FR3035656A1 - Production d'helium a partir d'un courant gazeux contenant de l'hydrogene - Google Patents
Production d'helium a partir d'un courant gazeux contenant de l'hydrogene Download PDFInfo
- Publication number
- FR3035656A1 FR3035656A1 FR1553906A FR1553906A FR3035656A1 FR 3035656 A1 FR3035656 A1 FR 3035656A1 FR 1553906 A FR1553906 A FR 1553906A FR 1553906 A FR1553906 A FR 1553906A FR 3035656 A1 FR3035656 A1 FR 3035656A1
- Authority
- FR
- France
- Prior art keywords
- helium
- volume
- stream
- nitrogen
- hydrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000001307 helium Substances 0.000 title claims abstract description 93
- 229910052734 helium Inorganic materials 0.000 title claims abstract description 93
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 title claims abstract description 93
- 239000001257 hydrogen Substances 0.000 title claims abstract description 44
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 44
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical class [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 34
- 238000004519 manufacturing process Methods 0.000 title description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 153
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 103
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 76
- 239000007789 gas Substances 0.000 claims abstract description 51
- 238000000034 method Methods 0.000 claims abstract description 44
- 239000007788 liquid Substances 0.000 claims abstract description 24
- 238000000746 purification Methods 0.000 claims abstract description 15
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000001301 oxygen Substances 0.000 claims abstract description 14
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 14
- 239000012535 impurity Substances 0.000 claims abstract description 13
- 238000001179 sorption measurement Methods 0.000 claims abstract description 13
- 150000002431 hydrogen Chemical class 0.000 claims abstract description 10
- 238000009833 condensation Methods 0.000 claims abstract description 6
- 230000005494 condensation Effects 0.000 claims abstract description 6
- 230000008030 elimination Effects 0.000 claims abstract description 4
- 238000003379 elimination reaction Methods 0.000 claims abstract description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 20
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- 239000001569 carbon dioxide Substances 0.000 claims description 9
- 239000003345 natural gas Substances 0.000 claims description 8
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 5
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 claims description 5
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 claims description 4
- 238000000605 extraction Methods 0.000 claims description 4
- 238000009434 installation Methods 0.000 claims description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 4
- 230000003197 catalytic effect Effects 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- 229910052741 iridium Inorganic materials 0.000 claims description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 229910052762 osmium Inorganic materials 0.000 claims description 2
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 claims description 2
- 229910052763 palladium Inorganic materials 0.000 claims description 2
- 239000002245 particle Substances 0.000 claims description 2
- 229910052697 platinum Inorganic materials 0.000 claims description 2
- 229910052703 rhodium Inorganic materials 0.000 claims description 2
- 239000010948 rhodium Substances 0.000 claims description 2
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 2
- 229910052707 ruthenium Inorganic materials 0.000 claims description 2
- 238000011144 upstream manufacturing Methods 0.000 claims description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- 238000003860 storage Methods 0.000 description 7
- 239000003570 air Substances 0.000 description 6
- 229910052786 argon Inorganic materials 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 230000008929 regeneration Effects 0.000 description 3
- 238000011069 regeneration method Methods 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 235000010446 mineral oil Nutrition 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 101100456566 Caenorhabditis elegans dpy-22 gene Proteins 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 239000008246 gaseous mixture Substances 0.000 description 1
- -1 methane Chemical compound 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- 150000002835 noble gases Chemical class 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B23/00—Noble gases; Compounds thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/06—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
- F25J3/0605—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the feed stream
- F25J3/061—Natural gas or substitute natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/06—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
- F25J3/063—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
- F25J3/066—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/06—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
- F25J3/063—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
- F25J3/0685—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of noble gases
- F25J3/069—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of noble gases of helium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/08—Separating gaseous impurities from gases or gaseous mixtures or from liquefied gases or liquefied gaseous mixtures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2210/00—Purification or separation of specific gases
- C01B2210/0001—Separation or purification processing
- C01B2210/0003—Chemical processing
- C01B2210/0004—Chemical processing by oxidation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2210/00—Purification or separation of specific gases
- C01B2210/0001—Separation or purification processing
- C01B2210/0009—Physical processing
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2210/00—Purification or separation of specific gases
- C01B2210/0001—Separation or purification processing
- C01B2210/0009—Physical processing
- C01B2210/0014—Physical processing by adsorption in solids
- C01B2210/0021—Temperature swing adsorption
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2210/00—Purification or separation of specific gases
- C01B2210/0029—Obtaining noble gases
- C01B2210/0031—Helium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2210/00—Purification or separation of specific gases
- C01B2210/0043—Impurity removed
- C01B2210/0046—Nitrogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2210/00—Purification or separation of specific gases
