimerizálással oldószer nélkül 0,8 g HEMA (tartalmaz: 0,0016 g EGDMA és
0,032 g MAA) és 0,0028 g DAROCURE elegyéhez 0,2 g hidrofób metakrilsav-észtert adunk. Az elegyet 20 ml-es Pyrex szcintillációs kémcsőben állítjuk elő. Nitrogén 1 percen keresztül történő átvezetésével az elegyet oxigénmentesítjük, és a kémcsövet műanyagdugóval lezárjuk. A kémcsöveket két Philips TL20W/09N izzó alá fektetjük úgy, hogy a folyadékszint a fényforrástól 5-6 cm távolságban legyen. Az elegyet 10 percen keresztül fotopolimerizáljuk. A mérési eredményeket a VI. táblázatban adjuk meg.
VI. táblázat
Hidrofób csoport Megjelenés polimerizálás
előtt után
n-butil-csoport tiszta tiszta
2-buiil-csoporl liszt a tiszta
lerc-butil-csopon tiszta tiszta
ciklohexilcsoport tiszta tiszta
n-hcxil-csoport tiszta áttetsző
benzilcsoport tiszta tiszta
n-oktilcsoporl tiszta opál os
η-dodccil-csoport tiszta opál os
n-sztearil-csoport tiszta opálos
2-etil-hexil-csoport tiszta erősen opálos
Feltételezzük, hogy a legalább 6 szénatomos alkilmetakrilátot tartalmazó elegy ömlesztett polimerizálásával előállított lencséknél megfigyelhető áttetszőség, opálosság és erős opálosság a polimerizációs reakció során fellépő inkompatibilitásnak köszönhető.
SZABADALMI IGÉNYPONTOK

Claims (15)

  1. SZABADALMI IGÉNYPONTOK
    1. Eljárás meghatározott alakú hídrogél alakos testek előállítására, amelynek során
    1. egy polimerizációs elegyből, amelynek összetétele
    a) fő tömegében valamely hidrofil (met)akrilát monomerből, valamint alkilrészében legalább 4 szénatomos alkil-(met)akrilátból és keresztkötéses monomerből álló monomer elegy; és
    b) vízzel helyettesíthető oldószer, öntéssel az adott monomer/oldószerelegy kopolimerjéből álló meghatározott formájú gélt képezünk: és
  2. 2. az adott oldószert vízzel helyettesítjük, azzal jellemezve, hogy olyan vízzel helyettesíthető oldószert alkalmazunk, amelynek viszkozitása 30 °C hőmérsékleten legalább 100 mPaxsec, és amely olyan dihidroxi-alkoholok bórsav-észteréből áll, amelyben a dihidroxi-alkohol Hansen-féle poláros (wp) és Hansen-féle hidrogénmegkötő (wh) kohéziós paramétere egy wh=205 és wp=13 középpontú, és 8,5 sugarú körbe esik.
    2. Az 1. igénypont szerinti eljárás, azzal jellemezve, hogy hidrofil monomerként hidroxi-alkil-(met)akrilátot alkalmazunk.
  3. 3. A 2. igénypont szerinti eljárás, azzal jellemezve, hogy hidroxi-alkil-(met)akrilátként 2-hidroxi-etil-metakrilátot alkalmazunk.
  4. 4. Az 1. igénypont szerinti eljárás, azzal jellemezve, hogy alkii-(met)akrilátként n-hexil-metakrilátot, n-oktil-metakrilátot, 2-etil-hexil-metakrilátot, decil-metakrilátot vagy n-dodecil-metakrilátot alkalmazunk.
  5. 5. Az I. igénypont szerinti eljárás, azzal jellemezve, hogy dihidroxi-alkoholként 1,4-bután-diolt alkalmazunk.
  6. 6. Az 1. igénypont szerinti eljárás, azzal jellemezve, hogy dihidroxi-alkoholként dietilén-glikolt alkalmazunk.
  7. 7. Az 1. igénypont szerinti eljárás, azzal jellemezve, hogy metakrilsavat tartalmazó monomer elegyet alkalmazunk.
  8. 8. Az 1. igénypont szerinti eljárás, azzal jellemezve, hogy meghatározott formájú hídrogél alakos testként kontaktlencsét állítunk elő.
  9. 9. A 8. igénypont szerinti eljárás, azzal jellemezve, hogy hidrofil monomerként valamely hidroxi-alkil(met)akrilátot alkalmazunk.
  10. 10. A 9. igénypont szerinti eljárás, azzal jellemezve, hogy hidroxil-alkil-(met)akrilátként 2-hidroxi-etiI-metakrilátot alkalmazunk.
  11. 11. A 8. igénypont szerinti eljárás, azzal jellemezve, hogy 30 °C hőmérsékleten legalább 500 mPaxsec viszkozitású oldószert alkalmazunk.
  12. 12. A 8. igénypont szerinti eljárás, azzal jellemezve, hogy alkil-(met)akrilátként n-hexil-metakrilátot, n-oktil-metakrilátot, 2-etil-hexil-metakrilátot vagy n-dodecil-metakrilátot alkalmazunk.
  13. 13. A 8. igénypont szerinti eljárás, azzal jellemezve, hogy dihidroxi-alkoholként 1,4-bután-diolt alkalmazunk.
  14. 14. A 8. igénypont szerinti eljárás, azzal jellemezve, hogy dihidroxi-alkoholként dietilénglikolt alkalmazunk.
  15. 15. A 8. igénypont szerinti eljárás, azzal jellemezve, hogy metakrilsavat tartalmazó monomer elegyet alkalmazunk.
    HU 207 964 Β IntCl.5: Β29C73/00
HU908277A 1989-12-15 1990-12-14 Method for producing hydrogel shaped bodies of determined form HU207964B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US07/451,077 US5039459A (en) 1988-11-25 1989-12-15 Method of forming shaped hydrogel articles including contact lenses

