FR2972794A1 - APPARATUS AND METHOD FOR AIR SEPARATION BY CRYOGENIC DISTILLATION - Google Patents

APPARATUS AND METHOD FOR AIR SEPARATION BY CRYOGENIC DISTILLATION Download PDF

Info

Publication number
FR2972794A1
FR2972794A1 FR1152272A FR1152272A FR2972794A1 FR 2972794 A1 FR2972794 A1 FR 2972794A1 FR 1152272 A FR1152272 A FR 1152272A FR 1152272 A FR1152272 A FR 1152272A FR 2972794 A1 FR2972794 A1 FR 2972794A1
Authority
FR
France
Prior art keywords
oxygen
vaporizer
pump
exchanger
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1152272A
Other languages
French (fr)
Other versions
FR2972794B1 (en
Inventor
Marie Cognard
Benoit Davidian
Richard Dubettier-Grenier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to FR1152272A priority Critical patent/FR2972794B1/en
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Priority to CA2828716A priority patent/CA2828716C/en
Priority to US14/003,902 priority patent/US20130340476A1/en
Priority to PCT/FR2012/050500 priority patent/WO2012127148A2/en
Priority to ES12714763T priority patent/ES2859549T3/en
Priority to CN201280013722.XA priority patent/CN104067079B/en
Priority to EP12714763.5A priority patent/EP2686628B1/en
Priority to AU2012230171A priority patent/AU2012230171B2/en
Publication of FR2972794A1 publication Critical patent/FR2972794A1/en
Priority to ZA2013/06723A priority patent/ZA201306723B/en
Application granted granted Critical
Publication of FR2972794B1 publication Critical patent/FR2972794B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04103Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression using solely hydrostatic liquid head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/04206Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04418Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system with thermally overlapping high and low pressure columns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • F25J3/04824Stopping of the process, e.g. defrosting or deriming; Back-up procedures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • F25J3/04836Variable air feed, i.e. "load" or product demand during specified periods, e.g. during periods with high respectively low power costs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04854Safety aspects of operation
    • F25J3/0486Safety aspects of operation of vaporisers for oxygen enriched liquids, e.g. purging of liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • F25J2200/54Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the low pressure column of a double pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/40One fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/50One fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank

Abstract

Une installation de séparation d'air comprenant une double colonne comprend une colonne moyenne pression (27) et une colonne basse pression (29), un échangeur principal (21), un vaporiseur (41), un compresseur principal (2), des moyens pour envoyer tout l'air à traiter dans la double colonne au compresseur principal pour produire de l'air substantiellement à la pression P1 de la colonne moyenne pression, des moyens (5) pour envoyer une partie de l'air substantiellement à une pression élevée P2 à l'échangeur principal et ensuite au vaporiseur, une conduite pour envoyer de l'air au moins partiellement condensé dans le vaporiseur à au moins une des colonnes, une conduite pour envoyer de l'air à la pression P1 à la colonne moyenne pression, une première pompe (39), une deuxième pompe (63), une conduite pour soutirer de l'oxygène liquide de la colonne basse pression et pour l'envoyer à la première pompe, une conduite pour envoyer de l'oxygène liquide pressurisé à une pression inférieure à 9 bar abs de la première pompe au vaporiseur, une conduite pour envoyer de l'oxygène gazeux du vaporiseur à l'échangeur principal pour se réchauffer, une conduite pour envoyer de l'oxygène liquide de purge (43) du vaporiseur à la deuxième pompe pour le pressuriser et une conduite pour envoyer l'oxygène pressurisé de la deuxième pompe à un échangeur (21) pour se vaporiser pour former de l'oxygène gazeux.An air separation plant comprising a double column comprises a medium pressure column (27) and a low pressure column (29), a main exchanger (21), a vaporizer (41), a main compressor (2), means for sending all the air to be treated in the double column to the main compressor to produce air substantially at the pressure P1 of the medium pressure column, means (5) for sending a portion of the air substantially to a high pressure P2 to the main exchanger and then to the vaporizer, a conduit for sending at least partially condensed air into the vaporizer to at least one of the columns, a conduit for supplying air at the pressure P1 to the medium pressure column a first pump (39), a second pump (63), a line for withdrawing liquid oxygen from the low pressure column and for sending it to the first pump, a line for sending pressurized liquid oxygen to a pr less than 9 bar abs from the first pump to the vaporizer, a line for sending gaseous oxygen from the vaporizer to the main exchanger to heat up, a line for sending liquid oxygen purge (43) of the vaporizer to the second pump for pressurizing and a conduit for supplying pressurized oxygen from the second pump to an exchanger (21) for vaporizing to form gaseous oxygen.

