ES2392279T3 - Método y dispositivo para la soldadura electromagnética de piezas moldeadas - Google Patents

Método y dispositivo para la soldadura electromagnética de piezas moldeadas Download PDF

Info

Publication number
ES2392279T3
ES2392279T3 ES08741663T ES08741663T ES2392279T3 ES 2392279 T3 ES2392279 T3 ES 2392279T3 ES 08741663 T ES08741663 T ES 08741663T ES 08741663 T ES08741663 T ES 08741663T ES 2392279 T3 ES2392279 T3 ES 2392279T3
Authority
ES
Spain
Prior art keywords
inductor
induction
molded parts
mold
segment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES08741663T
Other languages
English (en)
Inventor
Martijn Jacques Van Wijngaarden
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOK AND VAN ENGELEN COMPOSITE STRUCTURES BV
Original Assignee
KOK AND VAN ENGELEN COMPOSITE STRUCTURES BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38846920&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=ES2392279(T3) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by KOK AND VAN ENGELEN COMPOSITE STRUCTURES BV filed Critical KOK AND VAN ENGELEN COMPOSITE STRUCTURES BV
Application granted granted Critical
Publication of ES2392279T3 publication Critical patent/ES2392279T3/es
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/36Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction
    • B29C65/3604Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the type of elements heated by induction which remain in the joint
    • B29C65/3608Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the type of elements heated by induction which remain in the joint comprising single particles, e.g. fillers or discontinuous fibre-reinforcements
    • B29C65/3612Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the type of elements heated by induction which remain in the joint comprising single particles, e.g. fillers or discontinuous fibre-reinforcements comprising fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/36Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction
    • B29C65/3668Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the means for supplying heat to said heated elements which remain in the join, e.g. special induction coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • B29C65/7841Holding or clamping means for handling purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/13Single flanged joints; Fin-type joints; Single hem joints; Edge joints; Interpenetrating fingered joints; Other specific particular designs of joint cross-sections not provided for in groups B29C66/11 - B29C66/12
    • B29C66/131Single flanged joints, i.e. one of the parts to be joined being rigid and flanged in the joint area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/349Cooling the welding zone on the welding spot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • B29C66/434Joining substantially flat articles for forming corner connections, fork connections or cross connections
    • B29C66/4342Joining substantially flat articles for forming corner connections, e.g. for making V-shaped pieces
    • B29C66/43421Joining substantially flat articles for forming corner connections, e.g. for making V-shaped pieces with a right angle, e.g. for making L-shaped pieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • B29C66/434Joining substantially flat articles for forming corner connections, fork connections or cross connections
    • B29C66/4344Joining substantially flat articles for forming fork connections, e.g. for making Y-shaped pieces
    • B29C66/43441Joining substantially flat articles for forming fork connections, e.g. for making Y-shaped pieces with two right angles, e.g. for making T-shaped pieces, H-shaped pieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/82Pressure application arrangements, e.g. transmission or actuating mechanisms for joining tools or clamps
    • B29C66/822Transmission mechanisms
    • B29C66/8221Scissor or lever mechanisms, i.e. involving a pivot point
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/82Pressure application arrangements, e.g. transmission or actuating mechanisms for joining tools or clamps
    • B29C66/824Actuating mechanisms
    • B29C66/8242Pneumatic or hydraulic drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/836Moving relative to and tangentially to the parts to be joined, e.g. transversely to the displacement of the parts to be joined, e.g. using a X-Y table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/84Specific machine types or machines suitable for specific applications
    • B29C66/863Robotised, e.g. mounted on a robot arm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/36Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction
    • B29C65/3672Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the composition of the elements heated by induction which remain in the joint
    • B29C65/3676Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the composition of the elements heated by induction which remain in the joint being metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/36Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction
    • B29C65/3672Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the composition of the elements heated by induction which remain in the joint
    • B29C65/3684Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the composition of the elements heated by induction which remain in the joint being non-metallic
    • B29C65/3696Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the composition of the elements heated by induction which remain in the joint being non-metallic with a coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/812General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/8122General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps characterised by the composition of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/818General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the cooling constructional aspects, or by the thermal or electrical insulating or conducting constructional aspects of the welding jaws or of the clamps ; comprising means for compensating for the thermal expansion of the welding jaws or of the clamps
    • B29C66/8181General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the cooling constructional aspects, or by the thermal or electrical insulating or conducting constructional aspects of the welding jaws or of the clamps ; comprising means for compensating for the thermal expansion of the welding jaws or of the clamps characterised by the cooling constructional aspects
    • B29C66/81811General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the cooling constructional aspects, or by the thermal or electrical insulating or conducting constructional aspects of the welding jaws or of the clamps ; comprising means for compensating for the thermal expansion of the welding jaws or of the clamps characterised by the cooling constructional aspects of the welding jaws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • B29K2995/0008Magnetic or paramagnetic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • B29L2031/3076Aircrafts

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Robotics (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • General Induction Heating (AREA)

Abstract

Método para la soldadura electromagnética de piezas moldeadas, que comprende las etapas deprocesamiento de:A) proporcionar un molde (33, 50),B) situar al menos dos piezas moldeadas (12, 13, 41, 42) para su acoplamiento en el molde (33, 50), en el que almenos una superficie de contacto (14, 42, 42') entre las piezas moldeadas (12, 13, 40, 41) comprende medios deacoplamiento térmicamente activados y un componente sensible a la inducción,C) activar los medios de acoplamiento calentando el componente sensible a la inducción por medio de un inductor(10, 20, 31, 43), en el que el inductor (10, 20, 31, 43) se sitúa fuera del molde (33, 50) de modo que no entra encontacto con el molde (33, 50) o las piezas moldeadas (12, 13, 40, 41), en el que el inductor (10, 20, 31, 43)comprende un segmento de inducción lineal (22) que, bajo tensión alterna, genera un campo electromagnético (23)que es sustancialmente cilíndrico en al menos una dirección de soldadura, y en el que el campo electromagnéticodel inductor alcanza la superficie de contacto (14, 42, 42') entre las piezas moldeadas (12, 13, 41, 42) a través deuna pared del molde (33, 50),D) presionar las piezas moldeadas (12, 13, 40, 41) entre sí en la configuración definida por el molde (33, 50), en elque las piezas moldeadas (12, 13, 40, 41) se acoplan mediante los medios de acoplamiento térmicamente activados.