Publications (3)

Publication Number Publication Date
HU908277D0 HU908277D0 (en) 1991-06-28
HUT56510A HUT56510A (en) 1991-09-30
HU207964B true HU207964B (en) 1993-07-28

Family

ID=23790716

Family Applications (1)

Application Number Title Priority Date Filing Date
HU908277A HU207964B (en) 1989-12-15 1990-12-14 Method for producing hydrogel shaped bodies of determined form

Country Status (27)

Country Link
US (1) US5039459A (hu)
EP (1) EP0433085B1 (hu)
JP (1) JP2941959B2 (hu)
KR (1) KR100232615B1 (hu)
CN (1) CN1027521C (hu)
AT (1) ATE154446T1 (hu)
AU (1) AU626744B2 (hu)
BR (1) BR9006395A (hu)
CA (1) CA2032200C (hu)
CZ (1) CZ279965B6 (hu)
DE (1) DE69030915T2 (hu)
DK (1) DK0433085T3 (hu)
ES (1) ES2104591T3 (hu)
FI (1) FI906179A (hu)
GR (1) GR1000727B (hu)
HK (1) HK1000673A1 (hu)
HU (1) HU207964B (hu)
IE (1) IE79671B1 (hu)
IL (1) IL96651A (hu)
MX (1) MX174569B (hu)
NO (1) NO178466C (hu)
NZ (1) NZ236398A (hu)
PT (1) PT96209B (hu)
RO (1) RO108099B1 (hu)
RU (1) RU2091409C1 (hu)
YU (1) YU47088B (hu)
ZA (1) ZA9010079B (hu)