- C01B2210/0043—Impurity removed
- C01B2210/0053—Hydrogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2210/00—Purification or separation of specific gases
- C01B2210/0043—Impurity removed
- C01B2210/0068—Organic compounds
- C01B2210/007—Hydrocarbons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/40—Processes or apparatus using other separation and/or other processing means using hybrid system, i.e. combining cryogenic and non-cryogenic separation techniques
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/60—Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/82—Processes or apparatus using other separation and/or other processing means using a reactor with combustion or catalytic reaction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/04—Mixing or blending of fluids with the feed stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/42—Nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/62—Liquefied natural gas [LNG]; Natural gas liquids [NGL]; Liquefied petroleum gas [LPG]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/04—Recovery of liquid products
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/30—Helium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/30—Compression of the feed stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/02—Recycle of a stream in general, e.g. a by-pass stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2260/00—Coupling of processes or apparatus to other units; Integrated schemes
- F25J2260/20—Integration in an installation for liquefying or solidifying a fluid stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/90—External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
- F25J2270/904—External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by liquid or gaseous cryogen in an open loop
Landscapes
- Engineering & Computer Science (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Inorganic Chemistry (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Separation Of Gases By Adsorption (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
Procédé de production d'hélium à partir d'un courant gazeux source (1) comprenant au moins de l'hélium, du méthane, de l'azote et de l'hydrogène, comprenant au moins les étapes successives suivantes : Etape a) : introduction dudit courant gazeux source (1) dans au moins un compresseur (3); Etape b) : élimination de l'hydrogène et du méthane par réaction du courant (4) issu de l'étape a) avec de l'oxygène ; Etape c) : élimination au moins des impuretés issues de l'étape b) par adsorption à température alternée (TSA) ; Etape d) : condensation partielle du courant (8) issu de l'étape c) afin de produire un courant (10) d'azote liquide et un courant (11) gazeux comprenant majoritairement de l'hélium ; Etape e) : purification du courant gazeux (11) issu de l'étape d) afin d'augmenter la teneur en hélium par adsorption à pression alternée (PSA) en éliminant l'azote et les impuretés contenues dans le courant gazeux (11) issu de l'étape d).
Description
1 La présente invention concerne un procédé de production d'hélium à partir d'un courant gazeux source comprenant au moins de l'hélium, du méthane, de l'azote et de l'hydrogène. L'hélium est obtenu commercialement pratiquement exclusivement à partir d'un mélange de composants volatils du gaz naturel, ce mélange comprenant, ainsi que de l'hélium, typiquement du méthane et de l'azote et des traces d'hydrogène, de l'argon et d'autres gaz nobles. Au cours de la production de l'huile minérale, l'hélium est mis à disposition en tant que composant du gaz qui accompagne l'huile minérale, ou dans le cadre de la production de gaz naturel. Il est théoriquement possible d'obtenir de l'hélium dans l'atmosphère, mais ce n'est pas économique en raison des faibles concentrations (concentration typique de l'hélium dans l'air de l'ordre de 5,2 ppmv). Afin d'éviter la congélation indésirable lors d'un processus de liquéfaction de l'hélium, la concentration des impuretés dans le courant d'hélium à liquéfier ne doit pas dépasser une valeur de 1000 ppm en volume, de préférence de 20 10 ppmv. Pour cette raison, le processus de liquéfaction de l'hélium est connecté en aval d'un procédé de purification d'hélium. Celui-ci se compose généralement d'une combinaison de procédés cryogéniques, généralement basée sur la condensation partielle, et des procédés d'adsorption, la 25 régénération dans le cas de ce dernier étant possible grâce à la variation de température et ou de pression. Dans de nombreux cas, il est avantageux de mettre en oeuvre un procédé de purification de l'hélium de telle sorte que, en plus de l'hélium purifié, de l'azote de pureté requise - dans laquelle la somme des impuretés est 30 inférieure à 1% en volume - peut être obtenu. En général, seule une portion, typiquement de 5% à 70%, de préférence de 10% à 50%, de l'azote présent dans le mélange à purifier est amenée à la pureté désirée. 3035656 2 L'azote restant est libéré dans l'atmosphère en même temps que le méthane sous forme de gaz basse pression, soit directement, soit après une étape d'oxydation, de préférence mis en oeuvre dans une torche ou un incinérateur. 5 Un exemple connu de procédé de l'état de la technique pour l'obtention d'une fraction d'hélium pur à partir d'une fraction de départ comprenant au moins de l'hélium, du méthane et de l'azote est décrit dans la demande de brevet AU2013200075. Ce procédé d'obtention d'une fraction d'hélium pur à partir d'une fraction 10 de départ comprenant au moins de l'hélium, du méthane et de l'azote comprend les étapes successives suivantes : a) la fraction de départ est soumise à une élimination de méthane et d'azote, b) la fraction issue de a) qui se compose essentiellement d'hélium et 15 d'azote est comprimée, c) la fraction comprimée est soumise à une élimination d'azote, et d) la fraction riche en hélium obtenu à l'étape c) est soumise à une purification par adsorption pour produire une fraction. L'élimination précoce de la fraction de méthane contenue dans le courant gazeux initial à traiter impose la mise en oeuvre de deux étapes cryogéniques indépendantes nécessaires, les coûts d'investissement et d'exploitation sont donc importants. Par ailleurs, une partie de l'azote contenue dans le courant gazeux initial à traité est perdu avec l'éthane éliminé à la première étape. Or, le recyclage d'azote pour d'autres applications est un élément clé à l'échelle industrielle, car l'azote, en particulier l'azote liquide est très valorisable. En outre, ce procédé ne permet pas de traiter les flux gazeux contenant une forte teneur en hydrogène, typiquement plus de 6% en volume d'hydrogène.