Description

La présente invention est relative à un appareil et procédé de séparation s d'air par distillation d'air. En particulier elle concerne la production d'oxygène gazeux à une pression inférieure à 9 bars abs, voire inférieure à 5 bars abs. L'oxygène gazeux peut éventuellement contenir moins de 980/0 mol. d'oxygène. Il est nécessaire de produire de grandes quantités d'oxygène ayant ces io caractéristiques pour alimenter les appareils d'oxycombustion, entre autres. Il est connu de WO-A-10/109149 de vaporiser un débit d'oxygène liquide à basse pression dans un vaporiseur extérieur pour produire de l'oxygène gazeux qui se réchauffe ensuite dans un échangeur principal. Il est connu de vaporiser la purge d'une colonne de distillation afin d'en ls récupérer les frigories, par exemple dans US-A-5408831. Par contre la présente invention propose de vaporiser la purge de déconcentration d'un vaporiseur dans un échangeur afin de récupérer les frigories, ce vaporiseur étant l'échangeur permettant de vaporiser un liquide de l'appareil sous pression pour produire un produit gazeux sous pression. 20 Il est souhaitable d'envoyer la purge à un stockage gazeux sous pression permettant de maintenir une production stable aussi bien en débit, qu'en pression. Selon un objet de l'invention, il est prévu une installation de séparation d'air comprenant une double colonne comprenant une colonne moyenne 25 pression et une colonne basse pression, un échangeur principal, un vaporiseur, un compresseur principal, des moyens pour envoyer tout l'air à traiter dans la double colonne au compresseur principal pour produire de l'air substantiellement à la pression P1 de la colonne moyenne pression, des moyens pour envoyer une partie de l'air substantiellement à une pression 30 élevée P2 à l'échangeur principal et ensuite au vaporiseur, une conduite pour envoyer de l'air au moins partiellement condensé dans le vaporiseur à au moins une des colonnes, une conduite pour envoyer de l'air à la pression P1 à la colonne moyenne pression, une première pompe, une deuxième pompe, une conduite pour soutirer de l'oxygène liquide de la colonne basse pression et pour l'envoyer à la première pompe, une conduite pour envoyer de l'oxygène liquide pressurisé à une pression inférieure à 9 bar abs de la première pompe au vaporiseur, une conduite pour envoyer de l'oxygène gazeux du vaporiseur à l'échangeur principal pour se réchauffer, une conduite pour envoyer de s l'oxygène liquide de purge du vaporiseur à la deuxième pompe pour le pressuriser et une conduite pour envoyer l'oxygène pressurisé de la deuxième pompe à un échangeur pour se vaporiser pour former de l'oxygène gazeux. Optionnellement : - l'échangeur relié à la conduite d'oxygène de purge est l'échangeur io principal. - l'échangeur relié à la conduite d'oxygène de purge est un échangeur distinct de l'échangeur principal. - l'échangeur comprend des passages reliés à une conduite d'amenée d'air d'alimentation et des passages reliés à une conduite d'amenée de fluide ls frigorigène, provenant éventuellement de la double colonne. - l'installation comprend un stockage gazeux sous pression relié à l'échangeur de vaporisation d'oxygène de purge pour recueillir l'oxygène gazeux. Selon un autre objet de l'invention, il est prévu un procédé de séparation 20 d'air dans un appareil comprenant une double colonne comprenant une colonne moyenne pression et une colonne basse pression, un échangeur principal, un vaporiseur, un compresseur principal, une première pompe, une deuxième pompe, dans lequel on envoie tout l'air à traiter dans la double colonne au compresseur principal pour produire de l'air substantiellement à la pression P1 25 de la colonne moyenne pression, on envoie une partie de l'air substantiellement à une pression élevée P2 à l'échangeur principal et ensuite au vaporiseur, on envoie de l'air au moins partiellement condensé dans le vaporiseur à au moins une des colonnes, on envoie de l'air à la pression P1 à la colonne moyenne pression, on soutire de l'oxygène liquide de la colonne basse pression et on 30 l'envoie à la première pompe, on envoie de l'oxygène liquide pressurisé à une pression inférieure à 9 bar abs de la première pompe au vaporiseur, on envoie un premier débit d'oxygène gazeux du vaporiseur à l'échangeur principal pour se réchauffer et on pressurise de l'oxygène liquide de purge du vaporiseur dans la deuxième pompe avant de le vaporiser pour former un deuxième débit d'oxygène gazeux. Optionnellement : - l'oxygène de purge est pressurisé à une pression d'au moins 10 bars s abs, de préférence au moins 15 bars abs, voire au moins 20 bars abs dans la deuxième pompe. - l'oxygène de purge se vaporise dans l'échangeur principal. - l'oxygène de purge se vaporise dans un échangeur autre que l'échangeur principal. io - le deuxième débit d'oxygène gazeux est envoyé à un stockage gazeux sous pression et sert de production de secours. - une quantité variable du deuxième débit d'oxygène gazeux est mélangée avec le premier débit afin de produire un débit mélangé substantiellement constant. ls - l'oxygène liquide soutiré de la colonne basse pression contient au moins 800/0 mol. d'oxygène - l'oxygène liquide soutiré de la colonne basse pression constitue le seul débit contenant au moins 800/0 mol. d'oxygène soutiré de la colonne basse pression. 20 - l'oxygène liquide soutiré de la colonne basse pression contient au plus 980/0 mol. d'oxygène. L'invention sera décrite en plus de détail en se référant aux figures qui illustrent des appareils de séparation d'air selon l'invention. Dans la Figure 1, l'appareil comprend une ligne d'échange 21 et une 25 double colonne constituée par une colonne moyenne pression 27 et une colonne basse pression 29. Tout l'air 1 est comprimé dans le compresseur principal 2 pour produire de l'air à la pression P1 substantiellement égale à la pression de la colonne moyenne pression 27. L'air à la pression P1 est refroidi dans un refroidisseur 7, 30 épuré dans une unité d'épuration 9 et divisé en trois fractions. La première fraction 11 est surpressée dans un surpresseur, pouvant être constitué par le dernier étage du compresseur principal, dernier étage qui fait partie de la deuxième partie du compresseur. La pression P1 est inférieure à 5 bars abs, voire à 4.5 bar abs, préférablement inférieure à 4 bar, et encore inférieure à 3.5 bar abs La première fraction 11 est amenée à une pression P2 par le booster 5 ou un compresseur indépendant 5 et se refroidit à cette pression dans un s refroidisseur (non-illustré) avant d'être envoyé à la ligne d'échange 21. La ligne d'échange est constituée par un échangeur de chaleur indirect en aluminium à plaques brasées. La fraction 11 est ensuite envoyée à un vaporiseur 41 où elle se condense au moins partiellement avant d'être