EP2547420A2 - Procede de traitement de fumees riches en co2 - Google Patents

Procede de traitement de fumees riches en co2

Info

Publication number
EP2547420A2
EP2547420A2 EP11712642A EP11712642A EP2547420A2 EP 2547420 A2 EP2547420 A2 EP 2547420A2 EP 11712642 A EP11712642 A EP 11712642A EP 11712642 A EP11712642 A EP 11712642A EP 2547420 A2 EP2547420 A2 EP 2547420A2
Authority
EP
European Patent Office
Prior art keywords
stream
coolant
water
drying
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11712642A
Other languages
German (de)
English (en)
Inventor
Bruno Alban
Philippe Arpentinier
Alain Briglia
Serge Moreau
Fabrice Del Corso
Benoit Davidian
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP2547420A2 publication Critical patent/EP2547420A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/263Drying gases or vapours by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/002Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/64Heavy metals or compounds thereof, e.g. mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/75Multi-step processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0266Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04533Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the direct combustion of fuels in a power plant, so-called "oxyfuel combustion"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/063Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
    • F25J3/067Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/30Alkali metal compounds
    • B01D2251/302Alkali metal compounds of lithium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/22Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/104Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/11Noble gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/60Heavy metals or heavy metal compounds
    • B01D2257/602Mercury or mercury compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/50Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/60Heavy metals; Compounds thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/40Sorption with wet devices, e.g. scrubbers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/70Condensing contaminants with coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • F25J2205/32Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes as direct contact cooling tower to produce a cooled gas stream, e.g. direct contact after cooler [DCAC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • F25J2205/34Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes as evaporative cooling tower to produce chilled water, e.g. evaporative water chiller [EWC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/70Flue or combustion exhaust gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/80Separating impurities from carbon dioxide, e.g. H2O or water-soluble contaminants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/08Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2260/00Coupling of processes or apparatus to other units; Integrated schemes
    • F25J2260/42Integration in an installation using nitrogen, e.g. as utility gas, for inerting or purging purposes in IGCC, POX, GTL, PSA, float glass forming, incineration processes, for heat recovery or for enhanced oil recovery
    • F25J2260/44Integration in an installation using nitrogen, e.g. as utility gas, for inerting or purging purposes in IGCC, POX, GTL, PSA, float glass forming, incineration processes, for heat recovery or for enhanced oil recovery using nitrogen for cooling purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the invention relates to a CPU process for capturing and purifying C0 2 contained in combustion fumes, in particular oxy-fuel fumes or cement factory fumes, with pre-drying step carried out before compression, so as to eliminate, upstream of the process, at least part of the water and possibly mercury may be present in said fumes.
  • Low value especially coal or liquid hydrocarbons such as oil, than those of higher "value", such as natural gas for example.
  • CO 2 CPU processes CPU stands for Compression and Purification Unit
  • CPU processes CPU stands for Compression and Purification Unit
  • the acid gases are removed, for example by washing with alkaline absorbents, such as calcium carbonate, before compressing the smoke, which then causes a liquefaction of a part of the steam. water, then to dry the gas, by adsorption for example to remove the residual water.
  • alkaline absorbents such as calcium carbonate
  • a CPU process used to treat fumes from oxy-combustion usually comprises the following successive steps:
  • This step is concomitant with the condensation of a good part of the water and the impurities contained in the smoke.
  • the gas is at low pressure, that is to say less than 1.2 bar absolute, and more generally at a pressure below atmospheric pressure, that is to say under vacuum.
  • a compression of the gas from b) to reach the desired final pressure for example a high pressure between 1 and 74 bar absolute, typically between 2 and 30 bar abs.
  • the gas can not contain water which will solidify in ice and may clog some cryogenic material.
  • the drying can be carried out in various ways, for example by means of an adsorbent capable of trapping the water present in a gas stream charged with CO 2 , for example with one (or more) bed of alumina-type adsorbent, gel silica or zeolite; or by cryogenic trapping.
  • the resulting condensate is then a strong acid, in particular nitric and / or sulfuric acid mainly whose pH can easily be less than 1, which will cause accelerated corrosion of equipment if noble materials are not used. no or less easily corrosive to make them.
  • the problem is to be able to eliminate more effectively not only the water vapor present in combustion fumes containing moreover C0 2 to recover by CPU process to prevent water from deteriorating the equipment used. , in particular compressor and associated refrigeration systems, but also one or more other harmful compounds, in particular mercury, which are likely to be found there, in particular it is desirable to be able to eliminate simply and simultaneously the water and mercury when present.
  • the solution is a process, in particular a CPU type process, for treating a gas flow comprising a combustion smoke containing CO 2 in an initial proportion, water vapor, one or more volatile volatile compounds, and a or a plurality of additional impurities selected from oxygen, nitrogen and argon, comprising:
  • step i characterized in that it comprises, prior to step i), a step of pre-drying the stream to remove at least a portion of the water vapor that it contains.
  • the method of the invention may include one or more of the following features:
  • step i) Prior to step i), an elimination of at least a portion of the volatile acid compound (s) present in the gas stream.
  • step ii) the cooling of the gas stream to a temperature of between about -10 ° C. and about -100 ° C., preferably at a temperature of less than or equal to -80 ° C., preferably at a temperature of less than or equal to -60 ° C, more preferably at a temperature of less than or equal to about -56 ° C.
  • the pre-drying of the stream is carried out by adsorption, by absorption / condensation or by permeation.
  • volatile acidic compound or compounds are chosen in particular from NO x and
  • the gas stream to be treated may comprise other volatile compounds, in addition to NO x and SO x , for example volatile organic compounds (VOCs).
  • VOCs volatile organic compounds
  • the pre-drying of the flow is operated by absorption / condensation.
  • the pre-drying of the flow is carried out by bringing the gas stream into direct contact with a cooling liquid at a temperature below -20 ° C., preferably at a temperature below -30 ° C., and absorption / condensation of at least a portion of the water contained in the flow, within said coolant.
  • the cooling liquid comprises a salt or a mixture of aqueous salts, in particular cooling liquid is a solution of calcium chloride or lithium chloride.
