FR2529799A1 - Procede de recuperation des ions potassium a partir de saumures naturelles par un procede d'evaporation naturelle - Google Patents

Procede de recuperation des ions potassium a partir de saumures naturelles par un procede d'evaporation naturelle Download PDF

Info

Publication number
FR2529799A1
FR2529799A1 FR8212057A FR8212057A FR2529799A1 FR 2529799 A1 FR2529799 A1 FR 2529799A1 FR 8212057 A FR8212057 A FR 8212057A FR 8212057 A FR8212057 A FR 8212057A FR 2529799 A1 FR2529799 A1 FR 2529799A1
Authority
FR
France
Prior art keywords
basin
carnallite
salts
precipitated
natural
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR8212057A
Other languages
English (en)
Other versions
FR2529799B1 (fr
Inventor
Ali Attya
Adel M Nif
Khelil Mouelhi
Michel Bichara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ALSACE MINES POTASSE
Original Assignee
ALSACE MINES POTASSE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ALSACE MINES POTASSE filed Critical ALSACE MINES POTASSE
Priority to FR8212057A priority Critical patent/FR2529799A1/fr
Publication of FR2529799A1 publication Critical patent/FR2529799A1/fr
Application granted granted Critical
Publication of FR2529799B1 publication Critical patent/FR2529799B1/fr
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D3/00Halides of sodium, potassium or alkali metals in general
    • C01D3/04Chlorides
    • C01D3/06Preparation by working up brines; seawater or spent lyes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PROCEDE DE TRAITEMENT PAR EVAPORATION NATURELLE FRACTIONNEE DANS PLUSIEURS BASSINS SUCCESSIFS DE SAUMURES DONT LES SELS PRECIPITENT DANS L'ORDRE SUIVANT: CHLORURE DE SODIUM, KAINITE, CARNALLITE, BISHOFITE. SELON CE PROCEDE ON PRECIPITE DE LA KAINITE CARNALLITIQUE ET UNE CARNALLITE CONTENANT MOINS DE 20 DE SELS SULFATES ET ON RECUPERE DE FACON CONNUE LES IONS POTASSIUM, TOUT EN OBTENANT EN FIN DE TRAITEMENT DES PRODUITS DE TENEUR EN POTASSIUM ET DE CARACTERISTIQUES ACCEPTABLES COMMERCIALEMENT.