Families Citing this family (218)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2009668A1 (en) 1989-02-16 1990-08-16 Ashok R. Thakrar Colored contact lenses and method of making same
US5326505A (en) * 1992-12-21 1994-07-05 Johnson & Johnson Vision Products, Inc. Method for treating an ophthalmic lens mold
EP0695298B1 (en) * 1993-04-22 1997-11-19 Wesley Jessen Corporation Uv-absorbing benzotriazoles having a styrene group
US5457140A (en) * 1993-07-22 1995-10-10 Johnson & Johnson Vision Products, Inc. Method of forming shaped hydrogel articles including contact lenses using inert, displaceable diluents
US5697495A (en) * 1993-11-02 1997-12-16 Johnson & Johnson Vision Products, Inc. Packaging arrangement for contact lenses
USRE37558E1 (en) * 1993-11-02 2002-02-26 Johnson & Johnson Vision Care, Inc. Packaging arrangement for contact lenses
US5823327A (en) * 1993-11-02 1998-10-20 Johnson & Johnson Vision Products, Inc. Packaging arrangement for contact lenses
US5656208A (en) * 1994-06-10 1997-08-12 Johnson & Johnson Vision Products, Inc. Method and apparatus for contact lens mold filling and assembly
IL113693A0 (en) * 1994-06-10 1995-08-31 Johnson & Johnson Vision Prod Contact lens production line pallet system
US5804107A (en) 1994-06-10 1998-09-08 Johnson & Johnson Vision Products, Inc. Consolidated contact lens molding
US5814134A (en) * 1994-06-10 1998-09-29 Johnson & Johnson Vision Products, Inc. Apparatus and method for degassing deionized water for inspection and packaging
US5597519A (en) 1994-06-10 1997-01-28 Johnson & Johnson Vision Products, Inc. Ultraviolet cycling oven for polymerization of contact lenses
IL113826A0 (en) 1994-06-10 1995-08-31 Johnson & Johnson Vision Prod Method and apparatus for demolding ophthalmic contact lenses
IL113904A0 (en) * 1994-06-10 1995-08-31 Johnson & Johnson Vision Prod Mold clamping and precure of a polymerizable hydrogel
US5545366A (en) * 1994-06-10 1996-08-13 Lust; Victor Molding arrangement to achieve short mold cycle time and method of molding
US5850107A (en) * 1994-06-10 1998-12-15 Johnson & Johnson Vision Products, Inc. Mold separation method and apparatus
US5658602A (en) * 1994-06-10 1997-08-19 Johnson & Johnson Vision Products, Inc. Method and apparatus for contact lens mold filling and assembly
IL113694A0 (en) * 1994-06-10 1995-08-31 Johnson & Johnson Vision Prod Apparatus for removing and transporting articles from molds
US5578331A (en) * 1994-06-10 1996-11-26 Vision Products, Inc. Automated apparatus for preparing contact lenses for inspection and packaging
US5895192C1 (en) 1994-06-10 2001-11-06 Johnson & Johnson Vision Prod Apparatus and method for removing and transporting articles from molds
US5696686A (en) * 1994-06-10 1997-12-09 Johnson & Johnson Vision Products, Inc. Computer system for quality control correlations
IL113691A0 (en) * 1994-06-10 1995-08-31 Johnson & Johnson Vision Prod Low oxygen molding of soft contact lenses
US5540410A (en) 1994-06-10 1996-07-30 Johnson & Johnson Vision Prod Mold halves and molding assembly for making contact lenses
US5461570A (en) * 1994-06-10 1995-10-24 Johnson & Johnson Vision Products, Inc. Computer system for quality control correlations
US5607642A (en) * 1994-06-10 1997-03-04 Johnson & Johnson Vision Products, Inc. Interactive control system for packaging control of contact lenses
US5528878A (en) 1994-06-10 1996-06-25 Johnson & Johnson Vision Products, Inc. Automated apparatus and method for consolidating products for packaging
US6752581B1 (en) 1994-06-10 2004-06-22 Johnson & Johnson Vision Care, Inc. Apparatus for removing and transporting articles from molds
US5542978A (en) 1994-06-10 1996-08-06 Johnson & Johnson Vision Products, Inc. Apparatus for applying a surfactant to mold surfaces
US5837314A (en) * 1994-06-10 1998-11-17 Johnson & Johnson Vision Products, Inc. Method and apparatus for applying a surfactant to mold surfaces
US5760100B1 (en) 1994-09-06 2000-11-14 Ciba Vision Corp Extended wear ophthalmic lens
US7468398B2 (en) 1994-09-06 2008-12-23 Ciba Vision Corporation Extended wear ophthalmic lens
US5910519A (en) * 1995-03-24 1999-06-08 Johnson & Johnson Vision Products, Inc. Method of forming shaped hydrogel articles including contact lenses using inert, displaceable diluents
US5685420A (en) * 1995-03-31 1997-11-11 Johnson & Johnson Vision Products, Inc. Composite packaging arrangement for contact lenses
JP3771940B2 (ja) * 1995-09-06 2006-05-10 株式会社メニコン 眼用レンズの製法およびそれからえられた眼用レンズ
AU712870B2 (en) 1995-09-29 1999-11-18 Johnson & Johnson Vision Products, Inc. Automated apparatus and method for consolidating products for packaging
JP2959997B2 (ja) * 1995-10-30 1999-10-06 ホーヤ株式会社 2−ヒドロキシエチルメタクリレート系の重合体、ハイドロゲル及び含水ソフトコンタクトレンズの製造方法
US5922249A (en) * 1995-12-08 1999-07-13 Novartis Ag Ophthalmic lens production process
US5916494A (en) 1995-12-29 1999-06-29 Johnson & Johnson Vision Products, Inc. Rotational indexing base curve deposition array
SG54538A1 (en) * 1996-08-05 1998-11-16 Hoya Corp Soft contact lens with high moisture content and method for producing the same
US5938988A (en) * 1996-08-19 1999-08-17 Johnson & Johnson Vision Products, Inc. Multiple optical curve molds formed in a solid piece of polymer
JP3641110B2 (ja) * 1997-08-20 2005-04-20 株式会社メニコン 軟質眼内レンズ用材料
US6326448B1 (en) 1997-08-20 2001-12-04 Menicon Co., Ltd. Soft intraocular lens material
US6047082A (en) * 1997-11-14 2000-04-04 Wesley Jessen Corporation Automatic lens inspection system
US5998498A (en) * 1998-03-02 1999-12-07 Johnson & Johnson Vision Products, Inc. Soft contact lenses
US6849671B2 (en) 1998-03-02 2005-02-01 Johnson & Johnson Vision Care, Inc. Contact lenses
US6367929B1 (en) 1998-03-02 2002-04-09 Johnson & Johnson Vision Care, Inc. Hydrogel with internal wetting agent
US5962548A (en) * 1998-03-02 1999-10-05 Johnson & Johnson Vision Products, Inc. Silicone hydrogel polymers
US20070043140A1 (en) * 1998-03-02 2007-02-22 Lorenz Kathrine O Method for the mitigation of symptoms of contact lens related dry eye
US7052131B2 (en) 2001-09-10 2006-05-30 J&J Vision Care, Inc. Biomedical devices containing internal wetting agents
US6943203B2 (en) * 1998-03-02 2005-09-13 Johnson & Johnson Vision Care, Inc. Soft contact lenses
US7461937B2 (en) * 2001-09-10 2008-12-09 Johnson & Johnson Vision Care, Inc. Soft contact lenses displaying superior on-eye comfort
US6822016B2 (en) 2001-09-10 2004-11-23 Johnson & Johnson Vision Care, Inc. Biomedical devices containing internal wetting agents
US6242042B1 (en) * 1998-09-14 2001-06-05 Lrc Products Ltd. Aqueous coating composition and method
US6246062B1 (en) 1998-11-05 2001-06-12 Johnson & Johnson Vision Care, Inc. Missing lens detection system and method
SG87848A1 (en) 1998-11-05 2002-04-16 Johnson & Johnson Vision Prod Missing lens detection system and method
US20040074525A1 (en) * 2001-03-27 2004-04-22 Widman Michael F. Transfer apparatus and method and a transfer apparatus cleaner and method
US20070157553A1 (en) * 1998-12-21 2007-07-12 Voss Leslie A Heat seal apparatus for lens packages