  • the combustion smoke further contains mercury, at least a portion of the mercury being removed, during the pre-drying step, by the coolant.
  • the temperature adjustment is cooling or heating;
  • the stream prior to the pre-drying step, contains an initial proportion of water of between 1000 ppm by volume and 30% by volume;
  • step i) the compression is carried out at an optimum pressure generally resulting from an overall optimum of the C0 2 purification process and depending in particular on the partially cryogenic temperatures and pressures in order to best separate the NOx and the incondensables that is, the residual air gases;
  • the stream contains an intermediate proportion of water less than or equal to 1000 ppm by volume, preferably between 1 and 1000 ppm by volume;
  • the stream contains a proportion of final water, that is to say at the cold box inlet, of less than or equal to 50 ppm vol;
  • the gaseous flow contains an initial proportion of C0 2 of between 50% and 95% by volume, on a dry basis and a final proportion of C0 2 of between 80 and 100% by volume, on a dry basis;
  • step ii) the flow is cooled to about -56 ° C. (triple point of CO 2 );
  • step ii) at least one additional impurity selected from oxygen, nitrogen and argon is removed;
  • the stream contains a proportion of mercury less than or equal to 0.1 g / Nm 3 ;
  • the combustion smoke additionally contains arsenic and / or selenium, at least part of the arsenic and / or selenium present is removed during the pre-drying step by the cooling liquid; ;
  • the adjustment of the concentration of said recovered coolant after coming into contact with the flow is carried out by drying said cooling liquid by contact with a dry gas and evacuation of a purge flow containing said dry gas and water vapor, preferably the dry gas is nitrogen from a cryogenic distillation unit;
  • the smoke to be treated comes from a process or installation of oxy-fuel or cement manufacturing.
  • the invention also relates to a gas flow treatment installation comprising:
  • a source (8) of gas flow comprising a combustion smoke containing CO 2 and water vapor
  • an absorption / condensation pre-drying unit 1 containing a cooling liquid capable of removing at least a portion of the water vapor from said stream
  • the pre-drying unit 1 being supplied with a gas stream by the source 8 of gas flow and with cooling liquid by the unit 2 for supplying cooling liquid so as to make a direct contact with the gaseous flow / cooling liquid; within said pre-drying unit 1 and absorbing / condensing at least a portion of the water within said coolant, recycling means adapted to and designed to recover at least a portion of said water-loaded coolant and recycle it to the coolant supply unit 2, and
  • a source of dry gas supplying dry gas to the cooling fluid supply unit 2 so as to make a direct dry gas / cooling liquid contact within said liquid supply unit 2 and to eliminate a gas from purge 7 formed of a mixture of dry gas and steam.
  • the installation of the invention may include one or more of the following features:
  • the source 8 of gas flow comprising a combustion smoke is an oxy-combustion or cement-making unit, and the source 3 of dry gas is a cryogenic distillation unit;
  • At least one heat exchanger device 5 is arranged in the path of the cooling fluid circulating from the cooling liquid supply unit 2 to the pre-drying unit 1, and / or in the path of the gas flow coming from of the pre-drying unit 1;
  • At least part of the gas stream coming from the pre-drying unit 1 is sent to at least one gas compression unit 4, a gas purification unit and a gas drying unit.
  • removing a portion of the water vapor upstream of the CPU process also makes it possible to better manage the subsequent treatment of the gaseous flow, the composition of which is complex since it contains many different species, in particular metals, such as mercury, acid compounds, such as SOx and NOx, incondensables such as 0 2 , N 2 or Ar ... and a high proportion of C0 2 .
  • metals such as mercury
  • acid compounds such as SOx and NOx
  • incondensables such as 0 2 , N 2 or Ar ... and a high proportion of C0 2 .
  • any drying means suitable for drying condensable smoke that is to say containing water beyond the dew point, can be used, in particular pre-drying can be carried out by adsorption, by membrane permeation or by absorption / condensation (washing).
  • pre-drying by absorption / condensation i.e. "washing”
  • pre-drying by absorption / condensation i.e. "washing”
  • washing is preferred because it has a number of advantages, including being already used in other industrial processes, so well controlled, and also be well suited to complex flows, for example to dusty gas streams.
  • the gas flow should be treated by lowering its temperature sufficiently to effectively remove the water.
  • the temperature of the gas stream that is to say the smoke to be treated, must be lowered by direct contact with a coolant until the dew point of the smoke to which the water is condense, so as to avoid unwanted or unwanted condensation in the "hot" part of the process (compressors, refrigerant system, etc.), whatever the pressure and temperature conditions implemented during each subsequent step of the process, the smoke remains wet.
  • the pre-drying of the fumes can be achieved by washing (absorption / condensation) of the fumes. by direct contact smoke / cooling fluid and condensation of water therein, as shown in Figures 1 and 2 appended hereto.
  • the flow of gas encounters a fluid cold enough to allow it to reach the desired dew point temperature.
  • a liquid capable of remaining in the liquid state even at temperatures well below 0 ° C., preferably below -20 ° C., typically below -30 ° C.
  • salts or mixtures of aqueous salts which make it possible to work at around -50 ° C., for example 30% by weight of titrated calcium chloride or 25% by weight of lithium chloride.
  • a contactor of the column type packed to carry out the gas and liquid contact.
  • a source of cold to cool the liquid that will be warmed in contact with the hot smoke for example a conventional cold ammonia cycle or the use of cold from the cryogenic stages of the CPU process.
  • an injection of virgin solution is provided to the liquid inlet of the contactor and a purge output of the contactor liquid to keep a constant volume in the liquid recycle loop.
  • means are provided for carrying out a recycling of the washing solution (cooling liquid) which, if not, would eventually saturate, namely to load enough water to stop nothing.
  • an additional washing solution is continuously introduced into this recycling loop so that the entire cooling liquid remains always reactive, that is to say unsaturated in water.
  • it is liquid (non-compressible) and the volume of the recycling loop is fixed it is necessary to purge the same flow (ie quantity) of liquid as that which enters the loop to avoid the accumulation of water and therefore "waterlogging".
  • a notable advantage of eliminating impurities by direct contact with a suitable fluid lies in the possibility of achieving a simultaneous or concomitant removal of water and mercury very present in the fumes from the combustion of certain solid fossil fuels, especially coal.
  • eliminating the mercury upstream of the CPU process is very beneficial because it is then avoided that mercury can come into contact with the aluminum materials commonly used in cryogenic equipment used in the cryogenic steps of the CPU process and not amalgam with aluminum. Thanks to the step of pre-drying the smoke by cooling and absorption, it is possible not only to eliminate a large proportion of water that is present in it, but also simultaneously to reduce the proportion of mercury that may be present in the smoke to obtain a residual mercury content acceptable by aluminum equipment, that is to say a maximum proportion of mercury of 0.1 ⁇ g / Nm 3 .
  • the mercury thus eliminated can be found in several forms, namely at least in part:
  • micelles such that their size keeps them suspended by Brownian motion
