EP4386069A1 - Basisöl und schmierfluidzusammensetzung enthaltend das basisöl - Google Patents

Basisöl und schmierfluidzusammensetzung enthaltend das basisöl Download PDF

Info

Publication number
EP4386069A1
EP4386069A1 EP24173603.2A EP24173603A EP4386069A1 EP 4386069 A1 EP4386069 A1 EP 4386069A1 EP 24173603 A EP24173603 A EP 24173603A EP 4386069 A1 EP4386069 A1 EP 4386069A1
Authority
EP
European Patent Office
Prior art keywords
oligomers
base oil
use according
polyalphaolefin
polyalphaolefins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP24173603.2A
Other languages
English (en)
French (fr)
Inventor
Patrick Fries
Olaf Binkle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuchs SE
Original Assignee
Fuchs SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuchs SE filed Critical Fuchs SE
Publication of EP4386069A1 publication Critical patent/EP4386069A1/de
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M111/00Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential
    • C10M111/04Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential at least one of them being a macromolecular organic compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • C10M169/041Mixtures of base-materials and additives the additives being macromolecular compounds only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • C10M2205/0285Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/026Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with tertiary alkyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • C10M2207/289Partial esters containing free hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/086Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type polycarboxylic, e.g. maleic acid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/086Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type polycarboxylic, e.g. maleic acid
    • C10M2209/0863Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type polycarboxylic, e.g. maleic acid used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/105Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing three carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/105Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing three carbon atoms only
    • C10M2209/1055Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing three carbon atoms only used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/106Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing four carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/106Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing four carbon atoms only
    • C10M2209/1065Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing four carbon atoms only used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/107Polyethers, i.e. containing di- or higher polyoxyalkylene groups of two or more specified different alkylene oxides covered by groups C10M2209/104 - C10M2209/106
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/107Polyethers, i.e. containing di- or higher polyoxyalkylene groups of two or more specified different alkylene oxides covered by groups C10M2209/104 - C10M2209/106
    • C10M2209/1075Polyethers, i.e. containing di- or higher polyoxyalkylene groups of two or more specified different alkylene oxides covered by groups C10M2209/104 - C10M2209/106 used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/223Five-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/043Ammonium or amine salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/047Thioderivatives not containing metallic elements
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/041Siloxanes with specific structure containing aliphatic substituents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/04Molecular weight; Molecular weight distribution
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/12Inhibition of corrosion, e.g. anti-rust agents or anti-corrosives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/18Anti-foaming property
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/36Seal compatibility, e.g. with rubber
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/62Food grade properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/08Hydraulic fluids, e.g. brake-fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2070/00Specific manufacturing methods for lubricant compositions

