FR2892930A1 - Composition cosmetique comprenant un polymere silicone structurant de phase grasse caracterisee par une viscosite - Google Patents

Composition cosmetique comprenant un polymere silicone structurant de phase grasse caracterisee par une viscosite Download PDF

Info

Publication number
FR2892930A1
FR2892930A1 FR0553395A FR0553395A FR2892930A1 FR 2892930 A1 FR2892930 A1 FR 2892930A1 FR 0553395 A FR0553395 A FR 0553395A FR 0553395 A FR0553395 A FR 0553395A FR 2892930 A1 FR2892930 A1 FR 2892930A1
Authority
FR
France
Prior art keywords
groups
group
composition
formula
composition according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR0553395A
Other languages
English (en)
Other versions
FR2892930B1 (fr
Inventor
Lezer Nathalie Jager
Stephane Arditty
Jean Louis Mattei
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LOreal SA
Original Assignee
LOreal SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LOreal SA filed Critical LOreal SA
Priority to FR0553395A priority Critical patent/FR2892930B1/fr
Priority to PCT/EP2006/068181 priority patent/WO2007054494A1/fr
Publication of FR2892930A1 publication Critical patent/FR2892930A1/fr
Application granted granted Critical
Publication of FR2892930B1 publication Critical patent/FR2892930B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • A61Q1/10Preparations containing skin colorants, e.g. pigments for eyes, e.g. eyeliner, mascara
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/89Polysiloxanes
    • A61K8/896Polysiloxanes containing atoms other than silicon, carbon, oxygen and hydrogen, e.g. dimethicone copolyol phosphate
    • A61K8/898Polysiloxanes containing atoms other than silicon, carbon, oxygen and hydrogen, e.g. dimethicone copolyol phosphate containing nitrogen, e.g. amodimethicone, trimethyl silyl amodimethicone or dimethicone propyl PG-betaine

Abstract

L'invention a pour objet une composition cosmétique comprenant un milieu liquide cosmétiquement acceptable comprenant une phase aqueuse et une phase grasse comprenant au moins un polymère siliconé comportant au moins un motif comprenant :1 ) des polyorganosiloxanes comportant au moins deux groupes capables d'établir des interactions hydrogène, ces deux groupes étant situés dans la chaîne du polymère, et/ou2) des polyorganosiloxanes comportant au moins deux groupes capables d'établir des interactions hydrogène, ces deux groupes étant situés sur des greffons ou ramifications,- ladite composition étant telle qu'après avoir été soumise à un chauffage en continu de 25 degree C jusqu'à 90 degree C à une vitesse de 5 degree C par minute, maintenue 2 min à 90 degree C, puis refroidie en continu de 90 degree C à 25 degree C à une vitesse de 5 degree C par minute, le ratio entre la viscosité finale de la composition à 25 degree C après chauffage (etaf) et la viscosité initiale à 25 degree C (etai) avant chauffage est supérieur à 0,5.L'invention a également pour l'objet l'utilisation d'une telle composition pour obtenir un maquillage chargeant des matières kératiniques et un dépôt lisse et homogène.