Description

Método y dispositivo para la soldadura electromagnética de piezas moldeadas
La invención se refiere a un método para la soldadura electromagnética de piezas moldeadas, un ensamblaje de piezas moldeadas obtenidas según este método, un inductor para su uso en el método, un ensamblaje del mismo con un generador de corriente alterna y un dispositivo para la soldadura electromagnética.
Ya están disponibles diversos métodos de soldadura para crear una conexión soldada continua entre piezas moldeadas, en particular piezas moldeadas de termoplástico. Sin embargo estos métodos presentan dificultades en la realización de una conexión soldada por la presencia de un componente y/o refuerzo de fibra eléctricamente conductor. Cuando se usa un hilo de resistencia, por ejemplo puede producirse un cortocircuito entre el hilo de resistencia y el componente eléctricamente conductor. Este hilo de resistencia se funde entre las piezas moldeadas de termoplástico durante el proceso de soldadura. Este problema puede resolverse aislando eléctricamente el hilo de resistencia del componente conductor en el termoplástico. Sin embargo con esta solución, se funde incluso más material además del hilo de resistencia entre las piezas moldeadas de termoplástico, que puede afectar negativamente a la construcción. En la soldadura por vibración las fibras pueden dañarse por el movimiento. La soldadura ultrasónica es menos adecuada para la soldadura continua. Muchos de los métodos de soldadura disponibles son además poco adecuados para soldar conexiones soldadas grandes y continuas. Estos métodos de soldadura conocidos dan como resultado productos de calidad inferior, particularmente en aplicaciones de alto grado en las que se desea una gran resistencia mecánica y capacidad de carga de la conexión soldada, en particular en la industria de la aviación.
El documento US 6.023.054 que representa la técnica anterior más próxima a la invención da a conocer un método (véase en particular la figura 8) de soldadura de dos piezas entre sí, método que usa una bobina que comprende dos ramales dispuestos horizontalmente (21) de tubería de cobre, broncesoldadas a placas de cobre gruesas (23). Las placas de cobre amplían el campo electromagnético. Los métodos de soldadura dados a conocer en el documento US 6.023.054 usan agentes de calentamiento de alta eficacia para obtener una buena soldadura.
El documento NL 7410116 da a conocer un método para soldar láminas para obtener cuerpos huecos, con tiempos de ciclo reducidos. El método dado a conocer usa una bobina, que rodea un molde, en el que se coloca una lámina. Durante la soldadura, la bobina se mueve a lo largo del molde en una dirección de soldadura.
El documento WO 96/20823 da a conocer un sistema de mecanización por fluido para aplicar presión a piezas ligadas en un molde con un rebaje.
Es un objeto de la invención proporcionar un método mejorado para la soldadura de piezas moldeadas.
La invención proporciona para este fin un método según la reivindicación 1. En particular, se proporciona un método para la soldadura electromagnética de piezas moldeadas, que comprende las etapas de procesamiento de: A) proporcionar un molde, B) situar al menos dos piezas moldeadas para su acoplamiento en el molde, en el que al menos una superficie de contacto entre las piezas moldeadas comprende medios de acoplamiento térmicamente activados y un componente sensible a la inducción, C) activar los medios de acoplamiento calentando el componente sensible a la inducción por medio de un inductor, en el que el inductor se sitúa fuera del molde, de modo que no entra en contacto con el molde o las piezas moldeadas, en el que el inductor (10, 20, 31, 43) comprende un segmento de inducción lineal (22) que, bajo tensión alterna, genera un campo electromagnético que es sustancialmente cilíndrico en al menos una dirección de soldadura, y en el que el campo electromagnético del inductor alcanza la superficie de contacto entre las piezas moldeadas a través de una pared del molde, D) presionar las piezas moldeadas entre sí en la configuración definida por el molde, en el que las piezas moldeadas se acoplan mediante los medios de acoplamiento térmicamente activados. Este método hace posible realizar una conexión soldada de buena calidad entre las piezas moldeadas de manera rápida y simple, en el que el producto tiene una capacidad de carga mecánica particularmente buena. Debido a que el inductor no entra en contacto con el molde o las piezas moldeadas, se minimiza la posibilidad de daño mecánico, siendo esto particularmente importante para aplicaciones de alto grado tales como la aviación.
Una realización preferida del método está caracterizada porque el inductor comprende un segmento de inducción lineal que genera un campo electromagnético que es sustancialmente cilíndrico en al menos una dirección de soldadura, y porque el inductor se coloca de tal modo que el segmento de inducción discurre sustancialmente paralelo a la pared del molde. De esta manera la superficie de contacto puede calentarse de manera altamente selectiva, mediante lo cual se obtiene una conexión soldada precisa.
Una o más piezas moldeadas se fabrican preferiblemente a partir de un material termoplástico que puede soldarse por fusión, aunque también es posible prever disponer un material termoplástico o un adhesivo activado térmicamente sólo sobre la superficie de contacto entre las piezas moldeadas como medios de acoplamiento térmico.
Los componentes sensibles a la inducción comprenden generalmente un componente eléctricamente conductor tal como un metal y/o fibra de carbono. El molde y otros componentes en las proximidades del inductor que no tienen que calentarse están preferiblemente libres de manera sustancial de componentes sensibles a la inducción, recomendando componentes aún conductores térmicamente eléctricamente aislantes tales como material cerámico para extraer el calor desde la superficie de contacto de la pieza moldeada adyacente durante la soldadura. En un molde de este tipo el campo electromagnético puede aplicarse a continuación en la posición deseada a través de la pared del molde.
En el método las piezas moldeadas preferiblemente de termoplástico se dotan generalmente de un componente eléctricamente conductor, por ejemplo tela metálica, o este componente está dispuesto entre las piezas moldeadas. En el componente eléctricamente conductor se inducen corrientes de Foucault o corrientes parásitas mediante un campo electromagnético fluctuante que se genera mediante un inductor suministrado con corriente alterna por un generador. Debido al efecto Joule, estas corrientes de Foucault generan el calor requerido para fundir el material de termoplástico y/o activar los medios de acoplamiento. Moviendo el inductor a lo largo de la superficie de contacto las piezas moldeadas de termoplástico se conectan entre sí sobre su superficie de contacto. El inductor puede guiarse sobre la superficie de contacto por ejemplo por medio de un brazo de robot o guía lineal para realizar la conexión.