US20040112008A1 (en) 1998-12-21 2004-06-17 Voss Leslie A. Heat seal apparatus for lens packages
US6610220B1 (en) 1998-12-28 2003-08-26 Johnson & Johnson Vision Care, Inc. Process of manufacturing contact lenses with measured exposure to oxygen
US6207086B1 (en) 1999-02-18 2001-03-27 Johnson & Johnson Vision Care, Inc. Method and apparatus for washing or hydration of ophthalmic devices
US6494021B1 (en) 1999-02-18 2002-12-17 Johnson & Johnson Vision Care, Inc. Contact lens transfer and material removal system
US7879288B2 (en) * 1999-03-01 2011-02-01 Johnson & Johnson Vision Care, Inc. Method and apparatus of sterilization using monochromatic UV radiation source
US6592816B1 (en) 1999-03-01 2003-07-15 Johnson & Johnson Vision Care, Inc. Sterilization system
AU2001252985A1 (en) 2000-03-31 2001-10-15 Bausch And Lomb Incorporated Methods and devices to control polymerization
CN1230465C (zh) * 2000-11-03 2005-12-07 庄臣及庄臣视力保护公司 用于制备包含亲水性和疏水性单体的聚合物的溶剂
US6861123B2 (en) * 2000-12-01 2005-03-01 Johnson & Johnson Vision Care, Inc. Silicone hydrogel contact lens
US20040151755A1 (en) * 2000-12-21 2004-08-05 Osman Rathore Antimicrobial lenses displaying extended efficacy, processes to prepare them and methods of their use
US6577387B2 (en) 2000-12-29 2003-06-10 Johnson & Johnson Vision Care, Inc. Inspection of ophthalmic lenses using absorption
EP1226924B1 (en) * 2001-01-24 2006-02-15 Novartis AG Lens Manufacturing Process
JP4307078B2 (ja) 2001-03-16 2009-08-05 ノバルティス アクチエンゲゼルシャフト コンタクトレンズ用の着色印刷インキ
US6663801B2 (en) * 2001-04-06 2003-12-16 Johnson & Johnson Vision Care, Inc. Silicon carbide IR-emitter heating device and method for demolding lenses
US6836692B2 (en) * 2001-08-09 2004-12-28 Johnson & Johnson Vision Care, Inc. System and method for intelligent lens transfer
US7008570B2 (en) * 2001-08-09 2006-03-07 Stephen Pegram Method and apparatus for contact lens mold assembly
EP1474719A4 (en) * 2002-02-15 2005-12-14 Zms Llc POLYMERIZATION PROCESS AND MATERIALS FOR BIOMEDICAL APPLICATIONS
US7001138B2 (en) * 2002-03-01 2006-02-21 Johnson & Johnson Vision Care, Inc. Split collar for mechanical arm connection
US20060100408A1 (en) * 2002-03-11 2006-05-11 Powell P M Method for forming contact lenses comprising therapeutic agents
US6846892B2 (en) * 2002-03-11 2005-01-25 Johnson & Johnson Vision Care, Inc. Low polydispersity poly-HEMA compositions
US20030223954A1 (en) * 2002-05-31 2003-12-04 Ruscio Dominic V. Polymeric materials for use as photoablatable inlays
US8158695B2 (en) * 2002-09-06 2012-04-17 Johnson & Johnson Vision Care, Inc. Forming clear, wettable silicone hydrogel articles without surface treatments
US20080299179A1 (en) * 2002-09-06 2008-12-04 Osman Rathore Solutions for ophthalmic lenses containing at least one silicone containing component
US20070138692A1 (en) * 2002-09-06 2007-06-21 Ford James D Process for forming clear, wettable silicone hydrogel articles
US20040150788A1 (en) 2002-11-22 2004-08-05 Ann-Margret Andersson Antimicrobial lenses, processes to prepare them and methods of their use
US20040120982A1 (en) * 2002-12-19 2004-06-24 Zanini Diana Biomedical devices with coatings attached via latent reactive components
US7368127B2 (en) * 2002-12-19 2008-05-06 Johnson & Johnson Vision Care, Inc. Biomedical devices with peptide containing coatings
EP1623269B2 (en) * 2003-04-24 2022-08-31 CooperVision International Limited Hydrogel contact lenses and package systems and production methods for same
US8097565B2 (en) * 2003-06-30 2012-01-17 Johnson & Johnson Vision Care, Inc. Silicone hydrogels having consistent concentrations of multi-functional polysiloxanes
GB0322640D0 (en) * 2003-09-26 2003-10-29 1800 Contacts Process
US7214809B2 (en) 2004-02-11 2007-05-08 Johnson & Johnson Vision Care, Inc. (Meth)acrylamide monomers containing hydroxy and silicone functionalities
US7786185B2 (en) 2004-03-05 2010-08-31 Johnson & Johnson Vision Care, Inc. Wettable hydrogels comprising acyclic polyamides
US20060043623A1 (en) 2004-08-27 2006-03-02 Powell P M Masked precure of ophthalmic lenses: systems and methods thereof
US7247692B2 (en) * 2004-09-30 2007-07-24 Johnson & Johnson Vision Care, Inc. Biomedical devices containing amphiphilic block copolymers
US7249848B2 (en) * 2004-09-30 2007-07-31 Johnson & Johnson Vision Care, Inc. Wettable hydrogels comprising reactive, hydrophilic, polymeric internal wetting agents
US7473738B2 (en) * 2004-09-30 2009-01-06 Johnson & Johnson Vision Care, Inc. Lactam polymer derivatives
BRPI0607430B8 (pt) 2005-02-14 2021-06-22 Johnson & Johnson Vision Care dispositivo oftálmico confortável e métodos de sua produção
US20060232766A1 (en) * 2005-03-31 2006-10-19 Watterson Robert J Jr Methods of inspecting ophthalmic lenses
US20060227287A1 (en) * 2005-04-08 2006-10-12 Frank Molock Photochromic ophthalmic devices made with dual initiator system
US9052438B2 (en) 2005-04-08 2015-06-09 Johnson & Johnson Vision Care, Inc. Ophthalmic devices comprising photochromic materials with reactive substituents
US20060226402A1 (en) * 2005-04-08 2006-10-12 Beon-Kyu Kim Ophthalmic devices comprising photochromic materials having extended PI-conjugated systems
US8158037B2 (en) 2005-04-08 2012-04-17 Johnson & Johnson Vision Care, Inc. Photochromic materials having extended pi-conjugated systems and compositions and articles including the same
MY144506A (en) * 2005-05-04 2011-09-30 Novartis Ag Automated inspection of colored contact lenses
US9102110B2 (en) * 2005-08-09 2015-08-11 Coopervision International Holding Company, Lp Systems and methods for removing lenses from lens molds
US20070155851A1 (en) * 2005-12-30 2007-07-05 Azaam Alli Silicone containing polymers formed from non-reactive silicone containing prepolymers
US9052529B2 (en) 2006-02-10 2015-06-09 Johnson & Johnson Vision Care, Inc. Comfortable ophthalmic device and methods of its production
US8414804B2 (en) * 2006-03-23 2013-04-09 Johnson & Johnson Vision Care, Inc. Process for making ophthalmic lenses
US8231218B2 (en) 2006-06-15 2012-07-31 Coopervision International Holding Company, Lp Wettable silicone hydrogel contact lenses and related compositions and methods
US7960465B2 (en) 2006-06-30 2011-06-14 Johnson & Johnson Vision Care, Inc. Antimicrobial lenses, processes to prepare them and methods of their use
US20080102095A1 (en) 2006-10-31 2008-05-01 Kent Young Acidic processes to prepare antimicrobial contact lenses
US20080100797A1 (en) * 2006-10-31 2008-05-01 Nayiby Alvarez-Carrigan Antimicrobial contact lenses with reduced haze and preparation thereof
AU2007333480B2 (en) * 2006-10-31 2013-07-25 Johnson And Johnson Vision Care, Inc. Processes to prepare antimicrobial contact lenses
CA2705785A1 (en) 2006-11-14 2008-05-22 Saul Yedgar Use of lipid conjugates in the treatment of diseases or disorders of the eye
US8214746B2 (en) * 2007-03-15 2012-07-03 Accenture Global Services Limited Establishment of message context in a collaboration system