Description

La présente invention a pour objet une composition cosmétique, en
particulier de revêtement des fibres kératiniques telles que cils, les sourcils, les cheveux.
La composition selon l'invention peut être une composition de maquillage ou de soin des matières kératiniques, en particulier de la peau et des fibres kératiniques, notamment des cils, et de préférence une composition de maquillage. Elle peut être une poudre libre ou compactée, un fond de teint, un fard à joues ou à paupières, un produit anti-cerne, un blush, un crayon à yeux, un mascara, un eye-liner ou encore un produit de maquillage du corps ou de coloration de la peau.
Elle se présente en particulier sous la forme d'un mascara, d'un produit pour les sourcils. Plus spécialement, l'invention porte sur un mascara. Par mascara, on entend une composition destinée à être appliquée sur les fibres kératiniques : il peut s'agir d'une composition de maquillage des fibres kératiniques, une base de maquillage des fibres kératiniques, une composition à appliquer sur un mascara, dite encore top-coat, ou bien encore une composition de traitement cosmétique des fibres kératiniques. Le mascara est plus particulièrement destiné aux fibres kératiniques d'êtres humains, mais également aux faux-cils.
D'une manière générale, les compositions de maquillage des fibres kératiniques sont constituées d'au moins une cire ou d'un mélange de cires dispersé dans une phase solvant liquide. Il est connu en particulier des mascaras anhydres ou à faible teneur en eau et/ou solvants hydrosolubles, dits mascaras waterproof , formulés à l'état de dispersion de cires dans des solvants non aqueux et qui présentent une bonne résistance à l'eau et/ou au sébum.
C'est en particulier à travers la quantité de cire, qui permet de structurer la composition, que sont ajustées les spécificités d'application recherchées pour les compositions, comme par exemple leur fluidité ou consistance, leur pouvoir couvrant et/ou leur pouvoir recourbant, ainsi que leur pouvoir épaississant (encore appelé pouvoir chargeant ou maquillant).
Il est connu de l'art antérieur que plus la teneur en solides, apportée en partie par une ou plusieurs cires dans une composition va augmenter, plus le dépôt de matière sur le cil va être important et donc plus le résultat obtenu sera volumateur. En particulier, des cires molles du type cire d'abeille, de paraffine, sont couramment utilisées par l'homme de l'art en association avec des cires plus dures , afin d'obtenir un mascara chargeant et d'ajuster de manière satisfaisante les caractéristiques rhéologiques du mascara.
Néanmoins, l'augmentation de la teneur en solides dans une composition, telle qu'une émulsion ou dispersion entraîne une augmentation de la consistance du produit obtenu et donc une application sur les fibres kératiniques délicate et difficile car le produit est épais, visqueux, il se dépose difficilement, de façon hétérogène et par paquets.
De plus, l'utilisation de ces cires dites molles a tendance à conférer au film déposé sur les fibres kératiniques un caractère collant rédhibitoire. En effet, un simple frottement du doigt sur les fibres kératiniques maquillées entraîne une agglomération de plusieurs fibres kératiniques entre eux, c'est-à-dire à une non individualisation des fibres kératiniques.
Il est donc difficile d'obtenir une composition de maquillage des fibres kératiniques comprenant une forte teneur en solides et donc un effet volumateur satisfaisant tout en présentant une application facile et homogène et une bonne séparation des fibres kératiniques.
Le demandeur a découvert de manière surprenante qu'une composition comprenant une phase aqueuse et une phase grasse structurée par au moins un polymère siliconé particulier permet d'obtenir une composition qui est à la fois chargeante, volumatrice, et qui présente des propriétés satisfaisantes notamment une texture fluide permettant le dépôt d'un film homogène et lisse sur les fibres kératiniques.
Cependant, ces polymères présentent une température élevée de transition de l'état solide à l'état liquide (en général supérieure ou égale à 100 C), ce qui rend difficile leur émulsification par voie de préparation conventionnelle qui impliquerait un chauffage à température élevée des autres ingrédients. C'est pourquoi ladite composition selon l'invention est obtenue par un procédé particulier dans lequel les différents ingrédients de la composition peuvent être incorporés à des températures différentes, de préférence en continu, à une température compatible avec leur stabilité. Ce procédé permet de maîtriser le profil thermique et les conditions de cisaillement appliquées à la composition à chacune des différentes étapes de préparation de ladite composition.
L'utilisation d'un procédé préférentiellement en continu permet de garantir un profil thermique et des conditions de cisaillement reproductibles, indépendamment de la quantité de composition produite.
Dans la suite de la description, la température de transition de l'état solide à l'état liquide sera désignée par le terme température de transition solide-liquide .
La composition obtenue par un tel procédé se distingue donc par une évolution particulière de sa viscosité lorsqu'elle est soumise à un nouveau cycle thermique comprenant une étape de chauffage d'une température de 25 C à une température de 90 C puis de refroidissement de 90 C à 25 C.
En effet, si l'on a une bonne émulsification de la phase grasse dans la composition, celle-ci est dispersée de manière fine et homogène, et la viscosité de la composition évolue peu après un cycle de chauffe tel que défini ci-dessus. En revanche, si la dispersion de la phase grasse dans la composition est grossière, les particules dispersées vont se coller et former des agrégats de taille plus ou moins grosse, et la viscosité de la composition va diminuer de manière significative (c'est-à-dire en un ratio, tel que défini plus loin, viscosité finale après chauffage (lof) sur viscosité initiale à 25 C M;) avant chauffage, inférieur à 0,5).
C'est pourquoi, selon un premier aspect, l'invention a pour objet une composition cosmétique comprenant une phase aqueuse et une phase grasse comprenant au moins un polymère siliconé comportant au moins un motif comprenant : 1) des polyorganosiloxanes comportant au moins deux groupes capables d'établir des interactions hydrogène, ces deux groupes étant situés dans la chaîne du 20 polymère, et/ou 2) des polyorganosiloxanes comportant au moins deux groupes capables d'établir des interactions hydrogène, ces deux groupes étant situés sur des greffons ou ramifications, ladite composition étant telle qu'après avoir été soumise à un chauffage en continu de 25 C 25 jusqu'à 90 C à une vitesse de 5 C par minute, maintenue 2 min à 90 C, puis refroidie en continu de 90 C à 25 C à une vitesse de 5 C par minute, le ratio entre la viscosité finale de la composition à 25 C après chauffage (lof) et la viscosité initiale à 25 C (li) avant chauffage est supérieur à 0,5. 30 La viscosité est mesurée selon le protocole suivant : La composition est placée dans un rhéomètre Gemini 200 de Bohlin instruments, société Malvern, en géométrie plan/plan striés de diamètre 25 mm. L'appareil est équipé d'un module de régulation à effet Peltier et d'un système anti-évaporation. L'entrefer est de 600 pm. L'appareil est piloté en mode gradient de vitesse . La viscosité est mesurée à 35 gradient de vitesse constant fixé à 0.1 s-' avec un balayage en température de façon continue et à raison d'une mesure toute les 15 secondes ; la température initiale est constante et fixée à 25 C (temps d'attente 30 s) puis est variée continûment de 25 C à 90 C à une vitesse de 5 C par minute, est maintenue à 90 C pendant 2 minutes et à nouveau variée de 90 C à 25 C à une vitesse de 5 C par minute. La valeur de la viscosité initiale de la composition à 25 C est comparée à la valeur de la viscosité à 25 C obtenue en fin de test.
Une observation au microscope optique permet de s'assurer que l'émulsion n'a pas été détruite durant le test, c'est-à-dire que la composition se présente toujours sous forme d'une dispersion de particules de phase grasse dans la phase aqueuse.
Le ratio entre la viscosité finale de la composition à 25 C après chauffage (lof) et la viscosité initiale à 25 C (li) supérieur à 0,5 est caractéristique du procédé de préparation de la composition qui comprend : - au moins une étape d'émulsification de la phase grasse dans la phase aqueuse de la composition, à une température supérieure ou égale à la température de transition solide û liquide du polymère siliconé, et - au moins une étape de refroidissement contrôlé de l'émulsion obtenue, ledit refroidissement étant effectué sous cisaillement mécanique contrôlé.
La composition selon l'invention comprend bien entendu un milieu cosmétiquement acceptable, c'est-à-dire un milieu non toxique et susceptible d'être appliqué sur les matières kératiniques d'êtres humains et d'aspect, d'odeur et de toucher agréables.
La présente invention vise également un procédé de soin ou de maquillage des fibres kératiniques, caractérisé par le fait que l'on applique sur lesdites fibres une composition conforme à l'invention. Elle se rapporte en outre à l'utilisation d'une composition conforme à l'invention pour obtenir un maquillage chargeant des fibres kératiniques et/ou un dépôt lisse et homogène sur les fibres kératiniques.
30 Au sens de la présente invention, on entend qualifier par le terme chargeant la notion d'un maquillage épais et volumateur des fibres kératiniques, en particulier des fibres kératiniques. De préférence, la composition selon l'invention est une composition non rincée. Polymères siliconés 35
Les polymères siliconés de la composition sont de préférence solides à la température ambiante (25 C) et pression atmosphérique (760 mm de Hg) .
Par polymère, on entend au sens de l'invention un composé ayant au moins 2 motifs de répétition, de préférence au moins 3 motifs de répétition et mieux encore 10 motifs de répétition.
Les polymères siliconés utilisés comme agents structurants dans la composition de l'invention sont des polymères du type polyorganosiloxane comme par exemple ceux décrits dans les documents US-A-5 874 069, US-A-5,919,441, US-A-6,051,216 et US-A-5,981,680.
Selon l'invention, les polymères utilisés comme agent structurant peuvent appartenir aux deux familles suivantes : 1) des polyorganosiloxanes comportant au moins deux groupes capables d'établir des interactions hydrogène, ces deux groupes étant situés dans la chaîne du polymère, et/ou 2) des polyorganosiloxanes comportant au moins deux groupes capables d'établir des interactions hydrogène, ces deux groupes étant situés sur des greffons ou ramifications.
Les groupes capables d'établir des interactions hydrogène peuvent être choisis parmi les groupes ester, amide, sulfonamide, carbamate, thiocarbamate, urée, uréthane, thiourée, oxamido, guanidino, biguanidino et leurs combinaisons. a) Selon une première variante, les polymères siliconés sont des polyorganosiloxane tels que définis ci-dessus et dont les motifs capables d'établir des interactions hydrogènes sont disposés dans la chaîne du polymère.
30 Les polymères siliconés peuvent plus particulièrement être des polymères comprenant au moins un motif répondant à la formule générale 1 :25 R5 SiûX G Y G X R' m n (1) dans laquelle : 1) R4, R5, R6 et R7, identiques ou différents, représentent un groupe choisi parmi: - les groupes hydrocarbonés, linéaires, ramifiés ou cycliques, en C, à C4o, saturés ou insaturés, pouvant contenir dans leur chaîne un ou plusieurs atomes d'oxygène, de soufre et/ou d'azote, et pouvant être substitués en partie ou totalement par des atomes de fluor, - les groupes aryles en C6 à C,o, éventuellement substitués par un ou plusieurs groupes alkyle en C, à C4, - les chaînes polyorganosiloxanes contenant ou non un ou plusieurs atomes d'oxygène, de soufre et/ou d'azote, 2) les X, identiques ou différents, représentent un groupe alkylène di-yle, linéaire ou ramifié en C, à Cao, pouvant contenir dans sa chaîne un ou plusieurs atomes d'oxygène et/ou d'azote, 3) Y est un groupe divalent alkylène linéaire ou ramifié, arylène, cycloalkylène, alkylarylène ou arylalkylène, saturé ou insaturé, en C, à C50, pouvant comporter un ou plusieurs atomes d'oxygène, de soufre et/ou d'azote, et/ou porter comme substituant l'un des atomes ou groupes d'atomes suivants : fluor, hydroxy, cycloalkyle en C3 à C8, alkyle en C, à C40, aryle en C5 à C,o, phényle éventuellement substitué par 1 à 3 groupes alkyle en C, à C3, hydroxyalkyle en C, à C3 et amino alkyle en C, à C6, ou 4) Y représente un groupe répondant à la formule : dans laquelle - T représente un groupe hydrocarboné trivalent ou tétravalent, linéaire ou ramifié, saturé ou insaturé, en C3 à C24 éventuellement substitué par une chaîne polyorganosiloxane, et pouvant contenir un ou plusieurs atomes choisis parmi O, N et S, ou T représente un atome trivalent choisi parmi N, P et Al, et R6 R4 Si O - R8 représente un groupe alkyle en C, à C50, linéaire ou ramifié, ou une chaîne polyorganosiloxane, pouvant comporter un ou plusieurs groupes ester, amide, uréthane, thiocarbamate, urée, thiourée et/ou sulfonamide qui peut être lié ou non à une autre chaîne du polymère, 5) les G, identiques ou différents, représentent les groupes divalents choisis parmi:
- C OOC N(R9)C. O O O - C N(R9) ; N(R9) S02 SO2 N(R9) O - N(R9) C O C N(R9) N(R9) CO. O O S
- 0 C N(R9) ; N(R9) C N(R9) S O - N(R9) C N(R9) S N(R9CCN(R9).NHCNH. et li O NH CNHC NH NH NH où R9 représente un atome d'hydrogène ou un groupe alkyle, linéaire ou ramifié, en C, à C20, à condition qu'au moins 50 % des R9 du polymère représente un atome d'hydrogène et qu'au moins deux des groupes G du polymère soient un autre groupe que : O C et C O li 6) n est un nombre entier allant de 2 à 500, de préférence de 2 à 200, et m est un nombre entier allant de 1 à 1000, de préférence de 1 à 700 et mieux encore de 6 à 200. Selon l'invention, 80 % des R4, R5, R6 et R7, du polymère sont choisis de préférence parmi les groupes méthyle, éthyle, phényle et 3,3,3-trifluoropropyle.
Selon l'invention, Y peut représenter divers groupes divalents, comportant éventuellement de plus une ou deux valences libres pour établir des liaisons avec d'autres motifs du polymère ou copolymère. De préférence, Y représente un groupe choisi parmi : a) les groupes alkylène linéaires en C, à C20, de préférence en C, à C,o, b) les groupes alkylène ramifiés pouvant comporter des cycles et des insaturations non conjuguées, en C30à C56, c) les groupes cycloalkylène en C5-C6, d) les groupes phénylène éventuellement substitués par un ou plusieurs groupes alkyle en C, à Cao, e) les groupes alkylène en C, à C20, comportant de 1 à 5 groupes amides, f) les groupes alkylène en C, à C20, comportant un ou plusieurs substituants, choisis parmi les groupes hydroxyle, cycloalcane en C3 à C8, hydroxyalkyle en C, à C3 et alkylamines en C, à C6, g) les chaînes polyorganosiloxane de formule :
R5 ù R4 R4 Si O Si O R' R6 dans laquelle R4, R5, R6, R7, T et m sont tels que définis ci-dessus, et h) les chaînes polyorganosiloxanes de formule : m b) Selon la seconde variante, les polyorganosiloxanes peuvent être des polymères comprenant au moins un motif répondant à la formule (Il) :
R4 Si O R6 miRùn
Si O R' m2 dans laquelle - R4 et R6, identiques ou différents, sont tels que définis ci-dessus pour la formule (I), - R10 représente un groupe tel que défini ci-dessus pour R4 et R6, ou représente le groupe de formule -X-G-R12 dans laquelle X et G sont tels que définis ci-dessus pour la formule (I) et R12 représente un atome d'hydrogène ou un groupe hydrocarboné, linéaire, ramifié ou cyclique, saturé ou insaturé, en C1 à C5o comportant éventuellement dans sa chaîne un ou plusieurs atomes choisis parmi O, S et N, éventuellement substitué par un ou plusieurs atomes de fluor et/ou un ou plusieurs groupes hydroxyle, ou un groupe phényle éventuellement substitué par un ou plusieurs groupes alkyle en C1 à C4, - R11 représente le groupe de formule -X-G-R12 dans laquelle X, G et R12 sont tels que définis ci-dessus, - m1 est un nombre entier allant de 1 à 998, et - m2 est un nombre entier allant de 2 à 500.
Selon l'invention, le polymère utilisé comme agent structurant, peut être un homopolymère, c'est-à-dire un polymère comportant plusieurs motifs identiques, en particulier des motifs de formule (I) ou de formule (Il).
Selon l'invention, on peut aussi utiliser un polymère constitué par un copolymère comportant plusieurs motifs de formule (I) différents, c'est-à-dire un polymère dans lequel l'un au moins des R4, R5, R6, R7, X, G, Y, m et n est différent dans l'un des motifs. Le copolymère peut être aussi formé de plusieurs motifs de formule (Il), dans lequel l'un au moins des R4, R6, R1 , R11, ml et m2 est différent dans l'un au moins des motifs.
On peut encore utiliser un polymère comportant au moins un motif de formule (I) et au moins un motif de formule (Il), les motifs de formule (I) et les motifs de formule (Il) pouvant être identiques ou différents les uns des autres.30 Selon une variante de l'invention, on peut encore utiliser un polymère comprenant de plus au moins un motif hydrocarboné comportant deux groupes capables d'établir des interactions hydrogènes choisis parmi les groupes ester, amide, sulfonamide, carbamate, thiocarbamate, urée, uréthane, thiourée, oxamido, guanidino, biguanidino et leurs combinaisons.
Ces copolymères peuvent être des polymères blocs, des polymères séquencés ou des polymères greffés. Selon un mode de réalisation avantageux de l'invention, les groupes capables d'établir des interactions hydrogènes sont des groupes amides de formule ùC(0)NH- et ùHN-C(0)-.
Dans ce cas, l'agent structurant peut être un polymère comprenant au moins un motif de formule (III) ou (IV) : Rù4 R5 C X SiO Si X C NH Y NH O R6 R' O m n ou R4 R5 Si X NH C y C R' NH X R6 m SiO n (IV) dans lesquelles R4, R5, R6, R7, X, Y, m et n sont tels que définis ci-dessus.
Un tel motif peut être obtenu : - soit par une réaction de condensation entre un silicone à extrémités a, co-acides carboxyliques et une ou plusieurs diamines, selon le schéma réactionnel suivant : 5 R- 4 - R5 HOOC X SiO Si X COOH + H2N Y NH2 R6 R7 - Rm _ -R4 - R5 - C X SiO Si X CO NH Y NH _0 _R6 m R7 _n - soit par réaction de deux molécules d'acide carboxylique a-insaturé avec une diamine selon le schéma réactionnel suivant : CH2=CH-X I-COOH+HzN-Y-NHz CH2=CH-XI-CO-NH-Y-NH-CO-XI-CH=CH2 suivie de l'addition d'un siloxane sur les insaturations éthyléniques, selon le schéma suivant : CH2=CH-X I-CO-NH-Y-NH-CO-X I-CH=CH2 - R5 - R4 -R5 Co x SiO Si X CO NH Y NH _n R6 R7 m 10 dans lesquels X'-(CH2)2-correspond au X défini ci-dessus et Y, R4, R5, R6, R7 et m sont tels que définis ci-dessus,
- soit par réaction d'un silicone à extrémités a, o-NH2 et d'un diacide de formule HOOC-Y-COOH selon le schéma réactionnel suivant : - R4 _ R5 I I H2N X SiO Si X NH2+HOOC-Y-COOH _R6 mR7 - R4 R5 - I I SiO Si X NH C Y C I I Il Il_ n R6 7 m Dans ces polyamides de formule (III) ou (IV), m va de 1 à 700, en particulier de 15 à 500 et notamment de 50 à 200 et n va particulier de 1 à 500, de préférence de 1 à 100 et mieux encore de 4 à 25, - X est de préférence une chaîne alkylène linéaire ou ramifiée ayant de 1 à 30 atomes de carbone, en particulier 1 à 20 atomes de carbone, notamment de 5 à 15 atomes de carbone et plus particulièrement de 10 atomes de carbone, et - Y est de préférence une chaîne alkylène linéaire ou ramifiée ou pouvant comporter des cycles et/ou des insaturations, ayant de 1 à 40 atomes de carbone, en particulier de 1 à 20 atomes de carbone, et mieux encore de 2 à 6 atomes de carbone, en particulier de 6 atomes de carbone. Dans les formules (III) et (IV), le groupe alkylène représentant X ou Y peut éventuellement contenir dans sa partie alkylène au moins l'un des éléments suivants : 1) 1 à 5 groupes amides, urée, uréthane, ou carbamate, 2) un groupe cycloalkyle en C5 ou C6, et 3) un groupe phénylène éventuellement substitué par 1 à 3 groupes alkyles identiques ou différents en C, à C3.
Dans les formules (III) et (IV), les groupes alkylènes peuvent aussi être substitués par au moins un élément choisi dans le groupe constitué de : -un groupe hydroxy, - un groupe cycloalkyle en C3 à C8, - un à trois groupes alkyles en C, à C40, - un groupe phényle éventuellement substitué par un à trois groupes alkyles en C, à C3, - un groupe hydroxyalkyle en C, à C3, et - un groupe aminoalkyle en C, à C6. HN X 5 Dans ces formules (III) et (IV), Y peut aussi représenter : R8 T où R8 représente une chaîne polyorganosiloxane, et T représente un groupe de formule : Ria (CH2)a C (CH2)bOU (CH2)a N (CH2)b ù (CH2), (CH2), dans lesquelles a, b et c sont indépendamment des nombres entiers allant de 1 à 10, et R13 est un atome d'hydrogène ou un groupe tel que ceux définis pour R4, R5, R6 et R7. Dans les formules (III) et (IV), R4, R5, R6 et R7 représentent de préférence, 10 indépendamment, un groupe alkyle en C1 à C40, linéaire ou ramifié, de préférence un groupe CH3, C2H5, n-C3H7 ou isopropyle, une chaîne polyorganosiloxane ou un groupe phényle éventuellement substitué par un à trois groupes méthyle ou éthyle. Comme on l'a vu précédemment, le polymère peut comprendre des motifs de formule (III) ou (IV) identiques ou différents. 15 Ainsi, le polymère peut être un polyamide contenant plusieurs motifs de formule (III) ou (IV) de longueurs différentes, soit un polyamide répondant à la formule (V) : R4 R5 SiO Si X C(0) NH Y NH R6 1h1R7 R4 - R5 SiO Si X C(0) NH Y NH R6 m2R7 C(0) ùX P C(0)-X n (V) dans laquelle X, Y, n, R4 à R7 ont les significations données ci-dessus, m1 et m2 qui sont 20 différents, sont choisis dans la gamme allant de 1 à 1000, et p est un nombre entier allant de 2 à 300. Dans cette formule, les motifs peuvent être structurés pour former soit un copolymère bloc, soit un copolymère aléatoire, soit un copolymère alterné. Dans ce copolymère, les motifs peuvent être non seulement de longueurs différentes mais aussi de structures chimiques différentes, par exemple ayant des Y différents. Dans ce cas, le polymère peut répondre à la formule VI: 10 dans laquelle R4 à R', x, Y, m1, m2, n et p ont les significations données ci-dessus et Y1 est différent de Y mais choisi parmi les groupes définis pour Y. Comme précédemment, les différents motifs peuvent être structurés pour former soit un copolymère bloc, soit un copolymère aléatoire, soit un copolymère alterné. Dans ce premier mode de réalisation de l'invention, l'agent structurant peut être aussi constitué par un copolymère greffé. Ainsi, le polyamide à unités silicone peut être greffé et éventuellement réticulé par des chaînes silicones à groupes amides. De tels polymères peuvent être synthétisés avec des amines trifonctionnelles. Dans ce cas, le polymère peut comprendre au moins un motif de formule (VII) : R'4 R'5 CO X' SiO Si X' CO NH T NH R'6 m1 R" R4 R5 SiO Si x C(0) NH Y NH R6 m'R7 R4 - R5 SiO Si X C(0) NH Y' NH R6 m R7 (0) X P C(0) X n n R'9 R 18 NH Y NH CO X2 SiO Si X2 CO NH R ZOR21 m2 p 15 (VII) dans laquelle X1 et X2 qui sont identiques ou différents, ont la signification donnée pour X dans la formule (I), n est tel que défini dans la formule (I), Y et T sont tels que définis dans la formule (I), R14 à R21 sont des groupes choisis dans le même groupe que les R4 à R', m1 et m2 sont des nombres situés dans la gamme allant de 1 à 1 000, et p est un nombre entier allant de 2 à 500. Dans la formule (VII), on préfère que : - p soit va de 1 à 25, mieux encore de 1 à 7, R14 à R21 soient des groupes méthyle, - T réponde à l'une des formules suivantes : R22 R23 C R24 R23 N R24 R23 P R24 R25 R25 R25 R23 Al R24 R25 dans lesquelles R22 est un atome d'hydrogène ou un groupe choisi parmi les groupes définis pour R4 à R7, et R23, R24 et R25 sont indépendamment des groupes alkylène, linéaires ou ramifiés, de préférence encore, à la formule : en particulier avec R23, R24 et R25 représentant -CH2-CH2-, - m1 et m2 vont de 15 à 500, et mieux encore de 15 à 45, - X1 et X2 représentent -(CH2)10-, et - Y représente -CH2-. Ces polyamides à motif silicone greffé de formule (VII) peuvent être copolymérisés avec des polyamides-silicones de formule (Il) pour former des copolymères blocs, des copolymères alternés ou des copolymères aléatoires. Le pourcentage en poids de motifs silicone greffé (VII) dans le copolymère peut aller de 0,5 à 30 % en poids.