Definitions

  • the present invention relates to the use of a base oil comprising polyalphaolefins, polymer esters and polyalkylene glycols and the use of a lubricating fluid composition containing the base oil and additives.
  • the lubricating fluid composition can be used for lubricating gears and for use in hydraulic systems, in particular for lubrication in the food processing industry.
  • the area of application of the base oils and lubricating fluid compositions used according to the invention are lubrication points that come or can come into contact with food and/or animal feed.
  • Hydraulic and gear oils consist of a base oil and additives that are added to increase the service life and performance of the lubricating fluid.
  • the base oil can consist of a mixture of different oils.
  • the load on the tooth flanks is gradually loaded using a weighted lever that clamps one of the shafts against the other. From force level 4 onwards, the pinion tooth flanks are examined for any damage after each force level has ended. If force level 12 is reached without the occurrence of damage, the measurement is finished.
  • the requirement standard for hydraulic oil (DIN 51524-2 HLP) requires at least force level 10
  • the requirement standard for circulating oils (DIN 51517-3 CLP) requires at least force level 12. The result is either "Pass” or "Fail” - it works or it doesn't work.
  • Micropitting resistance is the property of a lubricating fluid to avoid the damage caused by micropitting (also known as "micropitting").
  • Micropitting occurs on tooth flanks under high loads in the area of mixed friction.
  • the primary influence on the occurrence of micropitting is the thickness of the lubricant film at operating temperature.
  • chemically active additives can significantly promote the occurrence of micropitting.
  • friction modifiers can help prevent micropitting.
  • US9347016B2 the use of a dialkyldithiophosphate as an effective component against micropitting is described.
  • Phosphonates and phosphites e.g. dioleyl phosphite
  • succinimides, pyrrolidinones, molybdenum carboxylates and oleylamide are mentioned as friction modifiers to prevent micropitting.
  • US6184186B1 claims the use of molybdenum carboxylates and sulfurized isobutylenes to prevent micropitting.
  • the FVA 54 micropitting test is used, which is carried out on a FZG standard tension testing machine.
  • This test consists of two consecutive parts: a step test to determine the damage force level and an endurance test to assess the long-term tribological behavior.
  • the step test the load is increased step by step from force level 5 to force level 10, with the test duration of each force level being 16 hours.
  • the endurance test initially runs for 80 hours at force level 8 and then 5 x 80 hours at force level 10. After each force level, the pinion is removed and the profile form deviation and the proportion of micropitting on the tooth flank are determined for three teeth. In addition, the weight loss of the pinion caused by wear is determined.
  • the profile form deviation is used to determine the damage force level in the step test. If a value of 7.5 ⁇ m is exceeded, the damage force level is reached. If the limit value is not exceeded after the first five force levels, damage force level 10 is reached. If all six force levels are completed without exceeding the limit value, the result is given as SKS greater than 10.
  • elastomer compatibility is also important, as elastomers, e.g. radial shaft seals, shrink when the oil is used for a long time and can lead to leaks. Likewise, an oil can cause excessive swelling, which can also lead to leaks.
  • Various NBR and FKM elastomer types are usually used in industrial gears, with the NBR types in particular being particularly sensitive to the composition of the base oil mixture.
  • lubricating fluids that are physiologically safe must be used, as possible contact between the lubricating fluid and the food cannot be completely ruled out.
  • the selection of raw materials that can be used to produce food-grade (H1) lubricating fluids is very limited compared to technical lubricating fluids. All of the above-mentioned “friction modifiers” are not permitted for the formulation of "food grade” lubricating fluids.
  • Hydraulic oils offer protection against wear and corrosion, whereby the wear protection of HLP-classified oils (DIN 51524-2) is improved compared to HL oils (DIN 51524-1) and HVLP-classified oils (DIN 51524-3) have, in addition to the improved wear protection, a more stable temperature-viscosity behavior (viscosity index) and can therefore be used in a wider temperature range.
  • a high viscosity index is also desired. Pressure losses in hydraulic systems reduce efficiency. These can occur at low temperatures due to an increase in the viscosity of the fluid and at high temperatures due to leakage caused by a decrease in the viscosity of the fluid. High efficiency over a wide temperature range can therefore be achieved with oils with a high viscosity index.
  • US 2021/0348079 A discloses lubricants based on a terpolymer of diester, olefin and acrylate.
  • the terpolymer is a polymerized diester selected from a di(C4-C22-alkyl) ester of maleic acid, fumaric acid, 2-methylmaleic acid, 2,3-dimethylmaleic acid, 2-methylfumaric acid, 2,3-dimethylfumaric acid or mixtures as a polymerization product with a C6-C40-alpha-olefin and a C4-C40-alkyl (meth)acrylate.
  • Polyalphaolefins or alkylene oxides are suggested as optional base oils for the lubricant.
  • the JP 2007-268697 A discloses oil compositions based on Fischer-Tropsch hydrocarbons and n-paraffins, and optionally aromatic and naphthalene hydrocarbon oils.
  • the oil compositions can optionally further contain synthetic oils such as poly-alpha-olefins or polyalkylene glycols or polymers such as polymerization products of unsaturated carboxylic acid esters such as maleic acid ester or fumaric acid ester polymers polymerized with an olefinic monomer.
  • the object of the invention is to provide a base oil and a lubricating fluid containing the base oil, whereby the lubricating fluid can be used as a gear oil and/or hydraulic oil, among other things.
  • the base oil should be such that it can absorb the additives required for the lubricating fluid and the additives in the base oil have the desired effect.
  • the raw materials should be selected so that the lubricating fluids can also be used in the food processing industry. The selection of raw materials is regulated in the USA, for example, by the specifications of the US Food and Drug Administration (FDA).
  • the lubricating fluid should, according to one embodiment, meet the CLP standard DIN 51517-3 and, in addition, particularly from viscosity class 220 (ISO VG 220), have a micropitting resistance of the rating level "high” in the micropitting test according to FVA 54.
  • low viscosity classes of the lubricating fluid should also meet DIN 51524-3 (HVLP). In all viscosity classes, good compatibility with common NBR elastomers (NBR is the abbreviation for "Nitrile Butadiene Rubber”) and fluorocarbon rubber elastomers (FKM elastomers) is desired.
  • the base oil according to the invention comprises: 50-98 wt.%, preferably 81 to 96 wt.%, polyalphaolefins as oligomers of C6 to C14 alpha-olefins, in particular C8 to C12 alpha-olefins; 1-25 wt.%, preferably 2 to 15% by weight of polymer esters obtainable as a polymerization product of one or more alpha/beta-unsaturated dicarboxylic acid diesters, wherein the alcohol groups have 3 to 10 carbon atoms, in particular 4 to 8 carbon atoms, with one or more C4 to C18 alpha-olefins, in particular C10 to C16 alpha-olefins or C12 to C16 alpha-olefins; 1-25 wt.%, preferably 2 to 4 wt.%, polyalkylene glycols obtainable from alkylene oxides, wherein the alkylene oxides comprise butylene oxide or propylene oxide
  • the base oil comprises 81 - 96 wt.% the above polyalphaolefins; 2 - 15 wt.% the above polymer esters; 2 - 4 wt. % of the above polyalkylene glycols
  • the above polyalphaolefins, polymer esters and polyalkylene glycols together make up more than 90% by weight, in particular more than 95% by weight of the base oil.
  • the above polyalphaolefins, polymer esters and polyalkylene glycols add up to 100% by weight in the base oil.
  • the base oil therefore consists of the above components.
  • the polyalphaolefin is an oligomer of a 1-octene, 1-decene and/or 1-dodecene, and in particular an oligomer of 1-octene or 1-decene or 1-octene and 1-decene.
  • the degree of polymerization of the polyalphaolefins can be 3 to 25.
  • the viscosity of the polyalphaolefins is preferably from 4 to 300 mm 2 /s at 100°C (kinematic viscosity determined according to DIN EN ISO 3104).
  • the polyalphaolefins can also be used as hydrogenated products.
  • the polymer esters are preferably copolymers of maleic and/or fumaric acid (full) esters and one or more C4 to C18 alpha-olefins.
  • the alcohol groups of the dicarboxylic acid diesters are in particular linear and/or branched monoalcohols with 3 to 10 carbon atoms, in particular 4 to 8 carbon atoms.
  • the dicarboxylic acids of the dicarboxylic acid diester preferably have 4 to 12 carbon atoms, in particular 4 to 6 carbon atoms.
  • chain lengths of 10 to 16 carbon atoms, in particular 14 to 16 carbon atoms are preferred. These can be linear and/or branched, preferably linear.
  • the molar ratio of the alpha-olefins to the dicarboxylic acid diesters can be 1.5:1 to 1:1.5, in particular 1:0.9 to 0.9:1.
  • the polymer esters have in particular an average molecular weight of 1000 to 5000 g/mol and in particular 1500 to 2500 g/mol (in each case as number average).
  • the molar ratio of the alpha-olefins to the dicarboxylic acid diesters can be 1.5:1 to 1:1.5, in particular 1:0.9 to 0.9:1.
  • the polyalkylene glycols comprise 30-70 mol% propylene oxide and 70-30 mol% C4 to C8 alkylene oxides, in particular butylene oxide, or consist in particular of these.
  • the polyalkylene glycols are preferably soluble at room temperature in the polyalphaolefins or polyalphaolefin mixtures with which they are used together.
  • the amine-converted alkyl phosphate is preferably a mono- or di-C1- to C12-alkyl phosphate reacted with at least C10- to C18-alkylamines.
  • the reaction is preferably carried out in such a way that the alkyl phosphate is neutralized or partially neutralized.
  • Suitable examples are mono- and diisooctyl esters of phosphoric acid reacted with tert-alkylamines and C12- to C14-primary amines (CAS Reg. No. 68187-67-7) or phosphoric acid mono- and di-hexyl esters reacted with tetra-methylnonylamine and C11- to C14-alkylamines.
  • the polyol monoester is preferably a C12 to C24 fatty acid ester of polyols such as glycerin, polyglycerin or sorbitan.
  • the polyol can also be completely or partially ethoxylated. Suitable examples are polysorbate 20, polysorbate 40, polysorbate 60, polysorbate 120, glyceryl monostearate, glyceryl monooleate, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate or polyglyceryl-4 isostearate.
  • the C12 to C24 mono-fatty acid esters of possibly partially ethoxylated polyols act as friction modifiers.
  • the base oil in a lubricating fluid composition or the lubricating fluid composition can be used as hydraulic and gear oil, in particular in the food processing industry and/or the feed processing industry.
  • polyalphaolefins, polymer esters and polyalkylene glycols are not chemically pure products and when they are mentioned in the singular, this also means a mixture of different molecules, each of which individually corresponds to the given specification.
  • Hydraulic and gear oils consist of a base oil and additives that are added to increase the service life and performance of the lubricating fluid.
  • a base oil a mixture of the above polyalphaolefins, polymer esters and polyalkylene glycols is used as the base oil.
  • the polyalphaolefins are oligomers of linear 1-alkenes, in particular 1-octene, 1-decene and/or 1-dodecene, which can be prepared using Lewis acid catalysts (e.g. US6824671B2 ) or metallocene catalysts (mPAOs, US9365663B2 , US9701595 B2 ) and whose kinematic viscosity at 100°C (kV 100) can be between 2 and 300 mm 2 /s.
  • the polyalphaolefin can be, for example, an oligomer of 50 to 80 wt.% 1-decene and 50 to 20 wt.% 1-dodecene.
  • the polyalphaolefins are a mixture of a1) oligomers of 1-decene and b1) oligomers of 1-octene or a mixture of a2) oligomers of 1-dodecene and b2) oligomers of 1-octene and/or 1-decene.
  • These mixtures can be characterized in more detail as follows: 5 - 95 wt.% of oligomers a1) or a2) and 5 to 95 wt.% of oligomers b1) or b2).
  • the polyalphaolefins can be produced by metallocene catalysis.
  • polyalphaolefins of different viscosities e.g. oligomers with a viscosity of 4 to 100 mm 2 /s at 100°C and oligomers with a viscosity of 50 to 300 mm 2 /s at 100°C.
  • Polymer esters are polymers resulting from C,C linkages that contain side chains with ester groups.
  • these include in particular the copolymers of alpha, beta unsaturated dicarboxylic acid esters, such as maleic or fumaric acid esters with, in particular, unbranched alpha-olefins.
  • Polymer esters and their production are used, for example, in the DE 3223694 C2 and US 5435928 A described.
  • the polyalkylene glycols are the polymeric reaction products of water and/or a mono- or dihydric starting alcohol with 1,2-epoxides such as ethylene oxide, propylene oxide and/or butylene oxide, comprising at least propylene oxide and at least one C4 to C8 alkylene oxide.
  • 1,2-epoxides such as ethylene oxide, propylene oxide and/or butylene oxide, comprising at least propylene oxide and at least one C4 to C8 alkylene oxide.
  • the polyalkylene glycols are present, for example, as homopolymers of butylene oxide or as copolymers of propylene oxide and butylene oxide. Copolymers consisting of 30-70% propylene oxide and 70-30% butylene oxide are preferably used here.
  • the polyalkylene glycols have in particular one or two terminal hydroxy groups.
  • a swelling agent typically an ester
  • the addition of a swelling agent, typically an ester, to the lubricating fluid composition is desirable.
  • too high a swelling agent content leads to excessive swelling, which can also lead to leakage.
  • NBR and FKM elastomer types are used in industrial gears, with the NBR types in particular being highly sensitive to the composition, i.e. the polarity, of the base oil mixture.
  • Examples of swelling agents include monoesters, diesters, polyol esters and complex esters, e.g. of C1 to C18 alcohols with a C2 to C18 carboxylic acid.
  • the monoesters and diesters that can be used here include the esters of linear or branched monohydric alcohols such as methanol, ethanol, isopropanol, isobutanol, 2-ethylhexanol, 3,5,5-trimethylhexanol or 7-methyloctanol with typical fatty acids or dicarboxylic acids such as caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, isostearic acid, oleic acid, linoleic acid, linolenic acid, adipic acid, suberic acid, sebacic acid or phthalic acid.
  • Polyol esters include the formal reaction products of linear or branched carboxylic acids with polyhydric alcohols such as glycerin, neopentyl glycol, trimethylolpropane, pentaerythritol or dipentaerythritol.
  • the proportion of the swelling agent is chosen so that the volume expansion of the elastomer does not exceed 10%. As a rule, this means that the swelling agent is contained in the lubricating fluid composition in a proportion of 0.5 to 6% by weight, in particular 1 to 4% by weight.
  • One example is di(2-ethylhexyl) sebacate.
  • the polyalkylene glycol used also acts as a swelling agent.
  • a portion of the base oil quantity (e.g. 5 to 25% by weight) is initially introduced together with the additives, which are particularly oil-soluble but are generally present as solids under normal conditions, and heated to 90 to 110°C with continuous stirring to ensure that these additives dissolve in the base oil.
  • the temperature is reduced to less than 60°C.
  • Liquid and optionally oil-insoluble additives and solids as well as the remaining amount of base oil are then added and mixed by further stirring until the mixture is completely homogeneous.
  • the lubricating fluid composition according to the invention is particularly suitable for use in industrial gears (spur gear, helical gear, bevel gear, hypoid and planetary gears) and hydraulic systems, in particular those used in the food or feed industry.
  • a gearbox is a machine element with which movement variables (e.g. change in force, torque) can be changed. Depending on the design of the gearbox, it is surrounded by a housing and lubricated with a lubricating fluid. Seals are used to prevent the lubricating fluid from leaking out. In addition to special design properties, the sealing materials must also be chemically stable against the lubricating fluids used.
  • Elastomer compatibility therefore plays an important role in lubricant development. The same applies to the durability of hydraulic seals, which are used to seal hydraulic systems filled with hydraulic oils.
  • a lubricating fluid was developed for use as a gear and hydraulic oil, which meets the requirements of DIN 51517-3 (more precisely: the tests described in DIN ISO 1817 for relative volume change, change in Shore A hardness, tensile strength and elongation at break) as well as the dynamic elastomer compatibility test (Freudenberg test specification FS PLM 111 0008).
  • a portion of the base oil (5-25%), here the polar oil components, namely esters and polyalkylene glycol, are added together with the additives that are solid at room temperature and heated to 90 to 110°C with continuous stirring until a clear solution is obtained. The temperature is reduced to less than 60°C by adding the remaining (unheated) base oil. The liquid additives are then added and mixed by further stirring for approx. 15 minutes until the mixture is completely homogeneous. When cooled further to temperatures below 40°C, the oil can be bottled.
  • the base oil 5-25%
  • the polar oil components namely esters and polyalkylene glycol
  • formulations each contain an additive package.
  • PAO6 Polyalphaolefin Spectrasyn 6, ExxonMobil Chemical; Synfluid PAO 6 cSt, Chevron Phillips Chemical; Durasyn 166, Ineos Oligomers mPAO 150 Polyalphaolefin, metallocene catalyzed: Spectrasyn Elite 150, ExxonMobil Chemical; Synfluid mPAO 150 cSt, Chevron Phillips Chemical Di(2-ethylhexyl) sebacate Priolube 1856, Croda; Nycobase 20307 FG, Nyco; Lubricit DOS, Zschimmer&Schwarz Polymer ester polyalkylene glycol anti-wear additive (AW additive) Ketjenlube 240, Italmatch UCON OSP-32, DOW amine-neutralized alkyl phosphate, Irgalube 349, BASF SE Additive package Triphenylphosphorothionate, phenolic antioxidant, amine
  • the polymer esters and polyalkylene glycol used are very suitable additives to the PAO oil because they are able to maintain the high viscosity index.
  • a higher viscosity index means a higher lubricating film thickness at operating temperature, which contributes to better wear protection.
  • a purely PAO-based formulation (test 1) does not offer sufficient elastomer compatibility. NBR elastomers shrink and can lead to leaks. Formulations that contain either polyalkylene glycol (test 2) or ester (test 3) show only slight volume losses. The best result is achieved with a formulation that contains both ester and polyalkylene glycol (PAG) in addition to POA (test 4). Furthermore, the purely PAO-based formulation cannot guarantee corrosion protection against salt water despite the same additives.
  • Test series 2 shows that, among the additives, the content of amine-neutralized alkyl phosphates plays a decisive role in whether the important mechanical-dynamic tests are passed or not.
  • a low content (test 5)
  • a high micropitting resistance can be achieved even without the addition of polyalkylene glycol.
  • only damage force level 11 can be achieved in the FZG test.
  • a higher content of amine phosphates and in the presence of polyalkylene glycol test 6
  • damage force level greater than 12 is achieved in the FZG test, but the micropitting resistance is insufficient.
  • the reduced amine phosphate content in test 4 can be compensated for by the oil-soluble polyalkylene glycol without having any negative effects in the micropitting test.
  • the base oil mixture described here supports the corrosion protection properties and elastomer compatibility of the lubricant and allows a balanced additive mix suitable for "food grade” lubricants, which meets the sometimes contradictory requirements.
  • the invention relates to the following:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

Gegenstand der Erfindung sind ein Basisöl umfassend Polyalphaolefine, Polymerester und Polyalkylenglykole und eine Schmierfluidzusammensetzung enthaltend das Basisöl zur Schmierung von Getrieben und zum Einsatz in Hydrauliksystemen im Bereich der lebensmittelverarbeitenden Industrie.