US20090051060A1 (en) * 2007-03-30 2009-02-26 Yongcheng Li Preparation of antimicrobial contact lenses with reduced haze using swelling agents
US20080241225A1 (en) * 2007-03-31 2008-10-02 Hill Gregory A Basic processes to prepare antimicrobial contact lenses
DK2178931T3 (da) * 2007-07-19 2012-05-07 Novartis Ag Linser og materialer med høj ion- og metabolitstrøm
US8119753B2 (en) * 2007-10-23 2012-02-21 Bausch & Lomb Incorporated Silicone hydrogels with amino surface groups
US8272735B2 (en) * 2008-09-30 2012-09-25 Johnson & Johnson Vision Care, Inc. Lens design simplification process
US20100109176A1 (en) 2008-11-03 2010-05-06 Chris Davison Machined lens molds and methods for making and using same
KR101422900B1 (ko) * 2008-12-18 2014-07-30 노파르티스 아게 실리콘 히드로겔 콘택트 렌즈의 제조 방법
US8960901B2 (en) * 2009-02-02 2015-02-24 Johnson & Johnson Vision Care, Inc. Myopia control ophthalmic lenses
KR20110137310A (ko) 2009-03-13 2011-12-22 코그니스 아이피 매니지먼트 게엠베하 히드로겔을 형성하기 위한 단량체 및 마크로머
US20100249273A1 (en) 2009-03-31 2010-09-30 Scales Charles W Polymeric articles comprising oxygen permeability enhancing particles
AU2010264487B2 (en) 2009-06-25 2014-06-05 Johnson & Johnson Vision Care, Inc. Design of myopia control ophthalmic lenses
US8313675B2 (en) * 2009-08-31 2012-11-20 Coopervision International Holding Company, Lp Demolding of ophthalmic lenses during the manufacture thereof
WO2011100544A1 (en) * 2010-02-12 2011-08-18 Johnson & Johnson Vision Care, Inc. Apparatus and method to obtain clinical ophthalmic high order optical aberrations
US9690115B2 (en) 2010-04-13 2017-06-27 Johnson & Johnson Vision Care, Inc. Contact lenses displaying reduced indoor glare
US8697770B2 (en) 2010-04-13 2014-04-15 Johnson & Johnson Vision Care, Inc. Pupil-only photochromic contact lenses displaying desirable optics and comfort
US8877103B2 (en) 2010-04-13 2014-11-04 Johnson & Johnson Vision Care, Inc. Process for manufacture of a thermochromic contact lens material
US9522980B2 (en) 2010-05-06 2016-12-20 Johnson & Johnson Vision Care, Inc. Non-reactive, hydrophilic polymers having terminal siloxanes and methods for making and using the same
TWI648571B (zh) 2010-07-30 2019-01-21 諾華公司 水合隱形鏡片
US9612363B2 (en) 2010-11-04 2017-04-04 Johnson & Johnson Vision Care, Inc. Silicone hydrogel reactive mixtures comprising borates
EP2638101A4 (en) 2010-11-08 2014-09-03 Moasis Inc GELS AND HYDROGELS
WO2012064699A1 (en) 2010-11-10 2012-05-18 Novartis Ag Method for making contact lenses
WO2012095293A2 (en) 2011-01-14 2012-07-19 Cognis Ip Management Gmbh Process for the synthesis of compounds from cyclic carbonates
US8672476B2 (en) 2011-03-24 2014-03-18 Johnson & Johnson Vision Care, Inc. Contact lenses with improved movement
US8801176B2 (en) 2011-03-24 2014-08-12 Johnson & Johnson Vision Care, Inc. Contact lenses with improved movement
US20130203813A1 (en) 2011-05-04 2013-08-08 Johnson & Johnson Vision Care, Inc. Medical devices having homogeneous charge density and methods for making same
US9170349B2 (en) 2011-05-04 2015-10-27 Johnson & Johnson Vision Care, Inc. Medical devices having homogeneous charge density and methods for making same
US8865685B2 (en) 2011-06-30 2014-10-21 Johnson & Johnson Vision Care, Inc. Esters for treatment of ocular inflammatory conditions
US9188702B2 (en) 2011-09-30 2015-11-17 Johnson & Johnson Vision Care, Inc. Silicone hydrogels having improved curing speed and other properties
CN103917899B (zh) 2011-10-12 2018-04-03 诺华股份有限公司 通过涂布制备uv吸收性眼用透镜的方法
US10209534B2 (en) 2012-03-27 2019-02-19 Johnson & Johnson Vision Care, Inc. Increased stiffness center optic in soft contact lenses for astigmatism correction
US10073192B2 (en) 2012-05-25 2018-09-11 Johnson & Johnson Vision Care, Inc. Polymers and nanogel materials and methods for making and using the same
CN104321356B (zh) 2012-05-25 2016-12-28 庄臣及庄臣视力保护公司 包含水溶性n-(2羟烷基)(甲基)丙烯酰胺聚合物或共聚物的接触镜片
US9297929B2 (en) 2012-05-25 2016-03-29 Johnson & Johnson Vision Care, Inc. Contact lenses comprising water soluble N-(2 hydroxyalkyl) (meth)acrylamide polymers or copolymers
US9244196B2 (en) 2012-05-25 2016-01-26 Johnson & Johnson Vision Care, Inc. Polymers and nanogel materials and methods for making and using the same
WO2014095690A1 (en) 2012-12-17 2014-06-26 Novartis Ag Method for making improved uv-absorbing ophthalmic lenses
US8967799B2 (en) 2012-12-20 2015-03-03 Bausch & Lomb Incorporated Method of preparing water extractable silicon-containing biomedical devices
US20140291875A1 (en) 2013-02-12 2014-10-02 Coopervision International Holding Company, Lp Methods and Apparatus Useful in the Manufacture of Contact Lenses
SG11201603699SA (en) 2013-12-17 2016-07-28 Novartis Ag A silicone hydrogel lens with a crosslinked hydrophilic coating
KR102366047B1 (ko) 2014-08-26 2022-02-23 알콘 인코포레이티드 실리콘 히드로겔 콘택트 렌즈 상에 안정한 코팅을 적용하는 방법
CN108369291B (zh) 2015-12-15 2021-07-20 爱尔康公司 用于将稳定的涂层施加在硅酮水凝胶接触镜片上的方法
US10371865B2 (en) 2016-07-06 2019-08-06 Johnson & Johnson Vision Care, Inc. Silicone hydrogels comprising polyamides
US10370476B2 (en) 2016-07-06 2019-08-06 Johnson & Johnson Vision Care, Inc. Silicone hydrogels comprising high levels of polyamides
US11125916B2 (en) 2016-07-06 2021-09-21 Johnson & Johnson Vision Care, Inc. Silicone hydrogels comprising N-alkyl methacrylamides and contact lenses made thereof
SG11201811097XA (en) 2016-07-06 2019-01-30 Johnson & Johnson Vision Care Increased stiffness center optic in soft contact lenses for astigmatism correction
US11021558B2 (en) 2016-08-05 2021-06-01 Johnson & Johnson Vision Care, Inc. Polymer compositions containing grafted polymeric networks and processes for their preparation and use
US10676575B2 (en) 2016-10-06 2020-06-09 Johnson & Johnson Vision Care, Inc. Tri-block prepolymers and their use in silicone hydrogels
US10894111B2 (en) * 2016-12-16 2021-01-19 Benz Research And Development Corp. High refractive index hydrophilic materials
US10752720B2 (en) 2017-06-26 2020-08-25 Johnson & Johnson Vision Care, Inc. Polymerizable blockers of high energy light
US10723732B2 (en) 2017-06-30 2020-07-28 Johnson & Johnson Vision Care, Inc. Hydroxyphenyl phenanthrolines as polymerizable blockers of high energy light
US10526296B2 (en) 2017-06-30 2020-01-07 Johnson & Johnson Vision Care, Inc. Hydroxyphenyl naphthotriazoles as polymerizable blockers of high energy light
BR112020009607A2 (pt) 2017-12-13 2020-10-13 Alcon Inc. lentes de contato com gradiente aquoso descartáveis semanal e mensalmente
US10961341B2 (en) 2018-01-30 2021-03-30 Johnson & Johnson Vision Care, Inc. Ophthalmic devices derived from grafted polymeric networks and processes for their preparation and use
US11034789B2 (en) 2018-01-30 2021-06-15 Johnson & Johnson Vision Care, Inc. Ophthalmic devices containing localized grafted networks and processes for their preparation and use
US20210061934A1 (en) 2019-08-30 2021-03-04 Johnson & Johnson Vision Care, Inc. Contact lens displaying improved vision attributes
US10935695B2 (en) 2018-03-02 2021-03-02 Johnson & Johnson Vision Care, Inc. Polymerizable absorbers of UV and high energy visible light
