FI112012B - Lähetystehon säätö radiojärjestelmässä - Google Patents

Lähetystehon säätö radiojärjestelmässä Download PDF

Info

Publication number
FI112012B
FI112012B FI990095A FI990095A FI112012B FI 112012 B FI112012 B FI 112012B FI 990095 A FI990095 A FI 990095A FI 990095 A FI990095 A FI 990095A FI 112012 B FI112012 B FI 112012B
Authority
FI
Finland
Prior art keywords
errors
pseudo
signal
transmission power
error
Prior art date
Application number
FI990095A
Other languages
English (en)
Swedish (sv)
Other versions
FI990095A (fi
FI990095A0 (fi
Inventor
Jarmo Maekinen
Jari Rahkala
Original Assignee
Nokia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Corp filed Critical Nokia Corp
Publication of FI990095A0 publication Critical patent/FI990095A0/fi
Priority to FI990095A priority Critical patent/FI112012B/fi
Priority to CNB008029059A priority patent/CN1134121C/zh
Priority to DE60044425T priority patent/DE60044425D1/de
Priority to AU22967/00A priority patent/AU2296700A/en
Priority to AT00901636T priority patent/ATE468722T1/de
Priority to PCT/FI2000/000038 priority patent/WO2000044107A2/en
Priority to JP2000595437A priority patent/JP2002535914A/ja
Priority to EP00901636A priority patent/EP1142152B1/en
Publication of FI990095A publication Critical patent/FI990095A/fi
Priority to US09/909,039 priority patent/US7647062B2/en
Application granted granted Critical
Publication of FI112012B publication Critical patent/FI112012B/fi
Priority to JP2006108258A priority patent/JP2006211719A/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/10Open loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/20TPC being performed according to specific parameters using error rate

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Transmitters (AREA)
  • Radio Relay Systems (AREA)