Description

  • Die vorliegende Erfindung betrifft die Verwendung eines Basisöls, umfassend Polyalphaolefine, Polymerester und Polyalkylenglykole und die Verwendung einer Schmierfluidzusammensetzung enthaltend das Basisöl und Additive. Die Schmierfluidzusammensetzung kann zur Schmierung von Getrieben und zum Einsatz in Hydrauliksystemen eingesetzt werden, insbesondere zur Schmierung im Bereich der lebensmittelverarbeitenden Industrie. Das Anwendungsgebiet der erfindungsgemäß eingesetzten Basisöle und Schmierfluidzusammensetzungen sind Schmierstellen, die mit Lebens- und/oder Futtermitteln in Kontakt kommen bzw. kommen können.
  • Einführung und Stand der Technik
  • Hydraulik- und Getriebeöle bestehen aus einem Basisöl sowie Additiven, die zur Steigerung der Lebensdauer und Leistungsfähigkeit des Schmierfluids zugesetzt werden. Das Basisöl kann aus einer Mischung unterschiedlicher Öle bestehen.
  • Zur Bestimmung der Leistungsfähigkeit eines Schmierfluids werden verschiedene mechanisch-dynamische Prüfungen durchgeführt. Die Forschungsstelle für Zahnräder und Getriebebau der Technischen Universität München (FZG) hat einen Prüfstand entwickelt, mit dem sich Schmierstoffe für Getriebe auf ihre Eignung testen lassen, ein Fressen der Oberflächen und Flanken von Zahnrädern zu verhindern. Eine wichtige Kenngröße für Industriegetriebeöle ist die Schadenskraftstufe im FZG-Test A/8,3/90 nach DIN ISO 14635-1. In diesem Test wird die Fresstragfähigkeit von Schmierstoffen auf einer FZG-Zahnrad-Verspannungs-Prüfmaschine ermittelt. Dazu läuft ein Prüfzahnradpaar mit einer speziellen Zahngeometrie in dem zu prüfenden Schmierfluid. Temperatur und Drehzahl sind vorgegeben. Die Belastung der Zahnflanken wird über einen mit Gewichten belasteten Hebel, der eine der Wellen gegen die andere verspannt, stufenweise belastet. Ab Kraftstufe 4 werden die Ritzelzahnflanken nach Beendigung jeder Kraftstufe auf etwaige Beschädigungen untersucht. Wenn die Kraftstufe 12 ohne Auftreten des Schadensbildes erreicht wird, ist die Messung beendet. Die Anforderungsnorm für Hydrauliköl (DIN 51524-2 HLP) fordert mindestens die Kraftstufe 10, in der Anforderungsnorm für Umlauföle (DIN 51517-3 CLP) wird mindestens die 12. Kraftstufe gefordert. Das Ergebnis ist entweder "Pass" oder "Fail" - funktioniert oder funktioniert nicht.
  • Eine weitere technisch relevante, über die DIN 51517-3 hinaus gehende Anforderung ist eine hohe Graufleckentragfähigkeit. Als Graufleckentragfähigkeit wird die Eigenschaft eines Schmierfluids bezeichnet, das Schadensbild der Graufleckigkeit (auch als "Micropitting" bezeichnet) zu vermeiden.
  • Graufleckigkeit entsteht auf Zahnflanken unter hoher Belastung im Bereich der Mischreibung. Primären Einfluss auf das Entstehen von Graufleckigkeit hat die bei Betriebstemperatur herrschende Schmierfilmdicke. Darüber hinaus kann der Einsatz chemisch aktiver Additive maßgeblich das Entstehen von Graufleckigkeit begünstigen. Der Zusatz von Reibwert-verbessernden Additiven (Friction Modifier) kann zur Vermeidung von Graufleckigkeit beitragen. In US 9347016 B2 wird die Verwendung eines Dialkyldithiophosphats als wirksame Komponente gegen Micropitting beschrieben. In EP 0949320 A2 werden Phosphonate und Phoshite (z.B. Dioleylphosphit), Succinimide, Pyrrolidinone, Molybdäncarboxylate und Oleylamid als Friction Modifier zur Vermeidung von Micropitting genannt. US 6184186 B1 beansprucht die Verwendung von Molybdän-Carboxylaten und geschwefelten Isobutylenen zur Vermeidung von Micropitting.
  • Um die Graufleckentragfähigkeit eines Schmierfluids zu bestimmen, wird der FVA 54 Micropitting-Test verwendet, der an einer FZG-Standard-Verspann-Prüfmaschine durchgeführt wird. Dieser Test besteht aus zwei aufeinanderfolgenden Teilen: Ein Stufentest zur Ermittlung der Schadenskraftstufe und ein Dauertest zur Beurteilung des tribologischen Langzeitverhaltens. Im Stufentest wird die Last schrittweise von Kraftstufe 5 bis Kraftstufe 10 erhöht, wobei die Prüfdauer jeder Kraftstufe 16 Stunden beträgt. Der Dauertest läuft zunächst 80 h bei Kraftstufe 8 und dann 5 x 80 h bei Kraftstufe 10. Nach jeder Kraftstufe wird das Ritzel ausgebaut und an drei Zähnen die Profilformabweichung und der Graufleckenanteil der Zahnflanke ermittelt. Zudem wird der durch Verschleiß hervorgerufene Gewichtsverlust des Ritzels bestimmt. Zur Bestimmung der Schadenskraftstufe im Stufentest wird die Profilformabweichung herangezogen. Wird ein Wert von 7,5 µm überschritten, ist die Schadenskraftstufe erreicht. Wird nach den ersten fünf Kraftstufen der Grenzwert nicht überschritten, so ist Schadenskraftstufe 10 erreicht. Werden alle sechs Kraftstufen ohne Überschreiten des Grenzwerts durchlaufen, wird das Ergebnis als SKS größer 10 angegeben.
  • Für die Praxis ist außerdem die Elastomerverträglichkeit von Bedeutung, da bei langer Nutzung des Öls Elastomere, z.B. Radialwellendichtringe, schrumpfen und zu Undichtigkeit führen können. Gleichermaßen kann ein Öl eine zu starke Quellung verursachen, was ebenfalls zu Undichtigkeit führen kann. In Industriegetrieben kommen i.d.R. verschiedene NBR- und FKM-Elastomertypen zum Einsatz, wobei besonders die NBR-Typen stark auf die Zusammensetzung der Basisölmischung ansprechen.
  • Zur Schmierung von Industriegetrieben im Bereich der lebensmittelverarbeitenden Industrie sind, da ein möglicher Kontakt des Schmierfluids mit dem Lebensmittel nicht gänzlich auszuschließen ist, Schmierfluide zu verwenden, die physiologisch unbedenklich sind. Die Auswahl an Rohstoffen, die zur Herstellung von lebensmittelgeeigneten ("food grade", (H1)) Schmierfluiden verwendet werden können, ist gegenüber technischen Schmierfluiden stark eingeschränkt. Sämtliche oben genannten "Friction Modifier" sind für die Formulierung von "food grade" Schmierfluid nicht gestattet.
  • Die Anforderungen an ein Hydrauliköl für den industriellen Einsatz sind in DIN 51524-1, DIN 51524-2 und DIN 51524-3 beschrieben. Hydrauliköle bieten einen Schutz gegen Verschleiß und Korrosion, wobei der Verschleißschutz bei HLP-klassifizierten Ölen (DIN 51524-2) gegenüber den HL-Ölen (DIN 51524-1) verbessert ist und HVLP-klassifizierte Öle (DIN 51524-3) zusätzlich zu dem verbesserten Verschleißschutz eine stabileres Temperatur-Viskositätsverhalten (Viskositätsindex) aufweisen und daher in einem weiteren Temperaturbereich einsetzbar sind.
  • Weiterhin ist ein hoher Viskositätsindex gewünscht. Druckverluste in hydraulischen Anlagen senken den Wirkungsgrad. Diese können bei tiefen Temperaturen durch eine Viskositätszunahme des Fluids und bei hohen Temperaturen durch Leckage, bedingt durch Viskositätsabnahme des Fluids, auftreten. Ein hoher Wirkungsgrad über einen weiten Temperaturbereich kann folglich mit Ölen mit hohem Viskositätsindex erreicht werden.
  • Als Basisöle für "food-grade" Hydraulik- und Getriebeöle sind in der Vergangenheit hochraffinierte Weißöle, Gas-to-Liquid (GTL) -Öle, Polyalphaolefine, Polyisobutylene, Polyalkylenglykole, alkylierte Naphthaline, native und synthetische Ester sowie Mischungen dieser Komponenten diskutiert worden.
  • US 2021/0348079 A offenbart Schmiermittel auf Basis eines Terpolymers aus Diester, Olefin und Acrylat. Das Terpolymer ist ein polymerisierter Diester, ausgewählt aus einem Di(C4-C22-alkyl)ester der Maleinsäure, Fumarsäure, 2-Methylmaleinsäure, 2,3-Dimethylmaleinsäure, 2-Methylfumarsäure, 2,3-Dimethylfumarsäure oder Mischungen als Polymerisationsprodukt mit einem C6-C40-alpha-Olefin und einem C4-C40-Alkyl(meth)acrylat. Als fakultative Basisöle für das Schmiermittel werden u.a. Polyalphaolefine oder Alkylenoxide vorgeschlagen.
  • Die JP 2007-268697 A offenbart Öl-Zusammensetzungen auf der Basis von Fischer-Tropsch Kohlenwasserstoffen und n- Paraffinen, sowie ggf. aromatischen und napthalinischen Kohlenwasserstoff-Ölen. Die Öl-Zusammensetzungen können fakultativ weiterhin synthetische Öle wie Poly-alpha-olefine oder Polyalkylenglykole oder Polymere enthalten, wie Polymerisationsprodukte von ungesättigten Carbonsäureesten wie Maleinsäureester- oder Fumarsäureester-Polymere polymerisiert mit einem olefinischen Monomer.
  • Aufgabe der Erfindung
  • Aufgabe der Erfindung ist die Bereitstellung eines Basisöls und eines Schmierfluids enthaltend das Basisöl, wobei das Schmierfluid unter anderem als Getriebeöl und/oder als Hydrauliköl einsetzbar sein soll. Das Basisöl soll so beschaffen sein, dass es die für das Schmierfluid notwendigen Additive aufnehmen kann und die Additive in dem Basisöl die gewünschte Wirkung entfalten. Nach einer Ausführungsform sollen die Rohstoffe so ausgewählt sein, dass die Schmierfluide auch in der lebensmittelverarbeitenden Industrie eingesetzt werden können. Die Rohstoffauswahl wird in den U.S.A. z.B. durch die Vorgaben der U.S. Food and Drug Administration (FDA) reguliert. Als Getriebeöl soll das Schmierstofffluid nach einer Ausgestaltung die CLP-Norm DIN 51517-3 erfüllen und darüber hinaus insbesondere ab der Viskositätsklasse 220 (ISO VG 220) im Micropitting-Test nach FVA 54 eine Graufleckentragfähigkeit der Bewertungsstufe "high" aufweisen. Um als Hydrauliköl eingesetzt werden zu können, sollen auch niedrige Viskositätsklassen des Schmierfluids DIN 51524-3 (HVLP) erfüllen. In allen Viskositätsklassen ist eine gute Verträglichkeit gegenüber gängigen NBR-Elastomeren (NBR ist die Abkürzung für "Nitrile Butadien Rubber") und Fluor-Kautschuk-Elastomeren (FKM-Elastomere) gewünscht.