détendue et envoyée à la colonne moyenne pression 27. La pression P2 est inférieure à 15 bar abs, io préférablement inférieure à 10 bar, et encore inférieure à 6 bar abs. La fraction 11 est inférieure à la moitié du débit 1, et préférentiellement inférieure à un tiers du débit 1 La deuxième fraction 13 à la pression P1 se refroidit complètement dans la ligne d'échange 21 et est divisée en deux flux. Le premier flux 23 est envoyé ls à un rebouilleur de cuve 33 de la colonne basse pression 29 où il se condense au moins partiellement et est envoyé à la colonne moyenne pression, mélangé au débit 11. Le deuxième flux 25 est envoyé sous forme gazeuse à la colonne moyenne pression 27. La troisième fraction 15 est surpressée dans un surpresseur 17, refroidie 20 partiellement dans la ligne d'échange 21, soutirée de la ligne d'échange à un niveau intermédiaire de celle-ci et détendue dans une turbine 19 avant d'être envoyée à la colonne basse pression 29. Un débit de liquide enrichi en oxygène 55, un débit intermédiaire 53 et un débit liquide riche en azote 51 sont soutirés de la colonne moyenne pression 25 27, refroidis dans l'échangeur 31, détendus et envoyés à des niveaux différents de la colonne basse pression 29. De l'azote gazeux moyenne pression 49 est condensé dans un vaporiseur intermédiaire 35 de la colonne basse pression 29 et envoyé comme reflux en tête de la colonne moyenne pression 27. Un autre débit d'azote 30 gazeux moyenne pression 47 se réchauffe dans la ligne d'échange. De l'oxygène liquide 37, contenant au moins 800/0 mol. d'oxygène et éventuellement au plus 980/0 mol. d'oxygène, est soutiré en cuve de la colonne basse pression 29, pressurisé par une pompe 39 à une pression inférieure à 9 bars abs, voire inférieure à 5 bars abs et envoyé au vaporiseur 41. A part une purge de liquide 43, l'oxygène se vaporise dans le vaporiseur 41 par échange de chaleur avec la fraction d'air 11 à la pression P2. Cet oxygène forme ensuite le premier débit d'oxygène gazeux pressurisé 45 qui se réchauffe dans la ligne d'échange 21. La fraction d'air 11 se trouve partiellement condensée et est s envoyée à la double colonne. Le liquide de purge 43 est pressurisé jusqu'à une pression d'au moins 10 bars abs, ou d'au moins 15 bar abs, voire au moins 20 bars abs dans une pompe 63 puis se vaporise dans la ligne d'échange 21. Le deuxième débit gazeux ainsi produit est envoyé à un stockage gazeux sous pression 3. io Alternativement comme illustré dans la Figure 2, le liquide de purge pressurisé 43 peut être vaporisé dans un échangeur auxiliaire 21A, distinct de la ligne d'échange, contre un débit d'air 25A et avec un débit de fluide frigorigène, par exemple un débit d'azote 57A se réchauffant du procédé de séparation. ls Le deuxième débit d'oxygène gazeux formé par la vaporisation peut être utilisé comme gaz de secours lors d'une interruption de la production d'oxygène gazeux 45. Une autre possibilité est illustrée dans la Figure 3 où la purge 43 du vaporiseur 41 est stockée dans un stockage 4, ensuite pressurisée par une 20 pompe 63 puis vaporisé dans un vaporiseur auxiliaire 8 par échange de chaleur avec de la vapeur, de l'eau ou l'air ambiant. L'invention s'applique aux appareils à double vaporiseurs tels qu'illustrés dans les Figures 1 à 3 mais aussi aux appareils dans lequel la colonne basse pression ne comprend qu'un seul vaporiseur 33 comme illustré dans la 2s Figure 4. La pressurisation par la pompe 39 et/ou 63 peut être remplacée par une pressurisation hydrostatique dans tous les cas décrits. Pour toutes les figures, une quantité variable du deuxième débit d'oxygène gazeux est mélangée avec le premier débit afin de produire un débit 30 mélangé substantiellement constant. Cette quantité variable du liquide de purge vaporisé peut être mélangée au premier débit 45 pour lisser les variations de débits, dues, par exemple à des variations de la pression du réseau d'oxygène. The present invention relates to an apparatus and method for air separation by air distillation. In particular, it relates to the production of gaseous oxygen at a pressure of less than 9 bar abs, or even less than 5 bar abs. The oxygen gas may optionally contain less than 980/0 mol. oxygen. It is necessary to produce large amounts of oxygen having these characteristics to supply the oxy-fuel combustion apparatus, among others. It is known from WO-A-10/109149 to vaporize a flow of low pressure liquid oxygen in an external vaporizer to produce gaseous oxygen which is then heated in a main heat exchanger. It is known to vaporize the purge of a distillation column in order to recover the frigories, for example in US-A-5408831. On the other hand, the present invention proposes to vaporize the purge of deconcentration of a vaporizer in an exchanger in order to recover the frigories, this vaporizer being the exchanger for vaporizing a liquid from the apparatus under pressure to produce a gaseous product under pressure. It is desirable to send the purge to a gaseous storage under pressure to maintain a stable production both in flow rate and pressure. According to an object of the invention, there is provided an air separation plant comprising a double column comprising a medium pressure column and a low pressure column, a main exchanger, a vaporizer, a main compressor, means for sending any the air to be treated in the double column to the main compressor to produce air substantially at the pressure P1 of the medium pressure column, means for sending a portion of the air substantially at a high pressure P2 to the exchanger main and then to the vaporizer, a pipe for sending air at least partially condensed in the vaporizer to at least one of the columns, a pipe for sending air at the pressure P1 to the medium pressure column, a first pump, a second pump, a pipe for withdrawing liquid oxygen from the low pressure column and for sending it to the first pump, a pipe for sending pressurized liquid oxygen at a pressure lower than 9 bar abs from the first pump to the vaporizer, a line for sending gaseous oxygen from the vaporizer to the main exchanger to heat up, a line for sending liquid oxygen purge from the vaporizer at the second pump for pressurizing and a conduit for supplying pressurized oxygen from the second pump to an exchanger for vaporizing to form gaseous oxygen. Optionally: the exchanger connected to the purge oxygen line is the main exchanger. - The exchanger connected to the purge oxygen line is a separate exchanger of the main exchanger. the exchanger comprises passages connected to a supply air supply duct and passages connected to a refrigerant supply duct 1, possibly coming from the double column. the installation comprises a pressurized gas storage connected to the purge oxygen evaporation exchanger for collecting oxygen