Un autre type de procédé de purification d'hélium connu de l'art antérieur est illustré par la figure 1.
3035656 3 Un flux gazeux 1' comprenant de l'azote, du méthane, de l'hélium et de l'hydrogène, par exemple provenant de la sortie d'une unité 15' de rejet d'azote (NRU en anglais, nitrogen rejection unit) suite au traitement d'un flux de gaz naturel pour éliminer l'azote de ce gaz naturel, est introduit dans un 5 compresseur 2'. Une fois ce gaz comprimé, il est introduit dans un dispositif concentrateur d'hélium 3'. En sortie de ce dispositif 3', l'hydrogène contenu dans le flux gazeux est éliminé au moyen d'un système 4' dans lequel réagissent hydrogène et de l'oxygène.
10 A l'issue de cette étape, le flux gazeux est alors purifié au moyen 5' d'un procédé d'adsorption à pression alternée (PSA en anglais). Un flux gazeux 6', provenant du PSA 6', contenant majoritairement de l'hélium est alors liquéfié dans un dispositif 7' de liquéfaction d'hélium. L'hélium liquéfié est envoyé dans un système de stockage d'hélium 8'. Ledit système de stockage 8' étant refroidi 15 par de l'azote liquide 9' issu d'un dispositif de stockage d'azote liquide 10' alimenté par une unité de séparation d'air 11'. Par ailleurs l'azote liquide stocké dans le dispositif 10' sert à alimenter le dispositif concentrateur d'hélium 3'. Le flux gazeux 12' contenant une majorité d'azote et une faible quantité 20 d'hélium est purifié au moyen d'un moyen de purification 13' éliminant les impuretés contenues dans le flux gazeux 12' afin de produire un flux gazeux 14' de recyclage envoyé au compresseur 2' après avoir été mélangé avec le mélange gazeux 1' initial à traiter. Lorsque le taux d'hydrogène est élevé, typiquement plus de 4% en 25 volume voire 6%, l'appoint d'air au niveau du système d'élimination d'hydrogène 4' dans lequel réagissent hydrogène et de l'oxygène est important. Une grande quantité d'azote et d'argon est alors introduite à ce niveau-là, ce qui dimensionne le système 5' PSA. Une purge mise en oeuvre au niveau du concentrateur d'hélium 3' 30 contient du méthane. Il faut alors la traiter au moyen d'un dispositif d'oxydation du méthane pour satisfaire les exigences environnementales.
3035656 4 Il est nécessaire d'avoir une unité de séparation d'air 11' (en anglais ASU) qui produit l'azote liquide à la spécification compatible avec les stockages d'hélium 8' (de l'ordre du ppm de méthane). Les inventeurs de la présente invention ont alors mis au pont une 5 solution permettant de résoudre les problèmes soulevés ci-dessus. La présente invention a pour objet un procédé de production d'hélium à partir d'un courant gazeux source comprenant au moins de l'hélium, du méthane, de l'azote et de l'hydrogène, comprenant au moins les étapes successives suivantes : 10 Etape a) : introduction dudit courant gazeux source dans au moins un compresseur; Etape b) : élimination de l'hydrogène et du méthane par réaction du courant issu de l'étape a) avec de l'oxygène ; Etape c) : élimination au moins des impuretés issues de l'étape b) par 15 adsorption à température alternée (TSA) ; Etape d) : condensation partielle du courant issu de l'étape c) afin de produire un courant d'azote liquide et un courant gazeux comprenant majoritairement de l'hélium ; Etape e) : purification du courant gazeux issu de l'étape d) afin 20 d'augmenter la teneur en hélium par adsorption à pression alternée (PSA) en éliminant l'azote et les impuretés contenues dans le courant gazeux issu de l'étape d). Selon d'autres modes de réalisation, la présente invention a pour objet: Un procédé tel que défini précédemment caractérisé en ce que le 25 courant gazeux source comprend de 40% à 95% en volume d'azote, de 0,05% à 40% en volume d'hélium, de 50 ppmv à 5% en volume de méthane et de 1% à 10% en volume d'hydrogène, de préférence de 5% en volume à 10% en volume d'hydrogène. Un procédé tel que défini précédemment caractérisé en ce que le 30 courant gazeux source comprend de 40% à 60% en volume d'azote, de 30% à 50% en volume d'hélium, de 50 ppmv à 5% en volume de méthane et de 1% à 10% en volume d'hydrogène, de préférence de 5% en volume à 10% en volume d'hydrogène.
3035656 5 Un procédé tel que défini précédemment comprenant une étape préalablement à l'étape a) de production du courant gazeux source à traiter au moyen d'une unité d'extraction d'azote ou d'une unité de liquéfaction de gaz naturel, ladite unité produisant un courant d'azote liquide mis en oeuvre à 5 l'étape d) permettant la condensation partielle du courant issu de l'étape c) afin de produire un courant d'azote liquide et un courant gazeux comprenant majoritairement de l'hélium. Un procédé tel que défini précédemment caractérisé en ce que la pression à l'issue de l'étape a) est comprise entre 15 Bara et 35 Bara, de 10 préférence entre 20 Bara et 25 Bara. Un procédé tel que défini précédemment caractérisé en ce que le courant gazeux issu de l'étape b) comprend moins de 1 ppm en volume d'hydrogène et moins de 1 ppm en volume de méthane. Un procédé tel que défini précédemment caractérisé en ce que lesdites 15 impuretés contenues dans le courant gazeux issu de l'étape b) comprennent majoritairement du dioxyde de carbone et de l'eau. Un procédé tel que défini précédemment caractérisé en ce que le courant d'azote liquide issu de l'étape d) comprend plus de 98,5% en volume d'azote.