Description

112012 Lähetystehon säätö radiojärjestelmässä Keksinnön ala 5 Keksintö liittyy yleisesti radiojärjestelmään. Tarkemmin sanottuna, keksintö liittyy automaattiseen lähetystehon säätöön radiojärjestelmässä. Keksinnön pääasiallisia sovelluskohteita ovat kiinteät radiolinkit.
Keksinnön tausta 10 Kiinteitä digitaalisia radiolinkkiyhteyksiä rakennettaessa on tärkeää, että yhteyden katkeamisen todennäköisyys pysyy riittävän pienenä. Laitteiden luotettavuuden lisäksi tämä todennäköisyys riippuu radiotiellä esiintyvistä ilmiöistä, jotka vaikuttavat radioaaltojen etenemiseen. Tällaisia ilmiöitä ovat mm.: 15 1. normaali vapaan tilan vaimennus, 2. sateen aiheuttama, taajuuden ja ajan suhteen hitaasti muuttuva vaimennus, 3. ilmakehän taitekertoimen muutoksista tai maastoesteiden heijastumista aiheutuva signaalin kulkutien jakautuminen kahdeksi tai useam- 20 maksi reitiksi (monitie-eteneminen) ja näiden reittien välisestä vuorovaiku- * · · ‘.‘.V tuksesta johtuva taajuusselektiivinen vaimennus, ja 4. vastaanottimeen toisilta radiolinkkijänteiltä tai toisista laitteista • · saapuvat häiriöt.
• « '···* Näin ollen tulisi lähettimen lähetystehoa lisätä väliaikaisesti niin, v : 25 että ilmiöistä 2 ja 3 erikseen tai yhdessä aiheutuva signaalin lisävaimennus * * · ·' ei pysty liiallisesti huonontamaan vastaanotetun signaalin laatua. Toisaalta suuri lähetysteho kuitenkin lisää häiriöitä viereisillä kanavilla ja radiojänteillä. Tämä ilmiöstä 4 johtuva lisääntynyt häiriö saa aikaan muiden vastaanottimi- * · · ·’’*,· en herkkyyden heikkenemistä. Lisäksi suuri lähetysteho estää tiheiden »· · 30 radiolinkkiverkkojen toteutuksen ja radiolinkkijärjesteimiä varten varattujen • * · taajuuksien tehokkaan hyödyntämisen.
·;·' Automaattisen tehonsäädön tehtävä radiolinkkijärjestelmässä on : Y: säätää jatkuvasti lähettimen lähetystehoa vastaanotetun signaalin laatuun vaikuttavien muutosten mukaisesti niin, että virheetön vastaanotto voidaan 35 taata niin hyvin kuin mahdollista.
Tehonsäätömekanismi on perinteisesti toteutettu suorittamalla ra- 2 112012 diojänteen kaukopäässä vastaanotetulle signaalille signaalitason mittaus. Tämän jälkeen lähetetään mitattua signaalitasoa edustava signaali paluukanavaa pitkin lähettimelle ja lähetystehoa säädetään niin, että vastaanotetun signaalin taso pysyy oleellisesti vakiona vastaanottopäässä.
5 Tällaisen tehonsäätöjärjestelmän merkittävä puute on se, että se ei pysty ottamaan huomioon ulkoisten häiriöiden (ilmiöt 3 ja 4) vaikutuksia signaalin laatuun.
Jotkin muut tunnetut tehonsäätöjärjestelmät perustuvat radiojän-teen vastaanottopäässä tehtävään bittivirhemittaukseen. Tämän mittauksen 10 perusteella säädetään vastakkaisen pään lähetystehoa niin, että ennalta määrättyä virhekynnystä ei ylitetä vastaanottopäässä. Tällä tavoin voidaan ottaa huomioon ulkoisen häiriön vaikutus tehonsäädössä, ainakin jossakin määrin.
Bittivirhemittauksen lisäksi tehonsäätö voi perustua muihin vas-15 taanottopäässä tehtäviin mittauksiin. Tällainen monimutkaisempi tehonsää-töjärjestelmä kuvataan julkaisussa EP-B1-0428099. Tässä tehonsäätömeka-nismissa vastaanotin estimoi bittivirhesuhdetta ja vastaanotetun signaalitason muutosnopeutta. Jos joko virhesuhde-estimaatti, tai, vaihtoehtoisesti, vastaanotetun signaalitason muutosnopeus ylittää vastaavan ennalta määrätyn raja- I » · ’.' 20 arvon, lähetystehoa nostetaan väliaikaisesti arvoon, joka on selvästi korkeampi kun normaali lähetysteho, mutta alhaisempi kuin lähetystehon maksimi.
Toisaalta, jos sekä virhesuhde-estimaatti että vastaanotetun signaalitason ’ muutosnopeus ylittävät samanaikaisesti vastaavat ennalta määrätyt kynnysar- v ; vot, lähetystehoa kasvatetaan maksimiarvoonsa ennalta määrätyksi ajaksi.
• * · v ·’ 25 Tämä tehdään riippumatta siitä, mikä on vastaanotetun signaalin taso. Kun ennalta määrätty aika on kulunut, lähettimen tehoa pienennetään vähitellen kunnes saavutetaan tietty signaalitaso, kunnes bittivirheitä esiintyy uudelleen tai kunnes vastaanotetun signaalitason muutosnopeus ylittää vastaavan \ kynnysarvon.
30 Yllämainittuihin tunnettuihin, bittivirheiden valvontaan perustuviin tehonsäätömekanismeihin liittyvä puute on se, että bittivirheet heikentävät : Y: signaalin laatua ennen kuin lähetintehoa voidaan nostaa. Julkaisussa EP-B1- ' . * 0428099 kuvatun kaltaisissa järjestelmissä voi lisäksi suuri tai täysi lähetysteho olla enemmän kuin mitä todellisuudessa tarvitaan virheettömään vastaanot-35 toon. Näin ollen viereisille radiokanaville tai -järjestelmille saatetaan synnyttää 112012 tarpeetonta häiriötä.
Keksinnön yhteenveto
Esillä olevan keksinnön tarkoituksena on eliminoida edellä kuvatut 5 epäkohdat ja saada aikaan tehonsäätömekanismi, joka pystyy ottamaan huomioon kaikki edellä mainitut, radioyhteyksien suorituskykyyn vaikuttavat ilmiöt, ja joka pystyy myös reagoimaan signaalin laadun heikkenemiseen ennen kuin bittivirheitä alkaa esiintyä.
Tämä päämäärä saavutetaan itsenäisissä patenttivaatimuksissa 10 määritellyllä ratkaisulla.
Keksintö perustuu pseudovirheiksi kutsuttujen tapahtumien ilmaisuun. Tässä yhteydessä “pseudovirhe” viittaa päätöksentekohetkeen, jolloin melkein tapahtui bitti- tai symbolivirhe. Toisin sanoen, “pseudovirhe” viittaa ajanhetkiin, jolloin todellakin tehtiin oikea päätös, mutta jolloin oikean päätök-15 sen marginaali oli pienempi kuin tietty raja-arvo niin, että todellinen virhe oli lähellä. Keksinnön ajatuksena on ilmaista nämä pseudovirheet vastaanottopäässä sekä vähentää ja ylläpitää lähetystehoa niin alhaisella tasolla kuin mahdollista siten, että pseudovirheitä esiintyy vain melko pitkin väliajoin. Tämä saadaan aikaan vähentämällä lähetystehoa korkeammasta alkuarvosta niin 20 kauan, että pseudovirheitä alkaa esiintyä ja ylläpitämällä sen jälkeen tehoa : * oikealla tasolla lisäämällä tehoa pienellä määrällä, kun pseudovirheitä havai-‘ taan ja vähentämällä tehoa, jos pseudovirheiden määrä pysyy ennalta määrä tyn kynnyksen alapuolella.