Selon l'invention, comme on l'a vu précédemment, les unités siloxanes peuvent être dans la chaîne principale ou squelette du polymère, mais elles peuvent également être présentes dans des chaînes greffées ou pendantes. Dans la chaîne principale, les unités siloxanes peuvent être sous forme de segments comme décrits ci-dessus. Dans les chaînes pendantes ou greffées, les unités siloxanes peuvent apparaître individuellement ou en segments.
Selon une variante de réalisation de l'invention, on peut utiliser un copolymère de polyamide silicone et de polyamide hydrocarboné, soit un copolymère comportant des motifs de formule (III) ou (IV) et des motifs polyamide hydrocarboné. Dans ce cas, les motifs polyamide-silicone peuvent être disposés aux extrémités du polyamide hydrocarboné.
Avantageusement, la composition selon l'invention comprend au moins un polymère bloc polydiméthylsiloxane de formule générale (I) possédant un indice m de valeur environ 15.
De préférence encore, la composition selon l'invention comprend au moins un polymère comprenant au moins un motif de formule (III) où m va de 5 à 100, en particulier de 10 à 75 et plus particulièrement est de l'ordre de 15 ; de préférence encore R4, R5, R6 et R7 représentent indépendamment, un groupe alkyle en C, à C4o, linéaire ou ramifié, de préférence un groupe CH3, C2H5, n-C3H7 ou isopropyle dans la formule (III).
A titre d'exemples de polymère siliconé utilisable, on peut citer un des polyamides siliconés, obtenus conformément aux exemples 1 à 3 du document US-A-5 981 680.
Selon une variante de réalisation de l'invention, le polymère est constitué par un homopolymère ou copolymère comportant des groupes uréthane ou urée. Ces polymères sont décrits en détail dans la demande WO 2003/106614 publiée le 24/12/2003 dont le contenu est incorporé dans la présente demande par référence
Comme précédemment, un tel polymère peut comporter des motifs polyorganosiloxanes contenant deux ou plusieurs groupes uréthanes et/ou urées, soit dans le squelette du polymère, soit sur des chaînes latérales ou comme groupes pendants. Les polymères comportant au moins deux groupes uréthanes et/ou urées dans le squelette peuvent être des polymères comprenant au moins un motif répondant à la formule suivante (VIII) : R5 iùXùUùCùNHùYùNHùCII ùUùXn m R7 O O (VIII) dans laquelle les R4, R5, R6, R7, X, Y, m et n ont les significations données ci-dessus pour la formule (I), et U représente -O- ou ùNH-, afin que : U C NH O
corresponde à un groupe uréthane ou urée.
Dans cette formule (VIII), Y peut être un groupe alkylène, en C1 à C40, linéaire ou ramifié, substitué éventuellement par un groupe alkyle en C1 à C15 ou un groupe aryle en C5 à C10. De 10 préférence, on utilise un groupe -(CH2)6-. Y peut aussi représenter un groupe cycloaliphatique ou aromatique en C5 à
C12 pouvant être substitué par un groupe alkyle en C1 à C15 ou un groupe aryle en C5 à C10, par exemple un radical choisi parmi le radical méthylène-4-4-biscyclohexyle, le radical dérivé de l'isophorone diisocyanate, les 2,4 et 2,6-tolylènes, le 1,5-naphtylène, le p-phénylène et le
15 4,4'-biphénylène méthane. Généralement, on préfère que Y représente un radical alkylène en C1 à C40, linéaire ou ramifié, ou un radical cycloalkylène en C4 à C12.
Y peut aussi représenter une séquence polyuréthane ou polyurée correspondant à la condensation de plusieurs molécules de diisocyanate avec une ou plusieurs molécules de coupleurs du type diol ou diamine. Dans ce cas, Y comprend plusieurs groupes uréthane
20 ou urée dans la chaîne alkylène.
Il peut répondre à la formule (IX) : B' NH C U B Z U C NH B' O O d (IX) dans laquelle B1 est un groupe choisi parmi les groupes donnés ci-dessus pour Y, U est -O- ou -NH-, et B2 est choisi parmi : R65 • les groupes alkylène en C, à C40, linéaires ou ramifiés, • les groupes cycloalkylène en C5 à C12, éventuellement porteurs de substituants alkyle, par exemple un à trois groupes méthyle ou éthyle, ou alkylène, par exemple le radical du diol : cyclohexane diméthanol, • les groupes phénylène pouvant éventuellement être porteurs de substituants alkyles en C, à C3, et • les groupes de formule : R8 T dans laquelle T est un radical trivalent hydrocarboné pouvant contenir un ou plusieurs hétéroatomes tels que l'oxygène, le soufre et l'azote et R8 est une chaîne polyorganosiloxane ou une chaîne alkyle en C, à C50, linéaire ou ramifiée. T peut représenter par exemple : (CH2), CH CH2 ou (CH2), o CH CH2 avec w étant un nombre entier allant de 1 à 10 et R8 étant une chaîne polyorganosiloxane. Lorsque Y est un groupe alkylène, en C, en C40 linéaire ou ramifié, on préfère les groupes -(CH2)2- et -(CH2)6-. Dans la formule donnée ci-dessus pour Y, d peut être un entier allant de 0 à 5, de préférence de 0 à 3, de préférence encore égal à 1 ou 2. De préférence B2 est un groupe alkylène en C, à C40, linéaire ou ramifié, en particulier ù (CH2)2- ou ù(CH2)6-, ou le groupe : T R8 avec R8 étant une chaîne polyorganosiloxane. / Comme précédemment, le polymère constituant le copolymère texturant peut être formé de motifs silicone uréthane et/ou silicone-urée de longueur et/ou de constitution différentes, et se présenter sous la forme de copolymères blocs, séquencés ou statistiques (aléatoires). Les polymères de formule (VIII) comportant des groupes urées ou uréthanes dans la chaîne du polymère siliconé peuvent être obtenus par réaction entre un silicone à groupes terminaux a,co-NH2 ou ûOH, de formule : H2N X R4 R6 m NH2 dans laquelle m, R4, R5, R6, R7 et X sont tels que définis pour la formule (I), et un diisocyanate OCN-Y-NCO où Y a la signification donnée dans la formule (I) ; et éventuellement un coupleur diol ou diamine de formule H2N-B2-NH2 ou HO-B2-OH, où B2 est tel que défini dans la formule (IX). Suivant les proportions stoechiométriques entre les deux réactifs, diisocyanate et coupleur, 15 on pourra avoir pour Y la formule (IX) avec d égale 0 où d égale 1 à 5. Comme dans le cas des polyamides silicones de formule (IV), (Il) ou (III), on peut utiliser dans l'invention des polyuréthanes ou des polyurées silicones ayant des motifs de longueur et de structure différentes, en particulier des motifs de longueurs différentes par le nombre d'unités silicones. Dans ce cas, le copolymère peut répondre par exemple à la formule : 20 O (XII) dans laquelle R4, R5, R6, R7, X, Y et U sont tels que définis pour la formule (VIII) et m,, m2, n et p sont tels que définis pour la formule (V). O -ux R4 Si-O R6 R5 Si-X-U-C-NH-Y NH mR7 O n C u-x R4 Si-O R6 R5 Si-X-U-C-NH-Y-NH m21 R' O P 25 Selon l'invention, le silicone peut aussi comporter les groupes uréthane et/ou urée non plus dans le squelette mais en ramifications latérales. Dans ce cas, le polymère peut comprendre au moins un motif de formule : R 4 R Si O R6 Si O R26 mi (X) m2 CH 2
U O C NH R27 dans laquelle R4, R6, R5, m, et m2 ont les significations données ci-dessus pour la formule (Il), et R5 pour la formule (I), - U représente O ou NH,
5 - R26 représente un groupe alkylène en C, à C40, comportant éventuellement un ou plusieurs hétéroatomes choisis parmi O et N, ou un groupe phénylène, et - R27 est choisi parmi les groupes alkyle en C, à C50, linéaires, ramifiés ou cycliques, saturés ou insaturés, et les groupes phényle éventuellement substitués par un à trois groupes alkyles en C, à C3.
Les polymères comportant au moins un motif de formule (X) contiennent des unités siloxanes et des groupes urées ou uréthanes, et ils peuvent être utilisés comme copolymère texturant dans les compositions de l'invention. Les polymères siloxanes peuvent avoir un seul groupe urée ou uréthane par ramification ou peuvent avoir des ramifications à deux groupes urée ou uréthane, ou encore contenir un mélange de ramifications à un groupe urée ou uréthane et de ramifications à deux groupes urée ou uréthane. Ils peuvent être obtenus à partir de polysiloxanes ramifiés, comportant un ou deux groupes amino par ramification, en faisant réagir ces polysiloxanes avec des monoisocyanates. A titre d'exemples de polymères de départ de ce type ayant des ramifications amino et diamino, on peut citer les polymères répondant aux formules suivantes : CH3 CH3 CH3 Si OJ /[Si O] CH3 Y x CH3 CH2(CH2)2NH2 y=57;x=3
CH3 CH3 CH3 _[ Si OJ /-[Si 01_ CH3 Y x CH3 R NH y=56;x=4 Dans ces formules, le symbole "/" indique que les segments peuvent être de longueurs différentes et dans un ordre aléatoire, et R représente un groupe aliphatique linéaire ayant de préférence 1 à 6 atomes de carbone et mieux encore 1 à 3 atomes de carbone. De tels polymères à ramification peuvent être formés en faisant réagir un polymère siloxane, ayant au moins trois groupes amino par molécule de polymère, avec un composé ayant un seul groupe monofonctionnel (par exemple un acide, un isocyanate ou isothiocyanate) pour faire réagir ce groupe monofonctionnel avec l'un des groupes amino et former les groupes capables d'établir des interactions hydrogène. Les groupes amino peuvent être sur des chaînes latérales s'étendant de la chaîne principale du polymère siloxane de sorte que les groupes capables d'établir des interactions hydrogène sont formés sur ces chaînes latérales, ou bien les groupes amino peuvent être aux extrémités de la chaîne principale de sorte que les groupes capables d'interaction hydrogène seront des groupes terminaux du polymère.
Comme mode opératoire pour former un polymère contenant des unités siloxanes et des groupes capables d'établir des interactions hydrogène, on peut citer la réaction d'une siloxane diamine et d'un diisocyanate dans un solvant siliconé de façon à fournir directement un gel. La réaction peut être exécutée dans un fluide siliconé, le produit résultant étant dissous dans le fluide siliconé, à température élevée, la température du système étant ensuite diminuée pour former le gel. Les polymères préférés pour l'incorporation dans les compositions selon la présente invention, sont des copolymères siloxanes-urées qui sont linéaires et qui contiennent des groupes urées comme groupes capables d'établir des interactions hydrogène dans le squelette du polymère. (CH2)2NH2 A titre d'illustration d'un polysiloxane terminé par quatre groupes urées, on peut citer le polymère de formule : (Ph = Phényle) CH 3 CH 3 CH3 H3C Si O Si O Si CH n 3 C3H6 CH3 HN(Ph) C(0) HN C2H4 N C(0)N(Ph)H
où Ph est un groupe phényle et n est un nombre de 0 à 300, en particulier de 0 à 100, par 5 exemple de 50. Ce polymère est obtenu par réaction du polysiloxane à groupes amino suivant : C3H6 N C2H4 NHC(0)N(Ph)H / C(0)N(Ph)H CH3 C C H3C Si O ù[ Si o C C ÎH3 CH3 Si CH3 3H6 CH3 C3H6 H2N C2H4 NH NIL H4 NH3 (n-50) avec l'isocyanate de phényle. On peut obtenir également des polyuréthanes ou polyurées silicones ramifiés en 10 utilisant à la place du diisocyanate OCN-Y-NCO, un triisocyanate de formule : o OCNY \N/c\ N /Y NCO /\N/\ O O YNCO On obtient ainsi une polyuréthane ou polyurée silicone ayant des ramifications comportant une chaîne organosiloxane avec des groupes capables d'établir des interactions hydrogène. Un tel polymère comprend par exemple un motif répondant à la formule : ùR14 ù Ris CO U X 1 ho SiùX 1 UùCOùNHùTùNH 16 R17 R - m1 ùR1s ù NHùYùNHùCOùU X2 SiO R 20R 19 SiùX~ UùCO NH P (XIII) dans laquelle X1 et X2 qui sont identiques ou différents, ont la signification donnée pour X dans la formule (I), n est tel que défini dans la formule (I), Y et T sont tels que définis dans la formule (I), R14 à R21 sont des groupes choisis dans le même groupe que les R4 à R7, m1 et m2 sont des nombres situés dans la gamme allant de 1 à 1 000, et p est un nombre entier allant de 2 à 500. Comme dans le cas des polyamides, on peut utiliser dans l'invention des copolymères de polyuréthane -ou de polyurée- silicone et de polyuréthane ou polyurée hydrocarboné en réalisant la réaction de synthèse du polymère en présence d'une séquence a, w-difonctionnelle de nature non silicone, par exemple un polyester, un polyéther ou une polyoléfine. Comme on l'a vu précédemment, les copolymères de l'invention peuvent avoir des motifs siloxanes dans la chaîne principale du polymère et des groupes capables d'établir des interactions hydrogène, soit dans la chaîne principale du polymère ou aux extrémités de celle-ci, soit sur des chaînes latérales ou ramifications de la chaîne principale. Ceci peut correspondre aux cinq dispositions suivantes : 24 (1) i (2) (3) (4) (5) dans lesquelles, la ligne continue est la chaîne principale du polymère siloxane et les carrés représentent les groupes capables d'établir des interactions hydrogène.
Dans le cas (1), les groupes capables d'établir des interactions hydrogène sont disposés aux extrémités de la chaîne principale. Dans le cas (2), deux groupes capables d'établir des interactions hydrogène, sont disposés à chacune des extrémités de la chaîne principale. Dans le cas (3), les groupes capables d'établir des interactions hydrogène sont disposés à l'intérieur de la chaîne principale dans des motifs répétitifs.
Dans les cas (4) et (5), il s'agit de copolymères dans lesquels les groupes capables d'établir des interactions hydrogène sont disposés sur des ramifications de la chaîne principale d'une première série de motifs qui sont copolymérisés avec des motifs ne comportant pas de groupes capables d'établir des interactions hydrogène.
Les polymères et copolymères utilisés dans la composition de l'invention ont avantageusement une température de transition solide-liquide de 45 C à 190 C. De préférence, ils présentent une température de transition solide-liquide allant de 70 à 130 C et mieux de 80 C à 105 C. Le ou les polymères siliconés peuvent être présents dans la composition selon l'invention en un teneur totale allant de 0,5% à 70% en poids par rapport au poids total de la composition, de préférence allant de 5% à 50% en poids, et mieux allant de 10% à 45% en poids.
10 Phase aqueuse
La composition selon l'invention comprend un milieu aqueux, constituant une phase aqueuse, qui peut former la phase continue de la composition.
15 La phase aqueuse de la composition selon l'invention est avantageusement une phase aqueuse continue. Par composition à phase aqueuse continue , on entend que la composition présente une conductivité, mesurée à 25 C, supérieure à 23 S/cm (microSiemens/cm), la conductivité étant mesurée par exemple à l'aide d'un conductimètre MPC227 de Mettler Toledo et d'une 20 cellule de mesure de conductivité Inlab730. La cellule de mesure est immergée dans la composition, de façon à éliminer les bulles d'air susceptibles de se former entre les 2 électrodes de la cellule. La lecture de la conductivité est faite dès que la valeur du conductimètre est stabilisée. Une moyenne est réalisée sur au moins 3 mesures successives.
25 La phase aqueuse peut être constituée essentiellement d'eau ; elle peut également comprendre un mélange d'eau et de solvant miscible à l'eau (miscibilité dans l'eau supérieure à 50 % en poids à 25 C) comme les monoalcools inférieurs ayant de 1 à 5 atomes de carbone tels que l'éthanol, l'isopropanol, les glycols ayant de 2 à 8 atomes de carbone tels que le propylène glycol, l'éthylène glycol, le 1,3-butylène glycol, le dipropylène 30 glycol, les cétones en C3-C4, les aldéhydes en C2-C4 et leur mélanges. La phase aqueuse (eau et éventuellement le solvant miscible à l'eau) peut être présente, en une teneur allant de 1 % à 95 % en poids, par rapport au poids total de la composition, de préférence allant de 3 % à 80 % en poids, et préférentiellement allant de 5 % à 60 % en poids. 35 Système émulsionnant5 Les compositions selon l'invention peuvent contenir des agents tensioactifs émulsionnants présents notamment en une proportion allant de 0,1 à 20 %, et mieux de 0,3 % à 15 % en poids par rapport au poids total de la composition.
Selon l'invention, on utilise généralement un émulsionnant choisi de manière appropriée pour l'obtention d'une émulsion huile-dans-eau. En particulier, on peut utiliser un émulsionnant possédant à 25 C une balance HLB (hydrophile-lipophile balance) au sens de GRIFFIN, supérieure ou égale à 8. La valeur HLB selon GRIFFIN est définie dans J. Soc. Cosm. Chem. 1954 (volume 5), pages 249-256. Ces agents tensioactifs peuvent être choisis parmi des agents tensioactifs non ioniques, anioniques, cationiques, amphotériques ou encore des émulsionnants tensioactifs. On peut se reporter au document Encyclopedia of Chemical Technology, KIRK-OTHMER , volume 22, p. 333-432, Sème édition, 1979, WILEY, pour la définition des propriétés et des fonctions (émulsionnant) des tensioactifs, en particulier p. 347-377 de cette référence, pour les tensioactifs anioniques, amphotériques et non ioniques. Les tensioactifs utilisés préférentiellement dans la composition selon l'invention sont choisis parmi: a) les agents tensioactifs non ioniques de HLB supérieur ou égal à 8 à 25 C, utilisés seuls ou en mélange; on peut citer notamment : les éthers oxyéthylénés et/ou oxypropylénés (pouvant comporter de 1 à 150 groupes oxyéthylénés et/ou oxypropylénés) de glycérol ; les éthers oxyéthylénés et/ou oxypropylénés (pouvant comporter de 1 à 150 groupes oxyéthylénés et/ou oxypropylénés) d'alcools gras (notamment d'alcool en C8-C24, et de préférence en C12-C18) tels que l'éther oxyéthyléné de l'alcool stéarylique à 20 groupes oxyéthylénés (nom CTFA "Steareth-20 ") tel que le BRIJ 78 commercialisé par la société UNIQUEMA, l'éther oxyéthyléné de l'alcool cétéarylique à 30 groupes oxyéthylénés (nom CTFA "Ceteareth-30 ") et l'éther oxyéthyléné du mélange d'alcools gras en C12-C15 comportant 7 groupes oxyéthylénés (nom CTFA "C12-15 Pareth-7" commercialisé sous la dénomination NEODOL 25-7 par SHELL CHEMICALS, les esters d'acide gras (notamment d'acide en C8-C24, et de préférence en C16-C22) et de polyéthylène glycol (pouvant comprendre de 1 à 150 motifs d'éthylèneglycol) tels que le stéarate de PEG-50 et le monostéarate de PEG-40 commercialisé sous le nom MYRJ 52P par la société ICI UNIQUEMA, les esters d'acide gras (notamment d'acide en C8-C24, et de préférence en C16-C22) et des éthers de glycérol oxyéthylénés et/ou oxypropylénés (pouvant comporter de 1 à 150 groupes oxyéthylénés et/ou oxypropylénés), comme le monostéarate de PEG-200 glycéryle vendu sous la dénomination Simulsol 220 TM par la société SEPPIC ; le stéarate de glycéryle polyéthoxylé à 30 groupes d'oxyde d'éthylène comme le produit TAGAT S vendu par la société GOLDSCHMIDT, l'oléate de glycéryle polyéthoxylé à 30 groupes d'oxyde d'éthylène comme le produit TAGAT O vendu par la société GOLDSCHMIDT, le cocoate de glycéryle polyéthoxylé à 30 groupes d'oxyde d'éthylène comme le produit VARIONIC LI 13 vendu par la société SHEREX, l'isostéarate de glycéryle polyéthoxylé à 30 groupes d'oxyde d'éthylène comme le produit TAGAT L vendu par la société GOLDSCHMIDT et le laurate de glycéryle polyéthoxylé à 30 groupes d'oxyde d'éthylène comme le produit TAGAT 1 de la société GOLDSCHMIDT, les esters d'acide gras (notamment d'acide en C8-C24, et de préférence en C16-C22) et des éthers de sorbitol oxyéthylénés et/ou oxypropylénés (pouvant comporter de 1 à 150 groupes oxyéthylénés et/ou oxypropylénés), comme le polysorbate 60 vendu sous la dénomination Tween 60 par la société UNIQUEMA, la diméthicone copolyol, telle que celle vendue sous la dénomination Q2-5220 par la société DOW CORNING, la diméthicone copolyol benzoate (FINSOLV SLB 101 et 201 de la société FINTEX), les copolymères d'oxyde propylène et d'oxyde d'éthylène, également appelés polycondensats OE/OP, et leurs mélanges. Les polycondensats OE/OP sont plus particulièrement des copolymères consistant en des blocs polyéthylène glycol et polypropylène glycol, comme par exemple les polycondensats tribloc polyéthylène glycol/polypropylène glycol/polyéthylène glycol. Ces polycondensats tribloc ont par exemple la structure chimique suivante : H-(O-CH2-CH2) (O-CH(CH3)-CH2)b-(O-CH2-CH2)a-OH, formule dans laquelle a va de 2 à 120, et b va de 1 à 100. Le polycondensat OE/OP a de préférence un poids moléculaire moyen en poids allant de 1000 à 15000, et de mieux allant de 2000 à 13000. Avantageusement, ledit polycondensat OE/OP a une température de trouble, à 10 g/I en eau distillée, supérieure ou égale à 20 C, de préférence supérieure ou égale à 60 C. La température de trouble est mesurée selon la norme ISO 1065. Comme polycondensat OE/OP utilisable selon l'invention, on peut citer les polycondensats tribloc polyéthylène glycol / polypropylène glycol / polyéthylène glycol vendus sous les dénominations SYNPERONIC comme les SYNPERONIC PE/ L44 et SYNPERONIC PE/F127 par la société ICI. b) les agents tensioactif non ioniques de HLB inférieur à 8 à 25 C, éventuellement associés à un ou plusieurs agents tensioactif non ioniques de HLB supérieur à 8 à 25 C, tels que cités ci-dessus tels que : les esters et éthers d'oses tels que les stéarate de sucrose, cocoate de sucrose, stéarate de sorbitan et leurs mélanges comme l'Arlatone 2121 commercialisé par la société ICI ou le SPAN 65V de la société UNIQUEMA ; les esters d'acides gras (notamment d'acide en C8-C24, et de préférence en C16-C22) et de polyol, notamment de glycérol ou de sorbitol, tels que stéarate de glycéryle, stéarate de glycéryle tel que le produit vendu sous la dénomination TEGIN M par la société GOLDSCHMIDT, laurate de glycéryle tel que le produit vendu sous la dénomination IMWITOR 312 par la société HULS, stéarate de polyglycéryl-2, tristéarate de sorbitan, ricinoléate de glycéryle ; les éthers oxyéthylénés et/ou oxypropylénés tels que l'éther oxyéthyléné de l'alcool stéarylique à 2 groupes oxyéthylénés (nom CTFA "Steareth-2 ") tel que le BRIJ 72 commercialisé par la société UNIQUEMA ; le mélange de cyclométhicone/diméthicone copolyol vendu sous la dénomination 15 Q2-3225C par la société DOW CORNING, c) Les tensioactifs anioniques tels que : les sels d'acides gras polyoxyéthylénés notamment ceux dérivant des amines ou les sels alcalins, et leurs mélanges ; les esters phosphoriques et leurs sels tels que le "DEA oleth-10 phosphate" 20 (Crodafos N 10N de la société CRODA) ou le phosphate de monocétyle monopotassique (Amphisol K de Givaudan ou ARLATONE MAP 160K de la société UNIQUEMA) ; les sulfosuccinates tels que le "Disodium PEG-5 citrate lauryl sulfosuccinate" et le "Disodium ricinoleamido MEA sulfosuccinate" ; les alkyléthersulfates tels que le lauryl éther sulfate de sodium ; 25 les iséthionates ; les acylglutamates tels que le "Disodium hydrogenated tallow glutamate" (AMISOFT HS-21 R commercialisé par la société AJINOMOTO) et leurs mélanges.