El uso de un campo electromagnético sustancialmente cilíndrico en la dirección de soldadura permite el calentamiento muy controlado, uniforme y dirigido, de modo que el sobrecalentamiento se impide en la medida de lo posible. El sobrecalentamiento puede dar como resultado la degradación del material, y provocar de este modo el debilitamiento no deseado de la construcción. Los inductores de la técnica anterior más conocidos hacen uso de un inductor con una pluralidad de bobinados, que produce un campo electromagnético de forma toroidal. Usando un inductor conocido de este tipo con la dirección en ángulos rectos al inductor como dirección de inducción, se crea un patrón de calentamiento en el que se produce una zona relativamente fría en el centro. El campo electromagnético cilíndrico por otro lado produce un perfil de calentamiento mucho más favorable que permite el calentamiento uniforme. Un campo electromagnético cilíndrico puede hacerse además muy estrecho, hasta de un ancho de 10-20 mm. En los campos de forma toroidal no puede realizarse un ancho de este tipo en combinación con la potencia de inducción por calor y la penetración requeridas.
Para el calentamiento el componente sensible a la inducción debe estar en contacto térmico con los medios de acoplamiento térmicamente activados. Esto es posible por ejemplo mezclando el componente sensible a la inducción y los medios de acoplamiento.
Debido a que el inductor se sitúa fuera del molde y el campo electromagnético del inductor alcanza la superficie de contacto entre las piezas moldeadas a través de una pared del molde, las piezas moldeadas pueden ponerse bajo presión por el molde durante la soldadura. Esto es una gran ventaja. Los métodos existentes generalmente sólo aplican presión después del calentamiento inductivo de las piezas moldeadas para el acoplamiento. La compresión de las piezas moldeadas puede tener lugar usando medios conocidos de la técnica anterior, tales como prensas y rodillos neumáticos o hidráulicos. La presión se aplica preferiblemente sobre el molde en el lado no inductor del molde, en otras palabras sobre el lado del molde en el que no se sitúa el inductor. La pared del molde está dotada preferiblemente de un rebaje en la posición de la superficie de contacto, en otras palabras por encima de la posición de soldadura. Un rebaje de este tipo hace posible mover el inductor más cerca de la superficie de contacto, con lo que el calentamiento puede tener lugar con mayor precisión y con lo que se requiere también menos potencia. Para hacer que la presión sobre las piezas moldeadas para el acoplamiento sea lo más alta posible en la ubicación de la posición de soldadura, es ventajoso hacer que el ancho del rebaje sea lo menor posible, y preferiblemente de tal modo que casi no supere el ancho de inductor. Para poder obtener la presión más alta posible, la pared se fabrica en la posición del rebaje a partir de un material con una rigidez alta.
Dependiendo de los materiales usados, en particular el componente sensible a la inducción y la distancia del inductor de este componente, puede determinarse una potencia y frecuencia adecuadas. La frecuencia determina entre otras cosas la potencia penetrante del campo electromagnético; la potencia eléctrica del inductor determina la resistencia del campo electromagnético fluctuante y de este modo el grado de calor generado en el componente sensible a la inducción.
Es ventajoso que los medios de acoplamiento térmicamente activados comprendan un plástico de termoplástico. Los plásticos de termoplástico pueden acoplarse de manera simple por fusión. Además, es fácil mezclar un plástico de termoplástico con un componente sensible a la inducción tal como tela metálica o fibras de carbono. Ejemplos de plásticos de termoplástico particularmente adecuados son polipropileno, poliamida, poliéter imida, poliéter éter cetona y sulfuro de polifenileno, aunque el método es adecuado en principio para cualquier termoplástico.
El componente que puede calentarse por inducción comprende preferiblemente fibras de carbono y/o un metal. Estos materiales pueden calentarse fácilmente por inducción y tienen también, además de conducción eléctrica, una buena conducción térmica, mediante lo cual el calor generado se distribuye bien. Se recomiendan fibras de carbono incorporadas en un plástico de termoplástico debido a que las fibras de carbono también mejoran la resistencia de material.
En otra realización preferida del método el componente que puede calentarse por inducción comprende partículas ferromagnéticas. Partículas adecuadas se describen por ejemplo en el documento WO0185827 y tienen la ventaja adicional de que, cuando alcanzan la denominada temperatura de Curie de las mismas, pierden sus dipolos magnéticos, por lo cual ya no siguen calentando. Esto puede formar una protección frente al sobrecalentamiento.
En el método según la invención es posible que tanto el molde como el inductor sean estacionarios. Esto puede ser apropiado por ejemplo para el acoplamiento de una parte relativamente pequeña de la superficie de contacto de las piezas moldeadas. En una realización preferida el inductor se mueve a lo largo de una trayectoria en relación con la superficie de contacto durante la etapa C) de tal modo que los medios de acoplamiento se activan en una parte predeterminada de la superficie de contacto. Se realiza una conexión definida de manera muy precisa sobre la superficie de contacto moviendo el campo electromagnético cilíndrico a lo largo de la trayectoria. También es posible mantener el inductor estacionario y mover el molde con las piezas moldeadas.
Una realización preferida adicional del método según la invención tiene la característica de que el componente eléctricamente conductor se conecta eléctricamente a una pieza de extensión eléctricamente conductora, que preferiblemente se extiende fuera de la superficie del ensamblaje. Una pieza de extensión de este tipo puede fabricarse en principio a partir de cualquier material eléctricamente conductor, aunque preferiblemente se fabrica a partir de metal, a partir de carbono, o comprende un resistor ajustable. Las corrientes de Foucault o corrientes parásitas inducidas en la superficie de contacto están delimitadas por la geometría de las piezas moldeadas. Los bordes, esquinas y orificios en las piezas moldeadas influyen en la distribución de corrientes de Foucault y por tanto también influyen en el calor desarrollado. Tal interrupción del campo puede dar como resultado el calentamiento de componentes que no tienen que calentarse para el proceso de soldadura. Por el contrario, también es posible que determinadas piezas sean difíciles de calentar. Estos problemas pueden resolverse recolocando los límites del área en la que las corrientes de Foucault pueden comenzar a producirse en ubicaciones determinadas de las piezas moldeadas de termoplástico. No obstante con esta variante preferida las piezas que anteriormente eran difíciles de calentar pueden calentarse y pueden impedirse temperaturas altas en ubicaciones no deseadas.
El método proporciona un ensamblaje de al menos dos piezas moldeadas conectadas por soldadura electromagnética que puede obtenerse por medio del método según cualquiera de las reivindicaciones anteriores. Un ensamblaje de este tipo tiene una soldadura particularmente buena, regular sobre la superficie de contacto entre las piezas moldeadas con una capacidad de carga mecánica alta. Aplicando el método según la invención el baño de fusión es preferiblemente ovalado en la sección transversal en la superficie de contacto y además sustancialmente continuo y uniforme sobre sustancialmente toda la longitud de soldadura. Será evidente que un ensamblaje en el que la periferia del baño de soldadura tiene variaciones pequeñas de la forma ovalada en una sección transversal en la posición de la superficie de contacto de igual manera forma parte de la invención. Se entiende que de manera sustancialmente continua significa que la soldadura no tiene interrupciones dignas de mención en la dirección longitudinal de la misma.