gas. According to another object of the invention, there is provided a method of separation of air in an apparatus comprising a double column comprising a medium pressure column and a low pressure column, a main exchanger, a vaporizer, a main compressor, a first pump, a second pump, in which all the air to be treated is sent in the double column to the main compressor to produce air substantially at the pressure P1 of the medium pressure column, a part of the air is sent substantially at a high pressure P2 to the main heat exchanger and then to the vaporizer, air is sent at least partially condensed in the vaporizer to at least one of the columns, air is sent at the pressure P1 to the middle column pressure, liquid oxygen is withdrawn from the low pressure column and sent to the first pump, pressurized liquid oxygen is sent at a pressure of less than 9 bar abs from the first pump. At the vaporizer pump, a first flow of gaseous oxygen is sent from the vaporizer to the main exchanger to heat up and pressurized liquid oxygen from the vaporizer of the vaporizer into the second pump before vaporizing it to form a second flow rate. oxygen gas. Optionally: the purge oxygen is pressurized at a pressure of at least 10 bar abs, preferably at least 15 bar abs, or even at least 20 bar abs in the second pump. the purge oxygen vaporizes in the main exchanger. the purge oxygen vaporizes in an exchanger other than the main exchanger. the second rate of oxygen gas is sent to a gaseous storage under pressure and serves as backup production. a variable amount of the second oxygen gas flow rate is mixed with the first flow rate to produce a substantially constant mixed flow rate. ls - the liquid oxygen withdrawn from the low pressure column contains at least 800/0 mol. Oxygen - the liquid oxygen withdrawn from the low pressure column is the only flow containing at least 800/0 mol. of oxygen withdrawn from the low pressure column. The liquid oxygen withdrawn from the low pressure column contains at most 980/0 mol. oxygen. The invention will be described in more detail with reference to the figures which illustrate air separation apparatus according to the invention. In FIG. 1, the apparatus comprises an exchange line 21 and a double column constituted by a medium pressure column 27 and a low pressure column 29. All the air 1 is compressed in the main compressor 2 to produce heat. air at the pressure P1 substantially equal to the pressure of the medium pressure column 27. The air at the pressure P1 is cooled in a cooler 7, purified in a purification unit 9 and divided into three fractions. The first fraction 11 is supercharged in a booster, which can be constituted by the last stage of the main compressor, last stage which is part of the second part of the compressor. The pressure P1 is less than 5 bar abs, or even 4.5 bar abs, preferably less than 4 bar, and still less than 3.5 bar abs The first fraction 11 is brought to a pressure P2 by the booster 5 or an independent compressor 5 and This coolant is cooled to this pressure in a cooler (not shown) before being sent to the exchange line 21. The exchange line is constituted by an indirect brazed-plate aluminum heat exchanger. The fraction 11 is then sent to a vaporizer 41 where it condenses at least partially before being expanded and sent to the medium pressure column 27. The pressure P2 is less than 15 bar abs, preferably less than 10 bar, and again less than 6 bar abs. The fraction 11 is less than half the flow 1, and preferably less than one third of the flow 1 The second fraction 13 at the pressure P1 cools completely in the exchange line 21 and is divided into two streams. The first stream 23 is sent to a bottom reboiler 33 of the low pressure column 29 where it condenses at least partially and is sent to the medium pressure column, mixed with the flow 11. The second stream 25 is sent in gaseous form to the middle pressure column 27. The third fraction 15 is supercharged in a booster 17, partially cooled in the exchange line 21, withdrawn from the exchange line at an intermediate level thereof and expanded in a front turbine 19 to be sent to the low pressure column 29. An oxygen-enriched liquid flow 55, an intermediate flow 53 and a nitrogen-rich liquid flow 51 are withdrawn from the medium-pressure column 27, cooled in the exchanger 31, relaxed and sent to different levels of the low pressure column 29. Medium pressure nitrogen gas 49 is condensed in an intermediate vaporizer 35 of the low pressure column 29 and sent as reflective material. At the top of the medium pressure column 27. Another flow of medium pressure nitrogen gas 47 is heated in the exchange line. Liquid oxygen 37, containing at least 800/0 mol. oxygen and optionally at most 980/0 mol. oxygen, is withdrawn in the tank of the low pressure column 29, pressurized by a pump 39 at a pressure lower than 9 bar abs, or even less than 5 bar abs and sent to the vaporizer 41. Apart from a liquid purge 43, oxygen vaporizes in the vaporizer 41 by heat exchange with the air fraction 11 at the pressure P2. This oxygen then forms the first pressurized oxygen gas flow 45 which heats up in the exchange line 21. The air fraction 11 is partially condensed and is sent to the double column. The purge liquid 43 is pressurized to a pressure of at least 10 bar abs, or at least 15 bar abs, or even at least 20 bar abs in a pump 63 and then vaporizes in the exchange line 21. The second gas flow thus produced is sent to a gaseous storage under pressure 3. Alternatively, as illustrated in FIG. 2, the pressurized purge liquid 43 may be vaporized in an auxiliary exchanger 21A, distinct from the exchange line, against a air flow 25A and with a flow rate of refrigerant, for example a flow of nitrogen 57A warming the separation process. The second flow of oxygen gas formed by the vaporization can be used as a backup gas during an interruption of the production of oxygen gas 45. Another possibility is illustrated in FIG. 3, where the purge 43 of the vaporizer 41 is stored in a storage 4, then pressurized by a pump 63 and then vaporized in an auxiliary vaporizer 8 by heat exchange with steam, water or ambient air. The invention applies to dual vaporizer apparatus as illustrated in FIGS. 1 to 3 but also to apparatus in which the low pressure column comprises only a single vaporizer 33 as illustrated in FIG. pump 39 and / or 63 may be replaced by hydrostatic pressurization in all cases described. For all the figures, a variable amount of the second rate of oxygen gas is mixed with the first rate to produce a substantially constant mixed rate. This variable amount of the vaporized purge liquid can be mixed at the first flow rate 45 to smooth flow rate variations due, for example, to variations in the pressure of the oxygen network.