A titre représentatif des tensioactifs cationiques, on peut notamment citer : 30 - les alkyl-imidazolidinium tels que l'étho-sulfate d'isostéaryl-éthylimidonium, - les sels d'ammonium tels que le chlorure de N,N,N-triméthyl-1-docosanaminium (chlorure de Behentrimonium).
Les compositions selon l'invention peuvent également contenir un ou plusieurs tensioactifs 35 amphotériques comme les N-acyl-aminoacides tels que les N-alkyl-aminoacétates et le cocoamphodiacetate disodique et les oxydes d'amines tels que l'oxyde de stéaramine ou encore des tensioactifs siliconés comme les diméthicone copolyols phosphates tels que celui vendu sous la dénomination PECOSIL PS 100 par la société PHOENIX CHEMICAL.
Gélifiant hydrosoluble La composition selon l'invention peut comprendre un gélifiant hydrosoluble. Les gélifiants hydrosolubles utilisables dans les compositions selon l'invention peuvent être choisi parmi : les homo- ou copolymères d'acides acrylique ou méthacrylique ou leurs sels et leurs esters et en particulier les produits vendus sous les dénominations VERSICOL F ou VERSICOL K par la société ALLIED COLLOID, UTRAHOLD 8 par la société CIBA-GEIGY, les acides polyacryliques de type SYNTHALEN K, les copolymères d'acide acrylique et d'acrylamide vendus sous la forme de leur sel de sodium sous les dénominations RETEN par la société HERCULES, le polyméthacrylate de sodium vendu sous la dénomination DARVAN N 7 par la société VANDERBILT, les sels de sodium d'acides polyhydroxycarboxyliques vendus sous la dénomination HYDAGEN F par la société HENKEL, les copolymères acide polyacryliques/acrylates d'alkyle de type PEMULEN, l'AMPS (Acide polyacrylamidométhyl propane sulfonique neutralisé partiellement à l'ammoniaque et hautement réticulé) commercialisé par la société CLARIANT, les copolymères AMPS/acrylamide de type SEPIGEL ou SIMULGEL commercialisés par la société SEPPIC, et les copolymères AMPS/méthacrylates d'alkyle polyoxyéthylénés (réticulés ou non), les protéines comme les protéines d'origine végétale telles que les protéines de blé, de soja ; les protéines d'origine animale tels que les kératines, par exemples les hydrolysats de kératine et les kératines sulfoniques ; les polymères de cellulose tels que l'hydroxyéthylcellulose, l'hydroxypropylcellulose, la méthylcellulose, l'éthylhydroxyéthylcellulose, la carboxyméthylcellulose, ainsi que les dérivés quaternisés de la cellulose ; les polymères ou copolymères acryliques, tels que les polyacrylates ou les polyméthacrylates ; les polymères vinyliques, comme les polyvinylpyrrolidones, les copolymères de l'éther méthylvinylique et de l'anhydride malique, le copolymère de l'acétate de vinyle et de l'acide crotonique, les copolymères de vinylpyrrolidone et d'acétate de vinyle ; les copolymères de vinylpyrrolidone et de caprolactame ; l'alcool polyvinylique ; les polymères d'origine naturelle, éventuellement modifiés, tels que : les gommes arabiques, la gomme de guar, les dérivés du xanthane, la gomme de karaya ; les alginates et les carraghénanes ; les glycoaminoglycanes, l'acide hyaluronique et ses dérivés ; la résine shellac, la gomme de sandaraque, les dammars, les élémis, les copals ; l'acide désoxyribonucléïque ; les muccopolysaccharides tels les chondroïtines sulfate, et leurs mélanges.
Certains de ces gélifiants hydrosolubles peuvent également jouer le rôle de polymères filmogènes. Le polymère gélifiant hydrosoluble peut être présent dans la composition selon l'invention en une teneur en matières sèches allant de 0,01 % à 60 % en poids, de préférence de 0,5 % à 40 % en poids, mieux de 1 % à 30 % en poids, voire de 5 à 20 % en poids par rapport au poids total de la composition.
Phase grasse
Par "phase grasse", on entend, au sens de l'invention, une phase composée d'un ou plusieurs composés non aqueux liquides ou solides à température ambiante (25 C), généralement compatibles entre eux, tels que les huiles, les agents structurants autres que le polymère siliconé comme les cires, les corps gras pâteux, les polymères semi cristallins, les gélifiant lipophiles et leurs mélanges. Les tensioactifs tels que décrit ci-après ne font pas partie de la phase grasse.
Huiles
Par huile, on entend un corps gras non aqueux liquide à température ambiante (25 C) et pression atmosphérique (760 mm de Hg). L'huile peut être choisie parmi les huiles volatiles et/ou les huiles non volatiles, et leurs mélanges.
La ou les huiles peuvent être présentes dans la composition selon l'invention en une teneur 35 allant de 0,1 % à 30 % en poids, de préférence de 1% à 20 % en poids par rapport au poids total de la composition.30 Par " huile volatile", on entend au sens de l'invention une huile susceptible de s'évaporer au contact de la peau ou de la fibre kératinique en moins d'une heure, à température ambiante et pression atmosphérique. Le ou les solvants organiques volatils et les huiles volatiles de l'invention sont des solvants organiques et des huiles cosmétiques volatiles, liquides à température ambiante, ayant une pression de vapeur non nulle, à température ambiante et pression atmosphérique, allant en particulier de 0,13 Pa à 40 000 Pa (10-3 à 300 mm de Hg), en particulier allant de 1,3 Pa à 13 000 Pa (0,01 à 100 mm de Hg), et plus particulièrement allant de de 1 ,3 Pa à 1300 Pa (0,01 à 10 mm de Hg). Par "huile non volatile", on entend une huile restant sur la peau ou la fibre kératinique à température ambiante et pression atmosphérique au moins plusieurs heures et ayant notamment une pression de vapeur inférieure à 10-3 mm de Hg (0,13 Pa). Ces huiles peuvent être des huiles hydrocarbonées, des huiles siliconées, des huiles fluorées, ou leurs mélanges. On entend par "huile hydrocarbonée", une huile contenant principalement des atomes d'hydrogène et de carbone et éventuellement des atomes d'oxygène, d'azote, de soufre, de phosphore. Les huiles hydrocarbonées volatiles peuvent être choisies parmi les huiles hydrocarbonées ayant de 8 à 16 atomes de carbones, et notamment les alcanes ramifiés en C8-C16 comme les isoalcanes en C8-C16 d'origine pétrolière (appelées aussi isoparaffines) comme l'isododécane (encore appelé 2,2,4,4,6-pentaméthylheptane), l'isodécane, l'isohexadécane, et par exemple les huiles vendues sous les noms commerciaux d'Isopars' ou de Permetyls, les esters ramifiés en C8-C16 le néopentanoate d'iso-hexyle, et leurs mélanges. D'autres huiles hydrocarbonées volatiles comme les distillats de pétrole, notamment ceux vendus sous la dénomination ShelI Soit par la société SHELL, peuvent aussi être utilisées. De préférence, le solvant volatil est choisi parmi les huiles volatiles hydrocarbonées ayant de 8 à 16 atomes de carbone et leurs mélanges. Comme huiles volatiles, on peut aussi utiliser les silicones volatiles, comme par exemple les huiles de silicones linéaires ou cycliques volatiles, notamment celles ayant une viscosité 8 centistokes (8 10-6 m2/s), et ayant notamment de 2 à 7 atomes de silicium, ces silicones comportant éventuellement des groupes alkyle ou alkoxy ayant de 1 à 10 atomes de carbone. Comme huile de silicone volatile utilisable dans l'invention, on peut citer notamment l'octaméthyl cyclotétrasiloxane, le décaméthyl cyclopentasiloxane, le dodécaméthyl cyclohexasiloxane, l'heptaméthyl hexyltrisiloxane, l'heptaméthyloctyl trisiloxane, l'hexaméthyl disiloxane, l'octaméthyl trisiloxane, le décaméthyl tétrasiloxane, le dodécaméthyl pentasiloxane et leurs mélanges.
On peut également citer les huiles linéaires alkyltrisiloxanes volatilesde formule générale (I) CH 3 / CH /3/ SiO Si O Si CH 3/3 R où R représente un groupe alkyle comprenant de 2 à 4 atomes de carbone et dont un ou plusieurs atomes d'hydrogène peuvent être substitués par un atome de fluor ou de chlore. Parmi les huiles de formule générale (I), on peut citer : le 3-butyl 1,1,1,3,5,5,5-heptaméthyl trisiloxane, le 3-propyl 1,1,1,3,5,5,5-heptaméthyl trisiloxane, et le 3-éthyl 1,1,1,3,5,5,5-heptaméthyl trisiloxane, correspondant aux huiles de formule (I) pour lesquelles R est respectivement un groupe butyle, un groupe propyle ou un groupe éthyle.
On peut également utiliser des solvants volatils fluorés tels que le nonafluorométhoxybutane ou le perfluorométhylcyclopentane.
La composition peut également comprendre au moins une huile non volatile, et notamment choisie parmi les huiles hydrocarbonées et/ou siliconées et/ou fluorées non volatiles.
Comme huile hydrocarbonée non volatile, on peut notamment citer : - les huiles hydrocarbonées d'origine végétale telles que les triesters d'acides gras et de glycérol dont les acides gras peuvent avoir des longueurs de chaînes variées de C4 à C24, ces dernières pouvant être linéaires ou ramifiées, saturées ou insaturées ; ces huiles sont notamment les huiles de germe de blé, de tournesol, de pépins de raisin, de sésame, de maïs, d'abricot, de ricin, de karité, d'avocat, d'olive, de soja, l'huile d'amande douce, de palme, de colza, de coton, de noisette, de macadamia, de jojoba, de luzerne, de pavot, de potimarron, de sésame, de courge, de colza, de cassis, d'onagre, de millet, d'orge, de quinoa, de seigle, de carthame, de bancoulier, de passiflore, de rosier muscat ; ou encore les triglycérides des acides caprylique/caprique comme ceux vendus par la société Stéarineries Dubois ou ceux vendus sous les dénominations Miglyol 810, 812 et 818 par la société Dynamit Nobel, - les éthers de synthèse ayant de 10 à 40 atomes de carbone ; - les hydrocarbures linéaires ou ramifiés, d'origine minérale ou synthétique tels que la vaseline, les polydécènes, le polyisobutène hydrogéné tel que le parléam, le squalane, et leurs mélanges; - les esters de synthèse comme les huiles de formule R1COOR2 dans laquelle R1 représente le reste d'un acide gras linéaire ou ramifié comportant de 1 à 40 atomes de carbone et R2 représente une chaîne hydrocarbonée notamment ramifiée contenant de 1 à 40 atomes de carbone à condition que R1 + R2 soit 10, comme par exemple l'huile de Purcellin (octanoate de cétostéaryle), le myristate d'isopropyle, le palmitate d'isopropyle, le benzoate d'alcool en C12 à C15, le laurate d'hexyle, l'adipate de diisopropyle, l'isononanoate d'isononyle, le palmitate de 2-éthyl-hexyle, l'isostéarate d'isostéarate, des octanoates, décanoates ou ricinoléates d'alcools ou de polyalcools comme le dioctanoate de propylène glycol ; les esters hydroxylés comme le lactate d'isostéaryle, le malate de diisostéaryle ; et les esters du pentaérythritol ; les alcools gras liquides à température ambiante à chaîne carbonée ramifiée et/ou insaturée ayant de 12 à 26 atomes de carbone comme l'octyl dodécanol, l'alcool isostéarylique, l'alcool oléique, le 2-hexyldécanol, le 2-butyloctanol, le 2- undécylpentadécanol ; les acides gras supérieurs tels que l'acide oléique, l'acide linoléique, l'acide linolénique ; les carbonates, - les acétales, les citrates, et leurs mélanges.
Les huiles de silicone non volatiles utilisables dans la composition selon l'invention peuvent être les polydiméthylsiloxanes (PDMS) non volatiles, les polydiméthylsiloxanes comportant des groupements alkyle ou alcoxy, pendant et/ou en bout de chaîne siliconée, groupements ayant chacun de 2 à 24 atomes de carbone, les silicones phénylées comme les phényl triméthicones, les phényl diméthicones, les phényl triméthylsiloxy diphénylsiloxanes, les diphényl diméthicones, les diphényl méthyldiphényl trisiloxanes, les 2-phényléthyl triméthylsiloxysilicates ;
Les huiles fluorées utilisables dans l'invention sont notamment des huiles fluorosiliconées, des polyéthers fluorés, des silicones fluorées telles que décrit dans le document EP-A-847752.
Selon un mode de réalisation, la phase grasse contient avantageusement une huile ester. Cette huile ester peut être choisie parmi les esters des acides monocarboxyliques avec les monoalcools et polyalcools. Avantageusement, ledit ester répond à la formule (I) suivante : 35 R1-CO-O-R2 (1) où R, représente un radical alkyle linéaire ou ramifié de 1 à 40 atomes de carbone, de préférence de 7 à 19 atomes de carbone, comprenant éventuellement une ou plusieurs double liaisons éthyléniques, et éventuellement substitué. R2 représente un radical alkyle linéaire ou ramifié de 1 à 40 atomes de carbone, de préférence de 3 à 30 atomes de carbone et mieux de 3 à 20 atomes de carbone, comprenant éventuellement une ou plusieurs double liaisons éthyléniques, et éventuellement substitué. Par éventuellement substitué , on entend que R, et ou R2 peuvent porter un ou plusieurs substituants choisis, par exemple, parmi les groupements comprenant un ou plusieurs hétéroatomes choisi parmi O, N et S, tels que amino, amine, alcoxy, hydroxyle. De préférence, le nombre total d'atomes de carbone de R, + R2 est > 9. R, peut représenter le reste d'un acide gras, de préférence supérieur, linéaire ou, de préférence ramifié comprenant de 1 à 40 et mieux de 7 à 19 atomes de carbone et R2 peut représenter une chaîne hydrocarbonée linéaire ou de préférence ramifiée contenant de 1 à 40, de préférence de 3 à 30 et mieux de 3 à 20 atomes de carbone. De nouveau, de préférence, le nombre d'atomes de carbone de R, + R2 > 9. Des exemples des groupes R, sont ceux dérivés des acides gras choisis dans le groupe constitué des acides acétique, propionique, butyrique, caproïque, caprylique, caprique, undécanoïque, laurique, myristique, palmitique, stéarique, isostéarique, arachidique, béhénique, oléique, linolénique, linoléïque, arachidonique, érucique, et de leurs mélanges. Des exemples d'esters sont, par exemple, l'huile de purcellin (octanoate de cétostéaryle), l'isononanoate d'isononyle, le myristate d'isopropyle, le palmitate d'éthyl-2-hexyle, le stéarate d'octyl 2-dodécyle, l'érucate d'octyl 2-dodécyle, l'isostéarate d'isostéaryle, et les heptanoates, octanoates, décanoates ou ricinoléates d'alcools ou de polyalcools, par exemple d'alcools gras. Avantageusement, les esters sont choisis parmi les composés de la formule (I) ci-dessus, dans laquelle R, représente un groupe alkyle linéaire ou ramifié non substitué, comprenant éventuellement une ou plusieurs double liaisons éthyléniques, de 1 à 40 atomes de carbone, de préférence de 7 à 19 atomes de carbone, et R2 représente un groupe alkyle linéaire ou ramifié non substitué, comprenant éventuellement une ou plusieurs double liaisons éthyléniques, de 1 à 40 atomes de carbone, de préférence de 3 à 30 atomes de carbone, et mieux de 3 à 20 atomes de carbone. De préférence, R, est un groupe alkyle ramifié non substitué de 4 à 14 atomes de carbone, de préférence de 8 à 10 atomes de carbone et R2 est un groupe alkyle ramifié non substitué de 5 à 15 atomes de carbone, de préférence de 9 à 11 atomes de carbone. De préférence dans la formule (I), R,-CO- et R2 ont le même nombre d'atomes de carbone et dérivent du même radical, de préférence alkyle ramifié non substitué, par exemple isononyle, c'est-à-dire que avantageusement la molécule d'huile ester est symétrique. L'huile ester sera choisie, de préférence, parmi les composés suivants : - l'isononanoate d'isononyle, -l'octanoate de cétostéaryle, - le myristate d'isopropyle, - le palmitate d'éthyl-2-hexyle, - le stéarate d'octyl 2-dodécyle, - l'érucate d'octyl 2-dodécyle, - l'isostéarate d'isostéaryle. Aqent structurant
La composition selon l'invention peut comprendre, outre le ou les polymère(s) siliconé(s) 15 décrits plus haut, un agent structurant de(s) l'huile(s) choisi parmi les cires, les corps gras pâteux, les polymères semi-cristallin, les gélifiants lipophiles et leur mélanges.
L'agent structurant peut représenter de 0,1 à 30 % en poids par rapport au poids total de la composition, de préférence de 0,5 à 15 % et de façon encore plus préférée de 1 à 10 % en 20 poids. La quantité en structurant huileux peut être ajustée par l'homme du métier en fonction du propriétés de structuration desdits agents.
Cire (s) 25 La cire considérée dans le cadre de la présente invention est d'une manière générale un composé lipophile, solide à température ambiante (25 C), déformable ou non, à changement d'état solide/liquide réversible, ayant un point de fusion supérieur ou égal à 30 C pouvant aller jusqu'à 100 C et notamment jusqu'à 90 C. En portant la cire à l'état liquide (fusion), il est possible de la rendre miscible aux huiles et de 30 former un mélange homogène microscopiquement, mais en ramenant la température du mélange à la température ambiante, on obtient une recristallisation de la cire dans les huiles du mélange. En particulier, les cires convenant à l'invention peuvent présenter un point de fusion supérieur ou égal à 45 C, et en particulier supérieur ou égal à 55 C. 35 Au sens de l'invention, la température de fusion correspond à la température du pic le plus endothermique observé en analyse thermique (DSC) telle que décrite dans la norme ISO 11357-3 ; 1999. Le point de fusion de la cire peut être mesuré à l'aide d'un calorimètre à 10 balayage différentiel (DSC), par exemple le calorimètre vendu sous la dénomination MDSC 2920 par la société TA Instruments. Le protocole de mesure est le suivant : Un échantillon de 5 mg de cire disposé dans un creuset est soumis à une première montée en température allant de -20 C à 100 C, à la vitesse de chauffe de 10 C/minute, puis est refroidi de 100 C à -20 C à une vitesse de refroidissement de 10 C/minute et enfin soumis à une deuxième montée en température allant de -20 C à 100 C à une vitesse de chauffe de 5 C/minute. Pendant la deuxième montée en température, on mesure la variation de la différence de puissance absorbée par le creuset vide et par le creuset contenant l'échantillon de cire en fonction de la température. Le point de fusion du composé est la valeur de la température correspondant au sommet du pic de la courbe représentant la variation de la différence de puissance absorbée en fonction de la température. Les cires susceptibles d'être utilisées dans les compositions selon l'invention sont choisies parmi les cires, solides, à température ambiante d'origine animale, végétale, minérale ou de synthèse et leurs mélanges. Les cires pouvant être utilisées dans les compositions selon l'invention présentent généralement une dureté allant de 0,01 MPa à 15 MPa, notamment supérieure à 0,05 MPa et en particulier supérieure à 0,1 MPa.
La dureté est déterminée par la mesure de la force en compression mesurée à 20 C à l'aide du texturomètre vendu sous la dénomination TA- XT2 par la société RHEO, équipé d'un cylindre en inox d'un diamètre de 2 mm se déplaçant à la vitesse de mesure de 0,1 mm/s, et pénétrant dans la cire à une profondeur de pénétration de 0,3 mm. Le protocole de mesure est le suivant : La cire est fondue à une température égale au point de fusion de la cire + 10 C. La cire fondue est coulée dans un récipient de 25 mm de diamètre et de 20 mm de profondeur. La cire est recristallisée à température ambiante (25 C) pendant 24 heures de telle sorte que la surface de la cire soit plane et lisse, puis la cire est conservée pendant au moins 1 heure à 20 C avant d'effectuer la mesure de la dureté ou du collant.
Le mobile du texturomètre est déplacé à la vitesse de 0,1 mm/s, puis pénètre dans la cire jusqu'à une profondeur de pénétration de 0,3 mm. Lorsque le mobile a pénétré dans la cire à la profondeur de 0,3 mm, le mobile est maintenu fixe pendant 1 seconde (correspondant au temps de relaxation) puis est retiré à la vitesse de 0,5 mm/s. La valeur de la dureté est la force de compression maximale mesurée divisée par la surface du cylindre du texturomètre en contact avec la cire.
A titre illustratif des cires convenant à l'invention, on peut notamment citer les cires hydrocarbonées comme la cire d'abeille, la cire de lanoline, et les cires d'insectes de Chine; la cire de son de riz, la cire de Carnauba, la cire de Candellila, la cire d'Ouricury, la cire d'Alfa, la cire de berry, la cire de shellac, la cire du Japon et la cire de sumac; la cire de montan, les cires d'orange et de citron, les cires microcristallines, les paraffines et l'ozokérite; les cires de polyéthylène, les cires obtenues par la synthèse de Fisher-Tropsch et les copolymères cireux ainsi que leurs esters. On peut aussi citer des cires obtenues par hydrogénation catalytique d'huiles animales ou végétales ayant des chaînes grasses, linéaires ou ramifiées, en C8-C32. Parmi celles-ci, on peut notamment citer l'huile de jojoba isomérisée telle que l'huile de jojoba partiellement hydrogénée isomérisée trans fabriquée ou commercialisée par la société DESERT WHALE sous la référence commerciale Iso-Jojoba-50 , l'huile de tournesol hydrogénée, l'huile de ricin hydrogénée, l'huile de coprah hydrogénée, l'huile de lanoline hydrogénée, et le tétrastéarate de di-(triméthylol-1,1,1 propane) vendu sous la dénomination de Hest 2T-4S par la société HETERENE. On peut encore citer les cires de silicone, les cires fluorées. On peut également utiliser les cires obtenues par hydrogénation d'huile de ricin estérifiée avec l'alcool cétylique vendues sous les dénominations de Phytowax ricin 16L64 et 22L73 par la société SOPHIM. De telles cires sont décrites dans la demande FR-A- 2792190.
Selon un mode de réalisation particulier, les compositions selon l'invention peuvent comprendre au moins une cire dite cire collante c'est-à-dire possédant un collant supérieur ou égal à 0,1 N.s et une dureté inférieure ou égale à 3,5 MPa.
La cire collante utilisée peut posséder notamment un collant allant de 0,1 N.s à 10 N.s, en, particulier allant de 0,1 N.s à 5 N.s, de préférence allant de 0,2 à 5 N.s et mieux allant de 0,3 à 2 N.s. Le collant de la cire est déterminé par la mesure de l'évolution de la force (force de compression) en fonction du temps, à 20 C selon le protocole indiqué précedemment pour la dureté. Pendant le temps de relaxation de 1 s, la force (force de compression) décroît fortement jusqu'à devenir nulle puis, lors du retrait du mobile, la force (force d'étirement) devient négative pour ensuite croître à nouveau vers la valeur 0. Le collant correspond à l'intégrale de la courbe de la force en fonction du temps pour la partie de la courbe correspondant aux valeurs négatives de la force. La valeur du collant est exprimée en N.s. 38 La cire collante pouvant être utilisée a généralement une dureté inférieure ou égale à 3,5 MPa, en particulier allant de 0,01 MPa à 3,5 MPa, notamment allant de 0, 05 MPa à 3 MPa. Comme cire collante, on peut utiliser un (hydroxystéaryloxy)stéarate d'alkyle en C20-C40 (le groupe alkyle comprenant de 20 à 40 atomes de carbone), seul ou en mélange. Une telle cire est notamment vendue sous les dénominations Kester Wax K 82 P ,