US11543683B2 (en) 2019-08-30 2023-01-03 Johnson & Johnson Vision Care, Inc. Multifocal contact lens displaying improved vision attributes
US11993037B1 (en) 2018-03-02 2024-05-28 Johnson & Johnson Vision Care, Inc. Contact lens displaying improved vision attributes
US10996491B2 (en) 2018-03-23 2021-05-04 Johnson & Johnson Vision Care, Inc. Ink composition for cosmetic contact lenses
US11046636B2 (en) 2018-06-29 2021-06-29 Johnson & Johnson Vision Care, Inc. Polymerizable absorbers of UV and high energy visible light
US10932902B2 (en) 2018-08-03 2021-03-02 Johnson & Johnson Vision Care, Inc. Dynamically tunable apodized multiple-focus opthalmic devices and methods
US20200073145A1 (en) 2018-09-05 2020-03-05 Johnson & Johnson Vision Care, Inc. Vision care kit
US11493668B2 (en) 2018-09-26 2022-11-08 Johnson & Johnson Vision Care, Inc. Polymerizable absorbers of UV and high energy visible light
US11724471B2 (en) 2019-03-28 2023-08-15 Johnson & Johnson Vision Care, Inc. Methods for the manufacture of photoabsorbing contact lenses and photoabsorbing contact lenses produced thereby
US11578176B2 (en) 2019-06-24 2023-02-14 Johnson & Johnson Vision Care, Inc. Silicone hydrogel contact lenses having non-uniform morphology
US11958824B2 (en) 2019-06-28 2024-04-16 Johnson & Johnson Vision Care, Inc. Photostable mimics of macular pigment
US20200407324A1 (en) 2019-06-28 2020-12-31 Johnson & Johnson Vision Care, Inc. Polymerizable fused tricyclic compounds as absorbers of uv and visible light
US20210003754A1 (en) 2019-07-02 2021-01-07 Johnson & Johnson Vision Care, Inc. Core-shell particles and methods of making and using thereof
US11891526B2 (en) 2019-09-12 2024-02-06 Johnson & Johnson Vision Care, Inc. Ink composition for cosmetic contact lenses
US11360240B2 (en) 2019-12-19 2022-06-14 Johnson & Johnson Vision Care, Inc. Contact lens containing photosensitive chromophore and package therefor
US20210301088A1 (en) 2020-03-18 2021-09-30 Johnson & Johnson Vision Care, Inc. Ophthalmic devices containing transition metal complexes as high energy visible light filters
US11853013B2 (en) 2020-06-15 2023-12-26 Johnson & Johnson Vision Care, Inc. Systems and methods for indicating the time elapsed since the occurrence of a triggering event
US20210388141A1 (en) 2020-06-16 2021-12-16 Johnson & Johnson Vision Care, Inc. Imidazolium zwitterion polymerizable compounds and ophthalmic devices incorporating them
US20210388142A1 (en) 2020-06-16 2021-12-16 Johnson & Johnson Vision Care, Inc. Amino acid-based polymerizable compounds and ophthalmic devices prepared therefrom
CN111808533A (zh) * 2020-07-19 2020-10-23 湖州飞鹿新能源科技有限公司 一种Topcon电池专用晶体硅抛光凝胶及其使用方法
TW202231215A (zh) 2020-09-14 2022-08-16 美商壯生和壯生視覺關懷公司 單一觸碰式隱形眼鏡盒
TW202225787A (zh) 2020-09-14 2022-07-01 美商壯生和壯生視覺關懷公司 單指觸動隱形眼鏡包裝
US20220113558A1 (en) 2020-10-13 2022-04-14 Johnson & Johnson Vision Care, Inc. Contact lens position and rotation control using the pressure of the eyelid margin
US20230276917A1 (en) 2020-12-13 2023-09-07 Johnson & Johnson Vision Care, Inc. Contact lens packages and methods of opening
WO2022130089A1 (en) 2020-12-18 2022-06-23 Johnson & Johnson Vision Care, Inc. Photostable mimics of macular pigment
US20220220417A1 (en) 2021-01-12 2022-07-14 Johnson & Johnson Vision Care, Inc. Compositions for Ophthalmologic Devices
US20230037781A1 (en) 2021-06-30 2023-02-09 Johnson & Johnson Vision Care, Inc. Transition metal complexes as visible light absorbers
US20230023885A1 (en) 2021-06-30 2023-01-26 Johnson & Johnson Vision Care, Inc. Ophthalmic devices derived from grafted polymeric networks and processes for their preparation and use
CA3173598A1 (en) 2021-09-13 2023-03-13 Johnson & Johnson Vision Care, Inc. Contact lens packages and methods of handling and manufacture
US11912800B2 (en) 2021-09-29 2024-02-27 Johnson & Johnson Vision Care, Inc. Amide-functionalized polymerization initiators and their use in the manufacture of ophthalmic lenses
US11708209B2 (en) 2021-11-05 2023-07-25 Johnson & Johnson Vision Care, Inc. Touchless contact lens packages and methods of handling
WO2023105470A1 (en) 2021-12-08 2023-06-15 Johnson & Johnson Vision Care, Inc. Slotted contact lens packages and methods of handling
TW202335928A (zh) 2021-12-08 2023-09-16 美商壯生和壯生視覺關懷公司 具鏡片升高臂的隱形眼鏡包裝及拿取方法
TW202340053A (zh) 2021-12-13 2023-10-16 美商壯生和壯生視覺關懷公司 使鏡片滑動或傾斜轉移的隱形眼鏡包裝盒及處理方法
WO2023111853A1 (en) 2021-12-14 2023-06-22 Johnson & Johnson Vision Care, Inc. Contact lens packages having twisting or thimble levers and methods of handling
WO2023111851A1 (en) 2021-12-15 2023-06-22 Johnson & Johnson Vision Care, Inc. Solutionless contact lens packages and methods of manufacture
WO2023111852A1 (en) 2021-12-15 2023-06-22 Johnson & Johnson Vision Care, Inc. No-touch contact lens packages and methods of handling
TW202337347A (zh) 2021-12-16 2023-10-01 美商壯生和壯生視覺關懷公司 無觸碰的隱形眼鏡包裝盒及拿取方法
WO2023111939A1 (en) 2021-12-16 2023-06-22 Johnson & Johnson Vision Care, Inc. Pressurized or vacuum-sealed contact lens packages
WO2023111947A1 (en) 2021-12-17 2023-06-22 Johnson & Johnson Vision Care, Inc. Contact lens dispenser
WO2023111943A1 (en) 2021-12-17 2023-06-22 Johnson & Johnson Vision Care, Inc. Contact lens packages having a pivot mechanism and methods of handling
US20230296807A1 (en) 2021-12-20 2023-09-21 Johnson & Johnson Vision Care, Inc. Contact lenses containing light absorbing regions and methods for their preparation
US20230348717A1 (en) 2022-04-28 2023-11-02 Johnson & Johnson Vision Care, Inc. Particle surface modification to increase compatibility and stability in hydrogels
US11971518B2 (en) 2022-04-28 2024-04-30 Johnson & Johnson Vision Care, Inc. Shape engineering of particles to create a narrow spectral filter against a specific portion of the light spectrum
US11733440B1 (en) 2022-04-28 2023-08-22 Johnson & Johnson Vision Care, Inc. Thermally stable nanoparticles and methods thereof
US20230348718A1 (en) 2022-04-28 2023-11-02 Johnson & Johnson Vision Care, Inc. Light-filtering materials for biomaterial integration and methods thereof
US20230350230A1 (en) 2022-04-28 2023-11-02 Johnson & Johnson Vision Care, Inc. Using particles for light filtering
WO2023242688A1 (en) 2022-06-16 2023-12-21 Johnson & Johnson Vision Care, Inc. Ophthalmic devices containing photostable mimics of macular pigment and other visible light filters
US20240099434A1 (en) 2022-09-27 2024-03-28 Johnson & Johnson Vision Care, Inc. Contact lens package with draining port
US20240099435A1 (en) 2022-09-27 2024-03-28 Johnson & Johnson Vision Care, Inc. Flat contact lens packages and methods of handling
US20240122321A1 (en) 2022-10-18 2024-04-18 Johnson & Johnson Vision Care, Inc. Contact lens packages having an absorbent member
US20240165019A1 (en) 2022-11-21 2024-05-23 Bausch + Lomb Ireland Limited Methods for Treating Eyetear Film Deficiency
WO2024127114A1 (en) 2022-12-15 2024-06-20 Johnson & Johnson Vision Care, Inc. Transition metal complexes as visible light absorbers