En détectant une réduction de pression dans la ligne 45, due, par exemple à une demande accrue d'oxygène, de l'oxygène peut être envoyé du stockage 3 vers la ligne 45 par la conduite 61. En cas de panne de l'appareil de séparation d'air, le débit d'oxygène 45 s réduira ou sera inexistant. Dans ce cas, le débit d'oxygène 63 du stockage 3 peut alimenter un client, le temps qu'un vaporiseur de secours se mette en marche pour éviter tout arrêt de production. Le débit 37 est le seul débit contenant plus que 600/0 mol. d'oxygène soutiré de la colonne basse pression. io 30 By detecting a pressure reduction in the line 45, due, for example, to an increased oxygen demand, oxygen can be sent from the storage 3 to the line 45 via the line 61. In the event of a failure of the apparatus air separation, the 45 s oxygen flow will reduce or be non-existent. In this case, the oxygen flow 63 of the storage 3 can feed a customer, the time that a backup vaporizer starts to avoid any production stop. Flow 37 is the only flow containing more than 600/0 mol. of oxygen withdrawn from the low pressure column. io 30

Claims (14)

REVENDICATIONS1. Installation de séparation d'air comprenant une double colonne s comprenant une colonne moyenne pression (27) et une colonne basse pression (29), un échangeur principal (21), un vaporiseur (41), un compresseur principal (2), des moyens pour envoyer tout l'air à traiter dans la double colonne au compresseur principal pour produire de l'air substantiellement à la pression P1 de la colonne moyenne pression, des moyens (5) pour envoyer une partie de io l'air substantiellement à une pression élevée P2 à l'échangeur principal et ensuite au vaporiseur, une conduite pour envoyer de l'air au moins partiellement condensé dans le vaporiseur à au moins une des colonnes, une conduite pour envoyer de l'air à la pression P1 à la colonne moyenne pression, une première pompe (39), une deuxième pompe (63), une conduite pour ls soutirer de l'oxygène liquide de la colonne basse pression et pour l'envoyer à la première pompe, une conduite pour envoyer de l'oxygène liquide pressurisé à une pression inférieure à 9 bar abs de la première pompe au vaporiseur, une conduite pour envoyer de l'oxygène gazeux du vaporiseur à l'échangeur principal pour se réchauffer, une conduite pour envoyer de l'oxygène liquide de 20 purge (43) du vaporiseur à la deuxième pompe pour le pressuriser et une conduite pour envoyer l'oxygène pressurisé de la deuxième pompe à un échangeur (21, 21A, 8) pour se vaporiser pour former de l'oxygène gazeux. REVENDICATIONS1. Air separation plant comprising a double column comprising a medium pressure column (27) and a low pressure column (29), a main exchanger (21), a vaporizer (41), a main compressor (2), means for sending all the air to be treated in the double column to the main compressor to produce air substantially at the pressure P1 of the medium pressure column, means (5) for sending a portion of the air substantially to a pressure high P2 to the main heat exchanger and then to the vaporizer, a pipe for sending air at least partially condensed in the vaporizer to at least one of the columns, a pipe for sending air at the pressure P1 to the middle column pressure, a first pump (39), a second pump (63), a conduit for withdrawing liquid oxygen from the low pressure column and for sending to the first pump, a pipe for sending liquid oxygen pressurized to a pressure of less than 9 bar abs from the first pump to the vaporizer, a line for supplying gaseous oxygen from the vaporizer to the main heat exchanger for heating, a line for supplying liquid purge oxygen (43) of the vaporizer at the second pump for pressurizing and a conduit for supplying pressurized oxygen from the second pump to an exchanger (21, 21A, 8) for vaporizing to form gaseous oxygen. 2. Installation suivant la revendication 1 dans lequel l'échangeur relié à 25 la conduite d'oxygène de purge est l'échangeur principal (21). 2. Installation according to claim 1 wherein the exchanger connected to the purge oxygen line is the main exchanger (21). 3. Installation suivant la revendication 1 dans lequel l'échangeur relié à la conduite d'oxygène de purge est un échangeur (8, 21A) distinct de l'échangeur principal. 3. Installation according to claim 1 wherein the exchanger connected to the purge oxygen line is a heat exchanger (8, 21A) separate from the main exchanger. 4. Installation suivant la revendication 3 dans lequel l'échangeur (21A) comprend des passages reliés à une conduite d'amenée d'air d'alimentation et des passages reliés à une conduite d'amenée de fluide frigorigène, provenant éventuellement de la double colonne. 4. Installation according to claim 3 wherein the exchanger (21A) comprises passages connected to a supply air supply line and passages connected to a refrigerant supply line, possibly from the double column. 5. Installation suivant une des revendications 1 à 4 comprenant un stockage gazeux sous pression (3) relié à l'échangeur (8, 21, 21A) de vaporisation d'oxygène de purge pour recueillir l'oxygène gazeux. 5. Installation according to one of claims 1 to 4 comprising a gaseous storage under pressure (3) connected to the exchanger (8, 21, 21A) of purge oxygen evaporation to collect oxygen gas. 6. Procédé de séparation d'air dans un appareil comprenant une double colonne comprenant une colonne moyenne pression (27) et une colonne basse pression (29), un échangeur principal (21), un vaporiseur (41), un compresseur principal (2), une première pompe (43), une deuxième pompe (63), dans lequel io on envoie tout l'air à traiter dans la double colonne au compresseur principal pour produire de l'air substantiellement à la pression P1 de la colonne moyenne pression, on envoie une partie de l'air substantiellement à une pression élevée P2 à l'échangeur principal et ensuite au vaporiseur, on envoie de l'air au moins partiellement condensé dans le vaporiseur à au moins une des colonnes, on 15 envoie de l'air à la pression P1 à la colonne moyenne pression, on soutire de l'oxygène liquide de la colonne basse pression et on l'envoie à la première pompe, on envoie de l'oxygène liquide pressurisé à une pression inférieure à 5 bar abs de la première pompe au vaporiseur, on envoie un premier débit d'oxygène gazeux du vaporiseur à l'échangeur principal pour se réchauffer et 20 on pressurise de l'oxygène liquide de purge du vaporiseur dans la deuxième pompe avant de le vaporiser pour former un deuxième débit d'oxygène gazeux. 