Hydroxypolyester K 82 P et Kester Wax K 80 P par la société KOSTER KEUNEN. Dans la présente invention, on peut également utiliser des cires fournies sous forme de petites particules ayant une dimension exprimée en diamètre effectif moyen en volume D[4,3] de l'ordre de 0, 5 à 30 micromètres, en particulier de 1 à 20 micromètres, et plus particulièrement de 5 à 10 micromètres, désignées par la suite par l'expression micro cires . Les tailles de particules peuvent être mesurées par différentes techniques, on peut citer en particulier les techniques de diffusion de la lumière (dynamiques et statiques), les méthodes par compteur Coulter, les mesures par vitesse de sédimentation (reliée à la taille via la loi de Stokes) et la microscopie. Ces techniques permettent de mesurer un diamètre de particules et pour certaines d'entre elles une distribution granulométrique. De préférence, les tailles et les distributions de tailles des particules des compositions selon l'invention, sont mesurées par diffusion statique de la lumière au moyen d'un granulomètre commercial de type MasterSizer 2000 de chez Malvern. Les données sont traitées sur la base de la théorie de diffusion de Mie. Cette théorie, exacte pour des particules isotropes, permet de déterminer dans le cas de particules non sphériques, un diamètre effectif de particules. Cette théorie est notamment décrite dans l'ouvrage de Van de Hulst, H.C., "Light Scattering by Small Particles," Chapitres 9 et 10, Wiley, New York, 1957. La composition est caractérisée par son diamètre "effectif" moyen en volume D[4,3], défini de la manière suivante :
V .di D[4,3] = Z IV où V; représente le volume des particules de diamètre effectif d;. Ce paramètre est notamment décrit dans la documentation technique du granulomètre.
Les mesures sont réalisées à 25 C, sur une dispersion de particules diluée, obtenue à partir de la composition de la manière suivante : 1) dilution d'un facteur 100 avec de l'eau, 2) homogénéisation de la solution, 3) repos de la solution durant 18 heures, 4) récupération du surnageant homogène blanchâtre. Le diamètre effectif est obtenu en prenant un indice de réfraction de 1,33 pour l'eau et un indice de réfraction moyen de 1,42 pour les particules.
Comme micro cires pouvant être utilisées dans les compositions selon l'invention, on peut citer notamment les micro cires de carnauba telles que celle commercialisée sous la dénomination de MicroCare 350 par la société MICRO POWDERS, les micro cires de cire synthétique telles que celle commercialisée sous la dénomination de MicroEase 114S par la société MICRO POWDERS, les micro cires constituées d'un mélange de cire de carnauba et de cire de polyéthylène telles que celles commercialisées sous les dénominations de Micro Care 300 et 310 par la société MICRO POWDERS, les micro cires constituées d'un mélange de cire de carnauba et de cire synthétique telles que celle commercialisée sous la dénomination Micro Care 325 par la société MICRO POWDERS, les micro cires de polyéthylène telles que celles commercialisées sous les dénominations de Micropoly 200 , 220 , 220L et 250S par la société MICRO POWDERS et les micro cires de polytétrafluoroéthylène telles que celles commercialisées sous les dénominations de Microslip 519 et 519 L par la société MICRO POWDERS. La composition selon l'invention peut comprendre une teneur en cires allant de 0,1 à 30 % en poids par rapport au poids total de la composition, en particulier elle peut en contenir de 0,5 à 15 %, plus particulièrement de 1 à 10%.
Selon un mode de réalisation, la composition comprend moins de 10% en poids, de préférence moins de 7%, mieux moins de 5%, et encore mieux moins de 3% en poids de cire par rapport au poids total de la composition. De préférence encore, la composition est totalement exempte de cire.
Polymères semi-cristallins On entend par polymère des composés comportant au moins deux motifs, de préférence au moins 3 motifs et plus spécialement au moins 10 motifs de répétition. Par "polymère semi- cristallin", on entend des polymères comportant une partie cristallisable, une chaîne pendante cristallisable ou une séquence cristallisable dans le squelette, et une partie amorphe dans le squelette et présentant une température de changement de phase réversible du premier ordre, en particulier de fusion (transition solide-liquide). Lorsque la partie cristallisable est sous forme d'une séquence cristallisable du squelette polymérique, la partie amorphe du polymère est sous forme de séquence amorphe ; le polymère semicristallin est dans ce cas un copolymère séquencé par exemple du type dibloc, tribloc ou multibloc, comportant au moins une séquence cristallisable et au moins une séquence amorphe. Par "séquence", on entend généralement au moins 5 motifs de répétition identiques. La ou les séquences cristallisables sont alors de nature chimique différente de la ou des séquences amorphes. Le polymère semi-cristallin a une température de fusion supérieure ou égale à 30 C (notamment allant de 30 C à 80 C), de préférence allant de 30 C à 60 C. Cette température de fusion est une température de changement d'état du premier ordre. Cette température de fusion peut être mesurée par toute méthode connue et en particulier à l'aide d'un calorimètre à balayage différentiel (D.S.C). De façon avantageuse, le ou les polymères semi-cristallins auxquels s'applique l'invention présentent une masse moléculaire moyenne en nombre supérieure ou égale à 1 000. De façon avantageuse, le ou les polymères semi-cristallins de la composition de l'invention ont une masse moléculaire moyenne en nombre Mn allant de 2 000 à 800 000, de préférence de 3 000 à 500 000, mieux de 4 000 à 150 000, notamment inférieure à 100 000, et mieux de 4 000 à 99 000. De préférence, ils présentent une masse moléculaire moyenne en nombre supérieure à 5 600, allant par exemple de 5 700 à 99 000.Par "chaîne ou séquence cristallisable", on entend au sens de l'invention une chaîne ou séquence qui si elle était seule passerait de l'état amorphe à l'état cristallin, de façon réversible, selon qu'on est au-dessus ou en dessous de la température de fusion. Une chaîne au sens de l'invention est un groupement d'atomes, pendant ou latéral par rapport au squelette du polymère. Une séquence est un groupement d'atomes appartenant au squelette, groupement constituant un des motifs répétitif du polymère. Avantageusement, la "chaîne pendante cristallisable" peut être chaîne comportant au moins 6 atomes de carbone. Le polymère semi-cristallin peut être choisi parmi les copolymères séquencés comportant au moins une séquence cristallisable et au moins une séquence amorphe, les homopolymères et les copolymères portant au moins une chaîne latérale cristallisable par motif de répétition, leurs mélanges. De tels polymères sont décrits par exemple dans le document EP 1396259. Selon un mode plus particulier de réalisation de l'invention, le polymère est issu d'un monomère à chaîne cristallisable choisi parmi les (méth)acrylates d'alkyle saturés en C14 à C22. A titre d'exemple particulier de polymère semi-cristallin structurant utilisable dans la composition selon l'invention, on peut citer les produits Intelimer de la société Landec décrits dans la brochure "Intelimer polymers", Landec IP22 (Rev. 4-97). Ces polymères sont sous forme solide à température ambiante (25 C). Ils sont porteurs de chaînes latérales cristallisables et présentent la formule X précédente.
Gélifiants lipophiles Les gélifiants utilisables dans les compositions selon l'invention peuvent être des gélifiants lipophiles organiques ou minéraux, polymériques ou moléculaires. Comme gélifiant lipophile minéral, on peut citer les argiles éventuellement modifiées comme les hectorites modifiées par un chlorure d'ammonium d'acide gras en C,o à C22, comme l'hectorite modifiée par du chlorure de di-stéaryl di-méthyl ammonium telle que, par exemple, celle commercialisée sous la dénomination de Bentone 38V par la société ELEMENTIS. On peut également citer la silice pyrogénée éventuellement traitée hydrophobe en surface dont la taille des particules est inférieure à 1 pm. Il est en effet possible de modifier chimiquement la surface de la silice, par réaction chimique générant une diminution du nombre de groupes silanol présents à la surface de la silice. On peut notamment substituer des groupes silanol par des groupements hydrophobes : on obtient alors une silice hydrophobe. Les groupements hydrophobes peuvent être : - des groupements triméthylsiloxyle, qui sont notamment obtenus par traitement de silice pyrogénée en présence de l'hexaméthyldisilazane. Des silices ainsi traitées sont dénommées Silica silylate selon le CTFA (hème édition, 1995). Elles sont par exemple commercialisées sous les références Aerosil R812 par la société DEGUSSA, CAB-O-SIL TS-530 par la société CABOT, des groupements diméthylsilyloxyle ou polydiméthylsiloxane, qui sont notamment obtenus par traitement de silice pyrogénée en présence de polydiméthylsiloxane ou du diméthyldichlorosilane. Des silices ainsi traitées sont dénommées "Silica diméthyl silylate" selon le CTFA (hème édition, 1995). Elles sont par exemple commercialisées sous les références Aerosil R972 , et Aerosil R974 par la société DEGUSSA, CAB-O-SIL TS-610 et CAB-O-SIL TS-720 par la société CABOT.
La silice pyrogénée hydrophobe présente en particulier une taille de particules pouvant être nanométrique à micrométrique, par exemple allant d'environ de 5 à 200 nm. Les gélifiants lipophiles organiques polymériques sont par exemple les organopolysiloxanes élastomériques partiellement ou totalement réticulés, de structure tridimensionnelle, comme ceux commercialisés sous les dénominations de KSG6 , KSG16 et de KSG18 par la société SHIN-ETSU, de Trefil E-505C et Trefil E-506C par la société DOW-CORNING, de Gransil SR-CYC , SR DMF10 , SR-DC556 , SR 5CYC gel , SR DMF 10 gel et de SR DC 556 gel par la société GRANT INDUSTRIES, de SF 1204 et de JK 113 par la société GENERAL ELECTRIC ; l'éthylcellulose comme celle vendue sous la dénomination Ethocel par la société DOW CHEMICAL ; les polycondensats de type polyamide résultant de la condensation entre (a) au moins un acide choisi parmi les acides dicarboxyliques comprenant au moins 32 atomes de carbone tels que les acides gras dimères et ([3) un alkylène diamine et en particulier l'éthylène diamine, dans lequel le polymère polyamide comprend au moins un groupe acide carboxylique terminal estérifié ou amidifié avec au moins un mono alcool ou une mono amine comprenant de 12 à 30 atomes de carbone linéaires et saturés, et en particulier, les copolymères d'éthylène diamine/dilinoléate de stéaryle tel que celui commercialisé sous la dénomination Uniclear 100 VG par la société ARIZONA CHEMICAL ; les galactommananes comportant de un à six, et en particulier de deux à quatre, groupes hydroxyle par ose, substitués par une chaîne alkyle saturée ou non, comme la gomme de guar alkylée par des chaînes alkyle en C, à C6, et en particulier en C, à C3 et leurs mélanges. Les copolymères séquencés de type "dibloc", "tribloc" ou "radial" du type polystyrène/polyisoprène, polystyrène/polybutadiène tels que ceux commercialisés sous la dénomination Luvitol HSB par la société BASF, du type polystyrène/copoly(éthylènepropylène) tels que ceux commercialisés sous la dénomination de Kraton par la société SHELL CHEMICAL CO ou encore du type polystyrène/copoly(éthylène-butylène), les mélanges de copolymères tribloc et radial (en étoile) dans l'isododécane tels que ceux commercialisé par la société PENRECO sous la dénomination Versagel comme par exemple le mélange de copolymère tribloc butylène/éthylène/styrène et de copolymère étoile éthylène/propylène/styrène dans l'isododécane (Versagel M 5960). Parmi les gélifiants lipophiles pouvant être utilisés dans les compositions selon l'invention, on peut encore citer les esters de dextrine et d'acide gras, tels que les palmitates de dextrine, notamment tels que ceux commercialisés sous les dénominations Rheopearl TL ou Rheopearl KL par la société CHIBA FLOUR.
Les compositions revendiquées peuvent également contenir des ingrédients couramment utilisés dans le domaine du maquillage des fibres kératiniques. Polymère filmogène La composition selon l'invention peut comprendre selon
un mode de réalisation particulier au moins un polymère filmogène. Le polymère filmogène peut être présent dans la composition selon l'invention en une teneur en matières sèches (ou matières actives) allant de 0,1 % à 30 % en poids par rapport au poids total de la composition, de préférence de 0,5 % à 20 % en poids, et mieux de 1 % à 15 % en poids. Dans la présente invention, on entend par polymère filmogène , un polymère apte à former à lui seul ou en présence d'un agent auxiliaire de filmification, un film macroscopiquement continu et adhérent sur les fibres kératiniques, et de préférence un film cohésif, et mieux encore un film dont la cohésion et les propriétés mécaniques sont telles que ledit film peut être isolable et manipulable isolément, par exemple lorsque ledit film est réalisé par coulage sur une surface antiadhérente comme une surface téflonnée ou siliconnée. Parmi les polymères filmogènes utilisables dans la composition de la présente invention, on peut citer les polymères synthétiques, de type radicalaire ou de type polycondensat, les polymères d'origine naturelle, et leurs mélanges. Par polymère filmogène radicalaire, on entend un polymère obtenu par polymérisation de monomères à insaturation notamment éthylénique, chaque monomère étant susceptible de s'homopolymériser (à l'inverse des polycondensats). Les polymères filmogènes de type radicalaire peuvent être notamment des polymères, ou des copolymères, vinyliques, notamment des polymères acryliques. Les polymères filmogènes vinyliques peuvent résulter de la polymérisation de monomères à insaturation éthylénique ayant au moins un groupement acide et/ou des esters de ces monomères acides et/ou des amides de ces monomères acides. Comme monomère porteur de groupement acide, on peut utiliser des acides carboxyliques insaturés a , 13 -éthyléniques tels que l'acide acrylique, l'acide méthacrylique, l'acide crotonique, l'acide maléique, l'acide itaconique. On utilise de préférence l'acide (méth)acrylique et l'acide crotonique, et plus préférentiellement l'acide (méth)acrylique. Les esters de monomères acides sont avantageusement choisis parmi les esters de l'acide (méth)acrylique (encore appelé les (méth)acrylates), notamment des (méth)acrylates d'alkyle, en particulier d'alkyle en C1-C30, de préférence en C1-C20, des (méth)acrylates d'aryle, en particulier d'aryle en C6-C10, des (méth)acrylates d'hydroxyalkyle, en particulier d'hydroxyalkyle en C2-C6 . Parmi les (méth)acrylates d'alkyle, on peut citer le méthacrylate de méthyle, le méthacrylate d'éthyle, le méthacrylate de butyle, le méthacrylate d'isobutyle, le méthacrylate d'éthyl-2 hexyle, le méthacrylate de lauryle, le méthacrylate de cyclohexyle. Parmi les (méth)acrylates d'hydroxyalkyle, on peut citer l'acrylate d'hydroxyéthyle, l'acrylate de 2-hydroxypropyle, le méthacrylate d'hydroxyéthyle, le méthacrylate de 2-hydroxypropyle. Parmi les (méth)acrylates d'aryle, on peut citer l'acrylate de benzyle et l'acrylate de phényle. Les esters de l'acide (méth)acrylique particulièrement préférés sont les (méth)acrylates d'alkyle. Selon la présente invention, le groupement alkyle des esters peut être soit fluoré, soit perfluoré, c'est-à-dire qu'une partie ou la totalité des atomes d'hydrogène du groupement alkyle sont substitués par des atomes de fluor. Comme amides des monomères acides, on peut par exemple citer les (méth)acrylamides, et notamment les N-alkyl (méth)acrylamides, en particulier d'alkyl en C2-C12. Parmi les N-alkyl (méth)acrylamides, on peut citer le N-éthyl acrylamide, le N-t-butyl acrylamide, le N-t-octyl acrylamide et le N-undécylacrylamide.
Les polymères filmogènes vinyliques peuvent également résulter de l'homopolymérisation ou de la copolymérisation de monomères choisis parmi les esters vinyliques et les monomères styrèniques. En particulier, ces monomères peuvent être polymérisés avec des monomères acides et/ou leurs esters et/ou leurs amides, tels que ceux mentionnés précédemment.
Comme exemple d'esters vinyliques, on peut citer l'acétate de vinyle, le néodécanoate de vinyle, le pivalate de vinyle, le benzoate de vinyle et le t-butyl benzoate de vinyle. Comme monomères styrèniques, on peut citer le styrène et l'alpha-méthyl styrène. Parmi les polycondensats filmogènes, on peut citer les polyuréthanes, les polyesters, les polyesters amides, les polyamides, et les résines époxyesters, les polyurées.
Les polyuréthanes peuvent être choisis parmi les polyuréthanes anioniques, cationiques, non-ioniques ou amphotères, les polyuréthanes-acryliques, les poly-uréthanespolyvi nylpirrolidones, les polyester-polyuréthanes, les polyéther-polyuréthanes, les polyurées, les polyurée-polyuréthanes, et leurs mélanges. Les polyesters peuvent être obtenus, de façon connue, par polycondensation d'acides dicarboxyliques avec des polyols, notamment des diols. L'acide dicarboxylique peut être aliphatique, alicyclique ou aromatique. On peut citer comme exemple de tels acides : l'acide oxalique, l'acide malonique, l'acide diméthylmalonique, l'acide succinique, l'acide glutarique, l'acide adipique, l'acide pimélique, l'acide 2,2-diméthylglutarique, l'acide azélaïque, l'acide subérique, l'acide sébacique, l'acide fumarique, l'acide maléique, l'acide itaconique, l'acide phtalique, l'acide dodécanedioïque, l'acide 1,3-cyclohexanedicarboxylique, l'acide 1,4-cyclohexanedicarboxylique, l'acide isophtalique, l'acide téréphtalique, l'acide 2,5-norbornane dicarboxylique, l'acide diglycolique, l'acide thiodipropionique, l'acide 2,5-naphtalènedicarboxylique, l'acide 2,6- naphtalènedicarboxylique. Ces monomères acide dicarboxylique peuvent être utilisés seuls ou en combinaison d'au moins deux monomères acide dicarboxylique. Parmi ces monomères, on choisit préférentiellement l'acide phtalique, l'acide isophtalique, l'acide téréphtalique. Le diol peut être choisi parmi les diols aliphatiques, alicycliques, aromatiques. On utilise de préférence un diol choisi parmi : l'éthylène glycol, le diéthylène glycol, le triéthylène glycol, le 1,3-propanediol, le cyclohexane diméthanol, le 4-butanediol. Comme autres polyols, on peut utiliser le glycérol, le pentaérythritol, le sorbitol, le triméthylol propane. Les polyesters amides peuvent être obtenus de manière analogue aux polyesters, par polycondensation de diacides avec des diamines ou des amino alcools. Comme diamine, on peut utiliser l'éthylènediamine, l'hexaméthylènediamine, la méta- ou para-phénylènediamine.
Comme aminoalcool, on peut utiliser la monoéthanolamine. Le polyester peut en outre comprendre au moins un monomère portant au moins un groupement -SO3M, avec M représentant un atome d'hydrogène, un ion ammonium NH4+ou un ion métallique, comme par exemple un ion Na+, Li+ K+ Mg2+, Ça2+, Cu2+, Fe2+ Fe3+ . On peut utiliser notamment un monomère aromatique bifonctionnel comportant un tel groupement -SO3M. Le noyau aromatique du monomère aromatique bifonctionnel portant en outre un groupement -SO3M tel que décrit ci-dessus peut être choisi par exemple parmi les noyaux benzène, naphtalène, anthracène, diphényl, oxydiphényl, sulfonyldiphényl, méthylènediphényl. On peut citer comme exemple de monomère aromatique bifonctionnel portant en outre un groupement -SO3M : l'acide sulfoisophtalique, l'acide sulfotéréphtalique, l'acide sulfophtalique, l'acide 4-sulfonaphtalène-2,7-dicarboxylique.
On préfère utiliser des copolymères à base d'isophtalate/sulfoisophtalate, et plus particulièrement des copolymères obtenus par condensation de di-éthylèneglycol, cyclohexane di-méthanol, acide isophtalique, acide sulfoisophtalique. Les polymères d'origine naturelle, éventuellement modifiés, peuvent être choisis parmi la résine shellac, la gomme de sandaraque, les dammars, les élémis, les copals, les polymères cellulosiques, et leurs mélanges. Selon un premier mode de réalisation de la composition selon l'invention, le polymère filmogène peut être un polymère hydrosoluble et peut être présent dans une phase aqueuse de la composition ; le polymère est donc solubilisé dans la phase aqueuse de la composition.
Selon une autre variante de réalisation de la composition selon l'invention, le polymère filmogène peut être un polymère solubilisé dans une phase grasse liquide comprenant des huiles ou solvants organiques tels que ceux décrits précédemment (on dit alors que le polymère filmogène est un polymère liposoluble). De préférence, la phase grasse liquide comprend une huile volatile, éventuellement en mélange avec une huile non volatile, les huiles pouvant être choisies parmi les huiles citées précédemment. A titre d'exemple de polymère liposoluble, on peut citer les copolymères d'ester vinylique (le groupe vinylique étant directement relié à l'atome d'oxygène du groupe ester et l'ester vinylique ayant un radical hydrocarboné saturé, linéaire ou ramifié, de 1 à 19 atomes de carbone, lié au carbonyle du groupe ester) et d'au moins un autre monomère qui peut être un ester vinylique (différent de l'ester vinylique déjà présent), une a-oléfine (ayant de 8 à 28 atomes de carbone), un alkylvinyléther (dont le groupe alkyl comporte de 2 à 18 atomes de carbone), ou un ester allylique ou méthallylique (ayant un radical hydrocarboné saturé, linéaire ou ramifié, de 1 à 19 atomes de carbone, lié au carbonyle du groupe ester).
Ces copolymères peuvent être réticulés à l'aide de réticulants qui peuvent être soit du type vinylique, soit du type allylique ou méthallylique, tels que le tétraallyloxyéthane, le divinylbenzène, l'octanedioate de divinyle, le dodécanedioate de divinyle, et l'octadécanedioate de divinyle. Comme exemples de ces copolymères, on peut citer les copolymères : acétate de vinyle/stéarate d'allyle, l'acétate de vinyle/laurate de vinyle, acétate de vinyle/stéarate de vinyle, acétate de vinyle/octadécène, acétate de vinyle/octadécylvinyléther, propionate de vinyle/laurate d'allyle, propionate de vinyle/laurate de vinyle, stéarate de vinyle/octadécène-1, acétate de vinyle/dodécène-1, stéarate de vinyle/éthylvinyléther, propionate de vinyle/cétyl vinyle éther, stéarate de vinyle/acétate d'allyle, diméthyl-2, 2 octanoate de vinyle/laurate de vinyle, diméthyl-2, 2 pentanoate d'allyle/laurate de vinyle, diméthyl propionate de vinyle/stéarate de vinyle, diméthyl propionate d'allyle/stéarate de vinyle, propionate de vinyle/stéarate de vinyle, réticulé avec 0,2 % de divinyl benzène, diméthyl propionate de vinyle/laurate de vinyle, réticulé avec 0,2 % de divinyl benzène, acétate de vinyle/octadécyl vinyl éther, réticulé avec 0,2 % de tétraallyloxyéthane, acétate de vinyle/stéarate d'allyle, réticulé avec 0,2 % de divinyl benzène, acétate de vinyle/octadécène-1 réticulé avec 0, 2 % de divinyl benzène et propionate d'allyle/stéarate d'allyle réticulé avec 0,2 % de divinyl benzène. Comme polymères filmogènes liposolubles, on peut également citer les copolymères liposolubles, et en particulier ceux résultant de copolymérisation d'esters vinyliques ayant de 9 à 22 atomes de carbone ou d'acrylates ou de méthacrylates d'alkyle, les radicaux alkyles ayant de 10 à 20 atomes de carbone.