La invención proporciona también un inductor tal como se define en la reivindicación 10. Para este fin el segmento de inducción adopta una forma lineal, en la que la sección transversal del campo electromagnético se ve influida por la sección transversal de este segmento de inducción. Con un inductor de este tipo es posible de manera simple y precisa calentar una posición predeterminada de manera uniforme y controlada. El material eléctricamente conductor es preferiblemente un metal tal como cobre. Dentro del alcance de esta solicitud se entiende que un segmento de inducción lineal significa un segmento de inducción con una longitud que es al menos dos veces, y preferiblemente al menos diez veces, la dimensión de sección transversal lineal (el diámetro para una sección transversal circular).
Para la aplicación en el método según la invención el inductor se conecta a un generador de corriente alterna, en el que el generador de corriente alterna se conecta eléctricamente a los medios de conexión eléctrica del inductor. Las frecuencias que pueden usarse se encuentran generalmente entre 0,1-10 MHz. Se usa preferiblemente una frecuencia entre 0,1 y 0,5 MHz, y más preferiblemente una frecuencia entre 0,15 y 0,4 MHz. A una frecuencia preferida de este tipo se consigue un equilibrio óptimo entre la potencia penetrante del campo electromagnético y la proporción de calentamiento.
El segmento de inducción es sustancialmente lineal. Con un segmento de inducción de este tipo puede realizarse un campo electromagnético cilíndrico de manera simple. Si se desea, pueden curvarse los conductores de alimentación eléctricos.
En una realización preferida el segmento de inducción tiene una sección transversal sustancialmente circular. Una sección transversal circular produce un campo electromagnético circular en la posición de la sección transversal de manera simple. La forma del campo electromagnético en la posición de la sección transversal puede verse influida por un diseño diferente de la sección transversal, por ejemplo triangular.
El inductor preferiblemente no tiene bobinados. Un inductor de este tipo puede realizarse de manera muy compacta y de este modo es adecuado para la inducción determinada de manera muy precisa.
Es ventajoso que el inductor sea sustancialmente plano. Esto es posible por ejemplo realizando el inductor libre de bobinado como un conductor eléctrico situado en un plano. Un inductor plano de este tipo es excepcionalmente compacto y adecuado para aplicar un campo electromagnético en una posición determinada de manera muy precisa y uniforme.
Según la invención, se proporciona un inductor del que el conductor de alimentación tiene un área de sección transversal mayor que el segmento de inducción. Un campo electromagnético generado por corriente alterna es así más fuerte en la posición del segmento de inducción que en el conductor de alimentación, mediante lo cual el calentamiento por inducción puede dirigirse de manera muy precisa. La proporción de la dimensión de sección transversal lineal del conductor de alimentación y la dimensión de sección transversal lineal (el diámetro para una sección transversal circular) del segmento de inducción se elige para este fin preferiblemente entre 1 y 20, y más preferiblemente entre 1,2 y 10. La proporción de la longitud del segmento de inducción y la dimensión de sección transversal lineal del segmento de inducción se elige además preferiblemente para este fin entre 2 y 100, y más preferiblemente entre 5 y 50.
En una realización preferida adicional la pieza de inducción se dota de al menos un canal de alimentación adaptado para el paso de un medio de enfriamiento. La temperatura de la pieza de inducción puede mantenerse así constante durante su uso, siendo esto también favorable para la resistencia eléctrica del inductor. El medio de enfriamiento es preferiblemente un líquido tal como agua, con una alta capacidad térmica. La pieza de inducción puede ser por ejemplo un tubo de metal doblado de la forma deseada, a través del que se bombea el medio de enfriamiento mientras se produce un campo electromagnético a través del metal del propio tubo con una tensión alterna.
La invención proporciona también un dispositivo para la soldadura electromagnética de piezas moldeadas, que comprende un molde para alojar al menos dos piezas moldeadas de tal modo que se crea una superficie de contacto entre las piezas moldeadas, un inductor lineal adaptado para generar un campo electromagnético sustancialmente cilíndrico en la posición de la superficie de contacto, un generador de corriente alterna conectado al inductor, y medios de presión para presionar las piezas moldeadas entre sí en la configuración definida por el molde, en el que el segmento de inducción se conecta a los medios de conexión eléctrica por medio de al menos un conductor de alimentación, en el que el conductor de alimentación tiene un área de sección transversal mayor que el segmento de inducción. El método según la invención puede realizarse de manera ventajosa en un dispositivo de este tipo.
La invención se aclarará ahora con referencia a las siguientes figuras, sin limitarse sin embargo a las mismas. En las figuras:
las figuras 1a y 1b muestran la diferencia entre la soldadura electromagnética con un campo de forma toroidal y un campo cilíndrico;
las figuras 2a y 2b muestran un inductor según la invención;
la figura 3 muestra un dispositivo de soldadura dotado de un inductor según la invención;
la figura 4 muestra dos piezas moldeadas acopladas mediante el método según la invención; y
la figura 5 muestra un molde que puede usarse en la soldadura electromagnética según la invención.
La figura 1a muestra una sección transversal de un inductor 1 con una pluralidad de bobinados que producen un campo electromagnético de forma toroidal 2 aplicando una corriente alterna de una frecuencia adecuada para la soldadura electromagnética a una potencia adecuada. Una primera pieza moldeada 3 y una segunda pieza moldeada 4 se ponen en contacto entre sí en este campo electromagnético 2. Las piezas moldeadas se fabrican a partir de un plástico de termoplástico reforzado con fibras de carbono. El calor se desarrolla localmente en las fibras de carbono bajo la influencia del campo electromagnético 2, mediante lo cual el plástico de termoplástico se calienta por encima del punto de fusión. Presionando con los medios de presión (no mostrados) es posible acoplar las piezas moldeadas de termoplástico térmicamente activadas 3, 4 de este modo en la superficie de contacto 5, volviéndose el acoplamiento en la superficie de contacto 5 permanente después del enfriamiento de las piezas moldeadas 3, 4. La figura muestra además el diagrama de temperatura en la superficie de contacto durante el calentamiento, en el que la temperatura relativa T se representa frente a la posición sobre la superficie de contacto 5. El diagrama de temperatura muestra que el campo de forma toroidal 2 provoca un calentamiento irregular sobre la superficie de contacto 5, produciéndose una zona relativamente fría 6 en el centro de la superficie de contacto 5 en la dirección de soldadura A en ángulos rectos a los bobinados del inductor. Debido a esta zona relativamente fría es imposible un calentamiento uniforme, que da como resultado el ensamblaje acoplado entre las piezas moldeadas con un número relativamente alto de irregularidades que implican una capacidad de carga mecánica reducida. Las irregularidades pueden comprender por ejemplo partes de las piezas moldeadas degradadas térmicamente mediante el sobrecalentamiento local y la adhesión mutua incompleta local de las piezas moldeadas.