v : Keksinnön mukaisen ratkaisun avulla voidaan lähetysteho säätää .·'.* 25 kaikissa olosuhteissa tasolle, joka on juuri sen tason yläpuolella, jossa todelli set virheet alkavat esiintyä, riippumatta todellisesta vastaanotetusta signaali-:***: tasosta (ellei signaalitaso ole samanaikaisesti säätökriteeri). Järjestelmä . · . pystyy siis reagoimaan ennen kuin bittivirheet saavuttavat kohteensa. Suuren •t lähetystehon jaksoja, jotka voisivat aiheuttaa tarpeetonta häiriötä viereisille 30 järjestelmille tai kanaville, ei myöskään tarvita.
.* Keksinnön lisäetu on se, että tehonsäätöjärjestelmä voidaan ottaa ;V: pienin kustannuksin käyttöön olemassa olevissa radiolinkkipäätteissä. Tätä , ; kuvataan tarkemmin jäljempänä.
35 4 112012
Kuvioluettelo
Seuraavassa keksintöä ja sen edullisia toteutustapoja kuvataan tarkemmin esimerkinomaisesti viitaten oheisiin piirustuksiin, joissa kuvio 1 esittää keksinnön mukaista radiolinkkijärjestelmää yleisellä tasolla, 5 kuvio 2 on vuokaavio, joka esittää esillä olevan keksinnön mukaisen tehon-säätömenetelmän yhtä toteutustapaa, kuvio 3 on vuokaavio, joka havainnollistaa esillä olevan keksinnön mukaisen tehonsäätömenetelmän toista toteutustapaa, kuvio 4 esittää yhtä toteutustapaa pseudovirheiden monitorointiin pystyvää 10 linkkipäätevastaanotinta varten, kuvio 5 havainnollistaa linkkipäätteen lähetintä, joka vastaa kuvion 4 vastaanotinta, kuvio 6 esittää vaihtoehtoista toteutustapaa pseudovirheiden monitorointiin pystyvälle linkkipäätevastaanottimelle, ja 15 kuvio 7 havainnollistaa pseudovirheiden ilmaisua kuvion 6 vastaanottimessa.
Keksinnön yksityiskohtainen selitys
Seuraavassa keksintöä kuvataan käyttäen esimerkkinä radiolinkkijär-,·, jestelmää, joka muodostaa kaksisuuntaisen kaksipisteyhteyden (point-to- I · '.V 20 point). Kuvio 1 havainnollistaa tämän tyyppistä radiolinkkijäijestelmää yleisellä tasolla. Järjestelmä käsittää kaksi radiolinkkipäätettä, A ja B, jotka kommuni- ;;;* koivat toistensa kanssa radiotien RP kautta. Kuviossa käytetään samoista osista samoja viitenumeroja, paitsi että radiolinkkipäätteen A tapauksessa : : viitenumero sisältää kirjaimen a ja radiolinkkipäätteen B tapauksessa kirjaimen I · v ·* 25 b. Kummankin päätteen lähetin (11a ja 11b) ja vastaanotin (12a ja 12b) on kytketty jakosuodattimen tai vaihtoehtoisesti kytkimen (13a ja 13b) kautta : ’ antennijärjestelmään (14a ja 14b). Jakosuodattimia käytetään, kun halutaan •"': kaksisuuntainen yhteys siten, että liikenne kulkee samanaikaisesti molempiin \ suuntiin. Jakosuodattimien tehtävänä on erottaa lähettimen ja vastaanotti- * i ► 30 men signaalit toisistaan. Jakosuodattimet voidaan korvata kytkimillä linkki-järjestelmässä, jossa käytetään vuoroittaista (time division duplex) liikennöintiä.
,; Kumpaankin linkkipäätteeseen liittyy lisäksi ohjaus- ja mittausyksik kö (15a ja 15b) linkkipäätteiden ohjaamiseksi ja järjestelmään liittyvien 35 mittausten suorittamiseksi, mikä voi käytännössä merkitä useita erilaisia 5 112012 tehtäviä. Keksinnön kannalta kummankin ohjausyksikön oleellinen toiminnallisuus on kuitenkin se, että ohjausyksikkö ohjaa radiojänteen samassa päässä olevan lähettimen lähetystehoa ja lähettää tehonsäätösanoman radiojänteen vastakkaiseen päähän.
5 Molemmat vastaanottimet käsittävät lisäksi signaalin valvontaelimet (SMa ja SMb) vastaanotetun signaalin laadun valvomiseksi. Keksinnön mukaisesti nämä signaalin valvontaelimet valvovat ainakin pseudovirheiden esiintymistä vastaanottimessa. Keksinnön edullisissa toteutustavoissa käytetään pseudovirheiden esiintymisen lisäksi muitakin tehonsäätökriteere-10 jä. Tämän takia näissä toteutustavoissa vastaanottimelta tuleva signaali PE voi sisältää myös muuta mittaustietoa kuin pseudovirheiden esiintymistä koskevia tietoja. Näitä edullisia toteutustapoja kuvataan jäljempänä sen jälkeen, kun on kuvattu pseudovirheiden esiintymiseen perustuva ohjausal-goritmi. Signaalin valvontaelimet, tai osa niistä, voivat sijaita myös ohjausyk-15 sikössä.
Linkki päätteeltä A linkkipäätteelle B muodostuvassa lähetyssuun- nassa tehon säätö tapahtuu seuraavasti. Ohjausyksikkö 15b vastaanottaa pseudovirhesignaalin PE vastaanottimessa 12b olevilta signaalin valvonta- •( elimiltä. Pseudovirhesignaali indikoi, onko vastaanottimessa 12b havaittu » 20 pseudovirheitä. Tämän signaalin sisällön perusteella ohjausyksikkö 15b syöttää tehonohjaussanoman PCb lähettimelle 11b, joka lähettää mainitun sanoman paluukanavan kautta radiojänteen vastakkaiseen päähän. Vastak- ‘ kaisessa päässä ohjausyksikkö 15a vastaanottaa tämän sanoman ja ;, · ** vasteena sille ohjaa lähettimen 11a lähetystehoa syöttämällä ohjaussignaalin
1 » I
v ·' 25 c(t) lähettimelle. Vastakkaisessa lähetyssuunnassa tehonsäädön suorittaa vastakkaisen pään vastaava yksikkö samalla tavalla. Toisin sanoen, edellä olevan kuvauksen viitenumeroissa kirjain a pitäisi vaihtaa kirjaimeksi b, ja • » * päinvastoin.
• I « •, Keksinnön mukainen tehonsäätö toimii seuraavasti.
f I
‘ - 30 1. Pseudovirheitä monitoroidaan oleellisesti jatkuvasti radiojänteen ‘ : vastaanottopäässä.
; : ’: 2. Lähettimen lähetystehoa vähennetään vähitellen alkuarvostaan, joka ; asetettiin riittävän korkeaksi niin, että vastaanottopäässä ei havaita pseudovirheitä, kunnes ensimmäinen pseudovirhe esiintyy. Lähetyste- 6 112012 hoa vähennetään edullisesti pienissä askelissa, käyttäen riittävästi aikaa jokaiseen askeleeseen.
3. Lähetyspää kasvattaa lähetystehoaan ennalta määrätyn pienen määrän verran, kun havaitaan yksi tai useampi pseudovirhe. Lähetystehoa 5 vähennetään uudelleen myöhemmin, jos pseudovirheitä ei havaita en nalta määrätyn pituisen ajanjakson aikana.