  • Zusammenfassung der Erfindung
  • Die Aufgabe wird gelöst durch den Gegenstand der unabhängigen Ansprüche. Vorteilhafte Ausgestaltungen sind Gegenstand der Unteransprüche oder nachfolgend beschrieben.
  • Das erfindungsgemäße Basisöl umfasst:
    50-98 Gew.%, vorzugsweise 81 bis 96 Gew.%, Polyalphaolefine als Oligomere von C6- bis C14- alpha-Olefinen, insbesondere C8- bis C12- alpha-Olefinen;
    1-25 Gew.%, vorzugsweise 2 bis 15 Gew.%, Polymerester erhältlich als Polymerisationsprodukt von einem oder mehreren alpha/beta-ungesättigten Dicarbonsäurediestern, wobei die Alkohol-Gruppen 3 bis 10 Kohlenstoffatome aufweisen, insbesondere 4 bis 8 Kohlenstoffatome, mit einem oder mehreren C4- bis C18- alpha-Olefinen, insbesondere C10- bis C16- alpha-Olefinen oder C12- bis C16- alpha-Olefinen;
    1-25 Gew.%, vorzugsweise 2 bis 4 Gew.%, Polyalkylenglykole erhältlich aus Alkylenoxiden, wobei die Alkylenoxide Buthylenoxid oder Propylenoxid und zumindest ein C4- bis C8- Alkylenoxide umfassen.
  • Nach einer anderen Ausgestaltung umfasst das Basisöl
    81 - 96 Gew.% der obigen Polyalphaolefine;
    2 - 15 Gew.% der obigen Polymerester;
    2 - 4 Gew. % der obigen Polyalkylenglykole
  • Nach einer anderen Ausgestaltung machen obige Polyalphaolefine, Polymerester und Polyalkylenglykole zusammen mehr als 90 Gew.%, insbesondere mehr als 95 Gew.% des Basisöls aus. Vorzugsweise addieren sich obige Polyalphaolefine, Polymerester und Polyalkylenglykole im Basisöl zu 100 Gew.%. Damit besteht das Basisöl aus obigen Komponenten.
  • Das Polyalphaolefin ist nach einer Ausführungsform ein Oligomer von einem 1-Octen, 1-Decen und/oder 1-Dodecen, und insbesondere ein Oligomer von 1-Octen oder 1-Decen oder 1-Octen und 1-Decen. Der Polymerisationsgrad der Polyalphaolefine kann 3 bis 25 betragen.
  • Auch unabhängig hiervon beträgt die Viskosität der Polyalphaolefine vorzugsweise von 4 bis 300 mm2/s bei 100°C (kinematische Viskosität bestimmt nach DIN EN ISO 3104). Die Polyalphaolefine können auch als hydrierte Produkte eingesetzt werden.
  • Die Polymerester sind vorzugsweise Copolymere von Maleinsäure- und/oder Fumarsäure(voll)estern und einem oder mehreren C4- bis C18-alpha-Olefinen. Die Alkohol-Gruppen der Dicarbonsäurediester sind insbesondere lineare und/oder verzweigte Monoalkohole mit 3 bis 10 Kohlenstoffatomen, insbesondere 4 bis 8 Kohlenstoffatomen. Die Dicarbonsäuren des Dicarbonsäurediesters weisen vorzugsweise 4 bis 12 Kohlenstoffatome, insbesondere 4 bis 6 Kohlenstoffatome auf. Für die alpha-Olefine der Polymerester sind Kettenlängen von 10 bis 16 Kohlenstoffatomen, insbesondere 14 bis 16 Kohlenstoffatomen bevorzugt. Diese können linear und/oder verzweigt sein, vorzugsweise linear. Das Molverhältnis der alpha-Olefine zu den Dicarbonsäurediestern kann 1,5 zu 1 bis 1 zu 1,5, insbesondere 1 zu 0,9 bis 0,9 zu 1 betragen. Die Polymerester haben insbesondere ein mittleres Molekulargewicht von 1000 bis 5000 g/mol und insbesondere1500 bis 2500 g/mol (jeweils als Zahlenmittel).
  • Das Molverhältnis der alpha-Olefine zu den Dicarbonsäurediestern kann 1,5 zu 1 bis 1 zu 1,5, insbesondere 1 zu 0,9 bis 0,9 zu 1, betragen.
  • Die Polyalkylenglykole umfassen nach einer Ausgestaltung 30-70 mol% Propylenoxid und 70-30 mol% C4- bis C8- Alkylenoxide, insbesondere Butylenoxid, oder bestehen insbesondere aus diesen. Die Polyalkylenglykole sind vorzugsweise in den Polyalphaolefinen bzw. Polyalphaolefin-Gemischen, mit denen sie zusammen eingesetzt werden, bei Raumtemperatur löslich.
  • Die Schmierfluidzusammensetzung umfasst das Basisöl nach zumindest einem der vorhergehenden Ansprüche, und zumindest eines der folgenden Additive
    • amin-umgesetztes Alkylphosphat
      und/oder
    • Polyolmonoester.
  • Die Schmierfluidzusammensetzung umfasst oder besteht vorzugsweise aus zumindest:
    • 90 bis 98 Gew.% des Basisöls;
    • 0,01 bis 2 Gew.%, vorzugsweise 0,1 bis 0,3 Gew.%, des nachgenannten Friction-Modifiers, und/oder
      0,01 bis 2 Gew.%, vorzugsweise 0,05 bis 0,6 Gew.%, des nachgenannten Verschleißschutzadditivs, bezogen auf das Basisöl; und
    • sonstige weitere Additive, insbesondere 0,1 bis 2 Gew.% der weiteren Additive.
  • Nach einer Ausgestaltung umfasst oder besteht die Schmierfluidzusammensetzung aus:
    • 94 bis 98 Gew.% des Basisöls;
    • 0,01 bis 2 Gew.%, vorzugsweise 0,1 bis 0,3 Gew.%, des nachgenannten Friction-Modifiers, und/oder
      0,01 bis 2 Gew.%, vorzugsweise 0,05 bis 0,6 Gew.%, des nachgenannten Verschleißschutzadditivs, bezogen auf das Basisöl;
    • sonstige weitere Additive, insbesondere 0,1 bis 2 Gew.% der weiteren Additive.
  • Die Schmierfluidzusammensetzung umfasst das Basisöl und zumindest eines der folgenden Additive:
    • ein amin-umgesetztes Alkylphosphat, insbesondere mono- oder di- C1- bis C12- Alkylphosphat, als Verschleißschutzadditiv, insbesondere 0,01 bis 2 Gew.%, vorzugsweise 0,1 bis 0,6 Gew.%
      und/oder
    • einen Polyolmonoester, insbesondere einen C12- bis C24- Fettsäureester von ggf. ethoxylierten Polyolen, insbesondere ggf. ethoxyliertes Sorbitanmono-oleat, als Friction-Modifier insbesondere jeweils 0,01 bis 2 Gew.%, vorzugsweise 0,05 bis 0,3 Gew.%.
  • Das amin-umgesetzte Alkylphosphat ist vorzugsweise ein mono- oder di- C1- bis C12- Alkylphosphat umgesetzt mit zumindest C10- bis C18-Alkylaminen. Vorzugsweise erfolgt die Umsetzung so, dass das Alkylphosphat neutralisiert bzw. teilneutralisiert ist. Geeignete Beispiele sind Mono- und Diisooctylester der Phosphorsäure umgesetzt mit tert-Alkylaminen und C12- bis C14- primären Aminen (CAS Reg. No. 68187-67-7) oder Phosphorsäure-mono- und di-hexylester umgesetzt mit tetra-Methylnonylamin und C11- bis C14- Alkylaminen.
  • Handelsprodukte sind z.B. Irgalube® 349 der BASF SE oder Additin® RC 3760 der LANXESS (CAS Reg. Nr. 80939-62-4). Das amin-umgesetzte Alkylphosphat ist ein Verschleißschutzadditiv.
  • Der Polyolmonoester ist vorzugsweise ein C12- bis C24- Fettsäureester von Polyolen wie Glycerin, Polyglycerin oder Sorbitan. Das Polylol kann auch ganz oder teilweise ethoxyliert vorliegen. Geeignete Beispiele sind Polysorbat 20, Polysorbat 40, Polysorbat 60, Polysorbat 120, Glycerylmonostearat, Glycerylmonooleat, Sorbitanmonolaurat, Sorbitanmonopalmitat, Sorbitanmonostearat, Sorbitanmonooleat oder Polyglyceryl-4-isostearat.
  • Die C12- bis C24- mono-Fettsäureester von ggf. teilweise ethoxylierten Polyolen wirken als Friction-Modifier.
  • Das Basisöl in einer Schmierfluidzusammensetzung oder die Schmierfluidzusammensetzung können als Hydraulik- und Getriebeöl eingesetzt werden, insbesondere in der Lebensmittel verarbeitenden Industrie und/oder der Futtermittel verarbeitenden Industrie.
  • Die Gew.%-Angaben beziehen sich jeweils auf die Gesamtzusammensetzung (wenn nicht ausdrücklich anders angegeben) und gelten jeweils unabhängig voneinander.
  • Obige Polyalphaolefine, Polymerester und Polyalkylenglykole sind keine chemisch reinen Produkte und wenn diese im Singular genannt sind, so meint dies auch ein Stoffgemisch aus unterschiedlichen Molekülen, die jeweils einzeln der angegebenen Spezifikation entsprechen.
  • Detaillierte Beschreibung der Erfindung
  • Hydraulik- und Getriebeöle bestehen aus einem Basisöl sowie Additiven, die zur Steigerung der Lebensdauer und Leistungsfähigkeit des Schmierfluids zugesetzt werden. Als Basisöl wird in der vorliegenden Erfindung eine Mischung aus obigen Polyalphaolefinen, Polymerestern und Polyalkylenglykolen eingesetzt.
  • Bei den Polyalphaolefinen handelt es sich um Oligomere von insbesondere linearen 1-Alkenen, insbesondere 1-Octen, 1-Decen und/oder 1-Dodecen, die z.B. unter Verwendung von Lewis-Säure-Katalysatoren (z.B. US 6824671 B2 ) oder Metallocen-Katalysatoren (mPAOs, US 9365663 B2 , US 9701595 B2 ) hergestellt werden und deren kinematische Viskosität bei 100°C (kV 100) zwischen 2 und 300 mm2/s liegen kann Das Polyalphaolefin kann z.B. ein Oligomer aus 50 bis 80 Gew.-% 1-Decen und 50 bis 20 Gew.-% 1-Dodecen sein. Nach einer Ausgestaltung sind die Polyalphaolefine eine Mischung von a1) Oligomeren von 1- Decen und b1) Oligomeren von 1-Octen oder eine Mischung von a2) Oligomeren von 1-Dodecen und b2) Oligomeren von 1-Octen und/oder 1-Decen. Diese Mischungen können wie folgt näher charakterisiert werden: 5 - 95 Gew.% von Oligomeren a1) oder a2) und 5 bis 95 Gew.% von Oligomeren b1) oder b2). Die Polyalphaolefine können durch Metallocen-Katalyse hergestellt sein.
  • Oft ist es vorteilhaft, Polyalphaolefine unterschiedlicher Viskosität zu mischen z.B. Oligomeren mit einer Viskosität von 4 bis 100 mm2/s bei 100°C und Oligomeren mit einer Viskosität von 50 bis 300 mm2/s bei 100°C.
  • Als Polymerester werden aus C,C-Verknüpfung hervorgegangene Polymere bezeichnet, die Seitenketten mit Estergruppen beinhalten. Darunter fallen vorliegend insbesondere die Copolymere von alpha, beta ungesättigten Dicarbonsäureestern, wie der Malein- oder Fumarsäureester mit insbesondere unverzweigten alpha-Olefinen. Polymerester und deren Herstellung werden z.B. in der DE 3223694 C2 und US 5435928 A beschrieben.