  • Such micelles may have a shape of between 3 and 300 nanometers.
  • the rather volatile arsenic and selenium compounds can also be trapped during this step of pre-drying the smoke by direct contact with a suitable cooling liquid, such as 30% titrated calcium chloride.
  • the oxy-fuel smoke charged with water and which is at an elevated temperature is cooled upstream of the CPU process by means of a cooling fluid at a given temperature much lower than 0 ° C, generally below -20 ° C, so as to cause condensation of the water which is there find or even other impurities like mercury.
  • the temperature difference between the hot fumes and the cold heat transfer fluid is large. Also, it may be interesting in some cases to gradually lower the temperature of the smoke. For example, industrial water can often be used at a temperature often between 10 and 25 ° C to pre-cool the fumes before operating the actual pre-drying by cooling with the cold heat transfer fluid. This results in an energy optimization of the entire process since the flow of heat transfer fluid at the lowest level of cold will be limited. It is then necessary to reduce the temperature of the fumes from 10-25 ° C to the negative temperature, which then causes a decrease in thermal stress on the contactors.
  • the present invention has been implemented so as to improve a conventional CPU process for producing relatively pure C0 2 (ie purity> 95%) at a pressure compatible with a pipeline shipment to a storage location (typically 150-175).
  • the feed stream is oxycombustion fumes of coal at a temperature typically between 100 and 250 ° C, here of the order of 150 ° C. This is pre-chilled in a wash tower with water to a temperature close to 40 ° C.
  • these fumes enter the compressor.
  • the high water content combined with the presence of NOx and SOx will promote the formation of acids, including nitric, nitrous, sulfuric, sulfurous ...
  • the dew points of nitric and sulfuric acid are 40 ° C. From there, if these fumes are compressed and they are cooled to a temperature below 40 ° C, typically in an intermediate or final compression condenser, these acids will be condensed which will cause corrosion problems of the equipment and therefore require the use of noble materials, which are expensive.
  • the water present in the fumes will be removed by condensing it before being compressed.
  • the desired residual water content can be determined to avoid condensation of the acids upon cooling, as shown in Table 2.
  • a tower 1 for cooling by direct contact of the fumes with a brine for example formed of water and CaCl 2 titrated at 30% by mass.
  • a brine for example formed of water and CaCl 2 titrated at 30% by mass.
  • Such brine has a eutectic point at about -51 ° C.
  • the operating range is about 28% to about 32% by weight CaCl 2 and a much larger range at room temperature, i.e. at the outlet of the cooling tower. Condensation of the water will reduce the mass content of less than 1% by weight, by dilution effect. Thus, if we are at a 30% input, we can operate properly.
  • warmer water if warmer water is available for cooling, it can be operated at -30 ° C. with an expanded operating range of about 25% to about 33% by weight of CaCl 2 .
  • the vapor pressure of CaCl 2 is zero and therefore not found in vapor form in the pre-dried fumes sent to compression.
  • FIG. 1 shows a diagram of an installation for implementing the method of the invention with cooling steps, condensation, and then cold compression. More specifically, a cooling liquid consisting of a brine 30% CaCl 2 is introduced at a temperature of the order of -40 ° C at the top of the tower 1 fumes / brine. The brine comes from a tower 2 and is cooled to the desired temperature in a cold source 5, that is to say a refrigeration unit. In the tank 11 of this tower 1, the fumes to be treated resulting from an oxy-fuel combustion 8 which are at a temperature of about 40 ° C., saturated with water following a preliminary washing in a water tower 9, are injected.
  • a cooling liquid consisting of a brine 30% CaCl 2 is introduced at a temperature of the order of -40 ° C at the top of the tower 1 fumes / brine.
  • the brine comes from a tower 2 and is cooled to the desired temperature in a cold source 5, that is to say a refrigeration unit.
  • the brine is then sent to a brine / nitrogen tower 2, via a recycling loop as explained above, which will allow the brine to be brought back to its initial concentration by saturation of the dry waste nitrogen from a cryogenic unit 3. air separation or ASU, by excess water from the fumes.
  • the nitrogen flow rate is adjusted so as to evaporate the amount of condensed water within the tower 1, typically 30% of the air flow of the unit 3.
  • the nitrogen charged with water vapor is sent to the atmosphere (in 7).
  • the brine was cooled to a level close to the wet bulb temperature of the dry nitrogen, that is to say approximately 10 ° C., and then returned to the cold source 5 and tower 2.
  • the brine is conveyed within the installation, via fluid lines on which can be arranged compressors or pumps used to circulate the fluid.
  • the fumes containing C0 2 but freed of at least part of the water they contain are sent to a compressor 4 which makes it possible to increase the pressure of the stream, prior to its treatment by a CPU 6 process in a conventional manner. in order to ultimately recover a gas stream rich in C0 2 , that is to say typically containing at least 95% C0 2 .
  • the gas flow can undergo a temperature adjustment (at 12), after compression 4, so as to bring its temperature between 0 ° C and 100 ° C, typically at room temperature, particularly between 20 and 40 ° C.
  • FIG. 2 represents a diagram of a variant of the installation for implementing the method of the invention of FIG. 1 comprising an additional heating step. More specifically, the installation of FIG. 2 comprises a heat recovery exchanger 5 which cools the brine by indirect contact with the cold fumes, which thus heats the fumes. The fumes, low water content, will therefore be compressed at room temperature, that is to say of the order of 20 to 25 ° C.
  • the cold source 13 for cooling the brine further by heat exchange may be an independent refrigeration cycle, a combination with the cycle of the cryogenic unit 3, a combination with the cycle of the CPU process, a adsorption group, possibly with recovery of the heat of compression of the fumes, or partly of the gas resulting from a vaporization of the liquid oxygen purge of the vaporizer of the cryogenic unit 3.
  • an intermediate fluid for example nitrogen
  • an intermediate fluid may be used, which is maintained at a compatible minimum temperature, typically at -45 ° C. for our example of cooling the flue gases. about -40 ° C.
  • the regeneration of the brine that is the evacuation of the condensed water, can be done in the brine / nitrogen tower 2 fed with residual nitrogen from the cryogenic unit 3. "new" brine and a purge to control the content of impurities (closed system).
  • the regeneration of the brine can also be done by heating
  • Another advantage provided by the present invention is that it allows the use of non-noble materials, such as carbon steel for example, in a large part of the downstream equipment, mainly compressors and associated cooling systems, in particular. place and place of stainless steel for example, which leads to a significant reduction in the overall investment cost.
  • non-noble materials such as carbon steel for example
  • Another advantage is the immediate elimination of minor compounds that pose problems in the CPU process, such as mercury which can amalgam with aluminum conventionally used in the cryogenic parts of equipment.
  • Yet another advantage is the reduction, simplification or even elimination of the drying system after compression and before the cryogenic cold box.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Treating Waste Gases (AREA)
  • Drying Of Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