6. A method of separating air in an apparatus comprising a double column comprising a medium pressure column (27) and a low pressure column (29), a main exchanger (21), a vaporizer (41), a main compressor (2). ), a first pump (43), a second pump (63), in which all the air to be treated is sent in the double column to the main compressor to produce air substantially at the pressure P1 of the medium pressure column a part of the air is sent substantially at high pressure P2 to the main heat exchanger and then to the vaporizer, at least partially condensed air is sent into the vaporizer to at least one of the columns, the air is sent to the at the pressure P1 at the medium pressure column, liquid oxygen is withdrawn from the low pressure column and sent to the first pump, pressurized liquid oxygen is sent at a pressure of less than 5 bar abs. from the first vaporizer pump a first flow of gaseous oxygen from the vaporizer to the main heat exchanger is sent to heat up and pressurized liquid oxygen from the vaporizer of the vaporizer into the second pump before vaporizing it to form a second flow of oxygen gaseous. 7. Procédé selon la revendication 6 dans lequel l'oxygène de purge est pressurisé à une pression d'au moins 10 bars abs, de préférence au moins 15 25 bars abs, voire au moins 20 bars abs dans la deuxième pompe (63). 7. A process according to claim 6 wherein the purge oxygen is pressurized to a pressure of at least 10 bar abs, preferably at least 25 bar abs, or even at least 20 bar abs in the second pump (63). 8. Procédé selon l'une des revendications 6 et 7 dans lequel l'oxygène de purge se vaporise dans l'échangeur principal (21). 30 8. Method according to one of claims 6 and 7 wherein the purge oxygen vaporizes in the main exchanger (21). 30 9. Procédé selon l'une des revendications 6 et 7 dans lequel l'oxygène de purge se vaporise dans un échangeur (8, 21A) autre que l'échangeur principal. 9. Method according to one of claims 6 and 7 wherein the purge oxygen is vaporized in an exchanger (8, 21A) other than the main exchanger. 10. Procédé selon l'une des revendications 6 à 9 dans lequel le deuxième débit d'oxygène gazeux est envoyé à un stockage gazeux sous pression (3) et sert de production de secours. s 10. Method according to one of claims 6 to 9 wherein the second rate of oxygen gas is sent to a gas storage under pressure (3) and serves as a backup production. s 11. Procédé selon l'une des revendications 6 à 10 dans lequel une quantité variable du deuxième débit d'oxygène gazeux (61) est mélangée avec le premier débit (45) d'oxygène gazeux afin de produire un débit mélangé substantiellement constant. io The method of one of claims 6 to 10 wherein a variable amount of the second oxygen gas flow rate (61) is mixed with the first oxygen gas flow (45) to produce a substantially constant mixed flow rate. io 12. Procédé selon l'une des revendications 6 à 11 dans lequel l'oxygène liquide (37) soutiré de la colonne basse pression contient au moins 800/0 mol. d'oxygène. 12. Method according to one of claims 6 to 11 wherein the liquid oxygen (37) withdrawn from the low pressure column contains at least 800/0 mol. oxygen. 13. Procédé selon la revendication 12 dans lequel l'oxygène liquide (37) ls soutiré de la colonne basse pression constitue le seul débit contenant au moins 800/0 mol. d'oxygène soutiré de la colonne basse pression. 13. The method of claim 12 wherein the liquid oxygen (37) ls withdrawn from the low pressure column is the only flow containing at least 800/0 mol. of oxygen withdrawn from the low pressure column. 14. Procédé selon l'une des revendications 6 à 13 dans lequel l'oxygène liquide (37) soutiré de la colonne basse pression contient au plus 980/0 mol. 20 d'oxygène. 14. Method according to one of claims 6 to 13 wherein the liquid oxygen (37) withdrawn from the low pressure column contains at most 980/0 mol. Of oxygen.
FR1152272A 2011-03-18 2011-03-18 APPARATUS AND METHOD FOR AIR SEPARATION BY CRYOGENIC DISTILLATION Expired - Fee Related FR2972794B1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
FR1152272A FR2972794B1 (en) 2011-03-18 2011-03-18 APPARATUS AND METHOD FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
US14/003,902 US20130340476A1 (en) 2011-03-18 2012-03-09 Apparatus and method for separating air by cryogenic distillation
PCT/FR2012/050500 WO2012127148A2 (en) 2011-03-18 2012-03-09 Device and method for separating air by cryogenic distillation
ES12714763T ES2859549T3 (en) 2011-03-18 2012-03-09 Cryogenic distillation air separation apparatus and procedure
CA2828716A CA2828716C (en) 2011-03-18 2012-03-09 Device and method for separating air by cryogenic distillation
CN201280013722.XA CN104067079B (en) 2011-03-18 2012-03-09 For by the equipment of separating air by cryogenic distillation and method
EP12714763.5A EP2686628B1 (en) 2011-03-18 2012-03-09 Device and method for separating air by cryogenic distillation
AU2012230171A AU2012230171B2 (en) 2011-03-18 2012-03-09 Device and method for separating air by cryogenic distillation
ZA2013/06723A ZA201306723B (en) 2011-03-18 2013-09-06 Apparatus and method for separating air by cryogenic distillation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1152272A FR2972794B1 (en) 2011-03-18 2011-03-18 APPARATUS AND METHOD FOR AIR SEPARATION BY CRYOGENIC DISTILLATION