Kuvio 2 on vuokaavio, joka havainnollistaa keksinnön mukaisen te-honsäätömenetelmän yhtä toteutustapaa. Kuvio havainnollistaa niitä menetelmän vaiheita, jotka on suoritettava pseudovirheiden monitoroinnin lisäksi. 10 Toisin sanoen, pseudovirheiden monitorointi on taustaprosessi kuviossa 2 esitetyille menetelmävaiheille. Jos vastaanotin havaitsee, että pseudovirhe on tapahtunut, lähettimen (vastakkaisessa päässä) lähetystehoa kasvatetaan välittömästi ennalta määrätyllä pienellä määrällä ΛΡ1, kuten 1 tai 2 dB:llä (vaihe 21). Tämän jälkeen järjestelmä odottaa tietyn lyhyen viiveajan ennen 15 kuin se nollaa pseudovirheiden monitoroinnin yhteydessä käytettävät muuttujat ja aloittaa monitoroinnin jälleen (vaihe 21). Tämän viiveen tarkoituksena on varmistaa, että lähetysteho on saavuttanut uuden arvonsa ennen kuin pseudovirheiden monitorointi aloitetaan uudelleen.
Jos pseudovirheitä ei havaita, järjestelmä tutkii, onko kulunut riittävän . 20 pitkä aika (T1) viimeisimmästä pseudovirheestä (vaihe 22). Jos näin ei ole, • I I * järjestelmä jatkaa pseudovirheiden esiintymisen etsintää. Tämän testin .···. tarkoituksena on estää lähetystehon laskeminen liian pian sen jälkeen, kun ,···. pseudovirhe on havaittu. Toisin sanoen, ensin on varmistettava signaalin riittävä laatu ennen kuin tehotasoa voidaan alentaa jälleen. Toisaalta, jos 25 vaiheessa 22 todetaan, että riittävä ajanjakso on kulunut viimeisimmästä *·’ * pseudovirheestä, järjestelmä tutkii myös, onko kulunut riittävän pitkä aika (T2) viimeisimmästä lähetystehon pudotuksesta (vaihe 23). Tämän testin tarkoituk-sena on estää tehon pudotuksia tapahtumasta liian tihein välein ja varmistaa, ‘... · että jokaisella tehotasolla on riittävän pitkä kestoaika ennen kuin lähetystehoa . 30 lasketaan jälleen. Kun tämä aika on kulunut ilman, että on havaittu yhtään ,···, pseudovirheitä, lähetystehoa lasketaan ennalta määrätyllä pienellä määrällä ! l ’ ΔΡ2, kuten 1 dB:llä (vaihe 24).
\v Radiolinkkijärjestelmän käynnistysvaiheessa, t.s. kun teho kytketään päälle, lähetysteho säädetään edullisesti maksimiarvoonsa jänteen molem-35 missä päissä, koska linkkipääte ei vielä tiedä, onko alhaisempi tehoarvo 7 112012 riittävä virheettömään vastaanottoon. Pääte vähentää tehoa vain kun se vastaanottaa vastakkaisesta päästä käskyn tehdä niin.
Kuvion 2 tehonsäätöalgoritmissa aikaväli T2 on edullisesti huomattavasti pidempi kuin aikaväli T1, esim. 2-10 kertaa pidempi kuin T1. Aikavälit 5 voivat kuitenkin olla myös yhtä suuria, jolloin vaiheet 22 ja 23 voidaan yhdistää muodostamaan yksi testi, jossa testataan, onko kulunut riittävän pitkä aika viimeisimmästä tehonsäätötoimenpiteestä (vähennys tai lisäys). Tämä toteutustapa esitetään kuviossa 3. Tässä toteutustavassa täytyy siis ylläpitää vain yhtä aikamuuttujaa ohjausyksikössä.
10 Kuten on ilmeistä edellä olevan perusteella, lähetystehoa lisätään niin nopeasti kuin mahdollista, kun pseudovirheitä havaitaan, mutta vain niin paljon kuin on tarpeellista. Toisaalta lähetystehoa vähennetään hitaasti kunnes saavutetaan pienin virheettömän vastaanoton takaava tehotaso. Tämä taso riippuu radiotiellä vallitsevista olosuhteista, esim. säätilasta. Algoritmin seura-15 uksena kahden peräkkäisen pseudovirheen välinen aika tulee melko pitkäksi linkkijärjestelmän normaalissa toimintatilassa.
On myös mahdollista ohjata lähetystehoa niin, että tehoa ei lisätä välittömästi kunkin pseudovirheen jälkeen, vaan vastaanotin määrittää ensin, onko ennalta määrätty ehto voimassa, esim. onko toinen pseudovirhe esiinty-:.: : 20 nyt ennalta määrätyn aikavälin kuluessa viimeisimmästä pseudovirheestä tai \i ·· onko ennalta määrätyn aikavälin kuluessa ylitetty ennalta määrätty lukumäärä pseudovirheitä. Keksinnön edullisissa toteutustavoissa lähetystehoa lisätään kuitenkin välittömästi jokaisen pseudovirheen jälkeen.
': *. Seuraavassa kuvataan kaksi eri toteutustapaa pseudovirheiden val- . ·: ·. 25 vonnan toteuttamiseksi.
• ·
Keksinnön ensimmäisen toteutustavan mukaisesti pseudovirheet il-... maistaan käyttäen lähettimessä FEC-kooderia (Forward Error Correction) ja vastaanottimessa FEC-dekooderia. FEC on tunnettu virheenkorjausmenetel-·;·* mä, jonka avulla vastaanottava laite pystyy havaitsemaan ja korjaamaan 30 minkä tahansa merkki- tai koodilohkon, joka sisältää vähemmän kuin ennalta määrätyn lukumäärän virheellisiä symboleja. FEC toteutetaan lisäämällä ennalta määrätyn algoritmin mukaisesti redundanssia jokaiseen lähetettyyn ; merkki- tai koodilohkoon. FEC-dekooderin yhden piirteen mukaisesti se voi • indikoida, onko se korjannut yhden vai useamman virheen. Tätä piirrettä 35 käytetään hyväksi esillä olevassa keksinnössä niin, että nämä virheet, jotka 8 112012 esiintyvät dekooderin tulossa tulkitaan pseudovirheiksi, koska ne korjataan dekooderissa (olettaen, että dekooderin maksimisuorituskykyä ei ylitetä).
Kuvio 4 havainnollistaa vastaanotinta, joka käyttää hyväksi FEC-kooderia pseudovirheiden monitorointiin ja kuvio 5 havainnollistaa lähetintä, 5 joka lähettää koodatun bittivirran kuvion 4 vastaanottimeen. Vastaanottimessa vastaanotettu signaali syötetään vastaanottimen etupään kautta (ei esitetty kuviossa) kvadratuuriseen sekoittimeen 41, jossa signaali muunnetaan tunnetulla tavalla kantataajuudelle paikallisoskillaattorin LO signaalin avulla. Jos vastaanotossa käytetään välitaajuutta, sekoittimelle syötettävä signaali SR 10 on välitaajuussignaali, tai RF-signaali, jos käytetään suoraa konversiota kantataajuudelle. Sekoittimelta saatavat kvadratuuriset kantataajuussignaalit I ja Q vahvistetaan ja suodatetaan vahvistinasteessa 42 ennen kuin ne syötetään päätöksentekoyksikköön 43. Päätöksentekoyksikkö määrittää, mitä symboleja vastaanotetaan. Sen jälkeen symbolijono dekoodataan symbolide-15 kooderissa 44, jolloin alkuperäinen FEC-koodattu bittivirta DATA_F saadaan dekooderin lähdöstä. Tämä bittivirta syötetään FEC-dekooderiin 45, joka suorittaa FEC-dekoodauksen poistamalla tunnetulla tavalla sen redundanssin, joka lisättiin kantataajuiseen bittivirtaan lähettimessä (kuvio 5) olevassa FEC-kooderissa 51. FEC-dekooderilla on kaksi lähtöä: ensimmäinen lähtö on * 20 korjattua bittivirtaa DATA varten ja toinen lähtö on virhesignaalia (PE) varten, ‘T: joka indikoi ne korjaukset, jotka dekooderi on tehnyt. Keksinnön mukaisesti ohjausyksikkö tulkitsee dekooderin tekemät korjaukset pseudovirheiksi sekä * * · ;'''. säätää lähettimen lähetystehoa edellä kuvatun algoritmin mukaisesti.