  • Die Polyalkylenglykole sind die polymeren Reaktionsprodukte von Wasser und/oder eines ein- oder zweiwertigen Start-Alkohols mit 1,2-Epoxiden wie Ethylenoxid, Propylenoxid und/oder Butylenoxid, wobei mindestens umfasst sind Propylenoxid und zumindest ein C4- bis C8- Alkylenoxid. Die Polyalkylenglykole liegen z.B. als Homopolymere von Butylenoxid oder als Copolymere von Propylenoxid und Butylenoxid vor. Copolymere, die aus 30-70% Propylenoxid und 70-30% Butylenoxid bestehen, sind vorliegend bevorzugt eingesetzt. Die Polyalkylenglykole weisen insbesondere eine oder zwei endständige Hydroxy-Gruppen auf.
  • Für die Elastomerverträglichkeit ist ein Zusatz eines Quellungsmittels in der Schmierfluidzusammensetzung, typischerweise eines Esters, wünschenswert. Gleichermaßen führt ein zu hoher Gehalt an Quellungsmittel zu einer zu starken Quellung, was ebenfalls zu Undichtigkeit führen kann.
  • In Industriegetrieben kommen verschiedene NBR- und FKM-Elastomertypen zum Einsatz, wobei besonders die NBR-Typen stark auf die Zusammensetzung, d.h. die Polarität der Basisölmischung ansprechen.
  • Beispielhaft als Quellmittel genannt seien als Ester Monoester, Diester, Polyolester, und Komplexester, z.B. von C1- bis C18- Alkoholen mit einer C2- bis C18- Carbonsäure. Zu den hier in Frage kommenden Mono- und Diestern zählen die Ester von linearen oder verzweigten einwertigen Alkoholen wie Methanol, Ethanol, Isopropanol, Isobutanol, 2-Ethylhexanol, 3,5,5-Trimethylhexanol oder 7-Methyloctanol mit typischen Fettsäuren oder Dicarbonsäuren, wie etwa Caprylsäure, Caprinsäure, Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Linolsäure, Linolensäure, Adipinsäure, Suberinsäure, Sebacinsäure oder Phthalsäure. Zu den Polylolestern zählen die formalen Reaktionsprodukte von linearen oder verzweigten Carbonsäuren mit mehrwertigen Alkoholen wie Glycerin, Neopentylglycol, Trimethylolpropan, Pentaerythritol oder Dipentaerythritol. Der Anteil des Quellmittels wird so gewählt, dass sich eine Volumenausdehnung des Elastomers von nicht mehr als 10% ergibt. In der Regel bedeutet dies, dass das Quellmittel in einem Anteil von 0,5 bis 6 Gew.%, insbesondere 1 bis 4 Gew%, in der Schmierfluidzusammensetzung enthalten ist. Ein Beispiel ist Di(2-Ethylhexyl)-sebacat. Allerdings wurde festgestellt, dass das eingesetzte Polyalkylenglykol auch als Quellmittel wirkt.
  • Weitere mögliche Zusatzstoffe für die Schmierfluidzusammensetzung sind Antioxidationsmittel, Verschleißschutzmittel, Korrosionsschutzmittel, Detergentien, Farbstoffe, Reibungsminderer, Viskositätsverbesserer, Hochdruckadditive, Metalldeaktivatoren und nanoskalige Feststoffe. Beispielhaft genannt seien:
    • primäre Antioxidationsmittel wie Amin-Verbindungen (z.B. Alkylamine oder 1-Phenylaminonaphthalin), aromatische Amine, wie z.B. Phenylnaphtylamine oder Diphenylamine oder polymere Hydroxychinoline (z. B. TMQ), Phenol-Verbindungen (z.B. 2.6-Di-tert-butyl-4-methylphenol), organische Dithiocarbamate oder Dithiophosphate;
    • sekundäre Antioxidationsmittel wie Phosphite, z.B. Tris(2,4-ditert-butylphenylp-hosphit) oder Bis(2,4-ditert-butylphenyl)-pentaerythritoldiphosphit oder Thioether (z.B. Kresolthioether);
    • Hochdruckadditive und/oder Verschleißschutzadditive wie organische Schwefelverbindungen wie z.B. Polysulfide oder geschwefelte Olefine, Thiophosphate (z.B. Triphenylthiophosphat) und Dithiophosphate, Phosphite und Phosphonate (z.B. Di-n-Octylphosphonat), Phosphate (z.B. substituierte Triphenylphosphate oder aminneutralisierte Alkylphosphate), anorganische oder organische Borverbindungen, Thiocarbamate und Dithiocarbamate (z.B. Methylen-bis(dibutyldithiocarbamat));
    • Korrosionsschutzmittel wie Sulfonate, wie z.B. Petroleumsulfonat, Dinonylnaphthalinsulfonat; neutrale oder überbasische Calciumsulfonate, Magnesiumsulfonate, Natriumsulfonate, Calcium- und Natrium-Naphthalinsulfonate, Sulfonsäureester, Aminphosphate; N-Methyl-N-(1-oxo-9- octadecenyl)glycin;
    • Metalldeaktivatoren wie Benzotriazole, wie z.B. Methylbenzotriazoldialkylamin, sterisch gehinderte Phenole, Natriumnitrit;
    • Viskositätsverbesserer wie z.B. Polymethacrylat, Polyisobutylen, Polystyrole;
    • Reibungsminderer teilweise mit Verschleißschutzeigenschaften wie organische Säuren (z.B. Isostearinsäure), Fettsäureester von ggf. teilweise ethoxylierten Polyolen wie Glycerin oder Sorbitan, Partialglyceride, tierische oder pflanzliche Öle, Dialkylhydrogenphosphonate, Carbonsäureamide wie z.B. Oleylamide, organische Verbindungen auf Polyether- und Amidbasis, z.B. Alkylpolyethylenglykoltetradecylenglykolether, Alkylsuccinate, PIBSI (Polyisobutylenbernsteinsäureimid) oder PIBSA (Polyisobutylenbernsteinsäureanhydrid).
    • Feststoffe: In Getriebeölen ist die Verwendung von Partikeln (Bornitrid, Siliciumdioxid, Schichtsilikate wie beispielsweise Bentonite, Carbon Nanotubes) möglich, um bestimmte Eigenschaften zu erzielen. Um keine negativen Effekte hinsichtlich der tribologischen Performance zu erzeugen, werden insbesondere sehr kleine Partikel (sogenannte Nanopartikel mit Partikelgrößen kleiner 500 nm, bevorzugt kleiner 100 nm, besonders bevorzugt kleiner 50 nm) verwendet.
  • Zur Herstellung der erfindungsgemäßen Schmierfluidzusammensetzung wird z.B. ein Teil der Basisölmenge (z.B. 5 bis 25 Gew.%) zusammen mit den Additiven, die insbesondere öllöslich sind, aber unter Normalbedingungen in der Regel als Feststoff vorliegen, vorgelegt und unter kontinuierlichem Rühren auf 90 bis 110°C erhitzt, um ein Lösen dieser Additive im Basisöl zu gewährleisten. Durch Zugabe einer weiteren Portion des Basisöls wird die Temperatur auf kleiner 60°C gesenkt. Danach werden flüssige und optional ölunlösliche Additive und Feststoffe sowie die verbleibende Basisölmenge zugegeben und durch weiteres Rühren so lange gemischt, bis eine vollständige Homogenität der Mischung erreicht ist.
  • Die erfindungsgemäße Schmierfluidzusammensetzung ist besonders geeignet zur Verwendung in Industriegetrieben (Stirnrad-, Schrägstirnrad-, Kegelrad-, Hypoid- und Planetengetriebe) und Hydrauliksystemen, insbesondere solchen, die in der Lebensmittel- oder Futtermittelindustrie eingesetzt werden.
  • Ein Getriebe ist ein Maschinenelement mit dem Bewegungsgrößen (z.B. Änderung einer Kraft, eines Drehmoments) geändert werden können. Abhängig von der Bauart der Getriebe werden diese von einem Gehäuse umgeben und mit einem Schmierfluid geschmiert. Um das Auslaufen des Schmierfluids zu verhindern, werden Dichtungen verwendet. Die Dichtmaterialien müssen neben speziellen konstruktiven Eigenschaften auch chemisch gegen die verwendeten Schmierfluide stabil sein.
  • Damit spielt bei der Schmierstoffentwicklung die Elastomerverträglichkeit eine wichtige Rolle. Selbiges gilt auch für die Beständigkeit von Hydraulikdichtungen, die zur Abdichtung der mit Hydraulikölen gefüllten hydraulischen Systeme eingesetzt werden.
  • Im Rahmen der vorliegenden Erfindung wurde ein Schmierfluid zur Verwendung als Getriebe- und Hydrauliköl entwickelt, welches die Anforderungen aus DIN 51517-3 (genauer: die in DIN ISO 1817 beschriebenen Prüfungen zur relativen Volumenänderung, Änderung der Shore-A-Härte, Zugfestigkeit und Bruchdehnung) sowie die dynamische Elastomerverträglichkeitsprüfung (Freudenberg Prüfvorschrift FS PLM 111 0008) erfüllt.
  • Versuchsbeispiele: Herstellung:
  • Ein Teil der Basisölmenge (5-25%), hier die polaren Ölkomponenten nämlich Ester und Polyalkylenglykol, werden zusammen mit den bei Raumtemperatur festen Additiven vorgelegt und unter kontinuierlichem Rühren auf 90 bis 110°C erhitzt, bis eine klare Lösung vorliegt. Durch Zugabe der verbleibenden (nicht erwärmten) Basisölmenge wird die Temperatur auf kleiner 60°C gesenkt. Danach werden die flüssigen Additive zugegeben und durch weiteres Rühren ca. 15 min gemischt, bis eine vollständige Homogenität der Mischung erreicht ist. Bei weiterer Abkühlung auf Temperaturen kleiner 40°C kann das Öl abgefüllt werden.
  • Neben den aufgeführten Basisölkomponenten enthalten die Formulierungen jeweils ein Additivpaket.
  • Folgende Stoffe wurden eingesetzt:
  • PAO 6 Polyalphaolefin: Spectrasyn 6, ExxonMobil Chemical; Synfluid PAO 6 cSt, Chevron Phillips Chemical; Durasyn 166, Ineos Oligomers
    mPAO 150 Polyalphaolefin, metallocen katalysiert: Spectrasyn Elite 150, ExxonMobil Chemical; Synfluid mPAO 150 cSt, Chevron Phillips Chemical
    Di(2-Ethylhexyl)-sebacat Priolube 1856, Croda; Nycobase 20307 FG, Nyco; Lubricit DOS, Zschimmer&Schwarz
    Polymerester Polyalkylenglycol Verschleißschutzadditiv -Additiv (AW-Additiv) Ketjenlube 240, Italmatch
    UCON OSP-32, DOW
    amin-neutralisiertes Alkylphosphat, Irgalube 349, BASF SE
    Additivpaket Triphenylphosphorothionat, phenolisches Antioxidans, aminisches Antioxidans, Sorbitanmonooleat, N-Methyl-N-(1-oxo-9- octadecenyl)glycin, Polydimethylsiloxan und Benzotriazol-Derivat, wobei das Sorbitanmonooleat der eingesetzte Friction-Modifier ist.
    Tabelle 1
    1 2 3 4
    Vergleich Vergleich Vergleich Erfindungsgemäß
    PAO 6 [Gew.%] 43,99 40,99 39,79 36,79
    mPAO 150 [Gew.%] 54,60 54,60 49,60 49,60
    Di(2-Ethylhexyl)-sebacat [Gew.%] - - 2,00 2,00
    Polymerester [Gew.%] - - 7,20 7,20
    Polyalkylenglycol [Gew.%] - 3,0 - 3,0
    AW-Additiv [Gew.%] 0,33 0,33 0,33 0,33
    Additivpaket [Gew.%] 1,08 1,08 1,08 1,08
    kV [mm2/s] 220 220 220 220