De tels copolymères liposolubles peuvent être choisis parmi les copolymères de polystéarate de vinyle, de polystéarate de vinyle réticulé à l'aide de divinylbenzène, de diallyléther ou de phtalate de diallyle, les copolymères de poly(méth)acrylate de stéaryle, de polylaurate de vinyle, de poly(méth)acrylate de lauryle, ces poly(méth)acrylates pouvant être réticulés à l'aide de diméthacrylate de l'éthylène glycol ou de tétraéthylène glycol.
Les copolymères liposolubles définis précédemment sont connus et notamment décrits dans la demande FR-A-2232303 ; ils peuvent avoir un poids moléculaire moyen en poids allant de 2.000 à 500.000 et de préférence de 4.000 à 200.000. Comme polymères filmogènes liposolubles utilisables dans l'invention, on peut également citer les polyalkylènes et notamment les copolymères d'alcènes en C2-C20, comme le polybutène, les alkylcelluloses avec un radical alkyle linéaire ou ramifié, saturé ou non en Cl à C8 comme l'éthylcellulose et la propylcellulose, les copolymères de la vinylpyrolidone (VP) et notamment les copolymères de la vinylpyrrolidone et d'alcène en C2 à C40 et mieux en C3 à C20. A titre d'exemple de copolymère de VP utilisable dans l'invention, on peut citer le copolymère de VP/acétate vinyle, VP/méthacrylate d'éthyle, la polyvinylpyrolidone (PVP) butylée, VP/méthacrylate d'éthyle/acide méthacrylique, VP/eicosène, VP/hexadécène, VP/triacontène, VP/styrène, VP/acide acrylique/méthacrylate de lauryle. On peut également citer les résines de silicone, généralement solubles ou gonflables dans les huiles de silicone, qui sont des polymères de polyorganosiloxanes réticulés. La nomenclature des résines de silicone est connue sous le nom de "MDTQ", la résine étant décrite en fonction des différentes unités monomèriques siloxane qu'elle comprend, chacune des lettres "MDTQ" caractérisant un type d'unité.
A titre d'exemples de résines polymethylsilsesquioxanes commercialement disponibles, on peut citer celles qui sont commercialisés : par la société Wacker sous la référence Resin MK tels que la Belsil PMS MK : par la société SHIN-ETSU sous les références KR-220L. Comme résines siloxysilicates, on peut citer les résines trimethylsiloxysilicate (TMS) telles que celle commercialisées sous la référence SR1000 par la société General Electric ou sous la référence TMS 803 par la société Wacker. On peut encore citer les résines timéthylsiloxysilicate commercialisées dans un solvant tel que la cyclomethicone, vendues sous la dénomination "KF-7312J" par la société Shin-Etsu, "DC 749", "DC 593" par la société Dow Corning.
On peut aussi citer des copolymères de résines de silicone telles que celles citées ci-dessus avec des polydiméthylsiloxanes, comme les copolymères adhésifs sensibles à la pression commercialisés par la société Dow Corning sous la référence BIO-PSA et décrits dans le document US 5 162 410 ou encore les copolymères siliconés issus de la réaction d'un résine de silicone, telle que celles décrite plus haut, et d'un diorganosiloxane tels que décrits dans le document WO 2004/073626.
Selon un mode de réalisation de l'invention, le polymère filmogène est un polymère éthylénique séquencé linéaire filmogène, qui comprend de préférence au moins une première séquence et au moins une deuxième séquence ayant des températures de transition vitreuse (Tg) différentes, lesdites première et deuxième séquences étant reliées entre elles par une séquence intermédiaire comprenant au moins un monomère constitutif de la première séquence et au moins un monomère constitutif de la deuxième séquence. Avantageusement, les première et deuxième séquences et du polymère séquencé sont incompatibles l'une avec l'autre.
De tels polymères sont décrits par exemple dans les documents EP 1411069 ou W004/028488.
Le polymère filmogène peut être également présent dans la composition sous la forme de particules en dispersion dans une phase aqueuse ou dans une phase solvant non aqueuse, connue généralement sous le nom de latex ou pseudolatex. Les techniques de préparation de ces dispersions sont bien connues de l'homme du métier. Comme dispersion aqueuse de polymère filmogène, on peut utiliser les dispersions acryliques vendues sous les dénominations Neocryl XK-90 , Neocryl A-1070 , Neocryl A-1090 , Neocryl BT-62 , Neocryl A-1079 et Neocryl A-523 par la société AVECIANEORESINS, Dow Latex 432 par la société DOW CHEMICAL, Daitosol 5000 AD ou Daitosol 5000 SJ par la société DAITO KASEY KOGYO; Syntran 5760 par la société Interpolymer, Allianz OPT par la société ROHM & HAAS, les dispersions aqueuses de polymères acryliques ou styrène/acrylique vendues sous le nom de marque JONCRYL par la société JOHNSON POLYMER ou encore les dispersions aqueuses de polyuréthane vendues sous les dénominations Neorez R-981 et Neorez R-974 par la société AVECIANEORESINS, les Avalure UR-405 , Avalure UR-410 , Avalure UR-425 , Avalure UR-450 , Sancure 875 , Sancure 861 , Sancure 878 et Sancure 2060 par la société GOODRICH, Impranil 85 par la société BAYER, Aquamere H-1511 par la société HYDROMER ; les sulfopolyesters vendus sous le nom de marque Eastman AQ par la société Eastman Chemical Products, les dispersions vinyliques comme le Mexomère PAM de la société CHIMEX et leurs mélanges.
Comme exemples de dispersions non aqueuses de polymère filmogène, on peut citer les dispersions acryliques dans l'isododécane comme le Mexomère PAP de la société CHIMEX, les dispersions de particules d'un polymère éthylénique greffé, de préférence acrylique, dans une phase grasse liquide, le polymère éthylénique étant avantageusement dispersé en l'absence de stabilisant additionnel en surface des particules telles que décrite notamment dans le document WO 04/055081.
La composition selon l'invention peut comprendre un agent plastifiant favorisant la formation d'un film avec le polymère filmogène. Un tel agent plastifiant peut être choisi parmi tous les composés connus de l'homme du métier comme étant susceptibles de remplir la fonction recherchée.
Matière colorante La composition selon l'invention peut également comprendre au moins une matière colorante comme les matières pulvérulentes, les colorants liposolubles, les colorants hydrosolubles. Les matières colorantes pulvérulentes peuvent être choisies parmi les pigments et les nacres. Les pigments peuvent être blancs ou colorés, minéraux et/ou organiques, enrobés ou non. On peut citer, parmi les pigments minéraux, le dioxyde de titane, éventuellement traité en surface, les oxydes de zirconium, de zinc ou de cérium, ainsi que les oxydes de fer ou de chrome, le violet de manganèse, le bleu outremer, l'hydrate de chrome et le bleu ferrique.
Parmi les pigments organiques, on peut citer le noir de carbone, les pigments de type D & C, et les laques à base de carmin de cochenille, de baryum, strontium, calcium, aluminium. Les nacres peuvent être choisies parmi les pigments nacrés blancs tels que le mica recouvert de titane ou d'oxychlorure de bismuth, les pigments nacrés colorés tels que le mica titane avec des oxydes de fer, le mica titane avec notamment du bleu ferrique ou de l'oxyde de chrome, le mica titane avec un pigment organique du type précité ainsi que les pigments nacrés à base d'oxychlorure de bismuth. Les colorants liposolubles sont par exemple le rouge Soudan, le D&C Red 17, le D&C Green 6, le [3-carotène, l'huile de soja, le brun Soudan, le D&C Yellow 11, le D&C Violet 2, le D&C Orange 5, le jaune quinoléine, le rocou. Ces matières colorantes peuvent être présentes en une teneur allant de 0,01 à 30 % en poids par rapport au poids total de la composition.
Charges La composition selon l'invention peut en outre comprendre au moins une charge. Les charges peuvent être choisies parmi celles bien connues de l'homme du métier et couramment utilisées dans les compositions cosmétiques. Les charges peuvent être minérales ou organiques, lamellaires ou sphériques. On peut citer le talc, le mica, la silice, le kaolin, les poudres de polyamide comme le Nylon commercialisé sous la dénomination Orgasol par la société Atochem, de poly-13-alanine et de polyéthylène, les poudres de polymères de tétrafluoroéthylène comme le Téflon , la lauroyl-lysine, l'amidon, le nitrure de bore, les micro sphères creuses polymériques expansées telles que celles de chlorure de polyvinylidène/acrylonitrile comme celles commercialisées sous la dénomination d'Expancel par la société Nobel Industrie, les poudres acryliques telles que celles commercialisées sous la dénomination Polytrap par la société Dow Corning, les particules de polyméthacrylate de méthyle et les microbilles de résine de silicone (Tospearls de Toshiba, par exemple), le carbonate de calcium précipité, le carbonate et l'hydro-carbonate de magnésium, l'hydroxyapatite, les microsphères de silice creuses (Silica Beads de MAPRECOS), les microcapsules de verre ou de céramique, les savons métalliques dérivés d'acides organiques carboxyliques ayant de 8 à 22 atomes de carbone, et en particulier de 12 à 18 atomes de carbone, par exemple le stéarate de zinc, de magnésium ou de lithium, le laurate de zinc, le myristate de magnésium. On peut également utiliser un composé susceptibles de gonfler à la chaleur et notamment des particules thermoexpansibles telles que les microsphères non expansées de copolymère de chlorure de vinylidène/d'acrylonitrile/méthacrylate de méthyle ou de copolymère d'homopolymère d'acrylonitrile comme par exemple celles commercialisées respectivement sous les références Expancel 820 DU 40 et Expancel 007WU par la Société AKZO NOBEL.
Les charges peuvent représenter de 0,1 à 25 %, en particulier de 1 à 20 % en poids par rapport au poids total de la composition. La composition de l'invention peut comprendre, en outre, tout additif usuellement utilisé en cosmétique tels que les antioxydants, les conservateurs, les fibres, les parfums, les neutralisants, les gélifiants, les épaississants, les vitamines, les agents de coalescence, les plastifiants, et leurs mélanges.
Fibres La composition selon l'invention peut en outre comprendre des fibres qui permettent une amélioration de l'effet allongeant. Par fibre , il faut comprendre un objet de longueur L et de diamètre D tel que L soit très supérieur à D, D étant le diamètre du cercle dans lequel s'inscrit la section de la fibre. En particulier, le rapport L/D (ou facteur de forme) est choisi dans la gamme allant de 3,5 à 2500, en particulier de 5 à 500, et plus particulièrement de 5 à 150.
Les fibres utilisables dans la composition de l'invention peuvent être des fibres d'origine synthétique ou naturelle, minérale ou organique. Elles peuvent être courtes ou longues, unitaires ou organisées par exemple tressées, creuses ou pleines. Leur forme peut être quelconque et notamment de section circulaire ou polygonale (carrée, hexagonale ou octogonale) selon l'application spécifique envisagée. En particulier, leurs extrémités sont épointées et/ou polies pour éviter de se blesser. En particulier, les fibres ont une longueur allant de 1 pm à 10 mm, en particulier de 0,1 mm à 5 mm et plus particulièrement de 0,3 mm à 3,5 mm. Leur section peut être comprise dans un cercle de diamètre allant de 2 nm à 500 pm, en particulier allant de 100 nm à 100 pm et plus particulièrement de 1 pm à 50 pm. Le poids ou titre des fibres est souvent donné en denier ou décitex et représente le poids en gramme pour 9 km de fil. Les fibres selon l'invention peuvent en particulier avoir un titre choisi dans la gamme allant de 0,15 à 30 deniers et notamment de 0,18 à 18 deniers. Les fibres utilisables dans la composition de l'invention peuvent être choisies parmi les fibres rigides ou non rigides, elles peuvent être d'origine synthétique ou naturelle, minérales ou organiques. Par ailleurs, les fibres peuvent être traitées ou non en surface, enrobées ou non, colorées ou non colorées. A titre de fibres utilisables dans la composition selon l'invention, on peut citer les fibres non rigides telles que les fibres de polyamide (Nylon ) ou les fibres rigides telles que les fibres de polyimide-amide comme celles vendues sous les dénomination KERMEL , KERMEL TECH par la société RHODIA ou de poly-(p-phénylène-téréphtalamide) (ou d'aramide) notamment vendues sous la dénomination Kevlar par la société DUPONT DE NEMOURS.
Les fibres peuvent êtres présentes dans la composition selon l'invention en une teneur allant de 0,01 % à 10 % en poids, par rapport au poids total de la composition, en particulier de 0,1 % à 5 % en poids, et plus particulièrement de 0,3 % à 3 % en poids.
Actifs cosmétiques Comme actifs cosmétiques pouvant être utilisés dans les compositions selon l'invention, on peut citer notamment des antioxydants, les conservateurs, les parfums, les neutralisants, émollients, des hydratants, des vitamines et des filtres en particulier solaires.
Bien entendu, l'homme du métier veillera à choisir les éventuels additifs complémentaires et/ou leur quantité de telle manière que les propriétés avantageuses de la composition selon l'invention ne soient pas, ou substantiellement pas, altérées par l'adjonction envisagée.
La composition selon l'invention peut être conditionnée dans un récipient délimitant au moins un compartiment qui comprend ladite composition, ledit récipient étant fermé par un élément de fermeture.
Le récipient est de préférence associé à un applicateur, notamment sous forme d'une brosse comportant un arrangement de poils maintenus par un fil torsadé. Une telle brosse torsadée est décrite notamment dans le brevet US 4 887 622. Il peut être également sous forme d'un peigne comportant une pluralité d'éléments d'application, obtenus notamment de moulage. De tels peignes sont décrits par exemple dans le brevet FR 2 796 529. L'applicateur peut être solidaire du récipient, tel que décrit par exemple le brevet FR 2 761 959. Avantageusement, l'applicateur est solidaire d'une tige qui, elle même, est solidaire de l'élément de fermeture.
L'élément de fermeture peut être couplé au récipient par vissage. Alternativement, le couplage entre l'élément de fermeture et le récipient se fait autrement que par vissage, notamment via un mécanisme à baïonnette, par encliquetage, ou par serrage. Par "encliquetage" on entend en particulier tout système impliquant le franchissement d'un bourrelet ou d'un cordon de matière par déformation élastique d'une portion, notamment de l'élément de fermeture, puis par retour en position non contrainte élastiquement de ladite portion après le franchissement du bourrelet ou du cordon.
Le récipient peut être au moins pour partie réalisé en matériau thermoplastique. A titre d'exemples de matériaux thermoplastiques, on peut citer le polypropylène ou le polyéthylène.
Alternativement, le récipient est réalisé en matériau non thermoplastique, notamment en verre ou en métal (ou alliage).
Le récipient est de préférence équipé d'un essoreur disposé au voisinage de l'ouverture du récipient. Un tel essoreur permet d'essuyer l'applicateur et éventuellement, la tige dont il peut être solidaire. Un tel essoreur est décrit par exemple dans le brevet FR 2 792 618. Le contenu des brevets ou demandes de brevets cités précédemment sont incorporés par référence dans la présente demande.
Procédé de préparation
Pour obtenir les propriétés particulières des compositions objet de la présente demande, celles-ci doivent être préparées selon un procédé comprenant : - au moins une étape d'émulsification de la phase grasse dans la phase aqueuse de la composition, à une température supérieure ou égale à la température de transition solide û liquide du polymère siliconé, et -au moins une étape de refroidissement contrôlé de l'émulsion obtenue, ledit refroidissement étant effectué sous cisaillement mécanique contrôlé.
Ainsi, la présente demande concerne encore un procédé de préparation d'une composition selon la présente invention comprenant : - au moins une étape d'émulsification de la phase grasse dans la phase aqueuse de la composition, à une température supérieure ou égale à la température de transition solide û liquide du polymère siliconé, et - au moins une étape de refroidissement contrôlé de l'émulsion obtenue, ledit refroidissement étant effectué sous cisaillement mécanique contrôlé. Tout équipement ou combinaison d'équipements permettant de maîtriser à la
fois les conditions de refroidissement et une action mécanique qui va malaxer le produit au fur et à mesure de ce refroidissement tels que les procédés fonctionnant en continu de type échangeur à surface raclée, ou encore de façon préférée de type malaxeur /extrudeur bi-vis (appelé extrudeur par simplification dans la suite de ce document) conviennent à la mise en oeuvre du procédé selon l'invention. De préférence on utilise des extrudeurs de type malaxeur-extrudeur bi-vis, ces extrudeurs se composant des éléments suivants : - au moins deux fourreaux régulés thermiquement de façon indépendante à une température allant de 10 C à 300 C, - deux axes co-rotatifs composés d'éléments de vis, chaque élément ayant une forme apportant la fonction de mélange recherchée dans la zone de température correspondante, - des dispositifs de dosage et d'introduction des différentes phases, - un moteur à vitesse variable, permettant de moduler l'intensité du cisaillement en fonction de la vitesse de rotation des vis. Ce procédé permet notamment une bonne mise en oeuvre du composé siliconé qui présente une température de transition solide-liquide élevée (supérieure à 100 C). Une telle température rend difficile l'émulsification de la phase grasse comprenant ledit polymère dans la phase aqueuse par une voie de préparation conventionnelle en cuve, qui impliquerait un chauffage à température élevée des autres ingrédients. Lorsque le procédé selon l'invention est mis en oeuvre au travers d'un malaxeur-extrudeur, les différents ingrédients peuvent être incorporés à des températures différentes au cours du malaxage pendant le refroidissement, à une température compatible avec leur stabilité. Par exemple, lorsque la composition comprend un polymère en dispersion dans une phase aqueuse (ou latex), celui-ci est généralement introduit pendant le refroidissement de manière à ne pas déstabiliser le latex.
On peut citer notamment comme équipements permettant la réalisation de l'invention, sans restriction de l'invention à ces matériels, les modèles BC-21 et BC-45 de la société Clextral, ou le modèle Prism Eurolab de la société ThermoRhéo.
Selon un mode préféré de préparation, l'extrudeur est constitué de 6 fourreaux indépendants permettant chacun d'introduire de nouvelles phases et de fixer la température. Ils sont numérotés de 1 à 6 depuis l'entrée vers la sortie du produit. La vitesse de rotation est de 600 trs/min. La phase dite aqueuse comprenant l'eau, les tensioactifs, les polymères ou gélifiants hydrophiles est introduite à froid dans le premier fourreau, dans lequel elle est chauffée à 90 C. Cette phase peut aussi être avantageusement chauffée avant son injection dans l'extrudeur. La phase grasse, préalablement chauffée à 110 C dans un poêlon, est introduite dans le second fourreau, dans lequel les deux phases sont combinées à 130 C. Les pigments sont introduits indifféremment avec la phase aqueuse ou avec la phase grasse.
Les exemples qui suivent sont présentés à titre illustratif et non limitatif de l'invention. Sauf indication contraire, les quantités sont données en gramme.
Exemples 1 à 4 On prépare les mascaras de composition suivante : Exemple 1 Exemple 2 Exemple 3 Exemple 4 Phase A Hydroxyéthylcellulose 0, 88 0,88 0,88 0,88 Gomme arabique 3,38 3,38 3,38 3,38 Antimousse (siméthicone) 0,19 0,19 0,21 0,19 Phenoxyethanol - - - 0,84 Pigments (oxydes de fer) 7,14 7,14 7,14 7,14 Conservateurs qs qs qs qs eau Qsp100 QsplOO QsplOO QsplOO Phase B Polyamide/polydiméthysiloxane de 22,5 19,26 11,3 l'exemple 3 du brevet US 5891680 Polyamide/polydiméthysiloxane (DC - - 30 11,3 2-8179 de Dow Corning) Isononanoate d'isononyle 12,22 10,46 10,3 11,1 Stéarate de polyethylene glycol (40 2,25 2,25 3 2,25 0E) (Myrj 52 P d'Uniquema) Tristéarate de sorbitan (Span 65V 0,96 0,96 1,3 0,96 d'Uniquema) Potassium cetyl phosphate 3,21 3,21 4,3 3,21 (Amphisol K) C18-38 Alkylhydroxystéaroylstéarate - 5 - - (K82 P de Koster Keunen) Phase C Copolymère 5 5 5 5 Styrène/Acrylates/ammonium methacrylate, butylene glycol, sodium laureth-12 sulfate (Syntran 5760 (40% m.a)) Les compositions des exemples 1 à 4 sont préparées dans un mélangeur extrudeur à deux 10 vis (type "BC 21" de la société "CLEXTRAL") comprenant 6 fourreaux, tel que mentionné plus haut, selon le mode opératoire suivant : Les ingrédients de la phase A sont introduits à froid dans le premier fourreau, dans lequel ils sont chauffés à 90 C. 15 Les ingrédients de la phase B sont chauffés à 110 C dans un poêlon puis introduits dans le second fourreau, dans lequel les deux phases sont chauffées et émulsionnées à 130 C. Le latex (phase C) est introduit à 40 C dans le cinquième fourreau. 54 Pour chacune des compositions, on a mesuré les viscosités initiale et finale à 25 C selon le protocole décrit plus haut et on a calculé le ratio rlfinale /llinitial. Les résultats sont présentés dans le tableau suivant : 11 initiale Il finale Il finale Iii initiale Pa.s Pa.s Exemple 1 86 71 0,82 Exemple 2 54 75 1,4 Exemple 3 278 166 0,59 Exemple 4 29 59 2 Exemples 5 et 5' On prépare deux mascaras de composition suivante : Exemples 5 et 5' Phase A Gomme arabique 3,38 Hydroxyéthylcellulose 0,88 Antimousse (siméthicone) 0,19 Pigments (oxyde de fer) 7,14 Conservateurs qs eau QsplOO Phase B Polyamide/polydiméthysiloxane de l'exemple 3 du 22,5 brevet US 5891680 Isononanoate d'isononyle 17,4 Alcool stéarylique 5 Stéarate de polyethylene glycol (40 0E) 2,25 (Myrj 52 P d'Uniquema) Tristéarate de sorbitan (Span 65V d'Uniquema) 0,96 Potassium cetyl phosphate (Amphisol K) 3,21 a) Le mascara de l'exemple 5 (invention) est préparé selon le procédé de l'invention dans un 15 mélangeur extrudeur à deux vis (type "BC 21" de la société "CLEXTRAL") décrit ci-dessus selon le mode opératoire suivant :
Les ingrédients de la phase A sont introduits à froid dans le premier fourreau, dans lequel ils sont chauffés à 90 C.
20 Les ingrédients de la phase B sont chauffés à 110 C dans un poêlon puis introduits dans le second fourreau, dans lequel les deux phases sont chauffées et émulsionnées à 130 C. 10 b) Le mascara de l'exemple 5' (hors invention) est préparé de manière conventionnelle par chauffage des composés de la phase B jusqu'à fusion puis le mélange est homogénéisé. Parallèlement, on prépare un gel en mélangeant les composés de la phase A, puis on ajoute ce mélange au mélange B sous agitation au Moritz. c) Pour chacune des compositions, on a mesuré les viscosité initiale et finale à 25 C selon le protocole décrit plus haut et on a calculé le ratio Tlfinale /~linitial.
10 Les résultats sont présentés dans le tableau suivant : 11initiale finale finale Iii initiale Pa.s Pa.s Exemple 5 460 330 0,71 Exemple 5' 990 54 0,24 L'exemple 5' (hors invention) présente après un cycle de chauffe défini, une évolution de viscosité significative (ratio 1lfinale /llinitiale inférieur à 0,5 ), représentative d'une dispersion grossière des particules de phase grasse dans la phase aqueuse. 15