Publications (2)

Publication Number Publication Date
FR2972794A1 true FR2972794A1 (en) 2012-09-21
FR2972794B1 FR2972794B1 (en) 2015-11-06

Family

ID=45974388

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1152272A Expired - Fee Related FR2972794B1 (en) 2011-03-18 2011-03-18 APPARATUS AND METHOD FOR AIR SEPARATION BY CRYOGENIC DISTILLATION

Country Status (8)

Country Link
US (1) US20130340476A1 (en)
EP (1) EP2686628B1 (en)
AU (1) AU2012230171B2 (en)
CA (1) CA2828716C (en)
ES (1) ES2859549T3 (en)
FR (1) FR2972794B1 (en)
WO (1) WO2012127148A2 (en)
ZA (1) ZA201306723B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5997105B2 (en) * 2013-06-05 2016-09-28 神鋼エア・ウォーター・クライオプラント株式会社 Air separation method
US20160186930A1 (en) * 2014-02-28 2016-06-30 Praxair Technology, Inc. Pressurized product stream delivery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1425450A (en) * 1972-01-21 1976-02-18 Air Prod & Chem Air separation
US5251451A (en) * 1992-08-28 1993-10-12 Air Products And Chemicals, Inc. Multiple reboiler, double column, air boosted, elevated pressure air separation cycle and its integration with gas turbines
EP0628778A1 (en) * 1993-06-07 1994-12-14 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and high pressure gas supply unit for an air constituent consuming installation
US5765396A (en) * 1997-03-19 1998-06-16 Praxair Technology, Inc. Cryogenic rectification system for producing high pressure nitrogen and high pressure oxygen