La figura 2 muestra la soldadura electromagnética según la invención. Una sección transversal muestra cómo una parte lineal de un inductor libre de bobinado 10 produce un campo electromagnético sustancialmente cilíndrico 11 bajo la influencia de tensión alterna. Una primera pieza moldeada 12 y una segunda pieza moldeada 13 de un material comparable al de las piezas 3, 4 de la figura 1a se sueldan entre sí de manera electromagnética en una superficie de contacto 14 bajo la influencia de este campo y medios de presión opcionales. La parte lineal del inductor libre de bobinado 10 se orienta en el presente documento paralela a la superficie de contacto 14. El diagrama de temperatura asociado muestra que la zona fría 5 del campo de forma toroidal 2 en la figura 1a está ausente cuando se usa un campo electromagnético cilíndrico, mediante lo cual es posible un calentamiento mucho más uniforme sobre la superficie de contacto 14. En el producto obtenido las dos piezas moldeadas 12, 13 se acoplan entre sí por medio de la superficie de contacto 14, donde se producen significativamente menos irregularidades que en el acoplamiento obtenido bajo condiciones comparables con un campo de forma toroidal. Esto tiene el resultado de que el producto obtenido bajo la influencia del campo electromagnético cilíndrico tiene una mejor capacidad de carga mecánica que el producto obtenido con un campo electromagnético de forma toroidal. El campo electromagnético 11 puede dirigirse además de manera muy precisa en la dirección indicada A.
Las figuras 2a y 2b muestran un inductor 20 según la invención. El inductor 20 se fabrica a partir de cobre, que es un buen conductor eléctrico y térmico. Los conductores de alimentación 21 pueden conectarse a un generador de corriente alterna. Los conductores de alimentación 21 se conectan a un segmento de inducción lineal 22. El segmento de inducción 22 tiene un diámetro circular, mediante lo cual se genera un campo electromagnético 23 con un perfil que es cilíndrico al menos en la dirección de inducción A cuando se aplica una tensión alterna (figura 2b). El inductor 20 está hueco en el interior, mediante lo cual se forma un canal de alimentación 24 para un medio de enfriamiento tal como agua, que puede alimentarse a su través durante el uso. El área de sección transversal de los conductores de alimentación 21 es mayor que la del segmento de inducción, mediante lo cual el campo electromagnético cilíndrico 23 está más concentrado y tiene una mayor resistencia en una distancia más corta que el campo electromagnético no cilíndrico (no mostrado) que resulta alrededor de otras piezas del inductor 20. Así es posible dirigir la potencia del campo electromagnético 23 de manera muy precisa a una posición para la soldadura electromagnética, por ejemplo de dos piezas moldeadas adyacentes. El inductor 20 comprende un inductor libre de bobinado que se encuentra en un plano, mediante lo cual el inductor es excepcionalmente compacto.
La figura 3 muestra un dispositivo de soldadura 30 dotado de un inductor 31, similar al inductor 20 de las figuras 2a y 2b según la invención. El inductor 31 puede guiarse a lo largo de una trayectoria preprogramada por medio de un robot de seis ejes industrial 32 para conseguir una soldadura deseada. En este caso las piezas moldeadas para soldar (mostradas en la figura 4) se fijan y se presionan entre sí en un molde 33 fabricado para este fin. El molde 33 está dotado de un rebaje 34 a través del que el inductor puede moverse cerca de las piezas moldeadas para soldar (figura 4). El molde 33 se muestra en más detalle en la figura 5. El inductor se conecta a un generador de corriente alterna 35 dispuesto sobre el robot 32 para el fin de generar el campo electromagnético.
La figura 4 muestra dos piezas moldeadas 40, 41 acopladas mediante el método según la invención. Ambas piezas moldeadas 40, 41 se fabrican a partir de un plástico de termoplástico reforzado con fibras de carbono, en el que las fibras de carbono sirven también como componente sensible a la inducción para el calentamiento del plástico de termoplástico para el fin de la soldadura. La primera pieza moldeada 40 es una pieza plana, la segunda pieza moldeada 41 tiene un borde plegado 42 que forma la superficie de contacto destinada para el acoplamiento entre las piezas moldeadas. Usando un campo electromagnético cilíndrico el inductor 43, similar al de las figuras anteriores 1b, 2a, 2b y 3, calienta las piezas moldeadas 40, 41 en la situación situadas juntas a una temperatura que es lo suficientemente alta para activar térmicamente el plástico de termoplástico (u opcionalmente un adhesivo activado térmicamente aplicado a la superficie de contacto 42, 42’). En este caso el inductor se mueve sobre la superficie de contacto en la dirección B del eje longitudinal del campo electromagnético cilíndrico sin hacer contacto físico. Durante el calentamiento y/u opcionalmente un tiempo corto después, las superficies activadas térmicamente pueden presionarse entre sí mediante los medios de presión (no mostrados) para así establecer una conexión entre las piezas moldeadas (40, 41). Esta conexión tiene una capacidad de carga mecánica particularmente alta. Las piezas moldeadas pueden consistir por ejemplo en sulfuro de polifenileno reforzado con fibra de carbono, por ejemplo con un espesor de material de 1-3 mm. Pueden realizarse esfuerzos de corte mayores que 30 MPa de manera simple usando el método según la invención. El ancho de la soldadura realizada puede ser particularmente pequeño, por ejemplo de 10 mm, haciendo uso del campo electromagnético cilíndrico según la invención.
La figura 5 muestra un molde 50 que puede usarse en la soldadura electromagnética según la invención. El molde 50 comprende diversas piezas no conductoras eléctricamente (51, 52) entre las que pueden presionarse entre sí las piezas moldeadas de por ejemplo la figura 4. En la posición de la superficie de contacto destinada para el acoplamiento está dispuesta una parte de material 53 que no es eléctricamente conductora pero que es térmicamente conductora, tal como un material cerámico, que sirve para distribuir y descargar el calor generado a partir de las piezas moldeadas durante la aplicación de un campo electromagnético, y también para impedir las deformaciones del material de termoplástico. Un rebaje 54 está dispuesto en el molde 50, a través del que el inductor puede acercarse lo máximo posible (0,5-2 cm desde la zona de soldadura) a las proximidades de la superficie de contacto entre las piezas moldeadas sin entrar en contacto con las mismas. Para el refuerzo mecánico y para descargar el calor del molde, el molde se dota en el exterior de una capa exterior de metal 54. Las piezas en las proximidades del inductor se fabrican preferiblemente a partir de materiales no conductores eléctricamente tales como madera o plástico.