Claims (31)

REVENDICATIONS
1. Composition de revêtement des fibres kératiniques comprenant une phase aqueuse et une phase grasse comprenant au moins un polymère siliconé comportant au moins un motif comprenant : 1) des polyorganosiloxanes comportant au moins deux groupes capables d'établir des interactions hydrogène, ces deux groupes étant situés dans la chaîne du polymère, et/ou
2) des polyorganosiloxanes comportant au moins deux groupes capables d'établir des interactions hydrogène, ces deux groupes étant situés sur des greffons ou ramifications, ladite composition étant telle qu'après avoir été soumise à un chauffage en continu de 25 C jusqu'à 90 C à une vitesse de 5 C par minute, maintenue 2 min à 90 C, puis refroidie en continu de 90 C à 25 C à une vitesse de 5 C par minute, le ratio entre la viscosité finale de la composition à 25 C après chauffage (lof) et la viscosité initiale à 25 C (rb) avant chauffage est supérieur à 0,5. 2. Composition selon la revendication 1, caractérisée en ce que la teneur totale en polymères siliconés représente de 0,5 à 70%, de préférence de 5 à 50% et mieux encore de 10 à 45% du poids total de la composition.
3. Composition selon l'une des revendications précédentes, caractérisée en ce que lesdits motifs capables d'établir des interactions hydrogène sont choisis parmi les groupes ester, amide, sulfonamide, carbamate, thiocarbamate, urée, uréthane, thiourée, oxamido, guanidino, biguanidino et leurs combinaisons.
4. Composition selon l'une quelconque des revendications précédentes, dans laquelle le polymère siliconé comprend au moins un motif répondant à la formule : m (1) R5 SiùX G Y G X R' n R6 R4 Si O dans laquelle : 1) R4, R5, R6 et R7, identiques ou différents, représentent un groupe choisi parmi : - les groupes hydrocarbonés, linéaires, ramifiés ou cycliques, en C, à C4o, saturés ou insaturés, pouvant contenir dans leur chaîne un ou plusieurs atomes d'oxygène, de soufre et/ou d'azote, et pouvant être substitués en partie ou totalement par des atomes de fluor, - les groupes aryles en C6 à C,o, éventuellement substitués par un ou plusieurs groupes alkyle en C, à C4, - les chaînes polyorganosiloxanes contenant ou non un ou plusieurs atomes d'oxygène, de soufre et/ou d'azote, 2) les X, identiques ou différents, représentent un groupe alkylène di-yle, linéaire ou ramifié en C, à C30, pouvant contenir dans sa chaîne un ou plusieurs atomes d'oxygène et/ou d'azote, 3) Y est un groupe divalent alkylène linéaire ou ramifié, arylène, cycloalkylène, alkylarylène ou arylalkylène, saturé ou insaturé, en C, à C5o, pouvant comporter un ou plusieurs atomes d'oxygène, de soufre et/ou d'azote, et/ou porter comme substituant l'un des atomes ou groupes d'atomes suivants : fluor, hydroxy, cycloalkyle en C3 à C8, alkyle en C, à C4o, aryle en C5 à C,o, phényle éventuellement substitué par 1 à 3 groupes alkyle en C, à C3, hydroxyalkyle en C, à C3 et amino alkyle en C, à C6, ou 4) Y représente un groupe répondant à la formule : dans laquelle - T représente un groupe hydrocarboné trivalent ou tétravalent, linéaire ou ramifié, saturé ou insaturé, en C3 à C24 éventuellement substitué par une chaîne polyorganosiloxane, et pouvant contenir un ou plusieurs atomes choisis parmi O, N et S, ou T représente un atome trivalent choisi parmi N, P et Al, et - R8 représente un groupe alkyle en C, à C5o, linéaire ou ramifié, ou une chaîne polyorganosiloxane, pouvant comporter un ou plusieurs groupes ester, amide, uréthane, thiocarbamate, urée, thiourée et/ou sulfonamide qui peut être lié ou non à une autre chaîne du polymère,
5) les G, identiques ou différents, représentent les groupes 35 divalents choisis parmi : - C p0C N(R9)C. O O O - C N(R9) N(R9) S02 SO2 N(R9) o -N(R9) C O O C N(R9) N(R9) C O . O O S - O C N(R9) N(R9)_ C N(R9) S O N(R9) C N(R9) S N(R9CCN(R9).NHCNH. et li p NH NH CNHC NH NH NH où R9 représente un atome d'hydrogène ou un groupe alkyle, linéaire ou ramifié, en C, à C2o, à condition qu'au moins 50 % des R9 du polymère représente un atome d'hydrogène et qu'au moins deux des groupes G du polymère soient un autre groupe que : O C et C O O O
6) n est un nombre entier allant de 2 à 500, de préférence de 2 à 200, et m est un nombre entier allant de 1 à 1000, de préférence de 1 à 700 et mieux encore de 6 à 200. 15 5. Composition selon la revendication 4, dans laquelle Y représente un groupe choisi parmi: a) les groupes alkylène linéaires en C, à C2o, de préférence en C, à C,o, 5 1015b) les groupes alkylène ramifiés pouvant comporter des cycles et des insaturations non conjuguées, en C30 à C56, c) les groupes cycloalkylène en C5-C6, d) les groupes phénylène éventuellement substitués par un ou plusieurs groupes alkyle en C, à Cao, e) les groupes alkylène en C, à C20, comportant de 1 à 5 groupes amides, f) les groupes alkylène en C, à C2o, comportant un ou plusieurs substituants, choisis parmi les groupes hydroxyle, cycloalcane en C3 à C8, hydroxyalkyle en C, à C3 et alkylamines en C, à C6, et g) les chaînes polyorganosiloxane de formule : R5 ù R4 R4 Si O Si O R7 R6 dans laquelle R4, R5, R6, R7, T et m sont tels que définis dans la revendication 5. h) les chaînes polyorganosiloxanes de formule : m 6. Composition selon l'une quelconque des revendications 1 à 5, dans laquelle le polymère comprend au moins un motif de formule (III) ou (IV) : 20Rù4 C X SiO Si X C NH Y NH O R6 R' O m n (n) R4 R5 61 R5 NH X SiO Si X NH C y C R' R6 m n (IV) dans lesquelles R4, R5, R6, R7, X, Y, m et n sont tels que définis dans la revendication 5.
7. Composition selon la revendication 6, dans laquelle X et/ou Y représentent un groupe alkylène contenant dans sa partie alkylène au moins l'un des éléments suivants : 1) 1 à 5 groupes amides, urée, uréthane, ou carbamate, 2) un groupe cycloalkyle en C5 ou C6, et 3) un groupe phénylène éventuellement substitué par 1 à 3 groupes alkyles identiques ou différents en C, à C3, et/ou substitué par au moins un élément choisi dans le groupe constitué de : - un groupe hydroxy, - un groupe cycloalkyle en C3 à C8, - un à trois groupes alkyles en C, à C4o, - un groupe phényle éventuellement substitué par un à trois groupes alkyles en C, à C3, - un groupe hydroxyalkyle en C, à C3, et 20 - un groupe aminoalkyle en C, à C6.
8. Composition selon l'une quelconque des revendications 6 ou 7, dans laquelle Y représente : 15 ou 62 R8 où R8 représente une chaîne polyorganosiloxane, et T représente un groupe de formule : (CH2), (CH2)22892930 5 Ria (CH2)a C (CH2)bou (CH2)a N (CH2)b ù dans lesquelles a, b et c sont indépendamment des nombres entiers allant de 1 à 10, et R13 est un atome d'hydrogène ou un groupe tel que ceux définis pour R4, R5, R6 et 10 R7, dans la revendication 5.
9. Composition selon l'une quelconque des revendications 6 à 8, dans laquelle R4, R5, R6 et R7 représentent, indépendamment, un groupe alkyle en C1 à C40, linéaire ou ramifié, de préférence un groupe CH3, C2H5, n-C3H7 ou isopropyle, une chaîne polyorganosiloxane ou un groupe phényle éventuellement substitué par un à trois groupes méthyle ou éthyle.
10. Composition selon l'une quelconque des revendications 1 à 9, dans laquelle le polymère comprend au moins un motif de formule (VII) : 63R'4 R'5 CO X' SiO Si X' CO NH T NH R'6 m1 R '7 R '8 R'9 NH Y NH CO X2 SiO Si X2 CO NH n R ZoR2' m2 p (VII) dans laquelle X1 et X2 qui sont identiques ou différents, ont la signification donnée pour X dans la revendication 7, n, Y et T sont tels que définis dans la revendication 7, R14 à R21 sont des groupes choisis dans le même groupe que les R4 à R7 de la revendication 5 m1 et m2 sont des nombres situés dans la gamme allant de 1 à 1 000, et p est un nombre entier allant de 2 à 500.
11. Composition selon la revendication 10 dans laquelle : - pvade1 à 25, mieux encore de1 à7, - R14 à R21 sont des groupes méthyle, - T répond à l'une des formules suivantes : R 24 R23 N R24 R23 P R24 R25 R25 R23 Al R24 R23 R25 5 10dans lesquelles R22 est un atome d'hydrogène ou un groupe choisi parmi les groupes définis pour R4 à R7, et R23, R24 et R25 sont indépendamment des groupes alkylène, linéaires ou ramifiés, de préférence encore, à la formule : R23 N R24 R25 en particulier avec R23, R24 et R25 représentant -CH2-CH2-, - m, et m2 vont de 15 à 500, et mieux encore de 15 à 45, - X, et X2 représentent -(CH2)w-, et - Y représente -CH2-.
12. Composition selon l'une quelconque des revendications 1 à 11 dans laquelle le polymère siliconé comprend au moins un motif répondant à la formule suivante (VIII) : NH Y NH C U X i X U mR O O n R5 (VIII) dans laquelle les R4, R5, R6, R7, X, Y, m et n ont les significations données ci-dessus 15 pour la formule (I) dans la revendication 7 et U représente -O- ou -NH-, afin que : U C NH corresponde à un groupe uréthane ou urée, ou 20 Y représente un groupe cycloaliphatique ou aromatique en C5 à C12 pouvant être substitué par un groupe alkyle en C, à C15 ou un groupe aryle en C5 à C10, par exemple un radical choisi parmi le radical méthylène-4-4-biscyclohexyle, le radical dérivé de l'isophorone diisocyanate, les 2,4 et 2,6-tolylènes, le 1,5-naphtylène, le p-phénylène et le 4,4'-biphénylène méthane, ou Y représente un radical alkylène 25 en C, à C40, linéaire ou ramifié, ou un radical cycloalkylène en C4 à C12, ou Y représente une séquence polyuréthane ou polyurée correspondant à la condensation de plusieurs molécules de diisocyanate avec une ou plusieurs molécules de coupleurs du type diol ou diamine, répondant à la formule (IX) : Bi NH C U BZ U C NH Bi d (IX) dans laquelle B' est un groupe choisi parmi les groupes donnés ci-dessus pour Y, U est -O- ou -NH-, et B2 est choisi parmi : • les groupes alkylène en C, à C4o, linéaires ou ramifiés, o les groupes cycloalkylène en C5 à C12, éventuellement porteurs de substituants alkyle, par exemple un à trois groupes méthyle ou éthyle, ou alkylène, par exemple le radical du diol : cyclohexane diméthanol, o les groupes phénylène pouvant éventuellement être porteurs de substituants alkyles en C, à C3, et • les groupes de formule : R8 T dans laquelle T est un radical trivalent hydrocarboné pouvant contenir un ou plusieurs hétéroatomes tels que l'oxygène, le soufre et l'azote et R8 est une chaîne polyorganosiloxane ou une chaîne alkyle en C, à C50, linéaire ou ramifiée. 20
13. Composition selon l'une quelconque des revendications précédentes, caractérisée en ce que le polymère siliconé est choisi parmi les polymères comprenant au moins un motif répondant à la formule (Il) : 15 R4 Si O R6 miRùn Si O R' m2 dans laquelle R4 et R6, identiques ou différents, sont tels que définis ci-dessus pour la formule (I) en revendication 5, R10 représente un groupe tel que défini ci-dessus pour R4 et R6, ou représente le groupe de formule -X-G-R12 dans laquelle X et G sont tels que définis ci-dessus pour la formule (I) et R12 représente un atome d'hydrogène ou un groupe hydrocarboné, linéaire, ramifié ou cyclique, saturé ou insaturé, en C1 à C5 comportant éventuellement dans sa chaîne un ou plusieurs atomes choisis parmi O, S et N, éventuellement substitué par un ou plusieurs atomes de fluor et/ou un ou plusieurs groupes hydroxyle, ou un groupe phényle éventuellement substitué par un ou plusieurs groupes alkyle en C1 à C4, R11 représente le groupe de formule -X-G-R12ans laquelle X, G et R12 sont tels que définis ci-dessus, m1 est un nombre entier allant de 1 à 998, et m2 est un nombre entier allant de 2 à 500.
14. Composition selon l'une quelconque des revendications caractérisée en ce qu'elle comprend au moins un polymère bloc polydiméthylsiloxane de formule générale (I) possédant un indice m de valeur de l'ordre de
15. 15. Composition selon l'une quelconque des revendications précédentes, caractérisée en ce que la phase grasse comprend au moins un composé choisi parmi les huiles, les agents structurants de phase grasse et leurs mélanges. 25
16. Composition selon la revendication précédente, caractérisée en ce que la ou les huiles sont présentes en une teneur allant de 0,1 % à 30 % en poids, de préférence de 1% à 20 % en poids par rapport au poids total de la composition.
17. Composition selon l'une quelconque des revendications précédentes, caractérisée 30 en ce qu'elle comprend au moins un agent structurant de la phase grasse choisi parmi les cires, les polymères semi-cristallins, les corps gras pâteux, les gélifiants lipophiles et leurs mélanges.
18. Composition selon la revendication 17, caractérisée en ce que l'agent structurant 35 est présent en une teneur variant de 0,1 à 30 % en poids par rapport au poids total de la composition, en particulier de 0,5 à 15 à 50 %, plus particulièrement de 1 à 10% en poids.20
19. Composition selon l'une des revendications 1 à 16 caractérisée en ce qu'elle comprend moins de 10% en poids, de préférence moins de 7%, mieux moins de 5%, et encore mieux moins de 3% en poids de cire par rapport au poids total de la composition.
20. Composition selon l'une des revendications 1 à 16 caractérisée en ce qu'elle est exempte de cire.
21. Composition selon l'une quelconque des revendications précédentes, caractérisée en ce que la phase aqueuse est présente en une teneur allant de 1 % à 95 % en poids, par rapport au poids total de la composition, de préférence allant de 3 % à 80 % en poids, et préférentiellement allant de 5 % à 60 % en poids.
22. Composition selon la revendications 20 ou 21, caractérisée en ce qu'elle comprend un système émulsionnant.
23. Composition selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle comprend un polymère filmogène.
24. Composition selon la revendication 23, caractérisée en ce que le polymère filmogène est présent en une teneur en matières sèches allant de 0,1 % à 60 % en poids par rapport au poids total de la composition, de préférence de 0,5 % à 40 % en poids, et mieux de 1 % à 30 % en poids.
25. Composition selon l'une des revendications précédentes, caractérisée en ce qu'elle comprend une matière colorante.
26. Composition selon la revendication 27, caractérisée en ce que la matière colorante 30 représente de 0,01 à 30 % en poids par rapport au poids total de la composition.
27. Composition selon l'une des revendications précédentes, caractérisée en ce qu'elle est un mascara. 35
28. Procédé de maquillage des matières kératiniques, en particulier des fibres kératiniques, caractérisé en ce que l'on applique sur les matières kératiniques, une composition telle que définie selon l'une quelconque des revendications 1 à 27. 25
29. Procédé de préparation d'une composition comprenant une phase aqueuse et une phase grasse comprenant au moins un polymère siliconé comportant au moins un motif comprenant : 1) des polyorganosiloxanes comportant au moins deux groupes capables d'établir des interactions hydrogène, ces deux groupes étant situés dans la chaîne du polymère, et/ou 2) des polyorganosiloxanes comportant au moins deux groupes capables d'établir des interactions hydrogène, ces deux groupes étant situés sur des greffons ou ramifications, ledit procédé comprenant : - au moins une étape d'émulsification de la phase grasse dans la phase aqueuse de la composition, à une température supérieure ou égale à la température de transition solide ù liquide du polymère siliconé, et - au moins une étape de refroidissement contrôlé de l'émulsion obtenue, ledit refroidissement étant effectué sous cisaillement mécanique contrôlé.
30. Utilisation d'une composition selon l'une quelconque des revendications 1 à 27 pour obtenir un maquillage chargeant des matières kératiniques, en particulier des fibres kératiniques, et/ou un dépôt lisse et homogène sur les matières kératiniques.
31. Utilisation, dans une composition comprenant une phase aqueuse et une phase grasse, d'au moins un polymère comportant au moins un motif comprenant : 1) des polyorganosiloxanes comportant au moins deux groupes capables d'établir des interactions hydrogène, ces deux groupes étant situés dans la chaîne du polymère, et/ou 2) des polyorganosiloxanes comportant au moins deux groupes capables d'établir des interactions hydrogène, ces deux groupes étant situés sur des greffons ou ramifications, pour obtenir une composition apte à former un maquillage chargeant des matières kératiniques, en particulier des fibres kératiniques et/ou un dépôt lisse et homogène sur les matières kératiniques.
FR0553395A 2005-11-09 2005-11-09 Composition cosmetique comprenant un polymere silicone structurant de phase grasse caracterisee par une viscosite Expired - Fee Related FR2892930B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
FR0553395A FR2892930B1 (fr) 2005-11-09 2005-11-09 Composition cosmetique comprenant un polymere silicone structurant de phase grasse caracterisee par une viscosite
PCT/EP2006/068181 WO2007054494A1 (fr) 2005-11-09 2006-11-07 Composition cosmétique comprenant un polymère de type silicone servant à structurer une phase grasse, caractérisée par une viscosité