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3327489A (en) * 1960-08-25 1967-06-27 Air Prod & Chem Method for separating gaseous mixtures
GB1314347A (en) * 1970-03-16 1973-04-18 Air Prod Ltd Air rectification process for the production of oxygen
AT386279B (en) * 1986-04-02 1988-07-25 Voest Alpine Ag DEVICE FOR THE DISASSEMBLY OF GASES BY MEANS OF COAXIAL INTERLECTED RECTIFICATION COLONES
US4796431A (en) * 1986-07-15 1989-01-10 Erickson Donald C Nitrogen partial expansion refrigeration for cryogenic air separation
FR2699992B1 (en) 1992-12-30 1995-02-10 Air Liquide Process and installation for producing gaseous oxygen under pressure.
DE10052180A1 (en) * 2000-10-20 2002-05-02 Linde Ag Three-column system for the low-temperature separation of air
JP3488695B2 (en) * 2001-02-09 2004-01-19 エア・ウォーター株式会社 Nitrogen production equipment
DE10217091A1 (en) * 2002-04-17 2003-11-06 Linde Ag Three-column system for low-temperature air separation with argon extraction
FR2842124B1 (en) * 2002-07-09 2005-03-25 Air Liquide METHOD FOR CONDUCTING AN ELECTRIC POWER GAS-GENERATING PLANT AND THIS PRODUCTION PLANT
GB0219415D0 (en) * 2002-08-20 2002-09-25 Air Prod & Chem Process and apparatus for cryogenic separation process
US6957153B2 (en) * 2003-12-23 2005-10-18 Praxair Technology, Inc. Method of controlling production of a gaseous product
AU2005225027A1 (en) * 2005-07-21 2007-02-08 L'air Liquide Societe Anonyme Pour L'etude Et L"Exploitation Des Procedes Georges Claude Process and apparatus for the separation of air by cryogenic distillation
FR2943772A1 (en) * 2009-03-27 2010-10-01 Air Liquide APPARATUS AND METHOD FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
DE102011113668A1 (en) * 2011-09-20 2013-03-21 Linde Aktiengesellschaft Method and apparatus for the cryogenic separation of air

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1425450A (en) * 1972-01-21 1976-02-18 Air Prod & Chem Air separation
US5251451A (en) * 1992-08-28 1993-10-12 Air Products And Chemicals, Inc. Multiple reboiler, double column, air boosted, elevated pressure air separation cycle and its integration with gas turbines
EP0628778A1 (en) * 1993-06-07 1994-12-14 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and high pressure gas supply unit for an air constituent consuming installation
US5765396A (en) * 1997-03-19 1998-06-16 Praxair Technology, Inc. Cryogenic rectification system for producing high pressure nitrogen and high pressure oxygen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PETRAS ET AL: "oxygen plants for coal gasifiaction: Experience at the Cool Water GCC Power Plant", PUBLICATION BOC CRYOPLANTS, BOC CRYOPLANTS ENGINEERING CENTRE, GUILDFORD, GB, 1 September 1987 (1987-09-01), XP007905885 *

Also Published As

Publication number Publication date
WO2012127148A3 (en) 2014-12-04
US20130340476A1 (en) 2013-12-26
CA2828716A1 (en) 2012-09-27
AU2012230171B2 (en) 2017-03-30
AU2012230171A1 (en) 2013-10-10
WO2012127148A2 (en) 2012-09-27
EP2686628B1 (en) 2021-01-13
ZA201306723B (en) 2015-03-25
CA2828716C (en) 2020-02-25
EP2686628A2 (en) 2014-01-22
CN104067079A (en) 2014-09-24
FR2972794B1 (en) 2015-11-06
ES2859549T3 (en) 2021-10-04

Similar Documents

Publication Publication Date Title
EP2510294B1 (en) Process and unit for the separation of air by cryogenic distillation
WO2018215716A1 (en) Method and apparatus for air separation by cryogenic distillation
CA2830826C (en) Method and device for separating air by cryogenic distillation
CA2865991C (en) Method and device for separating a mixture containing carbon dioxide by means of distillation
EP2279385B1 (en) Apparatus and method for separating air by cryogenic distillation
EP1189003B1 (en) Process and apparatus for air separation by cryogenic distillation
EP3058297B1 (en) Method and device for separating air by cryogenic distillation
EP2591301B1 (en) Apparatus and process for separating air by cryogenic distillation
CA2828716C (en) Device and method for separating air by cryogenic distillation
WO2015071578A2 (en) Process and apparatus for separating air by cryogenic distillation
FR2724011A1 (en) PROCESS AND PLANT FOR THE PRODUCTION OF OXYGEN BY CRYOGENIC DISTILLATION
EP1106945B1 (en) Process for air separation by cryogenic distillation
EP1063485B1 (en) Device and process for air separation by cryogenic distillation
FR2787559A1 (en) Air separation using cryogenic distillation has double column receiving compressed, cooled, and expanded air to produce oxygen rich and nitrogen rich fractions
FR2787561A1 (en) Cryogenic distillation of air uses double column with air supply to medium pressure column and oxygen rich fluid from bottom of both low pressure and auxiliary columns
WO2009136076A2 (en) Method and apparatus for separating air by cryogenic distillation
FR3110685A1 (en) Method and apparatus for air separation by cryogenic distillation
FR3020867A1 (en) METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION FOR THE PRODUCTION OF A MIXTURE OF KRYPTON AND XENON
FR2974890A1 (en) Method for separating air by cryogenic distillation in installation, involves condensing part of nitrogen enriched gas flow before being sent to average pressure column and/or low pressure column, and heating gas flow rich in oxygen
FR2968749A1 (en) Method for air separation by cryogenic distillation for integrated gasification combined cycle system, involves compressing vaporized oxygen without having to be heated more than specific degrees Celsius, and heating compressed oxygen

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 5

PLFP Fee payment

Year of fee payment: 6

PLFP Fee payment

Year of fee payment: 7

PLFP Fee payment

Year of fee payment: 8

PLFP Fee payment

Year of fee payment: 10

PLFP Fee payment

Year of fee payment: 11

ST Notification of lapse

Effective date: 20221105