:·. Kuten edellä mainittiin, lähettimessä (kuvio 5) käytetään FEC- 25 kooderia 50. Tämä kooderi on lähetyssuunnassa viimeinen kantataajuinen signaalinkäsittely-yksikkö ennen modulaattoriin liittyviä toimintoja, t.s. se koodaa kantataajuisen bittivirran, joka on muuten valmis lähetystä varten. FEC-koodattu bittivirta syötetään sen jälkeen symbolikooderin 51, l/Q- ;·* modulaattorin 52, RF-pään ja jakosuodattimen (tai kytkimen) 13 kautta : 30 antennille 14.
Edellä kuvatun ensimmäisen toteutustavan mukainen vastaanotin ja • * · .·, lähetin voidaan toteuttaa monilla tavoilla. Ainoa oleellinen tekijä keksinnön kannalta on se, että FEC:iä käytetään valvomaan pseudovirheitä käyttämällä • ” hyväksi FEC-dekooderiominaisuutta, joka määrittää, oliko dekooderin tuloissa 35 virheitä, vaikka sen lähtö on virheetön.
112012
Keksinnön toisen toteutustavan mukaisesti pseudovirheitä ilmaistaan käyttäen ylimääräisiä päätöksentekokynnyksiä demodulaattorissa. Kuvio 6 havainnollistaa vastaanotinta, joka käyttää demodulaattoria tällä tavalla. Kuviossa 6 käytetään samoille osille samoja viitenumeroja kuin kuviossa 4.
5 Kuten kuviosta 6 voidaan nähdä, pseudovirheitä koskeva informaatio vastaanotetaan nyt päätöksentekoyksiköltä 63, joka on varustettu ylimääräisillä kynnyksillä. Muissa suhteissa vastaanotin on sama kuin ensimmäisessä toteutustavassa, paitsi että FEC-dekooderia ei tarvita.
Kuvio 7 havainnollistaa pseudovirheiden ilmaisua päätöksentekoyk-10 sikössä 63, olettaen, että siirrossa käytetään QPSK-modulaatiota. Ylimääräiset kynnykset (pseudovirhekynnykset) on esitetty katkoviivoilla. Kuviossa olevat pisteet edustavat signaaliarvoja päätöksentekohetkillä; valkoiset pisteet edustavat symboleja, joita pidetään pseudovirheinä ja mustat pisteet edustavat symboleja, joita ei pidetä virheinä. Kuten kuviosta voidaan nähdä, kynnykset 15 on asetettu niin, että jos signaalin arvo on päätöksentekohetkellä lähellä mitä tahansa todellisista päätöksentekokynnyksistä, tapahtumaa pidetään pseudo-virheenä.
Edellä mainitussa toisessa toteutustavassa on mahdollista saada pseudovirhedataa jokaista symbolia kohti. Edellä mainitussa ensimmäisessä : 20 toteutustavassa, joka hyödyntää FEC:iä tämä data vastaanotetaan sen sijaan jokaista koodilohkoa kohti eli harvemmin kuin toisessa toteutustavassa.
Käytännössä tämä ero ei kuitenkaan ole merkittävä, koska molemmissa , tapauksissa virhedata vastaanotetaan nopeasti verrattuna tehonsäädön .*:äärelliseen nopeuteen. Toisin sanoen, käytännössä tehonsäätö on niin “hidas”, ,·.**, 25 että pseudovirhedataa voidaan vastaanottaa asiaankuuluvalla nopeudella : * · molemmissa toteutustavoissa. On myös huomattava, että demodulaattorin ... ylimääräiset kynnykset toimivat oikein, jos symbolin virhe ei ole niin suuri, että ;;; ’ se ilmaistaan selkeästi yhdeksi muista symboleista.
’ · ···' Kuten edellä mainittiin, pseudovirheiden lisäksi tehonsäädössä voi- : 30 daan käyttää muita tehonsäätökriteerejä. Vastaanottimessa tai ohjausyksikös- : * ”: sä sijaitsevat signaalin valvontaelimet voivat esimerkiksi mitata bittivirhesuh-
I I I
,·. detta jatkuvasti, sen lisäksi, että ne valvovat pseudovirheitä. Tällä tavalla ; ‘ ’ voidaan ohittaa pseudovirheisiin perustuvat algoritmi, jos sen maksimisuoritus- • '·' kyky saavutetaan. Toisin sanoen, jos saavutetaan esim. FEC-dekooderin 35 virheenkorjausrajat niin, että FEC-dekooderin läpi pääsee liian paljon virheitä, 112012 ohitetaan pseudovirheisiin perustuva tehonsäätöalgoritmi väliaikaisesti ja lähetysteho säädetään välittömästi maksimiarvoonsa tai johonkin toiseen korkeaan arvoon. Tämä pseudovirhealgoritmin ohittamiseen käytettävä lisämittaus voi olla mikä tahansa tunnettu mittaus, joka paljastaa todellisten 5 virheiden esiintymisen.
Vastaanotinta varten voi olla asetettu signaalitason kohdearvo, kuten tunnetuissa ratkaisuissa. Tässä tapauksessa pysäytetään lähetintehon pienentäminen, jos tämä arvo saavutetaan ennen kuin ensimmäiset pseudo-virheet esiintyvät, ja lähetystehoa nostetaan, jos se on tarpeellista.
10 Vastaanotin voi myös valvoa vastaanotetun signaalitason muutosno peutta, kuten edellä mainitussa EP-julkaisussa EP-B1-0428099 kuvattu vastaanotin. Jos tässä tapauksessa vastaanotettu signaalitaso vaihtelee nopeammin kuin mihin tehonsäätö pystyy vastaamaan, lähetysteho voidaan kasvattaa maksimiarvoonsa, kunnes nopeat signaalitason vaihtelut häviävät.
15 Eräs lisäetu, johon on edellä viitattu vain lyhyesti, on se, että tehon- säätömekanismi voidaan toteuttaa pienillä kustannuksilla olemassa oleviin vastaanottimiin ja lähettimiin, riippumatta siitä, kumpi edellä kuvatuista kahdesta vaihtoehdosta valitaan. Ensimmäisessä vaihtoehdossa voidaan käyttää tunnettua FEC-mekanismia yksinkertaisesti niin, että valvotaan dekooderin 20 virhelähtöä. Lisäksi järjestelmä voi joka tapauksessa käyttää FEC:iä pääasial- .·. liseen tarkoitukseensa (virheiden korjaukseen), jolloin pseudovirheiden • · · ilmaisumekanismi saadaan ilmaiseksi. Toisessa toteutustavassa voidaan ♦ * · . ylimääräiset kynnykset toteuttaa samaan ASIC-piiriin kuin muu demodulaattori.
• »
Vaikka keksintöä kuvattiin edellä viitaten oheisten piirustusten mukaisiin 25 esimerkkeihin, on ilmeistä, että keksintö ei ole rajoittunut niihin, vaan sitä • : : voidaan modifioida oheisissa vaatimuksissa esitetyn keksinnöllisen ajatuksen • · * :; puitteissa. Järjestelmän ei välttämättä tarvitse olla perinteinen kaksisuuntainen kaksipisteyhteys, vaan samaa periaatetta voidaan käyttää esim. yksisuuntai-: * ’ ’: silla tai monipisteyhteyksillä, joilla on sopiva paluukanava tehonsäätösanomien 30 lähettämiseksi.
« » ·
• I
* · · • »