20 Un procédé tel que défini précédemment caractérisé en ce que ledit courant gazeux issu de l'étape d) comprend entre 80% en volume et 95% en volume d'hélium. Un procédé tel que défini précédemment caractérisé en ce que ledit courant gazeux issu de l'étape e) comprend au moins 99,9% en volume 25 d'hélium. Un procédé tel que défini précédemment caractérisé en ce que l'étape b) consiste en la mise en contact du courant gazeux issu de l'étape a) avec de l'oxygène et un lit catalytique comportant des particules d'au moins un métal choisi parmi le cuivre, le platine, le palladium, l'osmium, l'iridium, le ruthénium et 30 le rhodium, supporté par un support inerte chimiquement vis-à-vis du dioxyde de carbone et de l'eau de sorte à faire réagir le méthane et l'hydrogène avec l'oxygène.
3035656 6 Un procédé tel que défini précédemment caractérisé en ce qu'il comprend une étape supplémentaire f) de liquéfaction de l'hélium issu de l'étape e). Un procédé tel que défini précédemment caractérisé en ce que l'azote 5 liquide issu de l'étape d) refroidit l'hélium liquéfié à l'étape f). Une Installation de production d'hélium à partir d'un mélange de gaz source comprenant du méthane, de l'hélium, de l'hydrogène et de l'azote comprenant au moins un compresseur recevant directement le mélange de gaz source, au moins un moyen d'élimination d'hydrogène et de méthane, au moins 10 un dispositif d'élimination d'azote et de concentration d'hélium, et au moins un moyen de purification en hélium situé en aval du dispositif d'élimination d'azote et de concentration d'hélium, caractérisée en ce que le moyen d'élimination d'hydrogène et de méthane est situé en aval dudit au moins un compresseur et en amont du dispositif d'élimination d'azote et de concentration d'hélium.
15 Une Installation telle que définie précédemment caractérisée en ce qu'elle comprend en outre un dispositif de liquéfaction d'hélium en aval du moyen de purification en hélium. L'invention sera décrite de manière plus détaillée en se référant à la figure 2 qui illustre un mode de mise en oeuvre d'un procédé selon l'invention.
20 Un courant gazeux source 1 contenant au moins de l'hélium, de l'azote, de l'hydrogène et du méthane est traité par un procédé objet de la présente invention afin de produire un flux d'hélium pur, typiquement contenant plus de 99,999% en volume d'hélium. Le courant source 1 provient par exemple d'une unité 2 de d'extraction d'azote (en anglais, nitrogen rejection unit, NRU) située 25 en aval d'une unité cryogénique de traitement du gaz naturel. Le courant source 1 est introduit dans un compresseur 3 permettant de comprimer le courant gazeux 4 à une pression comprise entre 15 Bara (Bars absolu) et 35 Bara, de préférence entre 20 bara er 25 Bara. La température est la température ambiante où se situe l'installation.
30 Le courant gazeux 4 est introduit dans une unité 5 d'élimination d'hydrogène et de méthane. Cette unité 5 consiste par exemple en un à plusieurs réacteurs en série contenant un catalyseur entre des grilles.
3035656 7 Ce catalyseur est typiquement du Pd/A1203. Une oxydation catalytique entre l'oxygène et les comburants (hydrogène/ méthane) se crée. L'hydrogène réagit avec l'oxygène pour former de l'eau. Cette réaction étant exothermique, la température s'élève.
5 Pour oxyder le méthane également, des températures plus élevées sont requises. Un fort taux d'hydrogène à l'entrée permet d'opérer à une température élevée et de co-oxyder le méthane (par exemple, avec 2% d'hydorgène, la température s'élève à 200°C environ ce qui ne suffit pas pour oxyder le méthane).
10 Ainsi l'hydrogène et le méthane contenus dans le courant source 1 initial à traiter sont oxydés par l'oxygène de l'unité 5. Des impuretés telles que l'eau et le dioxyde de carbone sont donc produites dans le courant gazeux 6 en sortie de l'unité 5. Ce courant gazeux 6 comprend majoritairement de l'azote et de l'hélium.