L'invention porte sur un procédé de traitement d'un flux gazeux comprenant une fumée de combustion contenant du CO2 en une proportion initiale, de la vapeur d'eau, un ou plusieurs composés volatiles acides, et une ou plusieurs impuretés additionnelles choisies parmi l'oxygène, l'azote et l'argon, comprenant les étapes de : i) compression du flux gazeux jusqu'à une pression finale comprise entre 1 bar et 74 bar absolus; ii) refroidissement du flux gazeux jusqu'à une température comprise entre environ -10 °C et environ -130 °C et élimination d'au moins une impureté additionnelle; et iii) récupération d'un flux gazeux enrichi en CO2 contenant une proportion finale de CO2 supérieure à la proportion initiale de CO2 dans le flux à traiter. De plus, le procédé comprend, préalablement à l'étape i), une étape de pré-séchage du flux pour en éliminer au moins une partie de la vapeur d'eau qu'il contient. Installation de mise en œuvre. Application au traitement de fumées d'oxycombustion.

Description

Procédé et installation de traitement de fumées riches en C02
L'invention porte sur un procédé CPU de capture et purification du C02 contenu dans des fumées de combustion, en particulier d'oxycombustion ou des fumées de cimenterie, avec étape de pré-séchage réalisée avant compression, de manière à éliminer, en amont du procédé, au moins une partie de l'eau et éventuellement du mercure pouvant être présent dans lesdites fumées.
Les fumées résultant de la combustion de matières carbonées, par exemple pour produire de l'énergie, contiennent de nombreux composés volatiles de différentes natures.
Ceci est d'autant plus notable avec les combustibles fossiles, tels les hydrocarbures de
« basse valeur », notamment le charbon ou les hydrocarbures liquides comme le pétrole, que ceux de plus « grande valeur », tel le gaz naturel par exemple.
Dans ces fumées, on trouve principalement du C02, de l'eau (vapeur), des gaz de l'air (souvent appelés « incondensables ») apportés par le comburant, par exemple principalement de l'oxygène résiduel, de l'azote et de l'argon lorsqu'on utilise de l'air comme comburant, mais aussi des gaz acides, tels que les SOx et les NOx ; des particules solides et de nombreux autres composés minoritaires provenant souvent de la matière carbonée utilisée, notamment des métaux tel que le mercure, l'arsenic...
La nature des composés et leur quantité dépendent en outre du procédé de combustion mis en œuvre.
Ainsi, la combustion à l'oxygène « pur » au lieu de l'air, appelée aussi « oxycombustion », permet notamment de concentrer les fumées en C02. Ceci facilite alors la mise en œuvre de procédés ultérieurs qui visent à enlever une part significative du C02 dans les fumées avant leur rejet dans la nature. Ces procédés de purification utilisant des unités de capture et purification de C02 sont couramment appelés « procédés CO2 CPU » (CPU signifie Compression and Purification Unit) ou plus simplement « procédés CPU ».
De manière générale, un tel procédé CPU vise à produire du C02 quasiment pur, ce qui nécessite l'élimination de tous les autres composés compris dans la fumée à traiter.
Pour ce faire, on met habituellement en œuvre une séquence d'opérations unitaires successives qui permettent l'élimination séquentielle des impuretés. Or, l'un des problèmes majeurs consiste à gérer de condenser une partie de la fumée, à savoir la vapeur d'eau qui forme une partie importante de la fumée, pour éviter d'entraîner une partie des gaz acides avec l'eau. En effet, produire des eaux acides peut se révéler préjudiciable aux matériaux utilisés durant les phases subséquentes du procédé, en particulier le compresseur et ses systèmes réfrigérants.
Il est donc primordial de pouvoir éliminer l'eau et les gaz acides dans des étapes distinctes du procédé CPU.
En général, dans les procédés CPU, on élimine les gaz acides, par exemple par lavage avec des absorbants alcalins, tel le carbonate de calcium, avant de comprimer la fumée, ce qui provoque alors une liquéfaction d'une partie de la vapeur d'eau, puis de sécher le gaz, par adsorption par exemple pour éliminer l'eau résiduelle. En effet, souvent l'ultime partie du procédé CPU qui vise à produire le C02 purifié, met en œuvre une (ou plusieurs) étape cryogénique qui n'admet pas d'eau dans le gaz entrant à traiter.
Plus précisément, un procédé CPU utilisé pour traiter des fumées provenant d'une oxy- combustion, comporte habituellement les étapes successives suivantes :
a) si nécessaire, un refroidissement visant à abaisser la température de la fumée à une valeur compatible avec le procédé, à savoir en général à une température inférieure à 100°C, typiquement entre 50 et 70°C, généralement aux alentours de 60°C. Cette étape est concomitante avec la condensation d'une bonne partie de l'eau et des impuretés contenues dans la fumée. Dans cette étape, le gaz est à basse pression, c'est-à-dire à moins de 1,2 bar absolus, et plus généralement à une pression inférieure à la pression atmosphérique, c'est-à-dire sous vide.
b) une élimination d'une partie des gaz acides, notamment les SOx et les NOx, via un ou plusieurs lavages avec de la soude ou du carbonate de calcium par exemple. Ainsi, durant les étapes suivantes du procédé, on évite tout ou partie de l'apparition par condensation d'une phase liquide acide préjudiciable aux matériaux utilisés, à savoir du compresseur et des systèmes réfrigérants qui lui sont associés, mettant en oeuvre le procédé CPU.
c) une compression du gaz issu de b) pour atteindre la pression finale désirée, par exemple une pression haute entre 1 et 74 bar absolus, typiquement entre 2 et 30 bar abs.
d) éventuellement, un lavage du gaz à pression haute pour opérer une élimination de certaines impuretés résiduelles. e) un séchage du gaz car l'étape f) suivante du procédé étant une étape cryogénique (température aux alentours du point triple du C02, à savoir aux alentours de -56°C), le gaz ne peut pas contenir d'eau qui se solidifierait en glace et risquerait de colmater certains matériels cryogéniques. Le séchage peut être réalisé de différentes manières, par exemple au moyen d'un adsorbant capable de piéger l'eau présente dans un flux gazeux chargé en C02, par exemple avec un (ou plusieurs) lit d'adsorbant de type alumine, gel de silice ou zéolite ; ou par piégeage cryogénique.
f) une diminution de la température du gaz aux alentours du point triple du C02, c'est-à- dire à environ -56°C, et élimination par distillation des gaz incondensables présents, c'est-à-dire entre autres des gaz de l'air, c'est-à-dire principalement 02, N2 et/ou Ar. Dans cette étape, on met en œuvre les appareils classiques de la cryogénie tels qu'une boîte froide et une ou plusieurs colonnes de distillation cryogénique.
Bien que ce procédé CPU soit couramment mis en œuvre dans l'industrie, il a été remarqué en pratique qu'il n'était pas assez efficace dans certaines conditions opératoires.
Ainsi, lorsque les fumées d'entrée sont riches en certains composés volatiles provenant de la combustion d'hydrocarbures de « basse valeur », en particulier du mercure, voire de l'arsenic et/ou du sélénium, on a constaté que l'élimination de ces composés spécifiques était souvent difficile et engendrait un investissement coûteux en matériel car nécessitait l'adjonction d'étapes et/ou d'unités supplémentaires spécifiques. Ceci nuit à la rentabilité et/ou à la productivité globale du procédé.
Par ailleurs, il existe un problème d'eau dans la partie « ambiante » du procédé, c'est-à- dire lors de la compression et du refroidissement dans les réfrigérants du compresseur.
Or, cette eau peut engendrer des détériorations du compresseur et des systèmes réfrigérants qui lui sont associés. En effet, lors du refroidissement, on assiste à une formation d'acides forts sous forme liquide en présence d'eau et des gaz acides.
Le condensât qui en résulte est alors un acide fort, en particulier de l'acide nitrique et/ou sulfurique principalement dont le pH peut facilement être inférieur à 1 , qui va provoquer une corrosion accélérée des équipements si on n'utilise pas de matériaux nobles non ou moins aisément corrosifs pour les fabriquer.
Or, utiliser des matériaux nobles n'est pas toujours possible et par ailleurs engendre des coûts importants, ce qui n'est pas souhaitable. Le problème est dès lors d'améliorer les procédés et installations CPU couramment utilisés pour purifier les fumées de combustion contenant du C02 et d'autres composés, et produire des gaz riches en C02 et ce, sans avoir obligatoirement recours à des matériaux nobles pour fabriquer tout ou partie des équipements et éviter ou ralentir ainsi leur corrosion.