Claims (11)

112012
1. Menetelmä lähetystehon ohjaamiseksi radiojärjestelmässä, jossa on lähetyspää ja vastaanottopää, jonka menetelmän mukaisesti - lähetetään digitaalinen signaali lähetyspäästä vastaanottopäähän, 5. vastaanotetaan mainittu signaali vastaanottopäässä, - valvotaan signaalin laatua vastaanottopäässä, ja - säädetään lähetystehoa lähetyspäässä valvotun signaalilaadun mukaisesti, valvonnan ja säädön ollessa tunnettu siitä, että - vastaanottopäässä valvotaan pseudovirheiden esiintymistä, jotka 10 pseudovirheet ovat tapahtumia, jolloin todellisen virheen jääminen signaaliin oli lähellä toteutumista, - lähetystehoa vähennetään, kun pseudovirheiden esiintymistiheys on ennalta määrätyn kynnyksen alapuolella, ja - lisätään lähetystehoa, kun pseudovirheitä esiintyy niin, että en-15 naita määrätty ehto täyttyy.
2. Patenttivaatimuksen 1 mukainen menetelmä, tunnettu siitä, että lähetystehoa lisätään välittömästi, kun pseudovirhe havaitaan.
3. Patenttivaatimuksen 1 mukainen menetelmä, tunnettu siitä, että lähetystehoa vähennetään pienissä askelissa ennalta määrätyksi ajaksi 20 kullakin askeleella. • · t <« ·
4. Patenttivaatimuksen 2 tai 3 mukainen menetelmä, tunnettu * · · siitä, että * # (a) lähetysteho säädetään radiojärjestelmän asennuksen jälkeen tarpeeksi korkeaan arvoon niin, että vastaanottopäässä ei havaita pseudo- > · ’ 25 virheitä, • I (b) lähetystehoa vähennetään kunnes havaitaan ensimmäinen pseudovirhe, * * ♦ :: (c) lähetystehoa lisätään vasteena pseudovirheen havaitsemiselle, ja [”: (d) hypätään vaiheeseen (b) jos pseudovirheitä ei havaita ennalta . 30 määrätyn pituisen ajanjakson aikana sen jälkeen, kun lähetystehoa on lisätty !!! vaiheessa (c). *; 5. Patenttivaatimuksen 1 mukainen menetelmä, tunnettu siitä, v.: että lähetystehoa lisätään pienellä ennalta määrätyllä määrällä, kun mainit- tuja pseudovirheitä havaitaan. 112012
6. Patenttivaatimuksen 1 mukainen menetelmä, tunnettu siitä, että - lähetetyssä signaalissa käytetään FEC-korjausta (Forward Error Correction), 5. signaali dekoodataan vastaanottopäässä FEC-dekooderin avulla, ja - dekooderin tekemät korjaukset tulkitaan pseudovirheiksi.
7. Patenttivaatimuksen 1 mukainen menetelmä, tunnettu siitä, että vastaanottopäässä käytetään demodulaattoria, joka on varustettu ensimmäisillä kynnyksillä päätöksen tekemiseksi vastaanotetusta symbolista 10 ja toisilla kynnyksillä päätöksen tekemiseksi siitä, onko tapahtunut pseudo-virhe.
8. Patenttivaatimuksen 1 mukainen menetelmä, tunnettu siitä, että - vastaanottopäässä valvotaan todellisten virheiden esiintymistihe- 15 yttä.ja - lähetysteho lisätään väliaikaisesti maksimiinsa, kun ennalta määrätty tiheyskynnys ylitetään.
9. Radiojärjestelmä, joka sisältää - vastaanottopäässä ensimmäiset elimet (SMa, SMb, 15a, 15b) sig- .·. 20 naalin laadun valvomiseksi ja ohjaussignaalin tuottamiseksi valvotun signaali- i < * · laadun perusteella, ja - lähetyspäässä toiset elimet (15a, 15b) lähetystehon säätämiseksi !: vasteena mainitulle ohjaussignaalille, tunnettu siitä, että ' 25 ensimmäiset elimet on sovitettu (1) valvomaan pseudovirheiden '·’ · esiintymistä, jotka pseudovirheet ovat tapahtumia, jolloin todellisen virheen jääminen signaaliin oli lähellä toteutumista ja (2) tuottamaan ohjaussignaalin, »♦ * joka osoittaa sen, milloin pseudovirheitä havaitaan ja sen, milloin pseudovir-1 heiden esiintymistiheys on ennalta määrätyn kynnyksen alapuolella, . \ 30 jolloin mainitut toiset elimet ovat vasteellisia mainitulle ohjaussig- !!! naalille niin, että ne lisäävät lähetystehoa, kun pseudovirheitä havaitaan ja *:* vähentävät lähetystehoa, kun pseudovirheiden esiintymistiheys on ennalta :. v määrätyn kynnyksen alapuolella. • ♦ 13 112012
10. Patenttivaatimuksen 9 mukainen radiojärjestelmä, tunnettu siitä, että mainitut ensimmäiset elimet sisältävät FEC-dekooderin FEC-koodatun signaalin dekoodaamiseksi ja pseudovirheiden ilmaisemiseksi.
11. Patenttivaatimuksen 9 mukainen radiojärjestelmä, tunnettu 5 siitä, että mainitut ensimmäiset elimet sisältävät modulaattorin, joka on varustettu ensimmäisillä kynnyksillä päätöksen tekemiseksi vastaanotetusta symbolista ja toisilla kynnyksillä päätöksen tekemiseksi siitä, onko tapahtunut pseudovirhe. • · · * · · • · · * * # 4 « • · > · · » · · < · · * I 4 » · 112012
FI990095A 1999-01-19 1999-01-19 Lähetystehon säätö radiojärjestelmässä FI112012B (fi)