    VI 178 179 178 179
    LAV [min] 6,2 4,0 4,5 5,7
    Elastomerverträglichkeit [ΔV %] -5,7 -0,5 -0,7 -0,3
    Korrosionsschutz gegenüber Stahl, synth. Meerwasser fail pass pass pass
    FZG A/8,3/90, SKS größer 12 größer 12 größer 12
    FE8, mw50 / mk50 [mg] 1,0 / 168
  • Folgende Methoden wurden in den Tabellen 1 und 2 angewandt:
    kV 40 [mm2/s] Kinematische Viskosität bei 40°C bestimmt nach DIN EN ISO 3104
    VI Viskositätsindex nach DIN ISO 2909
    LAV Luftabscheidevermögen bei 75°C bestimmt nach DIN ISO 9120
    Elastomerverträglichkeit Korrosionsschutz gegenüber Stahl, synth. Meerwasser nach DIN ISO 1817, 168h bei 100°C für 72 NBR 902 Stahlfingertest nach DIN ISO 7120-B
    FZG A/8,3/90, SKS erreichte Schadenskraftstufe im FZG-Test A/8,3/90 nach DIN ISO 14635-1
    FE8, mw50 / mk50 [mg] berechnete Verschleißwerte der Wälzkörper / des Käfigs (50% Verschleißwahrscheinlichkeit) im FE8-Test (D-7,5/80-80) nach DIN 51819-3
    Micropitting, Profilabw. [µm] FVA 54, Profilabweichung Nach LS 9
    Micropitting, erreichte Schadenskraftstufe, Bewertung FVA 54, erreichte Schadenskraftstufe (SKS), Bewertung GFT = Graufleckentragfähigkeit high = hoch
  • Die verwendeten Polymerester und das Polyalkylenglycol sind sehr gut geeignete Zusätze zu dem PAO-Öl, da sie in der Lage sind, den hohen Viskositätsindex aufrecht zu erhalten. Ein höherer Viskositätsindex bedeutet eine höhere Schmierfilmdicke bei Betriebstemperatur, was zu einem besseren Verschleißschutz beiträgt.
  • Eine rein PAO-basierte Formulierung (Versuch 1) bietet keine hinreichende Elastomerverträglichkeit. NBR-Elastomere schrumpfen und können zu Undichtigkeiten führen. Formulierungen, die entweder Polyalkylenglykol (Versuch 2) oder Ester (Versuch 3) enthalten, zeigen nur leichte Volumenverluste. Das beste Ergebnis wird mit einer Formulierung erzielt, die neben POA sowohl Ester als auch Polyalkylenglycol (PAG) enthält (Versuch 4). Weiterhin kann mit der rein PAO-basierten Formulierung trotz gleicher Additivierung der Korrosionsschutz gegenüber Salzwasser nicht gewährleistet werden.
  • Gegenüber der esterhaltigen aber Polyalkylenglykol-freien Version (Versuch 3) wird das Luftabscheidevermögen in Versuch 4 nicht verbessert. Tabelle 2
    5 6 4
    PAO 6 [Gew.%] 37,72 36,77 36,79
    mPAO 150 [Gew.%] 47,00 49,50 49,60
    Di(2-Ethylhexyl)-sebacat [Gew.%] 2,00 2,00 2,00
    Polymerester [Gew.%] 12,00 7,20 7,20
    Polyalkylenglykol [Gew.%] - 3,0 3,0
    AW-Additiv [Gew.%] 0,20 0,45 0,33
    Restliches Additivpaket [Gew.%] 1,08 1,08 1,08
    kV 40 [mm2/s] 220 220 220
    VI 178 179 179
    LAV 75°C [min] 5,5 5,7
    72 NBR 902: ΔV [%] -0,4 -0,3
    Stahlfinqertest pass pass pass
    FZG A/8,3/90, SKS 11 größer 12 größer 12
    FE8, mw50 / mk50 0 / 227 2,0 / 71,4 1,0 / 168
    Micropitting [µm] 6,2 7,7 6,8
    Micropitting, erreichte Schadenskraftstufe, Bewertung SKS 10 GFT high SKS 9 GFT medium SKS 10 GFT high
  • Versuchsreihe 2 zeigt, dass unter den Additiven der Gehalt an aminneutralisierten Alkylphosphaten einen entscheidenden Anteil am Bestehen oder Nichtbestehen der wichtigen mechanisch-dynamischen Prüfungen hat. Bei einem niedrigen Gehalt (Versuch 5) kann auch ohne Zusatz von Polyalkylengykol eine hohe Graufleckentragfähigkeit erreicht werden. Dafür kann im FZG-Test nur Schadenskraftstufe 11 erreicht werden. Mit höherem Gehalt an Aminphosphaten und im Beisein von Polyalkylenglykol (Versuch 6) wird im FZG-Test Schadenskraftstufe größer 12 erreicht, aber die Graufleckentragfähigkeit ist unzureichend. Der in Versuch 4 reduzierte Aminphosphat-Gehalt kann durch das öllösliche Polyalkylenglykol ausgeglichen werden, ohne negative Effekte im Micropitting-Test aufzuweisen.
  • Die hier beschriebene Basisölmischung unterstützt Korrosionsschutzeigenschaften und Elastomerverträglichkeit des Schmierstoffs und gestattet eine für "food grade"-Schmierstoffe geeignete und ausgewogene Additivierung, die den zum Teil gegensätzlichen Anforderungen gerecht wird.
  • Weiterhin ist Gegenstand der Erfindung Folgendes:
  • Punkt 1: Basisöl umfassend
    50 - 98 Gew.% Polyalphaolefine als Oligomere von C6- bis C14- alpha-Olefinen;
    1 - 25 Gew.% Polymerester als Polymerisationsprodukt von einem oder mehreren alpha/beta-ungesättigten Dicarbonsäurediestern, wobei die Alkohol-Gruppen 3 bis 10 Kohlenstoffatome aufweisen; und
    C4- bis C18- alpha-Olefinen;
    1 - 25 Gew.% Polyalkylenglykole erhältlich aus Alkylenoxiden, wobei die Alkylenoxide Butylenoxid oder
    Propylenoxid und zumindest ein C4- bis C8- Alkylenoxid umfassen.
    Punkt 2: Das Basisöl nach Punkt 1 umfassend
    81 - 96 Gew.% der Polyalphaolefine;
    2 - 15 Gew.% der Polymerester;
    2 - 4 Gew. % der Polyalkylenglykole.
    Punkt 3: Das Basisöl nach Punkt 1 oder 2, wobei die Polyalphaolefine, Polymerester und Polyalkylenglykole zusammen mehr als 90 Gew.%, insbesondere mehr als 95 Gew.%, des Basisöls ausmachen und vorzugsweise sich die Polyalphaolefine, die Polymerester und die Polyalkylenglykole zu 100 Gew.% im Basisöl addieren.
    Punkt 4: Das Basisöl nach zumindest einem der vorhergehenden Punkte, wobei die Alkohol-Gruppen der Dicarbonsäurediester lineare und/oder verzweigte Monoalkohole mit 3 bis 10 Kohlenstoffatomen, insbesondere 4 bis 8 Kohlenstoffatomen, sind.
    Punkt 5: Das Basisöl nach zumindest einem der vorhergehenden Punkte, wobei die Dicarbonsäure des Dicarbonsäurediesters 4 bis 12 Kohlenstoffatome, insbesondere 4 bis 6 Kohlenstoffatome aufweist.
    Punkt 6: Das Basisöl nach zumindest einem der vorhergehenden Punkte, wobei die alpha-Olefine der Polymerester 10 bis 16 Kohlenstoffatome, insbesondere 14 bis 16 Kohlenstoffatome, aufweisen.
    Punkt 7: Das Basisöl nach zumindest einem der vorhergehenden Punkte, wobei der Dicarbonsäurediester ein Maleinsäurediester und/oder ein Fumarsäurediester ist.
    Punkt 8: Das Basisöl nach zumindest einem der vorhergehenden Punkte, wobei das Molverhältnis der alpha-Olefine zu den Dicarbonsäurediestern 1,5 zu 1 bis 1 zu 1,5, insbesondere 1 zu 0,9 bis 0,9 zu 1, beträgt.
    Punkt 9: Das Basisöl nach zumindest einem der vorhergehenden Punkte, wobei der Polymerester ein mittleres Molekulargewicht von 1000 bis 5000 g/mol, insbesondere 1500 bis 2500 g/mol, jeweils als Zahlenmittel aufweist.
    Punkt 10: Das Basisöl nach zumindest einem der vorhergehenden Punkte, wobei das oder die Polyalphaolefine durch eines oder mehrere der folgenden Eigenschaften gekennzeichnet sind:
    1. a) die Polyalphaolefine sind Oligomere von 1-Octen, 1-Decen und/oder 1-Dodecen;
    2. b) der Polymerisationsgrad der Polyalphaolefine beträgt 3 bis 25;
    3. c) die Polyalphaolefine weisen eine Viskosität von 4 bis 300 mm2/s bei 100°C auf;
    4. d) das Polyalphaolefin ist ein hydriertes Oligomer;
    5. e) das Polyalphaolefin ist ein Oligomer aus 50 bis 80 Gew.-% 1-Decen und 50 bis 20 Gew.-% 1-Dodecen;
    6. f) das Polyalphaolefin ist eine Mischung von Oligomeren, wobei zumindest ein Oligomer durch Metallocen-Katalyse hergestellt ist; und
    7. g) das Polyalphaolefin ist eine Mischung von Oligomeren mit einer Viskosität von 4 bis 100 mm2/s bei 100°C und Oligomeren mit einer Viskosität von 50 bis 300 mm2/s bei 100°C.
    Punkt 11: Das Basisöl nach zumindest einem der vorhergehenden Punkte, wobei das Polyalphaolefin eine Mischung von
    • a1) Oligomeren von 1- Decen und
    • b1) Oligomeren von 1-Octen enthält; oder
    • wobei das Polyalphaolefin eine Mischung von
    • a2) Oligomeren von 1-Dodecen und
    • b2) Oligomeren von 1-Octen und/oder 1-Decen
    • ist oder enthält.
    Punkt 12: Das Basisöl nach Anspruch 11, wobei das Polyalphaolefin eine Mischung von Oligomeren a) und b) ist mit
    • 5 - 95 Gew.% von Oligomeren a1) oder a2) und
    • 5 - 95 Gew.% von Oligomeren b1) oder b2).
    Punkt 13: Das Basisöl nach zumindest einem der vorhergehenden Punkte, wobei das Polyalkylenglykol erhältlich ist aus Alkylenoxiden, wobei die Alkylenoxide
    • 30-70 mol% Propylenoxid und
    • 70-30 mol% C4- bis C8- Alkylenoxide, insbesondere Butylenoxid, umfassen.
    Punkt 14: Schmierfluidzusammensetzung umfassend das Basisöl nach zumindest einem der vorhergehenden Punkte, und zumindest eines der folgenden Additive
    • amin-umgesetztes Alkylphosphat
      und/oder
    • Polyolmonoester.
    Punkt 15: Die Schmierfluidzusammensetzung nach Anspruch 14 umfassend
    • 0,01 bis 2 Gew.%, vorzugsweise 0,1 bis 0,6 Gew.% des oder der amin-umgesetzten Alkylphosphate,
      und/oder
    • 0,01 bis 2 Gew.%, vorzugsweise 0,05 bis 0,3 Gew.% des oder der Polyolmonoester.
    Punkt 16: Die Schmierfluidzusammensetzung nach Anspruch 14 oder 15, wobei
    • - die Estergruppe des Polyolmonoesters eine C12- bis C24- Fettsäure ist und das Polyol des Polyolmonoesters ggf. ethoxyliert ist,
      und/oder
    • die amin-umgesetzten Alkylphosphate mit zumindest C10- bis C18- Alkylaminen umgesetzt sind und das Alkylphosphat vorzugsweise ein mono- oder di-C1- bis C12- Alkylphosphat ist.
    Punkt 17: Verwendung des Basisöls nach zumindest einem der Punkte 1 bis 13 in einer Schmierfluidzusammensetzung oder der Schmierfluidzusammensetzung nach zumindest einem der Punkte 14 bis 16 als Hydraulik- und Getriebeöl, insbesondere in der Lebensmittel verarbeitenden Industrie und/oder der Futtermittel verarbeitenden Industrie.