En particulier, le problème est de pouvoir éliminer plus efficacement non seulement la vapeur d'eau présente dans des fumées de combustion contenant en outre du C02 à récupérer par procédé CPU pour éviter que l'eau n'aille détériorer les équipements mis en œuvre, en particulier du compresseur et des systèmes réfrigérants qui lui sont associés, mais aussi un ou plusieurs autres composés néfastes, en particulier le mercure, qui sont susceptibles de s'y trouver, en particulier il est souhaitable de pouvoir éliminer simplement et simultanément l'eau et le mercure lorsqu'il est présent.
La solution est un procédé, en particulier un procédé type CPU, de traitement d'un flux gazeux comprenant une fumée de combustion contenant du C02 en une proportion initiale, de la vapeur d'eau, un ou plusieurs composés volatiles acides, et une ou plusieurs impuretés additionnelles choisies parmi l'oxygène, l'azote et l'argon, comprenant :
i) une compression du flux gazeux jusqu'à une pression finale comprise entre 1 bar et 74 bar absolus,
ii) un refroidissement du flux gazeux jusqu'à une température comprise entre environ - 10°C et environ -130°C et une élimination d'au moins une impureté additionnelle,
iii) récupération d'un flux gazeux enrichi en C02 contenant une proportion finale de
C02 supérieure à la proportion initiale de C02 dans le flux à traiter,
caractérisée en ce qu'il comprend, préalablement à l'étape i), une étape de pré-séchage du flux pour en éliminer au moins une partie de la vapeur d'eau qu'il contient.
Selon le cas, le procédé de l'invention peut comprendre l'une ou plusieurs des caractéristiques suivantes :
- préalablement à l'étape i), une élimination d'au moins une partie du ou des composés volatiles acides présents dans le flux gazeux.
- entre les étapes i) et ii), un séchage du flux gazeux comprimé à l'étape ii).
- à l'étape ii), le refroidissement du flux gazeux jusqu'à une température comprise entre environ -10°C et environ -100°C, de préférence à une température inférieure ou égale à -80°C, de préférence enocre à une température inférieure ou égale à -60°C, de préférence encore à une température inférieure ou égale à environ -56°C.
- le pré-séchage du flux est opéré par adsorption, par absorption/condensation ou par perméation.
- le ou les composés volatiles acides sont choisis en particulier parmi les NOx et les
SOx. Le flux gazeux à traiter peut comprendre d'autres composés volatiles, en plus des NOx et des SOx, par exemple des composés organiques volatiles (COV).
- le pré-séchage du flux est opéré par absorption/condensation.
- le pré-séchage du flux est opéré par mise en contact direct du flux gazeux avec un liquide de refroidissement à une température inférieure à -20°C, de préférence à une température inférieure à -30°C, et absorption/condensation d'au moins une partie de l'eau contenue dans le flux, au sein dudit liquide de refroidissement.
- le liquide de refroidissement comprend un sel ou un mélange de sels aqueux, en particulier liquide de refroidissement est une solution de chlorure de calcium ou de chlorure de lithium.
- la fumée de combustion contient en outre du mercure, au moins une partie du mercure étant éliminée, lors de l'étape de pré-séchage, par le liquide de refroidissement.
- un ajustement de la température du flux gazeux à traiter jusqu'à une température comprise entre 0°C et 100°C, de préférence entre 5°C et 45°C, est opéré entre l'étape de pré- séchage et l'étape i) de compression. L'ajustement de température est un refroidissement ou un réchauffement ;
- préalablement à l'étape de pré-séchage, le flux contient une proportion initiale d'eau comprise entre 1000 ppm en volume et 30% en volume ;
- à l'étape i), la compression se fait à une pression optimale résultant en général d'un optimum global du procédé de purification du C02 et dépendant notamment des températures et pressions en partie cryogénique pour séparer au mieux les NOx et les incondensables, c'est-à- dire les gaz de l'air résiduels ;
- après pré-séchage, le flux contient une proportion intermédiaire d'eau inférieure ou égale à 1000 ppm en volume, de préférence entre 1 et 1000 ppm en volume ;
- le flux contient une proportion d'eau finale, c'est-à-dire en entrée de boite froide, comprise inférieure ou égale à 50 ppm vol ; - le flux gazeux contient une proportion initiale de C02 comprise entre 50% et 95% en volume, sur base sèche et une proportion finale de C02 comprise entre 80 et 100 % en volume, sur base sèche ;
- à l'étape ii), on refroidit le flux jusqu'à environ -56 °C (point triple du C02) ;
- à l'étape ii), on élimine au moins une impureté additionnelle choisie parmi l'oxygène, l'azote et l'argon ;
- après pré-séchage, le flux contient une proportion de mercure inférieure ou égale à de 0.1 g/Nm3 ;
- la fumée de combustion contient en outre de l'arsenic et/ou du sélénium, au moins une partie de l'arsenic et/ou du sélénium présent est éliminée, lors de l'étape de pré-séchage, par le liquide de refroidissement ;
- l'ajustage de la concentration dudit liquide de refroidissement récupéré après sa mise en contact avec le flux, est opéré par séchage dudit liquide de refroidissement par mise en contact avec un gaz sec et évacuation d'un flux de purge contenant ledit gaz sec et de la vapeur d'eau, de préférence le gaz sec est de l'azote issu d'une unité de distillation cryogénique ;
- la fumée à traiter est issue d'un procédé ou d'une installation d'oxycombustion ou de fabrication de ciment.
L'invention a également pour objet une installation de traitement de flux gazeux comprenant :
- une source (8) de flux gazeux comprenant une fumée de combustion contenant du C02 et de la vapeur d'eau,
- une unité de pré-séchage 1 par absorption/condensation contenant un liquide de refroidissement apte à pour éliminer au moins une partie de la vapeur d'eau dudit flux,
- une unité 2 de fourniture de liquide de refroidissement apte à fournir un liquide de refroidissement,
- l'unité de pré-séchage 1 étant alimentée en flux gazeux par la source 8 de flux gazeux et en liquide de refroidissement par l'unité 2 de fourniture de liquide de refroidissement de manière à opérer un contact direct flux gazeux/liquide de refroidissement au sein de ladite unité de pré-séchage 1 et absorber/condenser au moins une partie de l'eau au sein dudit liquide de refroidissement, - des moyens de recyclage aptes à et conçus pour récupérer au moins une partie dudit liquide de refroidissement chargé en eau et le recycler vers l'unité 2 de fourniture de liquide de refroidissement, et
- une source de gaz sec 3 alimentant en gaz sec l'unité 2 de fourniture de liquide de refroidissement de manière à opérer un contact direct gaz sec/liquide de refroidissement au sein de ladite unité 2 de fourniture de liquide et à éliminer un gaz de purge 7 formé d'un mélange de gaz sec et de vapeur d'eau.
Selon le cas, l'installation de l'invention peut comprendre l'une ou plusieurs des caractéristiques suivantes :
- la source 8 de flux gazeux comprenant une fumée de combustion est une unité d'oxycombustion ou de fabrication de ciment, et la source 3 de gaz sec est une unité de distillation cryogénique ;
- au moins un dispositif échangeur de chaleur 5 est agencé sur le trajet du fluide de refroidissement circulant de l'unité 2 de fourniture de liquide de refroidissement vers l'unité de pré-séchage 1 , et/ou sur le trajet du flux gazeux issu de l'unité de pré-séchage 1 ;
- au moins une partie du flux gazeux issu de l'unité de pré-séchage 1 est envoyé à au moins une unité de compression 4 de gaz, une unité de purification de gaz et une unité de séchage de gaz.
L'invention va maintenant être mieux comprise grâce aux explications suivantes faites en référence aux figures annexées.
Afin d'améliorer les procédés de traitement, en particulier les procédés CPU, utilisées pour purifier des fumées d'oxycombustion, voire les fumées rejetées par des unités de fabrication de ciment, en évitant une détérioration des équipements, en particulier du compresseur et des systèmes réfrigérants qui lui sont associés, par de l'eau contenue dans la fumée, il est proposé, selon la présente invention, d'opérer un pré-séchage du flux gazeux à traiter, c'est-à-dire de la fumée d'oxycombustion contenant du C02 à purifier et récupérer, avant son traitement dans le procédé CPU proprement dit.
En effet, réaliser un pré-séchage des fumées de combustion permet d'éliminer une partie importante de la vapeur d'eau qu'elles contiennent, donc d'éviter ainsi sa condensation ultérieure et donc l'apparition de phase liquide préjudiciable aux matériaux et aux équipements (compresseur, systèmes réfrigérants...) mis en œuvre pour purifier et récupérer le C02 contenu dans les fumées à traiter par procédé CPU.