Description

La présente invention concerne un procédé de récupération des ions potassium à partir de saumures naturelles par un procédé d'évaporation naturelle.
Il existe de nombreuses saumures naturelles qui ont pour la plupart une concentration élevée en chlorure de sodium et contiennent par ailleurs des chlorures et des sulfates d'autres alcalins et/ou d'alcalino-terreux : potassium, magnésium et éventuellement calcium.
Au cours de l'évaporation solaire d'un certain nombre de ces saumures les sels précipitent dans l'ordre suivant
chlorure de sodium
kalnite : sel double de formule KCl, MgSO4, 2,75H20 ou
sulfate de magnésium
carnallite : sel double de formule KCI, MgCl2, 6H20
et bishofite : sel de formule MgCl2, 6H2 0.
Les saumures qui peuvent cristalliser selon le schéma cidessus sont le plus souvent celles dont la coniposition se trouve 2 l'intérieur des plages HH'V et HH'XR dans le diagramme d'équilibre à 250C, K2, SO4, Mg donné sur la figure 1. En effet on a constaté que dans le domaine HH'XR il y a le plus souvent une sursaturation métas- table des saumures XIgSO4 xH20 qui dure des mois et dans la pratique l'astrakanite de formule MgSO, Na2S04, 4H20 ne précipite pas.
Cependant il faut tenir compte du fait que le chemin de cr s- tallisation dépend de nombreux paramètres. Il dépend de la teneur de la saumure en ions autres que K2, Mg, S04 et des conditions d-'évapo- ration. D'autre part le temps nécessaire pour atteindre l'équilibre est plus ou moins long. De plus certaines phases métastables peuvent persister dans le temps. On trouve par exemple una saumure dont les sels précipitent dans l'ordre donné ci-dessus à Zarzis en Tunisie.
Pour effectuer l'évaporation naturelle de la saumure on opte de façon habituelle dans plusieurs bassins ou groupes de bassin. Dans la suite du texte le terme bassin désignera soit un bassin, soit un groupe de bassins. Par conséquent on cherche à obtenir du chlorure de sodium dans un premier bassin, de la kaïnite accompagnée de plus cu moins de sulfate de magnésium dans un deu:sième bassin et de la carnallite dans un troisiene bassin. Mais dans la pratiquez il est difficile de contrôler totI1-..nt 'es dépôts dans les différent bassins.
En particulier il précipite du chlorure de sodium dans tous les bassins. De plus on précipite le plus souvent, en plus du chlorure oe sodium, un mélange de kaïnite, sulfates de magnésium et de carnallite dans le deuxième bassin et de kalnite, carnallite, sulfates de magnésium et bishofite dans le troisième bassin.
On craignait jusqu'à présent que le fait de traiter des melanges ne soit gênant. C'est pourquoi, jusqu a présent on proposait d'effectuer une désulfatation partielle ou totale avant cristallisation des sels carnallitiques. D'autre part il est connu que la présence de carnallite, donc de chlorure de magnésium gêne la conversion de ka;ni- te en schoenite > .la schoenite servant le plus souvent de matière pre mière à la préparation de K2S04. En effet la conversion de kainite- en schoenite ne se fait de façon satisfaisante que si ia concentration en
MgCl2 test pas trop élevée.
La présente invention concerne un procédé pour la recupera- tion des ions potassium par évaporation naturelle fractionnée dans plusieurs bassins successifs de saumures dont les sels précipitent dans l'ordre suivant : chlorure de sodium, kalnite, carnallite, bisb.o- fite caractérisé par le fait que l'on introduit la saumure a traiter dans un premier bassin où on précipite du chlorure de sodium et éventuellement du sulfate de calcium, que lvon introduit la saumure obtenue dans ce premier bassin dans un second bassin où on précipite par évaporation de la kalnite contenant de la carnallite,que l'on soutire la saumure obtenue dans ce second bassin à une densité telle que la carnallite précipitée dans le troisième bassin contienne moins de 20 % de sels sulfatés et que l'on traite de façon connue la kaïnite carnal litique récoltée dans le second bassin et la carnallite contenant moins de 20 % de sels sulfatés obtenue dans le troisième bassin pour récupérer les ions potassium.
En effet on a constaté que l'on peut traiter de la kaïnite carnallitique et des sels de carnallite contenant jusqu'à 20 % de sels sulfatés sous forme de sulfates hydratés de magnésium et de katni- te, pour récupérer les ions potassium, tout en obtenant, en fin de traitement des produits de teneur en potassium et de caractéristiques acceptables commercialement. La conduite des opérations est ainsi facilitée et la récupération des sels potassiques se fait sans perte de rendement.
La carnallite est décomposée de façon connue pour précipiter
KCl et NaCl (sylvinite artificielle) en utilisant une eau-mère ayant une teneur on MgCl2 telle que la kaïnite soit décomposée sans se transformer on schoenite. La teneur on MgCl2 de l'eau-mère utilisée est, de.
préférence, supérieure à 45 moles de MgCJ2 par 1000 moles de H20. Dans ces conditions, le KCI de la ka mite est pratiquement entièrement preci.
pité, tandis que le sulfate de magnésium passe partiellement on solution. La concentration optimale en MgCl2 de la solution est fonction do la teneur on MgSO4 de la carnallite et on la contrôle de façon à Obtenir la solubilisation maximale de ce sulfate. Après décomposition de la carnallite, on obtient une pulpe contenant KCl, NaCi et MgS04 non dissout. On concentre ensuite la pulpe obtenue soit par dissolution fractionnée, soit par flottation. Dans ce dernier cas le sulfate de magnésium se retrouve dans les plongeants (NaCl) et peut etre en voyé à l'usine de traitement de la kasnite.
Les sels sulfatés (kalnite, sulfates de magnésium hydratés) contenant de la carnallite sont d'abord transformés on schoenite de formule K2SO4, MgSO4, 6H20 par traitement à l'aide d'une eau-sere. On ajuste la teneur des eaux-mères en MgCl2, on fonction de la composition du sel kaïnitique traité, de façon que cette teneur ne dépasse pas 35-40 moles do MgCi2 pour 1000 moles de 1120 > afin de favoriser la conversion des sels obtenus on schoenite. La schoenite obtenue est ensuite traitée pour récupérer le sulfate de potassium. Elle peut etre décomposée à une température de 55 C on présence d'eau.La réaction fournit un précipite de K2SO4 et une eau-mère riche on sulfate de magnésium. Elle peut s'écrire
K2S04, MgS04, 6H20 + xH2O - > K2SO4 (solide) + MgS04 + (x+6) H20
La conversion de schoenite on sulfate de potassium peut également être effectuée à température ambiante par addition de chlorure de potassium selon la réaction
K2S04, MgSO4, 6H20 + 2KCl- > 2K2S04 + MgCl2 + 6 H20
Selon un mode de réalisation préféré les eaux-mères provenant de la conversion des sels kaïnitiques on schoenite sont concentrées de façon à minimiser les pertes en ions valorisables, et ce îles provenant dc la fabrication do sulfate de potassium à partir de schoenite sont concen triées do fanon à minimiser les pertes on ions valorisables.
Exemple :
On traite dans trois bassins d'évaporation naturelle la saumure existant à Zarzis (Tunisie).
Cette saumure a en moyenne la composition suivante :
Mg++ 49,9 g îons/litre
Ca++ 0,4
K 7,7
Na+ 45,3
SO4= 28,2
Ci- 201,6
Br 2,5
H20 907,2
densité 1,243
Cette saumure est représentée par le point Ao sur la figure 1.
On fait précipiter du chlorure de sodium dans un premier bassin puis on introduit la saumure obtenue dans un second bassin où on précipite un sel kainitique ayant en moyenne la composition suivante
Kaïnite 9,6 % en poids
carnallite 9,8 %
NaCi 75,5 %
1120 5,1 % correspondant a la composition ionique suivante :: Mg 1,81 Z
K 1,29 Z
Na 29,69 Z
S04 3,76 Z
Cl 50,94 Z
1120 10,87 Z
Ce sel est traité par une eau-mère ayant la composition suivante
Mg 28,7 moles pour 1000 moles H2O
K 5,41
Na 7,38 S04 29,19 " " "
Cl 12,3 " " "
de façon à obtenir après conversion de la schoenite une eau-mère
ayant la composition suivante::
MgSO4 15,3 moles pour 1000 moles H20
MgCl2 34,5 moles pour ]000 moles H20
K2C12 11,6 moles
Na2Cl2 16,4 moles
Au cours de cette conversion la carnallite présente est décomposée, le Kcl libéré et non dissout se convertit en schoenite par réaction avec le sulfate de magnésium contenu dans l'eau-mère.
Le sel de conversion contient 9 z de schoenite et 90 z de Nazi. Le taux de conversion est supérieur à 95 %.
L'eau-mère obtenue après précipitation du sel kaïnitique a une densité de 1,29. Elle est envoyée dans un troisième bassin où on précipite un sel carnallitique ayant la composition suivante:
Mg 28,70 pour 1000 moles H2O
K2 5,41
Na2 7,38 "
SO4 29,19 "
Cl9 12,30 "
Ce sel est décomposé en deux stades à contre courant avec une eau-mère contenant, au premier stade 50-55 moles de NgCI2 par 1000 moles de H2O. Après réaction on obtient une ea2-mere qui a la composition suivante
MgC12 33,20 g/ 100 g d'H2O
MgSO4 6,10 g
KCl 5,35 g
NaCI 3,63 g
Cette eau-mère est renvoyée au bassin de dépôt des sels carnalliti quos.Au deuxième stade on utilise une eau-mère dont la teneur en
MgCl2 est ajustée à l'entrée à 40-45 moles MgC12/1000 moles 1120 pour fournir l'eau-mere intermédiaire à 50-55 moles MgCl2/1000 moles H2O.
Après décomposition de la carnallite, flottation et lavage de la sylvinite précipitée on obtient un concentré à 95 % de KCI et un résidu qui contient 2 à 5 % de MgS04, le complément de MgSO4 se trouvant dans l'eau-mère de rejet. On a donc évité la formation de schoenite qui aurait fourni lors de sa décomposition du H2SO4 que l'on aurait retrouvé dans le concentré flotté. Il faut remarquer que l'on est amené å ajouter d'avantage d'eau pour solubiliser tout le IgC]2 pour le traitement de la carnallite sulfate lu ait de la plus fai ble concentration finale en MgCl2. Cependant la perte en KCl dans cette eau-mère finale n'est pas supérieure a celle que l'on constate habituellement lorsque l'on traite une carnallite non sulfatée, vu la composition globale de cette eau-mère. De plus la précipitation du KCl provenant de la kaïnite contenue dans le sel c?rnallitique se traduit par un rendement accru en KCl : 75 Z au lieu de 70 Z en l'absence de ce sel dans des conditions comparables.