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0553395A FR2892930B1 (fr) 2005-11-09 2005-11-09 Composition cosmetique comprenant un polymere silicone structurant de phase grasse caracterisee par une viscosite

Publications (2)

Publication Number Publication Date
FR2892930A1 true FR2892930A1 (fr) 2007-05-11
FR2892930B1 FR2892930B1 (fr) 2012-03-09

Family

ID=36699195

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0553395A Expired - Fee Related FR2892930B1 (fr) 2005-11-09 2005-11-09 Composition cosmetique comprenant un polymere silicone structurant de phase grasse caracterisee par une viscosite

Country Status (1)

Country Link
FR (1) FR2892930B1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2922100A1 (fr) * 2007-10-11 2009-04-17 Oreal Procede de preparation de particules semi-solides a interet cosmetique
FR2949959A1 (fr) * 2009-09-11 2011-03-18 Oreal Ensemble cosmetique de maquillage et/ou de soin des matieres keratiniques
US9445974B2 (en) 2011-08-26 2016-09-20 Lvhm Recherche Mascara in powder form

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1177784A2 (fr) * 2000-08-04 2002-02-06 Unilever Plc Compositions antitranspiration
US20020048558A1 (en) * 1998-08-04 2002-04-25 Niemiec Susan M. Topical delivery systems for active agents
EP1266647A1 (fr) * 2001-06-14 2002-12-18 L'oreal Composition a base d'huile siliconée structurée sous forme rigide, notamment pour une utilisation cosmétique
US20030232030A1 (en) * 2002-06-12 2003-12-18 L'oreal Compositions containing at least one oil structured with at least one silicone-polyamide polymer, and at least one gelling agent and methods of using the same
US20030235553A1 (en) * 2002-06-12 2003-12-25 L'oreal Cosmetic compositions containing at least one silicone-polyamide polymer, at least one oil and at least one film-forming agent and methods of using the same
US20040170586A1 (en) * 2002-06-12 2004-09-02 L'oreal Cosmetic composition containing a polyorganosiloxane polymer
EP1516611A1 (fr) * 2003-08-06 2005-03-23 L'oreal Composition cosmétique contenant des dispersions de cires dans des huiles volatiles.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020048558A1 (en) * 1998-08-04 2002-04-25 Niemiec Susan M. Topical delivery systems for active agents
EP1177784A2 (fr) * 2000-08-04 2002-02-06 Unilever Plc Compositions antitranspiration
EP1266647A1 (fr) * 2001-06-14 2002-12-18 L'oreal Composition a base d'huile siliconée structurée sous forme rigide, notamment pour une utilisation cosmétique
US20030232030A1 (en) * 2002-06-12 2003-12-18 L'oreal Compositions containing at least one oil structured with at least one silicone-polyamide polymer, and at least one gelling agent and methods of using the same
US20030235553A1 (en) * 2002-06-12 2003-12-25 L'oreal Cosmetic compositions containing at least one silicone-polyamide polymer, at least one oil and at least one film-forming agent and methods of using the same
US20040170586A1 (en) * 2002-06-12 2004-09-02 L'oreal Cosmetic composition containing a polyorganosiloxane polymer
EP1516611A1 (fr) * 2003-08-06 2005-03-23 L'oreal Composition cosmétique contenant des dispersions de cires dans des huiles volatiles.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2922100A1 (fr) * 2007-10-11 2009-04-17 Oreal Procede de preparation de particules semi-solides a interet cosmetique
FR2949959A1 (fr) * 2009-09-11 2011-03-18 Oreal Ensemble cosmetique de maquillage et/ou de soin des matieres keratiniques
US9445974B2 (en) 2011-08-26 2016-09-20 Lvhm Recherche Mascara in powder form

Also Published As

Publication number Publication date
FR2892930B1 (fr) 2012-03-09

Similar Documents

Publication Publication Date Title
EP2248508B1 (fr) Emulsion cire-dans-eau comprenant l'association d'un derive d'acide glutamique et d'un alkylpolyglycoside
FR2902331A1 (fr) Mascara comprenant au moins 21% de cire et une charge
WO2010063952A2 (fr) Procede de maquillage des cils ou sourcils utilisant une resine de siloxane et un compose particulier et kit associe
WO2009080952A2 (fr) Procédé cosmétique de maquillage et/ou de soin utilisant une résine de siloxane et une huile non volatile
EP1785128B1 (fr) Composition de revêtement des cils sous forme de mousse
FR2905068A1 (fr) Procede de maquillage des cils et ensemble de conditionnement.
FR2915891A1 (fr) Composition sous forme de mousse comprenant un polymere silicone
WO2005013926A2 (fr) Retention member for connector system
EP1674076A2 (fr) Composition cosmétique pour le maquillage résistante à l'eau et facilement démaquillable
FR2910279A1 (fr) Composition de revetement des fibres keratiniques comprenant un copolymere ethylene/acetate de vinyle.
EP1704896A1 (fr) Kit de maquillage et/ou de soin susceptible de procurer un effet volumateur
EP1745771A1 (fr) Procédé de revêtement des cils
EP1561451A1 (fr) Composition cosmétique de maquillage pour les fibres kératiniques chargeante
FR2915892A1 (fr) Composition sous forme de mousse comprenant un structurant polymerique
FR2936418A1 (fr) Procede de maquillage des cils et ensemble de conditionnement.
WO2011120843A2 (fr) Composition de maquillage des cils ou des sourcils, combinaison et procédés
FR2925849A1 (fr) Procede cosmetique procurant un effet allongeant des cils et kit correspondant a base d'un polymere filmogene
FR2904534A1 (fr) Procede de maquillage ou de soin des matieres keratiniques avec polyrotaxanes non reticule
US20070292381A1 (en) Composition and process for coating keratin fibers
FR2892930A1 (fr) Composition cosmetique comprenant un polymere silicone structurant de phase grasse caracterisee par une viscosite
EP1695694A2 (fr) Composition de revêtement des fibres kératiniques comprenant une cire aprotique
FR2881642A1 (fr) Composition de revetement des fibres keratiniques comprenant une cire et un alcool gras
WO2007054494A1 (fr) Composition cosmétique comprenant un polymère de type silicone servant à structurer une phase grasse, caractérisée par une viscosité
FR2936419A1 (fr) Composition de maquillage des cils et ensemble de conditionnement.
FR2891739A1 (fr) Procede de maquillage ou de soin des matieres keratiniques avec monomere electrophile

Legal Events

Date Code Title Description
ST Notification of lapse

Effective date: 20140731