De plus, éliminer une partie de la vapeur d'eau en amont du procédé CPU, permet également de mieux gérer le traitement subséquent du flux gazeux dont la composition est complexe puisque contenant de nombreuses espèces différents, notamment des métaux, tel le mercure, des composés acides, tels les SOx et les NOx, des incondensables, tels 02, N2 ou Ar... ainsi qu'une forte proportion de C02.
Pour ce faire, on peut utiliser tout moyen de séchage adapté au séchage d'une fumée condensable, c'est-à-dire contenant de l'eau au-delà du point de rosée, en particulier le pré- s échage peut être opéré par adsorption, par perméation membranaire o u p ar absorption/condensation (lavage).
Cependant, dans le c adre de la pré s ente invention , un pré-séchage par absorption/condensation, c'est-à-dire un « lavage », est préféré car il présente un certain nombre d'avantages, notamment d'être déjà utilisé dans d'autres procédés industriels, donc bien maîtrisé, et d'être par ailleurs bien adapté aux flux complexes, par exemple aux flux gazeux empoussiérés.
Dans le cas d'un tel pré-séchage par absorption/condensation (i.e. lavage) de l'eau, il convient de traiter le flux gazeux en abaissant sa température suffisamment pour en éliminer efficacement l'eau.
Dit autrement, la température du flux gazeux, c'est-à-dire de la fumée à traiter, doit être abaissée par contact direct avec un liquide de refroidissement jusqu'à atteindre la température de rosée de la fumée à laquelle l'eau se condense, de manière à éviter toute condensation parasite ou indésirable dans la partie « chaude » du procédé (compresseurs, système réfrigérants...), quelles que soient les conditions de pression et de température mises en œuvre lors de chaque étape subséquente du procédé où la fumée demeure humide.
Selon un mode de réalisation préféré, le pré-séchage des fumées, c'est-à-dire l'élimination d'une partie de l'eau qui s'y trouve, peut être réalisé par lavage (absorption/condensation) des fumées par contact direct fumée/fluide de refroidissement et condensation de l'eau qui s'y trouve, comme illustré sur les Figures 1 et 2 ci-annexées.
Dans ce cas, le flux de gaz rencontre un fluide suffisamment froid pour lui permettre d'atteindre la température de rosée voulue. Pour ce faire, on choisit : - un liquide capable de rester à l'état liquide même à des températures bien inférieures à 0°C, de préférence inférieures à -20°C, typiquement inférieures à -30°C. Ainsi, on peut utiliser des sels ou mélanges de sels aqueux permettant de travailler aux alentours de -50°C, par exemple on peut utiliser du chlorure de calcium titré à 30% en masse ou du chlorure de lithium titré à 25% en masse.
- un contacteur de type colonne garnie pour réaliser le contact gaz et liquide.
- une source de froid pour refroidir le liquide qui se sera réchauffé au contact de la fumée chaude, par exemple un cycle froid classique à l'ammoniaque ou l'utilisation de froid provenant des étapes cryogéniques du procédé CPU.
- une boucle de recyclage du liquide et d'ajustage de sa concentration pour maintenir une teneur constante en liquide étant donné que celui-ci tend à se charger en impuretés et/ou à se dégrader au contact des fumées. En général, pour ce faire, on prévoit une injection de solution vierge à l'entrée liquide du contacteur et une purge en sortie du liquide du contacteur pour garder un volume constant dans la boucle de recyclage du liquide. Dit autrement, on prévoit des moyens aptes à réaliser un recyclage de la solution de lavage (liquide de refroidissement) qui, sinon, finirait par se saturer, à savoir se charger suffisamment en eau pour ne plus rien arrêter. Pour ce faire, on introduit en permanence dans cette boucle de recyclage un complément de solution de lavage pour que l'ensemble du liquide de refroidissement reste toujours réactif, c'est-à-dire non saturé en eau. Or, comme il s'agit de liquide (non compressible) et que le volume de la boucle de recyclage est fixé, il faut purger le même débit (i.e. quantité) de liquide que celui qui entre dans la boucle pour éviter l'accumulation de l'eau et donc « l'engorgement ».
Un avantage notable d'une élimination d'impuretés par contact direct avec un fluide adapté réside dans la possibilité de réaliser une élimination simultanée ou concomitante de l'eau et du mercure très présent dans les fumées provenant de la combustion de certains combustibles fossiles solides, en particulier le charbon.
En effet, éliminer le mercure en amont du procédé CPU est très bénéfique car on évite alors que du mercure ne puisse venir en contact avec les matériels en aluminium couramment utilisés dans les équipements cryogéniques mis en œuvre dans les étapes cryogéniques du procédé CPU et ne s'amalgame avec l'aluminium. Grâce à l'étape de pré-séchage de la fumée par refroidissement et absorption, on peut non seulement éliminer une proportion importante d'eau qui s'y trouve mais aussi simultanément diminuer la proportion de mercure éventuellement présent dans la fumée jusqu'à obtenir une teneur résiduelle en mercure acceptable par des équipements en aluminium, c'est-à-dire une proportion maximale de mercure de 0.1 μg/Nm3.
Ceci permet d'éviter de devoir recourir des étapes et/ou installations supplémentaires dédiées à l'élimination spécifique du mercure, tel qu'un ou plusieurs lits de garde contenant un ou des adsorbants captant le mercure, par exemple des charbons actifs imprégnés au soufre souvent utilisés à cette fin. En effet, en abaissant la température de la fumée lors du pré- séchage, la tension de vapeur du mercure diminue, et dans le cas où la température atteinte est en dessous de la température de solidification du mercure -39°C environ, la tension de vapeur devient très faible à un niveau comparable aux limites acceptables pour les équipements en aluminium.
Le mercure ainsi éliminé peut se retrouver sous plusieurs formes, à savoir au moins en partie :
- dissous sous forme métallique.
- précipité sous forme d'une solution colloïdale de particules métalliques appelées micelles telles que leur taille les maintient en suspension par mouvement brownien De telles micelles peuvent avoir une forme comprise entre 3 et 300 nanomètres.
- sous forme complexée, en particulier sous forme d'un sel, sous l'influence des composés organiques ou minéraux utilisés lors du lavage.
- déposé à la surface des aérosols présents dans la phase gazeuse ayant servi d'agents de nucléation.
A noter aussi que d'autres composés volatiles éventuellement présents et qui vont aussi se déposer peuvent aider à ou faciliter la condensation du mercure. Par ailleurs, la présence de CaCl2 concentré par exemple va favoriser aussi l'oxydation du mercure par formation de complexes du genre HgCU ". Par ailleurs, la saumure au chlorure de calcium est acide, et elle contient donc des traces de HC1 qui est bien connu pour oxyder le mercure élémentaire en mercure oxydé HgCl2 soluble. La dispersion du mercure sous forme de micelles va aussi augmenter sa réactivité pour former des sels solubles, notamment des chlorures. Obtenir des sels de mercure au lieu de mercure métallique est aussi utile car l'éliminer des ces composés est facilité par l'usage d'échangeurs d'ions spécifiques.
A noter que les composés de l'arsenic et du sélénium assez volatiles peuvent aussi être piégés lors de cette étape de pré-séchage de la fumée par contact direct avec un liquide de refroidissement adapté, tel du chlorure de calcium titré à 30%.
Dans tous les cas, quel que soit le mode de réalisation mis en œuvre pour une élimination d'eau par absorption, la fumée d'oxycombustion chargée en eau et qui est à une température élevée, typiquement de l'ordre 150 à 250°C, est refroidie en amont du procédé CPU au moyen d'un fluide de refroidissement à une température donnée très inférieure à 0°C, en général inférieure à -20°C, de manière à provoquer une condensation de l'eau qui s'y trouve, voire d'autres impuretés comme le mercure.
On peut noter que la différence de température entre les fumées chaudes et le fluide caloporteur froid est grande. Aussi, il peut être intéressant dans certains cas d'abaisser progressivement la température de la fumée. Par exemple, on peut utiliser de l'eau industrielle à température souvent entre 10 et 25°C pour effectuer un pré -refroidissement des fumées avant d'opérer le pré-séchage proprement dit par refroidissement avec le fluide caloporteur froid. Il en résulte une optimisation énergétique de l'ensemble du procédé puisque le débit de fluide caloporteur au niveau le plus bas de froid sera limité. Il ne faut alors que diminuer la température des fumées depuis 10-25°C jusqu'à la température négative, ce qui engendre alors une diminution des contraintes thermiques sur les contacteurs.