Priority Applications (10)

Application Number Priority Date Filing Date Title
FI990095A FI112012B (fi) 1999-01-19 1999-01-19 Lähetystehon säätö radiojärjestelmässä
AT00901636T ATE468722T1 (de) 1999-01-19 2000-01-18 Steuerung der übertragungsleistung in einem funksystem
DE60044425T DE60044425D1 (de) 1999-01-19 2000-01-18 Steuerung der übertragungsleistung in einem funksystem
AU22967/00A AU2296700A (en) 1999-01-19 2000-01-18 Control of transmission power in a radio system
CNB008029059A CN1134121C (zh) 1999-01-19 2000-01-18 在无线电系统中控制发射功率
PCT/FI2000/000038 WO2000044107A2 (en) 1999-01-19 2000-01-18 Control of transmission power in a radio system
JP2000595437A JP2002535914A (ja) 1999-01-19 2000-01-18 無線システムにおける送信電力の制御
EP00901636A EP1142152B1 (en) 1999-01-19 2000-01-18 Control of transmission power in a radio system
US09/909,039 US7647062B2 (en) 1999-01-19 2001-07-19 Control of transmission power in a radio system
JP2006108258A JP2006211719A (ja) 1999-01-19 2006-04-11 無線システムにおける送信電力の制御

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI990095 1999-01-19
FI990095A FI112012B (fi) 1999-01-19 1999-01-19 Lähetystehon säätö radiojärjestelmässä

Publications (3)

Publication Number Publication Date
FI990095A0 FI990095A0 (fi) 1999-01-19
FI990095A FI990095A (fi) 2000-07-20
FI112012B true FI112012B (fi) 2003-10-15

Family

ID=8553412

Family Applications (1)

Application Number Title Priority Date Filing Date
FI990095A FI112012B (fi) 1999-01-19 1999-01-19 Lähetystehon säätö radiojärjestelmässä

Country Status (9)

Country Link
US (1) US7647062B2 (fi)
EP (1) EP1142152B1 (fi)
JP (2) JP2002535914A (fi)
CN (1) CN1134121C (fi)
AT (1) ATE468722T1 (fi)
AU (1) AU2296700A (fi)
DE (1) DE60044425D1 (fi)
FI (1) FI112012B (fi)
WO (1) WO2000044107A2 (fi)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6948080B2 (en) * 2002-01-09 2005-09-20 Raytheon Company System and method for minimizing upsets in digital microcircuits via ambient radiation monitoring
GB0319361D0 (en) * 2003-08-18 2003-09-17 Nokia Corp A method of and system for wireless communication
IL166804A (en) * 2005-02-10 2012-08-30 Cellvine Ltd Apparatus and method for traffic load balancing in wireless networks
AU2006200038A1 (en) * 2005-03-09 2006-09-28 Nec Australia Pty Ltd Measuring received signal quality
JP2007013489A (ja) * 2005-06-29 2007-01-18 Kyocera Corp 通信システム、通信装置、送信電力制御方法、及びプログラム
US8533709B2 (en) * 2005-08-04 2013-09-10 Microsoft Cororation Changing frequency of a virtual programmable interrupt timer in virtual machines to control virtual time
JP4784358B2 (ja) * 2006-03-23 2011-10-05 サクサ株式会社 無線通信装置
US9002300B2 (en) * 2010-09-30 2015-04-07 Broadcom Corporation Method and system for time division duplexing (TDD) in a 60 GHZ distributed communication system
WO2013066326A1 (en) * 2011-11-03 2013-05-10 Intel Corporation Dynamic wireless power control
EP3069457B1 (en) * 2013-11-12 2017-06-14 Telefonaktiebolaget LM Ericsson (publ) Improved receiver overload protection