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH461106A (de) * 1965-05-24 1968-08-15 Ceskoslovenska Akademie Ved Verfahren zur Herstellung von Gegenständen aus Hydrogelen durch Polymerisationsguss
US3503942A (en) * 1965-10-23 1970-03-31 Maurice Seiderman Hydrophilic plastic contact lens
US3926892A (en) * 1974-06-06 1975-12-16 Burton Parsons & Company Inc Hydrophilic contact lenses and lens polymer
US3965063A (en) * 1974-06-06 1976-06-22 Burton, Parsons And Company, Inc. Hydrophilic contact lenses and lens polymer
FR2402525A1 (fr) * 1977-09-12 1979-04-06 Toray Industries Procede de fabrication de compositions de lentilles de contact molles et nouveaux produits ainsi obtenus
US4452776A (en) * 1979-08-20 1984-06-05 Eye Research Institute Of Retina Foundation Hydrogel implant article and method
US4495313A (en) * 1981-04-30 1985-01-22 Mia Lens Production A/S Preparation of hydrogel for soft contact lens with water displaceable boric acid ester
NZ200362A (en) * 1981-04-30 1985-10-11 Mia Lens Prod A method of forming a hydrophilic polymer suitable for use in the manufacture of soft contact lenses and a mould for use in the polymerization
US4528311A (en) * 1983-07-11 1985-07-09 Iolab Corporation Ultraviolet absorbing polymers comprising 2-hydroxy-5-acrylyloxyphenyl-2H-benzotriazoles
US4680336A (en) * 1984-11-21 1987-07-14 Vistakon, Inc. Method of forming shaped hydrogel articles
JP2543335B2 (ja) * 1985-03-30 1996-10-16 ホ−ヤ株式会社 高含水コンタクトレンズ
US4889664A (en) * 1988-11-25 1989-12-26 Vistakon, Inc. Method of forming shaped hydrogel articles including contact lenses