15 On refroidit le gaz sortant (contre l'air ambiant ou eau de refroidissement) avant de l'envoyer dans l'unité d'adsorption 7. Une partie de l'eau se condense alors directement dans un récupérateur de condensats. Une partie de la chaleur produite peut être récupérée pour être utilisée dans un autre procédé Le courant gazeux 6 est alors traité dans une unité d'adsorption 7, telle 20 qu'une unité d'adsorption à température alternée (TSA en anglais), afin d'éliminer l'eau et le dioxyde de carbone du courant gazeux 6. Il en résulte un courant gazeux 8 comprenant essentiellement de l'azote et de l'hélium (c'est-à-dire comprenant moins de 5 ppm en volume de méthane, moins de 1 ppm en volume d'hydrogène, moins de 0,1 ppm en volume de dioxyde de carbone et 25 moins de 0,1 ppm en volume d'eau). Le courant gazeux 8 est traité dans une unité 9 d'épuration d'azote et de concentration d'hélium. Cette unité 9 comprend au moins un échangeur de chaleur dans lequel le courant gazeux est refroidi depuis la température ambiante (0°C - 40°C par exemple) jusqu'à une température comprise entre -180°C et -195°C. En sortie 30 de cet échangeur de chaleur, le flux gazeux est par exemple introduit dans un pot séparateur de phase générant un flux liquide 10 et un courant gazeux 11.
3035656 8 Le flux liquide 10 contient 98,8% en volume d'azote. Ce flux liquide 10 est envoyé vers un dispositif de stockage 12 d'azote liquide. Il ne contient pas de méthane. Le courant gazeux 11 contient de 80% en volume à 95% en volume 5 d'hélium et de 5% en volume à 20% en volume d'azote. Le courant 11 est envoyé dans une unité 13 de purification en hélium. Cette unité 13 de purification est par exemple une unité d'adsorption à pression alternée (en anglais PSA) et produit deux courants. L'un 14, contenant 99,9% en volume d'hélium et un autre 15 contenant le reste des éléments 10 (essentiellement de l'azote). Le courant gazeux 15 est introduit dans un compresseur 16 puis mélangé au courant gazeux source 1 à traiter, il s'agit là d'une boucle de régénération de l'unité 13. Le courant 14 riche en hélium peut être envoyé vers une unité 17 de liquéfaction d'hélium produisant un courant 18 d'hélium liquide dirigé vers un 15 dispositif de stockage 19. L'azote liquide pur 10 stocké dans le dispositif de stockage d'azote 12 peut être utilisé pour maintenir la température du dispositif 19 de stockage d'hélium. Selon un mode préféré de réalisation, un courant 20 d'azote liquide produit par l'unité 2 d'extraction d'azote est introduit dans l'unité 9 d'épuration 20 d'azote et de concentration d'hélium. Cela permet d'obtenir la puissance frigorifique nécessaire et par là d'éviter l'investissement d'une unité de séparation d'air dédiée contrairement au procédé illustré sur la figure 1. On peut également utiliser un autre fluide frigorigène présent sur le site (par exemple du LNG) ou utiliser un fluide haute pression que l'on détend 25 (par détente joule Thomson ou turbines) pour créer le froid nécessaire. Des avantages d'un procédé tel qu'illustré à la figure 2 objet de la présente invention par rapport au procédé illustré à la figure 1 sont décrits ci-après. L'oxydation simultanée de l'hydrogène et du méthane a lieu avant la 30 concentration en hélium. Le TSA 7 fonctionne alors sous pression ce qui garantit une meilleure efficacité (une réduction du volume d'adsorbants nécessaire ainsi qu'une réduction de la consommation de chaleur au niveau du réchauffeur de régénération).
3035656 9 La purge provenant de l'unité 9 cryogénique de concentration en hélium ne contient plus de méthane (qui a été oxydé au préalable). De l'azote liquide 10 sans méthane peut donc être produit à partir de l'unité 9. Il suffit d'intégrer cette unité 9 avec l'unité 2 de concentration d'Hélium 5 (NRU ou unité de liquéfaction du gaz naturel) pour obtenir la puissance frigorifique nécessaire. Cela permet d'éviter l'investissement d'une unité de séparation d'air (en anglais ASU) dédiée. Selon un mode particulier de l'invention, un courant 21 préalablement détendu dans l'unité 9 contenant de l'azote et de l'hélium est extrait de ladite 10 unité 9 puis envoyé vers un compresseur 3 et/ou 16. Ainsi de l'helium issu de la détente de l'azote liquide de l'unité 9 est recyclé afin d'augmenter le pourcentage d'hélium produit. Par exemple le courant 21 comporte entre 40% et 50% en volume d'hélium et entre 50% et 60% en volume d'azote.
15 Le rendement de l'unité 13 PSA et sa taille sont également grandement améliorés. L'hélium 11 est préconcentré à environ 90% au PSA 13 (plutôt que 70% dans le procédé de la figure 1 et avec un fort taux d'hydrogène. Les impuretés argon et oxygène sont également en quantité bien plus faibles (puisque l'argon et l'oxygène se condensent en même temps que l'azote).
20 Il n'y a également plus de dioxyde de carbone ni d'eau à traiter dans le gaz entrant. La pression du gaz résiduaire (en anglais (offgas) du PSA 13 peut également être réduite par rapport à celle du procédé illustré à la figure 1 car ils peuvent revenir directement au compresseur 16 sans passer auparavant par une unité de séchage.
25 Tous ces points permettent d'améliorer le rendement du PSA 13 ce qui dimensionne la ligne de retour et le compresseur 3 du courant 1 à traiter (la consommation énergétique du compresseur est réduite.) Le tableau ci-dessous récapitule les compositions des courants gazeux entrant dans l'unité de purification en hélium (élément numéroté 13 de la figure 30 2 et 5' de la figure 1).
3035656 10 Courant Figure 1 Figure 2 gazeux Composition He mol% 69,48% 89,9697% N2 mol% 29,94% 9,9979% CH4 ppm v 1 1 Ar ppm v 2 658 181 H2 ppm y <0.5 <0.5 Ne ppm y 300 300 CO ppm v 0 0 02 ppm v 2 703 143 H2O saturé 0 CO2 ppmv 355 <0.1 Total mol% 100% 100% Débit (sec) Nm3/h 4806 3713 Pression bars a 23,55 23,45 Température °C 47 47 Tableau : Composition des gaz entrants dans le PSA 5
Claims (15)
- REVENDICATIONS1. Procédé de production d'hélium à partir d'un courant gazeux source (1) comprenant au moins de l'hélium, du méthane, de l'azote et de l'hydrogène, comprenant au moins les étapes successives suivantes : Etape a) : introduction dudit courant gazeux source (1) dans au moins un compresseur (3); Etape b) : élimination de l'hydrogène et du méthane par réaction du courant (4) issu de l'étape a) avec de l'oxygène ; Etape c) : élimination au moins des impuretés issues de l'étape b) par adsorption à température alternée (TSA) ; Etape d) : condensation partielle du courant (8) issu de l'étape c) afin de produire un courant (10) d'azote liquide et un courant (11) gazeux comprenant majoritairement de l'hélium ; Etape e) : purification du courant gazeux (11) issu de l'étape d) afin d'augmenter la teneur en hélium par adsorption à pression alternée (PSA) en éliminant l'azote et les impuretés contenues dans le courant gazeux (11) issu de l'étape d).
- 2. Procédé selon la revendication précédente caractérisé en ce que le courant gazeux source (1) comprend de 40% à 95% en volume d'azote, de 0,05% à 40% en volume d'hélium, de 50 ppmv à 5% en volume de méthane et de 1% à 10% en volume d'hydrogène, de préférence de 5% en volume à 10% en volume d'hydrogène.
- 3. Procédé selon la revendication 2 caractérisé en ce que le courant gazeux source (1) comprend de 40% à 60% en volume d'azote, de 30% à 50% en volume d'hélium, de 50 ppmv à 5% en volume de méthane et de 1% à 10% en volume d'hydrogène, de préférence de 5% en volume à 10% en volume d'hydrogène. 3035656 12
- 4. Procédé selon l'une des revendications précédentes comprenant une étape préalablement à l'étape a) de production du courant gazeux source (1) à traiter au moyen d'une unité (2) d'extraction d'azote ou d'une unité de liquéfaction de gaz naturel, ladite unité (2) produisant un courant (20) d'azote 5 liquide mis en oeuvre à l'étape d) permettant la condensation partielle du courant (8) issu de l'étape c) afin de produire un courant d'azote liquide (10) et un courant gazeux (11) comprenant majoritairement de l'hélium.
- 5. Procédé selon la revendication précédente caractérisé en ce que 10 la pression à l'issue de l'étape a) est comprise entre 15 Bara et 35 Bara, de préférence entre 20 Bara et 25 Bara.
- 6. Procédé selon la revendication précédente caractérisé en ce que le courant gazeux (6) issu de l'étape b) comprend moins de 1 ppm en volume 15 d'hydrogène et moins de 1 ppm en volume de méthane.
- 7. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que lesdites impuretés contenues dans le courant gazeux (6) issu de l'étape b) comprennent majoritairement du dioxyde de carbone et de 20 l'eau.
- 8. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que le courant d'azote liquide issu de l'étape d) comprend plus de 98,5% en volume d'azote. 25
- 9. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que ledit courant gazeux issu de l'étape d) comprend entre 80% en volume et 95% en volume d'hélium. 30
- 10. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que ledit courant gazeux issu de l'étape e) comprend au moins 99,9% en volume d'hélium. 3035656 13
- 11. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que l'étape b) consiste en la mise en contact du courant gazeux issu de l'étape a) avec de l'oxygène et un lit catalytique comportant des particules d'au moins un métal choisi parmi le cuivre, le platine, le palladium, 5 l'osmium, l'iridium, le ruthénium et le rhodium, supporté par un support inerte chimiquement vis-à-vis du dioxyde de carbone et de l'eau de sorte à faire réagir le méthane et l'hydrogène avec l'oxygène.
- 12. Procédé selon l'une quelconque des revendications précédentes 10 caractérisé en ce qu'il comprend une étape supplémentaire f) de liquéfaction de l'hélium issu de l'étape e).
- 13. Procédé selon la revendication précédente caractérisé en ce que l'azote liquide issu de l'étape d) refroidit l'hélium liquéfié à l'étape f). 15
- 14. Installation de production d'hélium à partir d'un mélange de gaz source (1) comprenant du méthane, de l'hélium, de l'hydrogène et de l'azote comprenant au moins un compresseur (3) recevant directement le mélange de gaz source (1), au moins un moyen (5) d'élimination d'hydrogène et de 20 méthane, au moins un dispositif (9) d'élimination d'azote et de concentration d'hélium, et au moins un moyen de purification (13) en hélium situé en aval du dispositif (9) d'élimination d'azote et de concentration d'hélium, caractérisée en ce que le moyen (5) d'élimination d'hydrogène et de méthane est situé en aval dudit au moins un compresseur (3) et en amont du dispositif (9) d'élimination 25 d'azote et de concentration d'hélium.
- 15. Installation selon la revendication précédente caractérisée en ce qu'elle comprend en outre un dispositif (17) de liquéfaction d'hélium en aval du moyen de purification (13) en hélium. 30
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1553906A FR3035656B1 (fr) | 2015-04-30 | 2015-04-30 | Production d'helium a partir d'un courant gazeux contenant de l'hydrogene |
PCT/FR2015/052633 WO2016174317A1 (fr) | 2015-04-30 | 2015-10-01 | Production d'hélium à partir d'un courant gazeux contenant de l'hydrogène |
US15/742,146 US20180238618A1 (en) | 2015-04-30 | 2015-10-01 | Production of helium from a gas stream containing hydrogen |
EA201792303A EA035014B1 (ru) | 2015-04-30 | 2015-10-01 | Получение гелия из потока газа, содержащего водород |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1553906 | 2015-04-30 | ||
FR1553906A FR3035656B1 (fr) | 2015-04-30 | 2015-04-30 | Production d'helium a partir d'un courant gazeux contenant de l'hydrogene |
Publications (2)
Publication Number | Publication Date |
---|---|
FR3035656A1 true FR3035656A1 (fr) | 2016-11-04 |
FR3035656B1 FR3035656B1 (fr) | 2019-03-22 |
Family
ID=53496814
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR1553906A Active FR3035656B1 (fr) | 2015-04-30 | 2015-04-30 | Production d'helium a partir d'un courant gazeux contenant de l'hydrogene |
Country Status (4)
Country | Link |
---|---|
US (1) | US20180238618A1 (fr) |
EA (1) | EA035014B1 (fr) |
FR (1) | FR3035656B1 (fr) |
WO (1) | WO2016174317A1 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112093782A (zh) * | 2020-07-31 | 2020-12-18 | 辉门环新(安庆)粉末冶金有限公司 | 一种氮气纯化系统及氮气纯化方法 |
WO2021115719A1 (fr) | 2019-12-12 | 2021-06-17 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Procédé et un dispositif de purification de gaz |
CN117889612A (zh) * | 2024-03-12 | 2024-04-16 | 新疆凯龙清洁能源股份有限公司 | 含氮甲烷气脱氮液化的方法及系统 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018002247A1 (de) * | 2018-03-20 | 2019-09-26 | Linde Aktiengesellschaft | Gewinnung von Helium oder Helium und Neon aus Erdgas |
FR3096900B1 (fr) * | 2019-06-06 | 2021-10-01 | Air Liquide | Procédé et unité de purification d’hélium |
RU2740992C1 (ru) * | 2020-05-28 | 2021-01-22 | Андрей Владиславович Курочкин | Установка для концентрирования и очистки гелия |
CN112023618A (zh) * | 2020-07-22 | 2020-12-04 | 中国石油天然气股份有限公司西南油气田分公司成都天然气化工总厂 | 一种粗氦精制系统及方法 |
CN111964354B (zh) * | 2020-08-10 | 2021-09-10 | 中船重工鹏力(南京)超低温技术有限公司 | 一种去除甲烷和氮气分离提纯氦气的方法 |
CN113144821A (zh) * | 2021-04-27 | 2021-07-23 | 大连理工大学 | 一种富氦天然气液化尾气生产高纯氦气的多技术集成分离工艺 |
CN113247873B (zh) * | 2021-06-02 | 2022-07-01 | 四川杰瑞恒日天然气工程有限公司 | 天然气中氦气的回收系统及方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5787730A (en) * | 1996-08-23 | 1998-08-04 | Praxair Technology, Inc. | Thermal swing helium purifier and process |
JP2012031049A (ja) * | 2010-07-07 | 2012-02-16 | Sumitomo Seika Chem Co Ltd | ヘリウムガスの精製方法および精製装置 |
JP2012162444A (ja) * | 2011-01-21 | 2012-08-30 | Sumitomo Seika Chem Co Ltd | ヘリウムガスの精製方法および精製装置 |
DE102012000147A1 (de) * | 2012-01-05 | 2013-07-11 | Linde Aktiengesellschaft | Verfahren zum Gewinnen einer Helium-Reinfraktion |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4659351A (en) * | 1986-01-29 | 1987-04-21 | Air Products And Chemicals, Inc. | Combined process to produce liquid helium, liquid nitrogen, and gaseous nitrogen from a crude helium feed |
US4666481A (en) * | 1986-03-10 | 1987-05-19 | Union Carbide Corporation | Process for producing liquid helium |
JP3277340B2 (ja) * | 1993-04-22 | 2002-04-22 | 日本酸素株式会社 | 半導体製造工場向け各種ガスの製造方法及び装置 |
US5339641A (en) * | 1993-07-07 | 1994-08-23 | Praxair Technology, Inc. | Cryogenic liquid nitrogen production system |
US9791210B2 (en) * | 2012-08-02 | 2017-10-17 | Air Products And Chemicals, Inc. | Systems and methods for recovering helium from feed streams containing carbon dioxide |
-
2015
- 2015-04-30 FR FR1553906A patent/FR3035656B1/fr active Active
- 2015-10-01 EA EA201792303A patent/EA035014B1/ru not_active IP Right Cessation
- 2015-10-01 WO PCT/FR2015/052633 patent/WO2016174317A1/fr active Application Filing
- 2015-10-01 US US15/742,146 patent/US20180238618A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5787730A (en) * | 1996-08-23 | 1998-08-04 | Praxair Technology, Inc. | Thermal swing helium purifier and process |
JP2012031049A (ja) * | 2010-07-07 | 2012-02-16 | Sumitomo Seika Chem Co Ltd | ヘリウムガスの精製方法および精製装置 |
JP2012162444A (ja) * | 2011-01-21 | 2012-08-30 | Sumitomo Seika Chem Co Ltd | ヘリウムガスの精製方法および精製装置 |
DE102012000147A1 (de) * | 2012-01-05 | 2013-07-11 | Linde Aktiengesellschaft | Verfahren zum Gewinnen einer Helium-Reinfraktion |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021115719A1 (fr) | 2019-12-12 | 2021-06-17 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Procédé et un dispositif de purification de gaz |
FR3104564A1 (fr) | 2019-12-12 | 2021-06-18 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Procédé et un dispositif de purification de gaz |
CN112093782A (zh) * | 2020-07-31 | 2020-12-18 | 辉门环新(安庆)粉末冶金有限公司 | 一种氮气纯化系统及氮气纯化方法 |
CN117889612A (zh) * | 2024-03-12 | 2024-04-16 | 新疆凯龙清洁能源股份有限公司 | 含氮甲烷气脱氮液化的方法及系统 |
CN117889612B (zh) * | 2024-03-12 | 2024-05-31 | 新疆凯龙清洁能源股份有限公司 | 含氮甲烷气脱氮液化的方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
US20180238618A1 (en) | 2018-08-23 |
FR3035656B1 (fr) | 2019-03-22 |
EA035014B1 (ru) | 2020-04-17 |
EA201792303A1 (ru) | 2018-02-28 |
WO2016174317A1 (fr) | 2016-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FR3035656A1 (fr) | Production d'helium a partir d'un courant gazeux contenant de l'hydrogene | |
EP1869385B1 (fr) | Procede et installation integres d'adsorption et de separation cryogenique pour la production de co2 | |
FR3075659B1 (fr) | Procede de production d'un courant de gaz naturel a partir d'un courant de biogaz. | |
WO2019102094A2 (fr) | Procédé et appareil pour la production combinée d'hydrogène et de dioxyde de carbone à partir d'un mélange d'hydrocarbures | |
EP3661624B1 (fr) | Procédé de production continue d'un flux gazeux d'hydrogène | |
EP3471858B1 (fr) | Appareil et procédé de séparation de co2 à basse température comprenant une étape de séparation par perméation | |
EP2579961A1 (fr) | Procédé et appareil de séchage et de compression d'un flux riche en co2 | |
FR3075660B1 (fr) | Procede de distillation d'un courant gazeux contenant de l'oxygene | |
EP3538483B1 (fr) | Procédé de production de gaz de synthèse pour la mise en uvre d'une liquéfaction de gaz naturel | |
WO2008017783A2 (fr) | Procédé de séparation d'un gaz de synthèse contenant de l'hydrogène et du monoxyde de carbone mais aussi au moins du dioxyde de carbone et de la vapeur d'eau | |
EP2547420A2 (fr) | Procede de traitement de fumees riches en co2 | |
EP2964571B1 (fr) | Procédé et appareil de production de dioxyde de carbone et d'hydrogène | |
FR3114516A1 (fr) | Procédé de traitement de biogaz – installation associée | |
WO2018087497A1 (fr) | Procédé de liquéfaction de gaz naturel combiné à une production de gaz de synthèse | |
WO2018087500A1 (fr) | Intégration d'un procédé de liquéfaction de gaz naturel dans un procédé de production de gaz de synthèse | |
WO2018087499A1 (fr) | Mise en œuvre de la vapeur d'un procédé de production de gaz de synthèse pour réchauffer des vapeurs de gaz naturel | |
FR2823449A1 (fr) | Procede d'elimination d'oxygene d'un gaz contenant du gaz carbonique | |
FR3120232A3 (fr) | Procédé d’ultra-purification d’une fraction de l’hydrogène issu d’un PSA H2 | |
EP4072996A1 (fr) | Procédé et un dispositif de purification de gaz | |
FR2969263A1 (fr) | Procede et appareil integres de compression d'air et de production d'un fluide riche en dioxyde de carbone |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PLFP | Fee payment |
Year of fee payment: 2 |
|
PLSC | Publication of the preliminary search report |
Effective date: 20161104 |
|
PLFP | Fee payment |
Year of fee payment: 3 |
|
PLFP | Fee payment |
Year of fee payment: 4 |
|
PLFP | Fee payment |
Year of fee payment: 5 |
|
PLFP | Fee payment |
Year of fee payment: 6 |
|
PLFP | Fee payment |
Year of fee payment: 7 |
|
PLFP | Fee payment |
Year of fee payment: 8 |
|
PLFP | Fee payment |
Year of fee payment: 9 |
|
PLFP | Fee payment |
Year of fee payment: 10 |