Claims (17)

  1. Verwendung eines Basisöls für eine Schmierfluidzusammensetzung, wobei die Schmierfluidzusammensetzung als Hydraulik- und Getriebeöle in der Lebensmittel verarbeitenden Industrie und/oder der Futtermittel verarbeitenden Industrie eingesetzt wird, wobei das Basisöl aufweist: 50 - 98 Gew.% Polyalphaolefine als Oligomere von C6- bis C14- alpha-Olefinen; 1 - 25 Gew.% Polymerester als Polymerisationsprodukt von einem oder mehreren alpha/beta-ungesättigten Dicarbonsäurediestern, wobei die Alkohol-Gruppen 3 bis 10 Kohlenstoffatome aufweisen; und C4- bis C18- alpha-Olefinen; 1 - 25 Gew.% Polyalkylenglykole erhältlich aus Alkylenoxiden, wobei die Alkylenoxide Butylenoxid oder Propylenoxid und zumindest ein C4- bis C8- Alkylenoxid umfassen.
  2. Verwendung nach Anspruch 1, wobei das Basisöl umfasst: 81 - 96 Gew.% der Polyalphaolefine; 2 - 15 Gew.% der Polymerester; 2 - 4 Gew. % der Polyalkylenglykole.
  3. Verwendung nach Anspruch 1 oder 2, wobei die Polyalphaolefine, Polymerester und Polyalkylenglykole zusammen mehr als 90 Gew.%, insbesondere mehr als 95 Gew.%, des Basisöls ausmachen und vorzugsweise sich die Polyalphaolefine, die Polymerester und die Polyalkylenglykole zu 100 Gew.% im Basisöl addieren.
  4. Verwendung nach zumindest einem der vorhergehenden Ansprüche, wobei die Alkohol-Gruppen der Dicarbonsäurediester lineare und/oder verzweigte Monoalkohole mit 3 bis 10 Kohlenstoffatomen, insbesondere 4 bis 8 Kohlenstoffatomen, sind.
  5. Verwendung nach zumindest einem der vorhergehenden Ansprüche, wobei die Dicarbonsäure des Dicarbonsäurediesters 4 bis 12 Kohlenstoffatome, insbesondere 4 bis 6 Kohlenstoffatome aufweist.
  6. Verwendung nach zumindest einem der vorhergehenden Ansprüche, wobei die alpha-Olefine der Polymerester 10 bis 16 Kohlenstoffatome, insbesondere 14 bis 16 Kohlenstoffatome, aufweisen.
  7. Verwendung nach zumindest einem der vorhergehenden Ansprüche, wobei der Dicarbonsäurediester ein Maleinsäurediester und/oder ein Fumarsäurediester ist.
  8. Verwendung nach zumindest einem der vorhergehenden Ansprüche, wobei das Molverhältnis der alpha-Olefine zu den Dicarbonsäurediestern 1,5 zu 1 bis 1 zu 1,5, insbesondere 1 zu 0,9 bis 0,9 zu 1, beträgt.
  9. Verwendung nach zumindest einem der vorhergehenden Ansprüche, wobei der Polymerester ein mittleres Molekulargewicht von 1000 bis 5000 g/mol, insbesondere 1500 bis 2500 g/mol, jeweils als Zahlenmittel aufweist.
  10. Verwendung nach zumindest einem der vorhergehenden Ansprüche, wobei das oder die Polyalphaolefine durch eines oder mehrere der folgenden Eigenschaften gekennzeichnet sind:
    a) die Polyalphaolefine sind Oligomere von 1-Octen, 1-Decen und/oder 1-Dodecen;
    b) der Polymerisationsgrad der Polyalphaolefine beträgt 3 bis 25;
    c) die Polyalphaolefine weisen eine Viskosität von 4 bis 300 mm2/s bei 100°C auf;
    d) das Polyalphaolefin ist ein hydriertes Oligomer;
    e) das Polyalphaolefin ist ein Oligomer aus 50 bis 80 Gew.-% 1-Decen und 50 bis 20 Gew.-% 1-Dodecen;
    f) das Polyalphaolefin ist eine Mischung von Oligomeren, wobei zumindest ein Oligomer durch Metallocen-Katalyse hergestellt ist; und
    g) das Polyalphaolefin ist eine Mischung von
    Oligomeren mit einer Viskosität von 4 bis 100 mm2/s bei 100°C und
    Oligomeren mit einer Viskosität von 50 bis 300 mm2/s bei 100°C.
  11. Verwendung nach zumindest einem der vorhergehenden Ansprüche, wobei das Polyalphaolefin eine Mischung von
    a1) Oligomeren von 1-Decen und
    b1) Oligomeren von 1-Octen enthält; oder
    wobei das Polyalphaolefin eine Mischung von
    a2) Oligomeren von 1-Dodecen und
    b2) Oligomeren von 1-Octen und/oder 1-Decen
    ist oder enthält.
  12. Verwendung nach Anspruch 11, wobei das Polyalphaolefin eine Mischung von Oligomeren a) und b) ist mit
    5 - 95 Gew.% von Oligomeren a1) oder a2) und
    5 - 95 Gew.% von Oligomeren b1) oder b2).
  13. Verwendung nach zumindest einem der vorhergehenden Ansprüche, wobei das Polyalkylenglykol erhältlich ist aus Alkylenoxiden, wobei die Alkylenoxide
    30-70 mol% Propylenoxid und
    70-30 mol% C4- bis C8- Alkylenoxide, insbesondere Butylenoxid, umfassen.
  14. Verwendung nach zumindest einem der vorhergehenden Ansprüche, wobei die Schmierfluidzusammensetzung zumindest eines der folgenden Additive
    - amin-umgesetztes Alkylphosphat
    und/oder
    - Polyolmonoester
    umfasst.
  15. Verwendung nach Anspruch 14, wobei die Schmierfluidzusammensetzung umfasst:
    - 0,01 bis 2 Gew.%, vorzugsweise 0,05 bis 0,6 Gew.% des oder der amin-umgesetzten Alkylphosphate als Verschleißschutzadditiv,
    und/oder
    - 0,01 bis 2 Gew.%, vorzugsweise 0,1 bis 0,3 Gew.% des oder der Polyolmonoester als Friction-Modifier.
    und vorzugsweise
    - 0 bis 98 Gew.% des Basisöls,
    und sonstige weitere Additive.
  16. Verwendung nach Anspruch 14 oder 15, wobei
    - - die Estergruppe des Polyolmonoesters eine C12- bis C24- Fettsäure ist und das Polyol des Polyolmonoesters ggf. ethoxyliert ist,
    und/oder
    - die amin-umgesetzten Alkylphosphate mit zumindest C10- bis C18-Alkylaminen umgesetzt sind und das Alkylphosphat vorzugsweise ein mono- oder di-C1- bis C12- Alkylphosphat ist.
  17. Schmierstelle, die mit Lebens- und/oder Futtermitteln in Kontakt kommt bzw. kommen kann, oder Getriebe oder Hydrauliksystem jeweils in der Lebensmittel verarbeitenden Industrie und/oder der Futtermittel verarbeitenden Industrie und jeweils mit der Schmierfluidzusammensetzung nach zumindest einem der Ansprüche 14 bis 16 .
EP24173603.2A 2022-05-11 2023-03-23 Basisöl und schmierfluidzusammensetzung enthaltend das basisöl Pending EP4386069A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102022111794.4A DE102022111794B3 (de) 2022-05-11 2022-05-11 Basisöl und Schmierfluidzusammensetzung enthaltend das Basisöl
PCT/DE2023/100225 WO2023217313A1 (de) 2022-05-11 2023-03-23 Basisöl und schmierfluidzusammensetzung enthaltend das basisöl
EP23714627.9A EP4294897B1 (de) 2022-05-11 2023-03-23 Basisöl und schmierfluidzusammensetzung enthaltend das basisöl