Exemple
La présente invention a été mise en œuvre de manière à améliorer un procédé CPU classique permettant de produire du C02 relativement pur (i.e. pureté >95%) à une pression compatible avec un envoi par canalisation vers un lieu de stockage (typiquement 150-175 bara) Le flux d'alimentation est de fumées d'oxycombustion de charbon à une température typiquement entre 100 et 250°C, ici de l'ordre de 150°C. Celui-ci est pré -refroidi dans une tour de lavage à l'eau vers une température proche de 40°C.
Une composition typique de ces fumées (en fraction molaire, à 1 bara et 40°C) est donnée dans le Tableau 1. Tableau 1
Dans un procédé CPU selon l'art antérieur, ces fumées rentrent dans le compresseur. La forte teneur en eau combinée à la présence de NOx et SOx va favoriser la formation d'acides, notamment d'acides nitrique, nitreux, sulfurique, sulfureux... Or, les points de rosés de l'acide nitrique et sulfurique sont de 40°C. De là, si ces fumées sont comprimées et qu'elles sont refroidies à une température inférieure à 40°C, typiquement dans un réfrigérant intermédiaire ou final de compression, on va condenser ces acides qui vont poser des problèmes de corrosion des équipements et donc nécessiter l'emploi de matériaux nobles, qui sont chers.
Pour éviter ces problèmes, selon l'invention, on va éliminer l'eau présente dans les fumées en la condensant avant sa compression.
Plus précisément, en comprimant ces fumées jusqu'à 25 bara par exemple, on peut déterminer la teneur résiduelle en eau souhaitée pour éviter la condensation des acides lors d'un refroidissement, comme illustré dans le Tableau 2. Tableau 2
On voit que si l'on dispose d'eau de refroidissement à 15°C par exemple et que l'on veut une certaine marge de sécurité vis-à-vis de la condensation d'acide en fin de compression à 25 bara, on va viser une teneur en eau de 200 pp/vol environ, soit un lavage des fumées avec refroidissement jusqu'à -40°C environ.
Pour ce faire, comme illustré sur les Figures 1 et 2 et expliqué ci-après, on peut utiliser une tour 1 de refroidissement par contact direct des fumées avec une saumure, par exemple formée d'eau et de CaCl2 titrée à 30% massique. Une telle saumure a un point eutectique à environ -51°C. A -40°C, on a une plage opératoire de 28% à 32% environ en titre massique de CaCl2 et une plage bien plus grande à température ambiante, c'est-à-dire en sortie de la tour de refroidissement. La condensation de l'eau va réduire le titre massique de moins de 1 % en poids, par effet de dilution. Ainsi, si on se place à une teneur de 30% en entrée, on peut opérer convenablement.
Par contre, si on dispose d'eau plus chaude pour le refroidissement, on peut fonctionner à -30°C avec une plage opératoire élargie de 25% à 33% environ en titre massique de CaCl2.
Par ailleurs, comme tout sel, la pression de vapeur du CaCl2 est nulle et on n'en retrouve donc pas sous forme vapeur dans les fumées pré-séchée envoyée à la compression.
La Figure 1 représente un schéma d'une installation de mise en œuvre du procédé de l'invention avec étapes de refroidissement, condensation, puis compression froide. Plus précisément, un liquide de refroidissement formé d'une saumure à 30% en CaCl2 est introduit à une température de l'ordre de -40°C en tête 10 de la tour 1 fumées/saumure. La saumure provient d'une tour 2 et est refroidie à la température désirée au sein d'une source de froid 5, c'est-à-dire d'un groupe frigorifique. En cuve 11 de cette tour 1 , on injecte les fumées à traiter issus d'une oxycombustion 8 qui sont à une température de l'ordre de 40°C, saturées en eau suite à un lavage préliminaire dans une tour à eau 9.
Le contact entre les fumées et la saumure s'opère au sein de la tour 2.
On extrait, en tête de cette tour 1 , des fumées débarrassées d'une partie de l'eau qu'elles contenaient, à une température de l'ordre de -40°C et une saumure contenant une concentration moindre en CaCl2, suite à la condensation de l'eau contenue dans les fumées et donc à la dilution de la saumure. Il s'opère donc un pré-séchage des fumées au sein de cette tour 1 par condensation de l'eau qu'elles contiennent.
La saumure est alors envoyée dans une tour 2 saumure /azote, via une boucle de recyclage comme expliqué ci-avant, qui va permettre de ramener la saumure à sa concentration initiale par saturation de l'azote résiduaire sec provenant d'une unité 3 cryogénique de séparation d'air ou ASU, par de le surplus d'eau provenant des fumées. Le débit d'azote est ajusté de façon à évaporer la quantité d'eau condensée au sein de la tour 1 , typiquement 30% du débit d'air de l'unité 3. L'azote chargé en vapeur d'eau est envoyé à l'atmosphère (en 7).
A la sortie de cette tour 2, la saumure a été refroidie, à un niveau proche de la température de bulbe humide de l'azote sec, c'est-à-dire 10°C environ, puis est renvoyée vers la source de froid 5 et la tour 2.
La saumure est véhiculée au sein de l'installation, via des canalisations de fluide sur lesquelles peuvent être agencées des compresseurs ou des pompes servant à faire circuler le fluide.
Les fumées contenant le C02 mais débarrassées d'au moins une partie de l'eau qu'elles contiennent sont envoyées vers un compresseur 4 qui permet d'augmenter la pression du flux, préalablement à son traitement par un procédé CPU 6 de manière classique afin de récupérer in fine un flux gazeux riche en C02, c'est-à-dire contenant typiquement au moins 95 % de C02.
A noter que, si nécessaire, le flux gazeux peut subir un ajustement de température (en 12), après la compression 4, de manière à amener sa température entre 0°C et 100°C, typiquement à température ambiante, en particulier entre 20 et 40°C.
La Figure 2 représente un schéma d'une variante de l'installation de mise en œuvre du procédé de l'invention de la Figure 1 comprenant une étape de réchauffement supplémentaire. Plus précisément, l'installation de la Figure 2 comprend un échangeur 5 de récupération de chaleur qui refroidit la saumure par contact indirect avec les fumées froides, ce qui réchauffe donc les fumées. Les fumées, à faible teneur en eau, vont donc être comprimées à une température ambiante, c'est-à-dire de l'ordre de 20 à 25°C.
L'appoint de froid est nettement réduit, puisqu'il ne sert qu'à condenser l'eau contenue dans les fumées (aux irréversibilités du système près).
Il est à noter que la source de froid 13 servant à refroidir encore davantage la saumure par échange thermique, peut être un cycle frigorifique indépendant, une combinaison avec le cycle de l'unité cryogénique 3, une combinaison avec le cycle du procédé CPU, un groupe à adsorption, éventuellement avec récupération de la chaleur de compression des fumées, ou en partie du gaz issu d'une vaporisation de la purge d'oxygène liquide du vaporiseur de l'unité cryogénique 3. Il est à souligner dans ce dernier cas que, pour éviter de geler les fumées ou la saumure, on peut utiliser un fluide intermédiaire (par exemple de l'azote), qui est maintenu à une température minimale compatible, typiquement, à -45 °C pour notre exemple de refroidissement des fumées à environ -40°C.
La régénération de la saumure, c'est-à-dire l'évacuation de l'eau condensée, peut se faire dans la tour 2 saumure /azote alimentée par de l'azote résiduaire provenant de l'unité cryogénique 3. Un faible appoint de saumure « neuve » et une purge permettent de contrôler la teneur des impuretés (système fermé).
De façon alternative, la régénération de la saumure peut de faire aussi par chauffage
(évaporation de l'eau) ou par appoint et purge massive (système ouvert).
L'un des autres avantages procurés par la présente invention est qu'elle permet une utilisation de matériaux non nobles, tel que de l'acier au carbone par exemple, dans une bonne partie des équipements aval, essentiellement compresseurs et systèmes réfrigérants associés, en lieu et place d'acier inoxydable par exemple, ce qui conduit à une réduction notable du coût d'investissement global.
Un autre avantage est l'élimination immédiate de composés minoritaires qui posent des problèmes dans le procédé CPU, comme le mercure qui peut faire des amalgames avec l'aluminium classiquement utilisé dans les parties cryogéniques des équipements.
Encore un autre avantage est la réduction, simplification voire élimination du système de séchage après la compression et avant la boite froide cryogénique.

Claims

Revendications
1. Procédé de traitement d'un flux gazeux comprenant une fumée de combustion contenant du C02 en une proportion initiale, de la vapeur d'eau, du mercure, un ou plusieurs composés volatiles acides, et une ou plusieurs impuretés additionnelles choisies parmi l'oxygène, l'azote et l'argon, comprenant :
i) une compression du flux gazeux jusqu'à une pression finale comprise entre 1 bar et 74 bar absolus,
ii) un refroidissement du flux gazeux jusqu'à une température comprise entre environ - 10°C et environ -130°C et une élimination d'au moins une impureté additionnelle,
iii) récupération d'un flux gazeux enrichi en C02 contenant une proportion finale de C02 supérieure à la proportion initiale de C02 dans le flux à traiter,
caractérisée en ce qu'il comprend, préalablement à l'étape i), une étape de pré-séchage du flux pour en éliminer au moins une partie de la vapeur d'eau qu'il contient, et au moins une partie du mercure par un liquide de refroidissement.
2. Procédé selon la revendication précédente, caractérisé en ce que le pré-séchage du flux est opéré par adsorption, par absorption/condensation ou par perméation.
3. Procédé selon l'une des revendications précédentes, caractérisé en ce que le préséchage du flux est opéré par absorption/condensation d'au moins une partie de l'eau contenue dans le flux, au sein du liquide de refroidissement.
4. Procédé selon l'une des revendications précédentes, caractérisé en ce que le pré- séchage par absorption/condensation du flux est opéré par mise en contact direct du flux gazeux avec un liquide de refroidissement à une température inférieure ou égale à -20°C, de préférence inférieure ou égale à -30°C.
5. Procédé selon la revendication 4, caractérisé en ce que le liquide de refroidissement comprend un sel ou un mélange de sels aqueux.
6. Procédé selon l'une des revendications précédentes, caractérisé en ce que le liquide de refroidissement comprend du chlorure de calcium ou de lithium.
7. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'un ou plusieurs composés volatiles acides sont choisis parmi les NOx et les SOx.
8. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'après pré-séchage par absorption/condensation, le flux pré-séché est réchauffé par échange thermique avec du liquide de refroidissement, préalablement à une mise en contact dudit liquide de refroidissement avec du flux contenant de la vapeur d'eau à éliminer.
9. Procédé selon l'une des revendications précédentes, caractérisé en ce que le fluide de refroidissement est récupéré après sa mise en contact avec le flux et est recyclé après ajustage de la concentration dudit liquide de refroidissement.
10. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'ajustage de la concentration dudit liquide de refroidissement récupéré après sa mise en contact avec le flux, est opéré par purge d'une partie du liquide de refroidissement chargé en eau et addition de liquide de refroidissement frais.
11. Procédé selon l'une des revendications 1 à 9, caractérisé en ce que l'ajustage de la concentration dudit liquide de refroidissement récupéré après sa mise en contact avec le flux, est opéré par séchage dudit liquide de refroidissement par mise en contact avec un gaz sec et évacuation d'un flux de purge contenant ledit gaz sec et de la vapeur d'eau, de préférence le gaz sec est de l'azote issu d'une unité de distillation cryogénique.
12. Procédé selon l'une des revendications précédentes, caractérisé en ce que la fumée à traiter est issue d'un procédé ou d'une installation d'oxycombustion ou de fabrication de ciment.
EP11712642A 2010-03-15 2011-02-25 Procede de traitement de fumees riches en co2 Withdrawn EP2547420A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1051820A FR2957269B1 (fr) 2010-03-15 2010-03-15 Procede et installation de traitement de fumees riches en co2
PCT/FR2011/050393 WO2011114035A2 (fr) 2010-03-15 2011-02-25 Procede et installation de traitement de fumees riches en co2

Publications (1)

Publication Number Publication Date
EP2547420A2 true EP2547420A2 (fr) 2013-01-23

Family

ID=42983753

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11712642A Withdrawn EP2547420A2 (fr) 2010-03-15 2011-02-25 Procede de traitement de fumees riches en co2

Country Status (7)

Country Link
US (1) US9067173B2 (fr)
EP (1) EP2547420A2 (fr)
JP (1) JP2013522019A (fr)
CN (1) CN102905771B (fr)
CA (1) CA2789089A1 (fr)
FR (1) FR2957269B1 (fr)
WO (1) WO2011114035A2 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101391282B1 (ko) * 2012-04-13 2014-05-02 한국에너지기술연구원 분리막을 이용한 수분회수장치를 가지는 연소배가스 처리시스템
CN104034049A (zh) * 2014-05-30 2014-09-10 葛士群 一种节能减排自动化控制锅炉
MX2017008683A (es) * 2015-02-27 2017-10-11 Exxonmobil Upstream Res Co Reduccion de carga de refrigeracion y deshidratacion para una corriente de alimentacion que entra a un proceso de destilacion criogenica.
EP3570950A4 (fr) * 2017-01-19 2021-02-24 Sustainable Energy Solutions, LLC Procédé et appareil pour l'élimination continue de vapeurs de gaz

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE455767B (sv) * 1986-06-02 1988-08-08 Erik Lindahl Forfarande och anordning for avskiljning av kvicksilver fran rok- eller processgaser innehallande vattenanga
GB9105478D0 (en) * 1991-03-15 1991-05-01 Air Prod & Chem Carbon dioxide and acid gas removal and recovery process for fossil fuel fired power plants
US6804964B2 (en) * 2002-09-19 2004-10-19 Siemens Westinghouse Power Corporation Water recovery from combustion turbine exhaust
US7416716B2 (en) * 2005-11-28 2008-08-26 Air Products And Chemicals, Inc. Purification of carbon dioxide
US8088196B2 (en) * 2007-01-23 2012-01-03 Air Products And Chemicals, Inc. Purification of carbon dioxide
US8535417B2 (en) * 2008-07-29 2013-09-17 Praxair Technology, Inc. Recovery of carbon dioxide from flue gas

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN102905771A (zh) 2013-01-30
FR2957269A1 (fr) 2011-09-16
FR2957269B1 (fr) 2015-11-13
CN102905771B (zh) 2015-09-16
WO2011114035A3 (fr) 2012-11-22
US9067173B2 (en) 2015-06-30
JP2013522019A (ja) 2013-06-13
CA2789089A1 (fr) 2011-09-22
WO2011114035A2 (fr) 2011-09-22
US20130055891A1 (en) 2013-03-07

Similar Documents

Publication Publication Date Title
CA3009566C (fr) Procede de production de biomethane par epuration de biogaz issu d'installations de stockage de dechets non-dangereux (isdnd) et installation pour la mise en oeuvre du procede
EP1869385B1 (fr) Procede et installation integres d'adsorption et de separation cryogenique pour la production de co2
FR3075659B1 (fr) Procede de production d'un courant de gaz naturel a partir d'un courant de biogaz.
FR2814378A1 (fr) Procede de pretraitement d'un gaz naturel contenant des gaz acides
WO2016174317A1 (fr) Production d'hélium à partir d'un courant gazeux contenant de l'hydrogène
EP2547420A2 (fr) Procede de traitement de fumees riches en co2
WO2010076463A1 (fr) Procede de capture du dioxyde de carbone par cryo-condensation
WO2011154536A1 (fr) Procede et appareil de sechage et de compression d'un flux riche en co2
EP3727648B1 (fr) Procédé de distillation d'un courant gazeux contenant de l'oxygène
EP3065848A1 (fr) Appareil et procédé de compression et/ou refroidissement ainsi que de purification d'un gaz riche en dioxyde de carbone contenant de l'eau
EP2477720B1 (fr) Procede de purification d'un flux gazeux comprenant du mercure
EP2516041A1 (fr) Procédé et appareil de séchage et de compression d'un flux riche en co2
EP4072996A1 (fr) Procédé et un dispositif de purification de gaz
EP3727650A1 (fr) Procédé de limitation de la concentration d'oxygène contenu dans un courant de biométhane
Alban et al. Method and equipment for treating CO 2-rich smoke
FR2971043A1 (fr) Procede de liquefaction d'un gaz naturel a haute pression avec un pretraitement utilisant un solvant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20130522

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170915

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20180226