Claims (1)

  1. R E V E N D I C A T I O N
    Procédé pour la récupération des ions potassium par évaporation naturelle fractionnée dans plusieurs bassins successifs de saumures dont les sels précipitent dans l'ordre suivant: chlorure de sodium, kaïnite, carnallite, bishofite caractérisé par le fait que l'on introduit la saumure à traiter dans un premier bassin où on précipite du chlorure de sodium et éventuellement du sulfate de calcium, que l'on introduit la saumure obtenue dans ce premier bassin dans un second bassin où on précipite par évaporation de la kalnite contenant de la carnallite, que l'on soutire la saumure obtenue dans ce second bassin à une densité telle que la carnallite précipitée dans le troisième bassin contienne moins de 20X de sels sulfatés et que l'on traite de façon connue la kalnite carnallitinue récoltée dans le second bassin et la carnallite contenant moins de 20% de sels sulfatés obtenue dans le troisième bassin pour récupérer les ions potassium,
FR8212057A 1982-07-09 1982-07-09 Procede de recuperation des ions potassium a partir de saumures naturelles par un procede d'evaporation naturelle Granted FR2529799A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR8212057A FR2529799A1 (fr) 1982-07-09 1982-07-09 Procede de recuperation des ions potassium a partir de saumures naturelles par un procede d'evaporation naturelle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR8212057A FR2529799A1 (fr) 1982-07-09 1982-07-09 Procede de recuperation des ions potassium a partir de saumures naturelles par un procede d'evaporation naturelle