Claims (17)

  1. REIVINDICACIONES
    1. Método para la soldadura electromagnética de piezas moldeadas, que comprende las etapas de procesamiento de:
    A) proporcionar un molde (33, 50),
    B) situar al menos dos piezas moldeadas (12, 13, 41, 42) para su acoplamiento en el molde (33, 50), en el que al menos una superficie de contacto (14, 42, 42’) entre las piezas moldeadas (12, 13, 40, 41) comprende medios de acoplamiento térmicamente activados y un componente sensible a la inducción,
    C) activar los medios de acoplamiento calentando el componente sensible a la inducción por medio de un inductor (10, 20, 31, 43), en el que el inductor (10, 20, 31, 43) se sitúa fuera del molde (33, 50) de modo que no entra en contacto con el molde (33, 50) o las piezas moldeadas (12, 13, 40, 41), en el que el inductor (10, 20, 31, 43) comprende un segmento de inducción lineal (22) que, bajo tensión alterna, genera un campo electromagnético (23) que es sustancialmente cilíndrico en al menos una dirección de soldadura, y en el que el campo electromagnético del inductor alcanza la superficie de contacto (14, 42, 42’) entre las piezas moldeadas (12, 13, 41, 42) a través de una pared del molde (33, 50),
    D) presionar las piezas moldeadas (12, 13, 40, 41) entre sí en la configuración definida por el molde (33, 50), en el que las piezas moldeadas (12, 13, 40, 41) se acoplan mediante los medios de acoplamiento térmicamente activados.
  2. 2. Método según la reivindicación 1, en el que el inductor comprende una pieza de inducción que se fabrica sustancialmente a partir de un material eléctricamente conductor y un segmento de inducción sustancialmente lineal
    (22) dotado de al menos un conductor de alimentación eléctricamente conductor (21), en el que el segmento de inducción (22) se conecta a los medios de conexión eléctrica por medio de al menos un conductor de alimentación (21), que tiene un área de sección transversal mayor que el segmento de inducción (22).
  3. 3.
    Método según la reivindicación 1 ó 2, caracterizado porque el inductor (10, 20, 31, 43) se coloca de tal modo que el segmento de inducción (22) discurre sustancialmente paralelo a la pared del molde (33, 50).
  4. 4.
    Método según la reivindicación 1, caracterizado porque los medios de acoplamiento térmicamente activados comprenden un plástico termoplástico.
  5. 5.
    Método según cualquiera de las reivindicaciones 1-4, caracterizado porque el componente que puede calentarse por inducción comprende fibras de carbono y/o un metal.
  6. 6.
    Método según cualquiera de las reivindicaciones 1-4, caracterizado porque el componente que puede calentarse por inducción comprende partículas ferromagnéticas.
  7. 7.
    Método según cualquiera de las reivindicaciones anteriores, caracterizado porque el inductor (10, 20, 31, 43) es movido a lo largo de una trayectoria en relación con la superficie de contacto durante la etapa C) de tal modo que los medios de acoplamiento son activados en una parte predeterminada de la superficie de contacto (14, 42, 42’).
  8. 8.
    Método según la reivindicación 7, caracterizado porque la pared del molde (33, 50) está dotada de un rebaje (34) en la posición de la superficie de contacto (14, 42, 42’).
  9. 9.
    Método según cualquiera de las reivindicaciones anteriores, caracterizado porque el componente sensible a la inducción se conecta eléctricamente a una descarga de calor (53) que se extiende una distancia desde las piezas moldeadas (12, 13, 40, 41).
  10. 10.
    Inductor (10, 20, 31, 43), adecuado evidentemente para su uso en un método según lo reivindicado en cualquiera de las reivindicaciones, que comprende una pieza de inducción que se fabrica sustancialmente a partir de un material eléctricamente conductor y un segmento de inducción sustancialmente lineal (22) dotado de al menos un conductor de alimentación eléctricamente conductor (21), en el que al menos un segmento de inducción (22) del inductor (10, 20, 31, 43) está adaptado para generar un campo electromagnético que es sustancialmente cilíndrico en al menos una dirección de soldadura, en el que el segmento de inducción (22) está conectado a los medios de conexión eléctrica por medio de al menos un conductor de alimentación (21), que tiene un área de sección transversal mayor que el segmento de inducción (22).
  11. 11.
    Inductor (10, 20, 31, 43) según la reivindicación 10, caracterizado porque la pieza de inducción es un inductor libre de bobinado.
  12. 12.
    Inductor (10, 20, 31, 43) según la reivindicación 10 u 11, caracterizado porque la pieza de inducción es sustancialmente plana.
  13. 13.
    Inductor (10, 20, 31, 43) según cualquiera de las anteriores reivindicaciones 10-12, caracterizado porque el segmento de inducción (22) tiene una sección transversal sustancialmente circular.
  14. 14.
    Inductor (10, 20, 31, 43) según la reivindicación 10, caracterizado porque la relación entre la sección transversal del conductor de alimentación (21) y la sección transversal del segmento de inducción (22) se encuentra entre 1 y 20, y más preferiblemente entre 1,2 y 10.
  15. 15.
    Inductor (10, 20, 31, 43) según la reivindicación 10, caracterizado porque la relación entre la longitud del
    5 segmento de inducción (22) y la sección transversal del segmento de inducción (22) se encuentra entre 2 y 100, y más preferiblemente entre 5 y 50.
  16. 16. Inductor (10, 20, 31, 43) según cualquiera de las anteriores reivindicaciones 10-15, caracterizado porque la pieza de inducción está dotada de al menos un canal de alimentación (24) adaptado para el paso de un medio de enfriamiento.
    10 17. Ensamblaje de un inductor (10, 20, 31, 43) según cualquiera de las anteriores reivindicaciones 10-16 y un generador de corriente alterna (35), en el que el generador de corriente alterna (35) se conecta a los medios de conexión eléctrica del inductor (10, 20, 31, 43).
  17. 18. Dispositivo para la soldadura electromagnética de piezas moldeadas, que comprende
    -
    un molde (33, 50) para alojar al menos dos piezas moldeadas (12, 13, 41, 42) de tal modo que se crea una 15 superficie de contacto (14, 42, 42’) entre las piezas moldeadas (12, 13, 41, 42),
    -
    un inductor (10, 20, 31, 43) tal como se define en la reivindicación 10
    -
    un generador de corriente alterna (35) conectado al inductor,
    -
    medios de presión para presionar las piezas moldeadas (12, 13, 41, 42) entre sí en la configuración definida por el molde (33, 50).
ES08741663T 2007-04-26 2008-04-24 Método y dispositivo para la soldadura electromagnética de piezas moldeadas Active ES2392279T3 (es)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NL2000615 2007-04-26
NL2000615A NL2000615C2 (nl) 2007-04-26 2007-04-26 Werkwijze en inrichting voor het elektromagnetisch lassen van vormdelen.
PCT/NL2008/050242 WO2008133507A2 (en) 2007-04-26 2008-04-24 Method and device for electromagnetic welding of moulded parts

Publications (1)

Publication Number Publication Date
ES2392279T3 true ES2392279T3 (es) 2012-12-07

Family

ID=38846920

Family Applications (1)

Application Number Title Priority Date Filing Date
ES08741663T Active ES2392279T3 (es) 2007-04-26 2008-04-24 Método y dispositivo para la soldadura electromagnética de piezas moldeadas

Country Status (7)

Country Link
US (1) US8668802B2 (es)
EP (1) EP2150393B1 (es)
BR (1) BRPI0809831B1 (es)
CA (1) CA2685143C (es)
ES (1) ES2392279T3 (es)
NL (1) NL2000615C2 (es)
WO (1) WO2008133507A2 (es)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102039708B (zh) * 2009-10-22 2013-12-11 清华大学 一种粘合两基体的方法
CN102101371B (zh) * 2010-10-29 2014-04-23 清华大学 粘合物件的方法
CN102049890A (zh) 2010-10-29 2011-05-11 清华大学 碳纳米管复合材料的制备方法
CN102061101A (zh) 2010-10-29 2011-05-18 清华大学 碳纳米管复合材料
US9561621B2 (en) * 2012-05-21 2017-02-07 GM Global Technology Operations LLC Method and apparatus to mitigate the bond-line read-out defect in adhesive-bonded composite panels
DE102015210027B4 (de) 2015-06-01 2020-08-06 Kautex Textron Gmbh & Co. Kg Verfahren zum elektromagnetischen Schweißen von ersten und zweiten Formteilen aus thermoplastischem Kunststoff sowie Behälter aus thermoplastischem Kunststoff
US20190262885A1 (en) 2016-06-13 2019-08-29 Stylianos Mores Electromagnetic hammer device for the mechanical treatment of materials and method of use thereof
DE102017203368B4 (de) * 2017-03-02 2023-07-06 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zum Versteifen von Metallbauteilen mittels eines robotergeführten Applikationskopfes
NL2021039B1 (en) * 2018-06-01 2019-12-10 Kok & Van Engelen Composite Structures B V Method and device for joining moulded parts by electromagnetic welding
MY189353A (en) 2018-07-16 2022-02-07 Soudure Inst De Method for welding parts in thermoplastic material
FR3083732A1 (fr) 2018-07-16 2020-01-17 Arkema France Procédé de soudage de pièces à base de matériau thermoplastique
CN109600864B (zh) * 2018-11-16 2021-11-19 西安交通大学 六自由度串联石英灯自适应模块化复杂曲面加热装置
US11970313B2 (en) 2018-12-12 2024-04-30 Yeti Coolers, Llc Insulating container
US10766672B2 (en) 2018-12-12 2020-09-08 Yeti Coolers, Llc Insulating container
NL2022271B1 (en) 2018-12-20 2020-07-15 Kok & Van Engelen Composite Structures B V Tooling for use in a method for electromagnetic welding of molded parts, and method for manufacturing the tooling
IT201800020524A1 (it) * 2018-12-20 2020-06-20 Leonardo Spa Dispositivo di saldatura ad induzione elettromagnetica per giuntare materiali compositi e relativo metodo di giunzione
US11230066B2 (en) 2019-08-06 2022-01-25 The Boeing Company Induction welding using a heat sink and/or cooling
US11292204B2 (en) 2019-08-06 2022-04-05 The Boeing Company Induction welding using a heat sink and/or cooling
US11364688B2 (en) 2019-08-06 2022-06-21 The Boeing Company Induction welding using a heat sink and/or cooling
US11358344B2 (en) 2019-08-06 2022-06-14 The Boeiog Company Induction welding using a heat sink and/or cooling
US11458691B2 (en) 2019-08-06 2022-10-04 The Boeing Company Induction welding using a heat sink and/or cooling
US11351738B2 (en) 2019-08-06 2022-06-07 The Boeing Company Induction welding using a heat sink and/or cooling
EP3772403A1 (en) * 2019-08-06 2021-02-10 The Boeing Company Remote detection of induction weld temperature
US11524467B2 (en) 2019-08-06 2022-12-13 The Boeing Company Induction welding using a heat sink and/or cooling
FR3123246B1 (fr) 2021-05-25 2024-04-19 Inst De Rech Tech Jules Verne Effecteur de soudage dynamique de pièces en matériau composite
US11718044B2 (en) * 2021-06-07 2023-08-08 Rohr, Inc. Fixtures and methods for induction welding
FR3132662A1 (fr) 2022-02-11 2023-08-18 Institut De Recherche Technologique Jules Verne Procédé et installation de soudage