Also Published As

Publication number Publication date
MX174569B (es) 1994-05-26
NO178466C (no) 1996-04-03
CN1027521C (zh) 1995-01-25
IE79671B1 (en) 1998-05-20
RU2091409C1 (ru) 1997-09-27
NO905409D0 (no) 1990-12-14
DE69030915T2 (de) 1997-11-06
CS627490A3 (en) 1992-06-17
CA2032200A1 (en) 1991-06-16
YU235390A (sh) 1992-09-07
CA2032200C (en) 2001-10-09
AU6808890A (en) 1991-06-20
EP0433085A3 (en) 1992-02-26
BR9006395A (pt) 1991-09-24
IE904526A1 (en) 1991-06-19
KR100232615B1 (ko) 1999-12-01
GR1000727B (el) 1992-11-23
IL96651A (en) 1996-06-18
RO108099B1 (ro) 1994-01-31
JP2941959B2 (ja) 1999-08-30
FI906179A0 (fi) 1990-12-14
US5039459A (en) 1991-08-13
HUT56510A (en) 1991-09-30
HK1000673A1 (en) 1998-04-17
AU626744B2 (en) 1992-08-06
PT96209B (pt) 1998-07-31
HU908277D0 (en) 1991-06-28
CN1055542A (zh) 1991-10-23
NZ236398A (en) 1992-04-28
YU47088B (sh) 1994-12-28
EP0433085A2 (en) 1991-06-19
DE69030915D1 (de) 1997-07-17
JPH04110311A (ja) 1992-04-10
DK0433085T3 (da) 1997-10-27
KR910011932A (ko) 1991-08-07
NO905409L (no) 1991-06-17
ES2104591T3 (es) 1997-10-16
GR900100854A (en) 1992-05-12
PT96209A (pt) 1991-09-30
NO178466B (no) 1995-12-27
ATE154446T1 (de) 1997-06-15
ZA9010079B (en) 1992-08-26
CZ279965B6 (cs) 1995-09-13
IL96651A0 (en) 1991-09-16
FI906179A (fi) 1991-06-16
EP0433085B1 (en) 1997-06-11

Similar Documents

Publication Publication Date Title
HU207964B (en) Method for producing hydrogel shaped bodies of determined form
AU622952B2 (en) Method of forming shaped hydrogel articles including contact lenses
EP1763433B1 (en) Method for lathing silicone hydrogel lenses
JPH072768B2 (ja) 造形ヒドロゲル物品
US3816571A (en) Fabrication of soft plastic lens
KR101643078B1 (ko) 완전히 중합된 uv 차단 실리콘 히드로겔 렌즈의 제조 방법
US3822196A (en) Fabrication of soft plastic contact lens blank and composition therefor
CN114828904B (zh) 医疗设备的制造方法
RU2080637C1 (ru) Способ изготовления фасонных изделий из гидрогеля
JP2539384B2 (ja) ソフトコンタクトレンズ用材料
JP3558421B2 (ja) 眼用レンズ材料およびその製法
JPS606710A (ja) ヒドロゲル成形品の製造方法

Legal Events

Date Code Title Description
HMM4 Cancellation of final prot. due to non-payment of fee