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62298255A (ja) * 1986-06-18 1987-12-25 Fujitsu Ltd 識別装置
JPH1079724A (ja) 1996-09-03 1998-03-24 Toshiba Corp 無線通信システム
JP2747308B2 (ja) 1989-01-20 1998-05-06 富士通株式会社 無線装置における送信パワー制御方法
FI86352C (fi) 1989-11-14 1992-08-10 Nokia Oy Ab Digitaliskt radiolaenksystem och foerfarande foer reglering av en saendingseffekt i ett digitaliskt radiolaenksystem.
US5878329A (en) * 1990-03-19 1999-03-02 Celsat America, Inc. Power control of an integrated cellular communications system
JPH0750872A (ja) 1993-08-06 1995-02-21 Nippon Telegr & Teleph Corp <Ntt> 無線通信装置
US5822318A (en) * 1994-07-29 1998-10-13 Qualcomm Incorporated Method and apparatus for controlling power in a variable rate communication system
US5873028A (en) * 1994-10-24 1999-02-16 Ntt Mobile Communications Network Inc. Transmission power control apparatus and method in a mobile communication system
US5727033A (en) * 1994-11-30 1998-03-10 Lucent Technologies Inc. Symbol error based power control for mobile telecommunication system
TW347616B (en) 1995-03-31 1998-12-11 Qualcomm Inc Method and apparatus for performing fast power control in a mobile communication system a method and apparatus for controlling transmission power in a mobile communication system is disclosed.
US5745520A (en) * 1996-03-15 1998-04-28 Motorola, Inc. Method and apparatus for power control in a spread spectrum communication system using threshold step-down size adjustment
US6324207B1 (en) * 1996-04-29 2001-11-27 Golden Bridge Technology, Inc. Handoff with closed-loop power control
JP3039402B2 (ja) * 1996-12-05 2000-05-08 日本電気株式会社 移動通信システムの送信電力制御装置
US5893035A (en) * 1996-09-16 1999-04-06 Qualcomm Incorporated Centralized forward link power control
US5960361A (en) * 1996-10-22 1999-09-28 Qualcomm Incorporated Method and apparatus for performing a fast downward move in a cellular telephone forward link power control system
JPH10145293A (ja) 1996-11-07 1998-05-29 Hitachi Ltd Cdma移動通信システムの送信電力制御方法及び通信機
US6075974A (en) * 1996-11-20 2000-06-13 Qualcomm Inc. Method and apparatus for adjusting thresholds and measurements of received signals by anticipating power control commands yet to be executed
FI116112B (fi) * 1996-11-27 2005-09-15 Hitachi Ltd Menetelmä ja laitteisto lähetystehon ohjaamiseksi matkaviestinjärjestelmässä
JPH10322267A (ja) 1997-03-05 1998-12-04 Nippon Telegr & Teleph Corp <Ntt> 無線回線制御方法および方式
EP0863686B1 (en) 1997-03-05 2005-12-14 Nippon Telegraph And Telephone Corporation Sectorized wireless access system
US6259927B1 (en) * 1997-06-06 2001-07-10 Telefonaktiebolaget Lm Ericsson Transmit power control in a radio communication system
US5982760A (en) 1997-06-20 1999-11-09 Qualcomm Inc. Method and apparatus for power adaptation control in closed-loop communications
US6259928B1 (en) * 1997-10-13 2001-07-10 Qualcomm Inc. System and method for optimized power control
JPH11178050A (ja) * 1997-12-10 1999-07-02 Sony Corp 制御情報伝送方法及び送信装置並びに送受信装置
JP3573988B2 (ja) * 1998-12-28 2004-10-06 富士通株式会社 誤り訂正方法及び伝送装置
JP3817955B2 (ja) * 1999-03-02 2006-09-06 Kddi株式会社 セルラーシステム送信電力制御方法
US6222877B1 (en) * 1999-07-14 2001-04-24 Luxn, Inc. Method for performance monitoring of data transparent communication links

Also Published As

Publication number Publication date
JP2006211719A (ja) 2006-08-10
DE60044425D1 (de) 2010-07-01
CN1134121C (zh) 2004-01-07
FI990095A (fi) 2000-07-20
WO2000044107A2 (en) 2000-07-27
AU2296700A (en) 2000-08-07
EP1142152B1 (en) 2010-05-19
ATE468722T1 (de) 2010-06-15
WO2000044107A3 (en) 2000-11-16
JP2002535914A (ja) 2002-10-22
FI990095A0 (fi) 1999-01-19
US20020045460A1 (en) 2002-04-18
EP1142152A2 (en) 2001-10-10
CN1337100A (zh) 2002-02-20
US7647062B2 (en) 2010-01-12

Similar Documents

Publication Publication Date Title
JP2006211719A (ja) 無線システムにおける送信電力の制御
EP0950301B1 (en) Transmitter method and transmission system using adaptive coding based on channel characteristics
AU710025B2 (en) Method and apparatus for performing power control in a mobile communication system
US5828672A (en) Estimation of radio channel bit error rate in a digital radio telecommunication network
US6807164B1 (en) Power control in a CDMA mobile communication system
US6928248B2 (en) Optical communications system with back-up link
NO178679B (no) Digitalt radiolinjesystem, og fremgangsmåte for instilling av sendeeffekten i et digitalt radiolinjesystem
KR20010029888A (ko) 무선 통신 시스템에서 데이터 속도를 설정하기 위한 장치 및 방법
JPWO2007029618A1 (ja) 移動携帯端末およびその制御方法
US8270291B2 (en) Protected variable data rate communication systems
US7499433B2 (en) Method and apparatus for DTX frame detection
EP1271809A2 (en) Optical reception apparatus and optical transmission system
CA2646187A1 (en) Improved method for decoding digital data in a frequency hopping communication system
US20040081097A1 (en) Method and apparatus for DTX frame detection
US6556837B1 (en) Closed-loop transmitting power control method using variable updating amount
US5708682A (en) Demodulator control system and a receiver capable of quickly acquiring a desired carrier wave
FI105303B (fi) Häipymävaramittaus radiojärjestelmässä
EP1050990B1 (en) Method of updating reference value in a high speed closed loop based on likelihood
CA2279559A1 (en) A method of changing the encoding level of digital data transmitted between a transmitter and a receiver at a constant rate
US20110244803A1 (en) Wireless communications system and wireless device
JP2010171840A (ja) ダイバーシチ受信装置及びダイバーシチ通信システム
JP4670727B2 (ja) 低消費電力マイクロ波無線通信システム
US20120257665A1 (en) Complex condition determination unit, transmission device, complex condition determination method
US20230403098A1 (en) Data encoding method, data decoding method, and related device
JP4181456B2 (ja) タイムダイバーシティ受信装置及び受信方法

Legal Events

Date Code Title Description
MM Patent lapsed