Publications (2)

Publication Number Publication Date
FR2529799A1 true FR2529799A1 (fr) 1984-01-13
FR2529799B1 FR2529799B1 (fr) 1984-12-14

Family

ID=9275834

Family Applications (1)

Application Number Title Priority Date Filing Date
FR8212057A Granted FR2529799A1 (fr) 1982-07-09 1982-07-09 Procede de recuperation des ions potassium a partir de saumures naturelles par un procede d'evaporation naturelle

Country Status (1)

Country Link
FR (1) FR2529799A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1514676A (fr) * 1966-03-16 1968-02-23 Procédé de production de chlorure de potassium, sulfate de potassium et sulfate de sodium
US3589871A (en) * 1968-06-10 1971-06-29 Great Salt Lake Minerals Method for the production of high-grade kainite
US3592615A (en) * 1968-08-28 1971-07-13 Great Salt Lake Minerals Method for producing potassium salts by solar evaporation of natural brines

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1514676A (fr) * 1966-03-16 1968-02-23 Procédé de production de chlorure de potassium, sulfate de potassium et sulfate de sodium
US3589871A (en) * 1968-06-10 1971-06-29 Great Salt Lake Minerals Method for the production of high-grade kainite
US3592615A (en) * 1968-08-28 1971-07-13 Great Salt Lake Minerals Method for producing potassium salts by solar evaporation of natural brines

Also Published As

Publication number Publication date
FR2529799B1 (fr) 1984-12-14

Similar Documents

Publication Publication Date Title
CA1129174A (fr) Methode d'extraction des produits chimiques en presence dans les eaux salines
US3528767A (en) Production of potassium chloride,potassium sulfate and sodium sulfate from brines and the like containing potassium,chloride and sulfate
FR2523114A1 (fr) Procede de fabrication de sulfate de potassium a partir de solutions contenant du chlorure de magnesium et de chlorure de potassium
JPH04295009A (ja) 塩化ナトリウムの製造方法
CA2464642A1 (fr) Extraction du chlorure de sodium et des autres sels contenus dans de la saumure
US7041268B2 (en) Process for recovery of sulphate of potash
JP4555227B2 (ja) 塩化カリウム及びKClが富化した食用塩の同時回収
FR2529799A1 (fr) Procede de recuperation des ions potassium a partir de saumures naturelles par un procede d'evaporation naturelle
CA2284969A1 (fr) Methode de purification du sulfate d'ammonium
AU2003300719A1 (en) Process for recovery of sulphate of potash
CN101172686A (zh) 一种卤水除去硫酸钙的方法
US789671A (en) Process of making alkaline fluosilicates.
CN107352560B (zh) 一种高镁低钾硫酸盐型卤水的盐田摊晒工艺
PT98318B (pt) Processo para a separacao de sulfato de um componente cromio contaminante
DE10256046A1 (de) Verfahren zur Herstellung von Natriumchlorid und Bittersalz aus Bittern
BR112019013541B1 (pt) Processo para a preparação de fertilizante potássico
KR100804196B1 (ko) 간수로부터 저 나트륨 염의 회수를 위한 공정
CA1179147A (fr) Procede d'extraction de l'arsenic a partir de solutions contenant des carbonates, sulfates, eventuellement de l'hydroxyde alcalin ainsi que l'un au moins des metaux vanadium uranium et molybdene
US2082989A (en) Process for the extraction of magnesium and bromine from sea water
FR2594107A1 (fr) Procede de preparation de chlorate de metal alcalin
CN1275857C (zh) 盐田法生产硫酸钾的方法
FR2573413A1 (fr) Procede de preparation de sulfate de potassium utilisable notamment dans les engrais a partir de saumures contenant des ions sulfate et potassium
RU2005107978A (ru) Способ получения гранулированного хлорида кальция при комплексной переработке природных рассолов
RU2056356C1 (ru) Способ извлечения сульфата магния
RU2211188C1 (ru) Способ комплексной переработки йодобромсодержащих натрийхлоридных вод

Legal Events

Date Code Title Description
ST Notification of lapse