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2339707A1 (de) 1973-08-06 1975-02-27 Hoechst Ag Verfahren und vorrichtung zum verschweissen metallschichten enthaltender verbundfolien zu hohlkoerpern
DE2542898A1 (de) * 1975-09-26 1977-03-31 Sachs Systemtechnik Gmbh Anordnung zum warmhalten
US4507907A (en) * 1981-09-02 1985-04-02 Burr-Brown Corporation Expendable heater sealing process
JPH07108554B2 (ja) * 1986-05-08 1995-11-22 株式会社新素材総合研究所 接着方法
JPH0710275B2 (ja) * 1987-03-04 1995-02-08 株式会社新素材総合研究所 医療用容器およびその製造方法
US4969968A (en) * 1988-07-22 1990-11-13 William C. Heller, Jr. Method of inductive heating with an integrated multiple particle agent
US5710412A (en) * 1994-09-28 1998-01-20 The Boeing Company Fluid tooling for thermoplastic welding
US6023054A (en) * 1997-02-28 2000-02-08 Johnson, Jr.; Robert Harlan High efficiency heating agents
AU2001259340A1 (en) 2000-05-02 2001-11-20 Tribond, Inc. Temperature-controlled induction heating of polymeric materials

Also Published As

Publication number Publication date
US8668802B2 (en) 2014-03-11
BRPI0809831A2 (pt) 2014-10-07
WO2008133507A2 (en) 2008-11-06
CA2685143A1 (en) 2008-11-06
EP2150393B1 (en) 2012-06-20
WO2008133507A3 (en) 2008-12-24
BRPI0809831B1 (pt) 2023-10-31
US20100206469A1 (en) 2010-08-19
CA2685143C (en) 2017-03-21
BRPI0809831A8 (pt) 2018-02-14
EP2150393A2 (en) 2010-02-10
NL2000615C2 (nl) 2008-10-28

Similar Documents

Publication Publication Date Title
ES2392279T3 (es) Método y dispositivo para la soldadura electromagnética de piezas moldeadas
JP2818297B2 (ja) 電気融着継手、電気融着装置、電気融着継手用ヒータおよび電気融着継手用ヒータの製造方法
US5313034A (en) Thermoplastic welding
US11390042B2 (en) Method and apparatus for thermally joining thermoplastic fiber composite components, and cover for a pressurization device suitable for this purpose
RU2389607C2 (ru) Способ и устройство для сваривания
ES2913446T3 (es) Método y dispositivo para la unión de piezas moldeadas mediante soldadura electromagnética
US20100025391A1 (en) Composite inductive heating assembly and method of heating and manufacture
NL194071C (nl) Werkwijze en inrichting voor het lassen van een lengte buis op een pijpleiding.
JP6300327B2 (ja) 金型または工具を加熱するための装置および方法
JPH06310266A (ja) 金属シートを接合する方法及び誘導加熱コイル
US20080308550A1 (en) Magnetic flux guide for continuous high frequency welding of closed profiles
KR20150036480A (ko) 전봉관 용접 장치
US20120128809A1 (en) Induction heating device and method for making a workpiece using such a device
WO2007081918A2 (en) Electromagnetically shielded induction heating apparatus
RU2508972C2 (ru) Сварочное устройство для трубы, свариваемой методом электрического сопротивления
KR101833109B1 (ko) 전봉관 용접 장치
KR20230083340A (ko) 유도 납땜을 위한 납땜 도구
EP0711218B1 (en) An apparatus for fusing two workpieces produced from sheet metal
CA2096725C (en) Dual surface heaters
US20240051236A1 (en) Method and device for electromagnetic spot welding of moulded parts
US20240059027A1 (en) Method and device for electromagnetic spot welding of moulded parts
WO1997048515A1 (en) Method and installation for butt welding two sheet sections, and coil for use therewith
RU2779726C2 (ru) Способ и устройство для соединения формованных деталей электромагнитной сваркой
GB2610817A (en) Railway-rail induction welding device, apparatus and associated Method
KR20190074279A (ko) 복수의 개별 코일을 포함하는 코일 어셈블리를 이용한 플라스틱 물체들의 유도 용접 방법 및 그 장치