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP23714627.9A Division EP4294897B1 (de) 2022-05-11 2023-03-23 Basisöl und schmierfluidzusammensetzung enthaltend das basisöl

Publications (1)

Publication Number Publication Date
EP4386069A1 true EP4386069A1 (de) 2024-06-19

Family

ID=85476962

Family Applications (2)

Application Number Title Priority Date Filing Date
EP24173603.2A Pending EP4386069A1 (de) 2022-05-11 2023-03-23 Basisöl und schmierfluidzusammensetzung enthaltend das basisöl
EP23714627.9A Active EP4294897B1 (de) 2022-05-11 2023-03-23 Basisöl und schmierfluidzusammensetzung enthaltend das basisöl

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP23714627.9A Active EP4294897B1 (de) 2022-05-11 2023-03-23 Basisöl und schmierfluidzusammensetzung enthaltend das basisöl

Country Status (3)

Country Link
EP (2) EP4386069A1 (de)
DE (1) DE102022111794B3 (de)
WO (1) WO2023217313A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024112665A1 (en) * 2022-11-23 2024-05-30 The Lubrizol Corporation Powertrain lubricant containing polyether

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3223694C2 (de) 1981-09-17 1990-04-19 Akzo Patente Gmbh, 5600 Wuppertal, De
US5435928A (en) 1981-09-17 1995-07-25 Akzo Nobel N.V. Copolymers from α-β-unsaturated dicarboxylic acid esters, and their use
EP0949320A2 (de) 1998-04-09 1999-10-13 Ethyl Petroleum Additives Limited Schmiermittelzusammensetzungen
US6184186B1 (en) 1999-04-09 2001-02-06 Ethyl Petroleum Additives, Ltd Lubricating compositions
US6824671B2 (en) 2001-05-17 2004-11-30 Exxonmobil Chemical Patents Inc. Low noack volatility poly α-olefins
JP2007268697A (ja) 2006-03-31 2007-10-18 Nippon Oil Corp 放電加工油組成物
US9347016B2 (en) 2011-05-06 2016-05-24 Petrochina Company Limited Industrial gear lubricating oil composition used for resisting micro-pitting
US9365663B2 (en) 2008-03-31 2016-06-14 Exxonmobil Chemical Patents Inc. Production of shear-stable high viscosity PAO
US9701595B2 (en) 2009-12-24 2017-07-11 Exxonmobil Chemical Patents Inc. Process for producing novel synthetic basestocks
DE102020111392A1 (de) * 2020-04-27 2021-10-28 Klüber Lubrication München Se & Co. Kg Schmierstoffzusammensetzung und deren Verwendung
US20210348079A1 (en) 2018-10-16 2021-11-11 Basf Se Lubricants with a terpolymer made of diester, olefin and acrylate

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3223694C2 (de) 1981-09-17 1990-04-19 Akzo Patente Gmbh, 5600 Wuppertal, De
US5435928A (en) 1981-09-17 1995-07-25 Akzo Nobel N.V. Copolymers from α-β-unsaturated dicarboxylic acid esters, and their use
EP0949320A2 (de) 1998-04-09 1999-10-13 Ethyl Petroleum Additives Limited Schmiermittelzusammensetzungen
US6184186B1 (en) 1999-04-09 2001-02-06 Ethyl Petroleum Additives, Ltd Lubricating compositions
US6824671B2 (en) 2001-05-17 2004-11-30 Exxonmobil Chemical Patents Inc. Low noack volatility poly α-olefins
JP2007268697A (ja) 2006-03-31 2007-10-18 Nippon Oil Corp 放電加工油組成物
US9365663B2 (en) 2008-03-31 2016-06-14 Exxonmobil Chemical Patents Inc. Production of shear-stable high viscosity PAO
US9701595B2 (en) 2009-12-24 2017-07-11 Exxonmobil Chemical Patents Inc. Process for producing novel synthetic basestocks
US9347016B2 (en) 2011-05-06 2016-05-24 Petrochina Company Limited Industrial gear lubricating oil composition used for resisting micro-pitting
US20210348079A1 (en) 2018-10-16 2021-11-11 Basf Se Lubricants with a terpolymer made of diester, olefin and acrylate
DE102020111392A1 (de) * 2020-04-27 2021-10-28 Klüber Lubrication München Se & Co. Kg Schmierstoffzusammensetzung und deren Verwendung

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ITALMATCH CHEMICALS: "KETJENLUBE 240 Applications - Performance Examples", 1 April 2013 (2013-04-01), pages 1 - 2, XP093048759, Retrieved from the Internet <URL:https://www.ulprospector.com/documents/1037364.pdf?bs=4227&b=120888&st=20&r=eu&ind=lubricants> [retrieved on 20230523] *
no. 80939-62-4

Also Published As

Publication number Publication date
EP4294897A1 (de) 2023-12-27
EP4294897B1 (de) 2024-05-29
WO2023217313A1 (de) 2023-11-16
DE102022111794B3 (de) 2023-03-30

Similar Documents

Publication Publication Date Title
EP2164935B1 (de) Schmierfettzusammensetzung
EP2300581B1 (de) Schmierstoffzusammensetzung auf der basis natürlicher und nachwachsender rohstoffe
DE60310480T2 (de) Verwendung von Polyolestern zur Energieeinsparung in Kraftübertragungsfluids
EP3375850B1 (de) Hochtemperaturschmierstoff für die lebensmittelindustrie
EP3372659B1 (de) Hochtemperaturschmierstoffe
EP4294897B1 (de) Basisöl und schmierfluidzusammensetzung enthaltend das basisöl
EP3820978B1 (de) Umweltverträgliches schmierfett für stahlseile
DE112017003959B4 (de) Schmierfettzusammensetzung und deren Verwendung
WO2013037456A1 (de) Hochtemperaturfett
DE3876432T2 (de) Hydraulische fluessigkeiten.
EP4143277A1 (de) Schmierstoffzusammensetzung und deren verwendung
DE102020112993A1 (de) Lithiumkomplexhybridfett
EP4143281A1 (de) Schmierstoffzusammensetzung und deren verwendung
WO2023179897A1 (de) Verwendung einer schmierstoffzusammensetzung zum schmieren von arbeitsgeräten
EP4176027B1 (de) Polyharnstoff-schmierfette enthaltend carbonate und deren verwendung
DE102016011022A1 (de) Biologisch abbaubare Schmierstoffzusammensetzungen mit hoher Elastomerverträglichkeit zur Verwendung im Marinebereich, speziell im Bereich der Stevenrohrschmierung
DE102012015648A1 (de) Hochtemperaturfett
WO2024017518A1 (de) Schmierfettzusammensetzung enthaltend eine ionische flüssigkeit
WO2024017517A1 (de) Schmierstoffzusammensetzung enthaltend eine ionische flüssigkeit
WO2020038737A1 (de) Schmiermittelzusammensetzung
DE102020008047A1 (de) Polyharnstoff-Schmierfette enthaltend Carbonate und deren Verwendung
JP2021161298A (ja) グリース組成物

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AC Divisional application: reference to earlier application

Ref document number: 4294897

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR